1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34 NVME_TCP_SEND_CMD_PDU = 0,
35 NVME_TCP_SEND_H2C_PDU,
36 NVME_TCP_SEND_DATA,
37 NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41 struct nvme_request req;
42 void *pdu;
43 struct nvme_tcp_queue *queue;
44 u32 data_len;
45 u32 pdu_len;
46 u32 pdu_sent;
47 u16 ttag;
48 struct list_head entry;
49 struct llist_node lentry;
50 __le32 ddgst;
51
52 struct bio *curr_bio;
53 struct iov_iter iter;
54
55 /* send state */
56 size_t offset;
57 size_t data_sent;
58 enum nvme_tcp_send_state state;
59 };
60
61 enum nvme_tcp_queue_flags {
62 NVME_TCP_Q_ALLOCATED = 0,
63 NVME_TCP_Q_LIVE = 1,
64 NVME_TCP_Q_POLLING = 2,
65 };
66
67 enum nvme_tcp_recv_state {
68 NVME_TCP_RECV_PDU = 0,
69 NVME_TCP_RECV_DATA,
70 NVME_TCP_RECV_DDGST,
71 };
72
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 struct socket *sock;
76 struct work_struct io_work;
77 int io_cpu;
78
79 struct mutex send_mutex;
80 struct llist_head req_list;
81 struct list_head send_list;
82 bool more_requests;
83
84 /* recv state */
85 void *pdu;
86 int pdu_remaining;
87 int pdu_offset;
88 size_t data_remaining;
89 size_t ddgst_remaining;
90 unsigned int nr_cqe;
91
92 /* send state */
93 struct nvme_tcp_request *request;
94
95 int queue_size;
96 size_t cmnd_capsule_len;
97 struct nvme_tcp_ctrl *ctrl;
98 unsigned long flags;
99 bool rd_enabled;
100
101 bool hdr_digest;
102 bool data_digest;
103 struct ahash_request *rcv_hash;
104 struct ahash_request *snd_hash;
105 __le32 exp_ddgst;
106 __le32 recv_ddgst;
107
108 struct page_frag_cache pf_cache;
109
110 void (*state_change)(struct sock *);
111 void (*data_ready)(struct sock *);
112 void (*write_space)(struct sock *);
113 };
114
115 struct nvme_tcp_ctrl {
116 /* read only in the hot path */
117 struct nvme_tcp_queue *queues;
118 struct blk_mq_tag_set tag_set;
119
120 /* other member variables */
121 struct list_head list;
122 struct blk_mq_tag_set admin_tag_set;
123 struct sockaddr_storage addr;
124 struct sockaddr_storage src_addr;
125 struct nvme_ctrl ctrl;
126
127 struct work_struct err_work;
128 struct delayed_work connect_work;
129 struct nvme_tcp_request async_req;
130 u32 io_queues[HCTX_MAX_TYPES];
131 };
132
133 static LIST_HEAD(nvme_tcp_ctrl_list);
134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
135 static struct workqueue_struct *nvme_tcp_wq;
136 static const struct blk_mq_ops nvme_tcp_mq_ops;
137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
139
to_tcp_ctrl(struct nvme_ctrl * ctrl)140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
141 {
142 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
143 }
144
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
146 {
147 return queue - queue->ctrl->queues;
148 }
149
nvme_tcp_tagset(struct nvme_tcp_queue * queue)150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
151 {
152 u32 queue_idx = nvme_tcp_queue_id(queue);
153
154 if (queue_idx == 0)
155 return queue->ctrl->admin_tag_set.tags[queue_idx];
156 return queue->ctrl->tag_set.tags[queue_idx - 1];
157 }
158
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
160 {
161 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
162 }
163
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
165 {
166 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
167 }
168
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
170 {
171 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173
nvme_tcp_async_req(struct nvme_tcp_request * req)174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
175 {
176 return req == &req->queue->ctrl->async_req;
177 }
178
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
180 {
181 struct request *rq;
182
183 if (unlikely(nvme_tcp_async_req(req)))
184 return false; /* async events don't have a request */
185
186 rq = blk_mq_rq_from_pdu(req);
187
188 return rq_data_dir(rq) == WRITE && req->data_len &&
189 req->data_len <= nvme_tcp_inline_data_size(req->queue);
190 }
191
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
193 {
194 return req->iter.bvec->bv_page;
195 }
196
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
198 {
199 return req->iter.bvec->bv_offset + req->iter.iov_offset;
200 }
201
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
203 {
204 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
205 req->pdu_len - req->pdu_sent);
206 }
207
nvme_tcp_req_offset(struct nvme_tcp_request * req)208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
209 {
210 return req->iter.iov_offset;
211 }
212
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
214 {
215 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216 req->pdu_len - req->pdu_sent : 0;
217 }
218
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
220 int len)
221 {
222 return nvme_tcp_pdu_data_left(req) <= len;
223 }
224
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
226 unsigned int dir)
227 {
228 struct request *rq = blk_mq_rq_from_pdu(req);
229 struct bio_vec *vec;
230 unsigned int size;
231 int nsegs;
232 size_t offset;
233
234 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235 vec = &rq->special_vec;
236 nsegs = 1;
237 size = blk_rq_payload_bytes(rq);
238 offset = 0;
239 } else {
240 struct bio *bio = req->curr_bio;
241
242 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
243 nsegs = bio_segments(bio);
244 size = bio->bi_iter.bi_size;
245 offset = bio->bi_iter.bi_bvec_done;
246 }
247
248 iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
249 req->iter.iov_offset = offset;
250 }
251
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
253 int len)
254 {
255 req->data_sent += len;
256 req->pdu_sent += len;
257 iov_iter_advance(&req->iter, len);
258 if (!iov_iter_count(&req->iter) &&
259 req->data_sent < req->data_len) {
260 req->curr_bio = req->curr_bio->bi_next;
261 nvme_tcp_init_iter(req, WRITE);
262 }
263 }
264
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
266 bool sync, bool last)
267 {
268 struct nvme_tcp_queue *queue = req->queue;
269 bool empty;
270
271 empty = llist_add(&req->lentry, &queue->req_list) &&
272 list_empty(&queue->send_list) && !queue->request;
273
274 /*
275 * if we're the first on the send_list and we can try to send
276 * directly, otherwise queue io_work. Also, only do that if we
277 * are on the same cpu, so we don't introduce contention.
278 */
279 if (queue->io_cpu == smp_processor_id() &&
280 sync && empty && mutex_trylock(&queue->send_mutex)) {
281 queue->more_requests = !last;
282 nvme_tcp_try_send(queue);
283 queue->more_requests = false;
284 mutex_unlock(&queue->send_mutex);
285 } else if (last) {
286 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
287 }
288 }
289
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
291 {
292 struct nvme_tcp_request *req;
293 struct llist_node *node;
294
295 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
296 req = llist_entry(node, struct nvme_tcp_request, lentry);
297 list_add(&req->entry, &queue->send_list);
298 }
299 }
300
301 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
303 {
304 struct nvme_tcp_request *req;
305
306 req = list_first_entry_or_null(&queue->send_list,
307 struct nvme_tcp_request, entry);
308 if (!req) {
309 nvme_tcp_process_req_list(queue);
310 req = list_first_entry_or_null(&queue->send_list,
311 struct nvme_tcp_request, entry);
312 if (unlikely(!req))
313 return NULL;
314 }
315
316 list_del(&req->entry);
317 return req;
318 }
319
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
321 __le32 *dgst)
322 {
323 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
324 crypto_ahash_final(hash);
325 }
326
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
328 struct page *page, off_t off, size_t len)
329 {
330 struct scatterlist sg;
331
332 sg_init_marker(&sg, 1);
333 sg_set_page(&sg, page, len, off);
334 ahash_request_set_crypt(hash, &sg, NULL, len);
335 crypto_ahash_update(hash);
336 }
337
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)338 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
339 void *pdu, size_t len)
340 {
341 struct scatterlist sg;
342
343 sg_init_one(&sg, pdu, len);
344 ahash_request_set_crypt(hash, &sg, pdu + len, len);
345 crypto_ahash_digest(hash);
346 }
347
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
349 void *pdu, size_t pdu_len)
350 {
351 struct nvme_tcp_hdr *hdr = pdu;
352 __le32 recv_digest;
353 __le32 exp_digest;
354
355 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
356 dev_err(queue->ctrl->ctrl.device,
357 "queue %d: header digest flag is cleared\n",
358 nvme_tcp_queue_id(queue));
359 return -EPROTO;
360 }
361
362 recv_digest = *(__le32 *)(pdu + hdr->hlen);
363 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
364 exp_digest = *(__le32 *)(pdu + hdr->hlen);
365 if (recv_digest != exp_digest) {
366 dev_err(queue->ctrl->ctrl.device,
367 "header digest error: recv %#x expected %#x\n",
368 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
369 return -EIO;
370 }
371
372 return 0;
373 }
374
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
376 {
377 struct nvme_tcp_hdr *hdr = pdu;
378 u8 digest_len = nvme_tcp_hdgst_len(queue);
379 u32 len;
380
381 len = le32_to_cpu(hdr->plen) - hdr->hlen -
382 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
383
384 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
385 dev_err(queue->ctrl->ctrl.device,
386 "queue %d: data digest flag is cleared\n",
387 nvme_tcp_queue_id(queue));
388 return -EPROTO;
389 }
390 crypto_ahash_init(queue->rcv_hash);
391
392 return 0;
393 }
394
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
396 struct request *rq, unsigned int hctx_idx)
397 {
398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
399
400 page_frag_free(req->pdu);
401 }
402
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
404 struct request *rq, unsigned int hctx_idx,
405 unsigned int numa_node)
406 {
407 struct nvme_tcp_ctrl *ctrl = set->driver_data;
408 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
409 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
410 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
411 u8 hdgst = nvme_tcp_hdgst_len(queue);
412
413 req->pdu = page_frag_alloc(&queue->pf_cache,
414 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
415 GFP_KERNEL | __GFP_ZERO);
416 if (!req->pdu)
417 return -ENOMEM;
418
419 req->queue = queue;
420 nvme_req(rq)->ctrl = &ctrl->ctrl;
421
422 return 0;
423 }
424
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426 unsigned int hctx_idx)
427 {
428 struct nvme_tcp_ctrl *ctrl = data;
429 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
430
431 hctx->driver_data = queue;
432 return 0;
433 }
434
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
436 unsigned int hctx_idx)
437 {
438 struct nvme_tcp_ctrl *ctrl = data;
439 struct nvme_tcp_queue *queue = &ctrl->queues[0];
440
441 hctx->driver_data = queue;
442 return 0;
443 }
444
445 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
447 {
448 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
449 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
450 NVME_TCP_RECV_DATA;
451 }
452
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
454 {
455 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
456 nvme_tcp_hdgst_len(queue);
457 queue->pdu_offset = 0;
458 queue->data_remaining = -1;
459 queue->ddgst_remaining = 0;
460 }
461
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
463 {
464 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
465 return;
466
467 dev_warn(ctrl->device, "starting error recovery\n");
468 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
469 }
470
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)471 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
472 struct nvme_completion *cqe)
473 {
474 struct request *rq;
475
476 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
477 if (!rq) {
478 dev_err(queue->ctrl->ctrl.device,
479 "queue %d tag 0x%x not found\n",
480 nvme_tcp_queue_id(queue), cqe->command_id);
481 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
482 return -EINVAL;
483 }
484
485 if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
486 nvme_complete_rq(rq);
487 queue->nr_cqe++;
488
489 return 0;
490 }
491
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)492 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
493 struct nvme_tcp_data_pdu *pdu)
494 {
495 struct request *rq;
496
497 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
498 if (!rq) {
499 dev_err(queue->ctrl->ctrl.device,
500 "queue %d tag %#x not found\n",
501 nvme_tcp_queue_id(queue), pdu->command_id);
502 return -ENOENT;
503 }
504
505 if (!blk_rq_payload_bytes(rq)) {
506 dev_err(queue->ctrl->ctrl.device,
507 "queue %d tag %#x unexpected data\n",
508 nvme_tcp_queue_id(queue), rq->tag);
509 return -EIO;
510 }
511
512 queue->data_remaining = le32_to_cpu(pdu->data_length);
513
514 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
515 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
516 dev_err(queue->ctrl->ctrl.device,
517 "queue %d tag %#x SUCCESS set but not last PDU\n",
518 nvme_tcp_queue_id(queue), rq->tag);
519 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
520 return -EPROTO;
521 }
522
523 return 0;
524 }
525
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)526 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
527 struct nvme_tcp_rsp_pdu *pdu)
528 {
529 struct nvme_completion *cqe = &pdu->cqe;
530 int ret = 0;
531
532 /*
533 * AEN requests are special as they don't time out and can
534 * survive any kind of queue freeze and often don't respond to
535 * aborts. We don't even bother to allocate a struct request
536 * for them but rather special case them here.
537 */
538 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
539 cqe->command_id)))
540 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
541 &cqe->result);
542 else
543 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
544
545 return ret;
546 }
547
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)548 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
549 struct nvme_tcp_r2t_pdu *pdu)
550 {
551 struct nvme_tcp_data_pdu *data = req->pdu;
552 struct nvme_tcp_queue *queue = req->queue;
553 struct request *rq = blk_mq_rq_from_pdu(req);
554 u8 hdgst = nvme_tcp_hdgst_len(queue);
555 u8 ddgst = nvme_tcp_ddgst_len(queue);
556
557 req->pdu_len = le32_to_cpu(pdu->r2t_length);
558 req->pdu_sent = 0;
559
560 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
561 dev_err(queue->ctrl->ctrl.device,
562 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
563 rq->tag, req->pdu_len, req->data_len,
564 req->data_sent);
565 return -EPROTO;
566 }
567
568 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
569 dev_err(queue->ctrl->ctrl.device,
570 "req %d unexpected r2t offset %u (expected %zu)\n",
571 rq->tag, le32_to_cpu(pdu->r2t_offset),
572 req->data_sent);
573 return -EPROTO;
574 }
575
576 memset(data, 0, sizeof(*data));
577 data->hdr.type = nvme_tcp_h2c_data;
578 data->hdr.flags = NVME_TCP_F_DATA_LAST;
579 if (queue->hdr_digest)
580 data->hdr.flags |= NVME_TCP_F_HDGST;
581 if (queue->data_digest)
582 data->hdr.flags |= NVME_TCP_F_DDGST;
583 data->hdr.hlen = sizeof(*data);
584 data->hdr.pdo = data->hdr.hlen + hdgst;
585 data->hdr.plen =
586 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
587 data->ttag = pdu->ttag;
588 data->command_id = rq->tag;
589 data->data_offset = cpu_to_le32(req->data_sent);
590 data->data_length = cpu_to_le32(req->pdu_len);
591 return 0;
592 }
593
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)594 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
595 struct nvme_tcp_r2t_pdu *pdu)
596 {
597 struct nvme_tcp_request *req;
598 struct request *rq;
599 int ret;
600
601 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
602 if (!rq) {
603 dev_err(queue->ctrl->ctrl.device,
604 "queue %d tag %#x not found\n",
605 nvme_tcp_queue_id(queue), pdu->command_id);
606 return -ENOENT;
607 }
608 req = blk_mq_rq_to_pdu(rq);
609
610 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
611 if (unlikely(ret))
612 return ret;
613
614 req->state = NVME_TCP_SEND_H2C_PDU;
615 req->offset = 0;
616
617 nvme_tcp_queue_request(req, false, true);
618
619 return 0;
620 }
621
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)622 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
623 unsigned int *offset, size_t *len)
624 {
625 struct nvme_tcp_hdr *hdr;
626 char *pdu = queue->pdu;
627 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
628 int ret;
629
630 ret = skb_copy_bits(skb, *offset,
631 &pdu[queue->pdu_offset], rcv_len);
632 if (unlikely(ret))
633 return ret;
634
635 queue->pdu_remaining -= rcv_len;
636 queue->pdu_offset += rcv_len;
637 *offset += rcv_len;
638 *len -= rcv_len;
639 if (queue->pdu_remaining)
640 return 0;
641
642 hdr = queue->pdu;
643 if (queue->hdr_digest) {
644 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
645 if (unlikely(ret))
646 return ret;
647 }
648
649
650 if (queue->data_digest) {
651 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
652 if (unlikely(ret))
653 return ret;
654 }
655
656 switch (hdr->type) {
657 case nvme_tcp_c2h_data:
658 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
659 case nvme_tcp_rsp:
660 nvme_tcp_init_recv_ctx(queue);
661 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
662 case nvme_tcp_r2t:
663 nvme_tcp_init_recv_ctx(queue);
664 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
665 default:
666 dev_err(queue->ctrl->ctrl.device,
667 "unsupported pdu type (%d)\n", hdr->type);
668 return -EINVAL;
669 }
670 }
671
nvme_tcp_end_request(struct request * rq,u16 status)672 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
673 {
674 union nvme_result res = {};
675
676 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
677 nvme_complete_rq(rq);
678 }
679
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)680 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
681 unsigned int *offset, size_t *len)
682 {
683 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
684 struct nvme_tcp_request *req;
685 struct request *rq;
686
687 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
688 if (!rq) {
689 dev_err(queue->ctrl->ctrl.device,
690 "queue %d tag %#x not found\n",
691 nvme_tcp_queue_id(queue), pdu->command_id);
692 return -ENOENT;
693 }
694 req = blk_mq_rq_to_pdu(rq);
695
696 while (true) {
697 int recv_len, ret;
698
699 recv_len = min_t(size_t, *len, queue->data_remaining);
700 if (!recv_len)
701 break;
702
703 if (!iov_iter_count(&req->iter)) {
704 req->curr_bio = req->curr_bio->bi_next;
705
706 /*
707 * If we don`t have any bios it means that controller
708 * sent more data than we requested, hence error
709 */
710 if (!req->curr_bio) {
711 dev_err(queue->ctrl->ctrl.device,
712 "queue %d no space in request %#x",
713 nvme_tcp_queue_id(queue), rq->tag);
714 nvme_tcp_init_recv_ctx(queue);
715 return -EIO;
716 }
717 nvme_tcp_init_iter(req, READ);
718 }
719
720 /* we can read only from what is left in this bio */
721 recv_len = min_t(size_t, recv_len,
722 iov_iter_count(&req->iter));
723
724 if (queue->data_digest)
725 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
726 &req->iter, recv_len, queue->rcv_hash);
727 else
728 ret = skb_copy_datagram_iter(skb, *offset,
729 &req->iter, recv_len);
730 if (ret) {
731 dev_err(queue->ctrl->ctrl.device,
732 "queue %d failed to copy request %#x data",
733 nvme_tcp_queue_id(queue), rq->tag);
734 return ret;
735 }
736
737 *len -= recv_len;
738 *offset += recv_len;
739 queue->data_remaining -= recv_len;
740 }
741
742 if (!queue->data_remaining) {
743 if (queue->data_digest) {
744 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
745 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
746 } else {
747 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
748 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
749 queue->nr_cqe++;
750 }
751 nvme_tcp_init_recv_ctx(queue);
752 }
753 }
754
755 return 0;
756 }
757
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)758 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
759 struct sk_buff *skb, unsigned int *offset, size_t *len)
760 {
761 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
762 char *ddgst = (char *)&queue->recv_ddgst;
763 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
764 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
765 int ret;
766
767 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
768 if (unlikely(ret))
769 return ret;
770
771 queue->ddgst_remaining -= recv_len;
772 *offset += recv_len;
773 *len -= recv_len;
774 if (queue->ddgst_remaining)
775 return 0;
776
777 if (queue->recv_ddgst != queue->exp_ddgst) {
778 dev_err(queue->ctrl->ctrl.device,
779 "data digest error: recv %#x expected %#x\n",
780 le32_to_cpu(queue->recv_ddgst),
781 le32_to_cpu(queue->exp_ddgst));
782 return -EIO;
783 }
784
785 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
786 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
787 pdu->command_id);
788
789 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
790 queue->nr_cqe++;
791 }
792
793 nvme_tcp_init_recv_ctx(queue);
794 return 0;
795 }
796
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)797 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
798 unsigned int offset, size_t len)
799 {
800 struct nvme_tcp_queue *queue = desc->arg.data;
801 size_t consumed = len;
802 int result;
803
804 while (len) {
805 switch (nvme_tcp_recv_state(queue)) {
806 case NVME_TCP_RECV_PDU:
807 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
808 break;
809 case NVME_TCP_RECV_DATA:
810 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
811 break;
812 case NVME_TCP_RECV_DDGST:
813 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
814 break;
815 default:
816 result = -EFAULT;
817 }
818 if (result) {
819 dev_err(queue->ctrl->ctrl.device,
820 "receive failed: %d\n", result);
821 queue->rd_enabled = false;
822 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
823 return result;
824 }
825 }
826
827 return consumed;
828 }
829
nvme_tcp_data_ready(struct sock * sk)830 static void nvme_tcp_data_ready(struct sock *sk)
831 {
832 struct nvme_tcp_queue *queue;
833
834 read_lock_bh(&sk->sk_callback_lock);
835 queue = sk->sk_user_data;
836 if (likely(queue && queue->rd_enabled) &&
837 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
838 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
839 read_unlock_bh(&sk->sk_callback_lock);
840 }
841
nvme_tcp_write_space(struct sock * sk)842 static void nvme_tcp_write_space(struct sock *sk)
843 {
844 struct nvme_tcp_queue *queue;
845
846 read_lock_bh(&sk->sk_callback_lock);
847 queue = sk->sk_user_data;
848 if (likely(queue && sk_stream_is_writeable(sk))) {
849 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
850 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
851 }
852 read_unlock_bh(&sk->sk_callback_lock);
853 }
854
nvme_tcp_state_change(struct sock * sk)855 static void nvme_tcp_state_change(struct sock *sk)
856 {
857 struct nvme_tcp_queue *queue;
858
859 read_lock(&sk->sk_callback_lock);
860 queue = sk->sk_user_data;
861 if (!queue)
862 goto done;
863
864 switch (sk->sk_state) {
865 case TCP_CLOSE:
866 case TCP_CLOSE_WAIT:
867 case TCP_LAST_ACK:
868 case TCP_FIN_WAIT1:
869 case TCP_FIN_WAIT2:
870 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
871 break;
872 default:
873 dev_info(queue->ctrl->ctrl.device,
874 "queue %d socket state %d\n",
875 nvme_tcp_queue_id(queue), sk->sk_state);
876 }
877
878 queue->state_change(sk);
879 done:
880 read_unlock(&sk->sk_callback_lock);
881 }
882
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
884 {
885 return !list_empty(&queue->send_list) ||
886 !llist_empty(&queue->req_list) || queue->more_requests;
887 }
888
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
890 {
891 queue->request = NULL;
892 }
893
nvme_tcp_fail_request(struct nvme_tcp_request * req)894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
895 {
896 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
897 }
898
nvme_tcp_try_send_data(struct nvme_tcp_request * req)899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
900 {
901 struct nvme_tcp_queue *queue = req->queue;
902
903 while (true) {
904 struct page *page = nvme_tcp_req_cur_page(req);
905 size_t offset = nvme_tcp_req_cur_offset(req);
906 size_t len = nvme_tcp_req_cur_length(req);
907 bool last = nvme_tcp_pdu_last_send(req, len);
908 int ret, flags = MSG_DONTWAIT;
909
910 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
911 flags |= MSG_EOR;
912 else
913 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
914
915 if (sendpage_ok(page)) {
916 ret = kernel_sendpage(queue->sock, page, offset, len,
917 flags);
918 } else {
919 ret = sock_no_sendpage(queue->sock, page, offset, len,
920 flags);
921 }
922 if (ret <= 0)
923 return ret;
924
925 nvme_tcp_advance_req(req, ret);
926 if (queue->data_digest)
927 nvme_tcp_ddgst_update(queue->snd_hash, page,
928 offset, ret);
929
930 /* fully successful last write*/
931 if (last && ret == len) {
932 if (queue->data_digest) {
933 nvme_tcp_ddgst_final(queue->snd_hash,
934 &req->ddgst);
935 req->state = NVME_TCP_SEND_DDGST;
936 req->offset = 0;
937 } else {
938 nvme_tcp_done_send_req(queue);
939 }
940 return 1;
941 }
942 }
943 return -EAGAIN;
944 }
945
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)946 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
947 {
948 struct nvme_tcp_queue *queue = req->queue;
949 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
950 bool inline_data = nvme_tcp_has_inline_data(req);
951 u8 hdgst = nvme_tcp_hdgst_len(queue);
952 int len = sizeof(*pdu) + hdgst - req->offset;
953 int flags = MSG_DONTWAIT;
954 int ret;
955
956 if (inline_data || nvme_tcp_queue_more(queue))
957 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
958 else
959 flags |= MSG_EOR;
960
961 if (queue->hdr_digest && !req->offset)
962 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
963
964 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
965 offset_in_page(pdu) + req->offset, len, flags);
966 if (unlikely(ret <= 0))
967 return ret;
968
969 len -= ret;
970 if (!len) {
971 if (inline_data) {
972 req->state = NVME_TCP_SEND_DATA;
973 if (queue->data_digest)
974 crypto_ahash_init(queue->snd_hash);
975 nvme_tcp_init_iter(req, WRITE);
976 } else {
977 nvme_tcp_done_send_req(queue);
978 }
979 return 1;
980 }
981 req->offset += ret;
982
983 return -EAGAIN;
984 }
985
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)986 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
987 {
988 struct nvme_tcp_queue *queue = req->queue;
989 struct nvme_tcp_data_pdu *pdu = req->pdu;
990 u8 hdgst = nvme_tcp_hdgst_len(queue);
991 int len = sizeof(*pdu) - req->offset + hdgst;
992 int ret;
993
994 if (queue->hdr_digest && !req->offset)
995 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
996
997 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
998 offset_in_page(pdu) + req->offset, len,
999 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1000 if (unlikely(ret <= 0))
1001 return ret;
1002
1003 len -= ret;
1004 if (!len) {
1005 req->state = NVME_TCP_SEND_DATA;
1006 if (queue->data_digest)
1007 crypto_ahash_init(queue->snd_hash);
1008 if (!req->data_sent)
1009 nvme_tcp_init_iter(req, WRITE);
1010 return 1;
1011 }
1012 req->offset += ret;
1013
1014 return -EAGAIN;
1015 }
1016
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1017 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1018 {
1019 struct nvme_tcp_queue *queue = req->queue;
1020 int ret;
1021 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1022 struct kvec iov = {
1023 .iov_base = &req->ddgst + req->offset,
1024 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1025 };
1026
1027 if (nvme_tcp_queue_more(queue))
1028 msg.msg_flags |= MSG_MORE;
1029 else
1030 msg.msg_flags |= MSG_EOR;
1031
1032 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1033 if (unlikely(ret <= 0))
1034 return ret;
1035
1036 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1037 nvme_tcp_done_send_req(queue);
1038 return 1;
1039 }
1040
1041 req->offset += ret;
1042 return -EAGAIN;
1043 }
1044
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1045 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1046 {
1047 struct nvme_tcp_request *req;
1048 int ret = 1;
1049
1050 if (!queue->request) {
1051 queue->request = nvme_tcp_fetch_request(queue);
1052 if (!queue->request)
1053 return 0;
1054 }
1055 req = queue->request;
1056
1057 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1058 ret = nvme_tcp_try_send_cmd_pdu(req);
1059 if (ret <= 0)
1060 goto done;
1061 if (!nvme_tcp_has_inline_data(req))
1062 return ret;
1063 }
1064
1065 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1066 ret = nvme_tcp_try_send_data_pdu(req);
1067 if (ret <= 0)
1068 goto done;
1069 }
1070
1071 if (req->state == NVME_TCP_SEND_DATA) {
1072 ret = nvme_tcp_try_send_data(req);
1073 if (ret <= 0)
1074 goto done;
1075 }
1076
1077 if (req->state == NVME_TCP_SEND_DDGST)
1078 ret = nvme_tcp_try_send_ddgst(req);
1079 done:
1080 if (ret == -EAGAIN) {
1081 ret = 0;
1082 } else if (ret < 0) {
1083 dev_err(queue->ctrl->ctrl.device,
1084 "failed to send request %d\n", ret);
1085 if (ret != -EPIPE && ret != -ECONNRESET)
1086 nvme_tcp_fail_request(queue->request);
1087 nvme_tcp_done_send_req(queue);
1088 }
1089 return ret;
1090 }
1091
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1092 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1093 {
1094 struct socket *sock = queue->sock;
1095 struct sock *sk = sock->sk;
1096 read_descriptor_t rd_desc;
1097 int consumed;
1098
1099 rd_desc.arg.data = queue;
1100 rd_desc.count = 1;
1101 lock_sock(sk);
1102 queue->nr_cqe = 0;
1103 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1104 release_sock(sk);
1105 return consumed;
1106 }
1107
nvme_tcp_io_work(struct work_struct * w)1108 static void nvme_tcp_io_work(struct work_struct *w)
1109 {
1110 struct nvme_tcp_queue *queue =
1111 container_of(w, struct nvme_tcp_queue, io_work);
1112 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1113
1114 do {
1115 bool pending = false;
1116 int result;
1117
1118 if (mutex_trylock(&queue->send_mutex)) {
1119 result = nvme_tcp_try_send(queue);
1120 mutex_unlock(&queue->send_mutex);
1121 if (result > 0)
1122 pending = true;
1123 else if (unlikely(result < 0))
1124 break;
1125 }
1126
1127 result = nvme_tcp_try_recv(queue);
1128 if (result > 0)
1129 pending = true;
1130 else if (unlikely(result < 0))
1131 return;
1132
1133 if (!pending)
1134 return;
1135
1136 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1137
1138 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1139 }
1140
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1141 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1142 {
1143 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1144
1145 ahash_request_free(queue->rcv_hash);
1146 ahash_request_free(queue->snd_hash);
1147 crypto_free_ahash(tfm);
1148 }
1149
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1150 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1151 {
1152 struct crypto_ahash *tfm;
1153
1154 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1155 if (IS_ERR(tfm))
1156 return PTR_ERR(tfm);
1157
1158 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1159 if (!queue->snd_hash)
1160 goto free_tfm;
1161 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1162
1163 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1164 if (!queue->rcv_hash)
1165 goto free_snd_hash;
1166 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1167
1168 return 0;
1169 free_snd_hash:
1170 ahash_request_free(queue->snd_hash);
1171 free_tfm:
1172 crypto_free_ahash(tfm);
1173 return -ENOMEM;
1174 }
1175
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1176 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1177 {
1178 struct nvme_tcp_request *async = &ctrl->async_req;
1179
1180 page_frag_free(async->pdu);
1181 }
1182
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1183 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1184 {
1185 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1186 struct nvme_tcp_request *async = &ctrl->async_req;
1187 u8 hdgst = nvme_tcp_hdgst_len(queue);
1188
1189 async->pdu = page_frag_alloc(&queue->pf_cache,
1190 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1191 GFP_KERNEL | __GFP_ZERO);
1192 if (!async->pdu)
1193 return -ENOMEM;
1194
1195 async->queue = &ctrl->queues[0];
1196 return 0;
1197 }
1198
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1199 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1200 {
1201 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1202 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1203
1204 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1205 return;
1206
1207 if (queue->hdr_digest || queue->data_digest)
1208 nvme_tcp_free_crypto(queue);
1209
1210 sock_release(queue->sock);
1211 kfree(queue->pdu);
1212 }
1213
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1214 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1215 {
1216 struct nvme_tcp_icreq_pdu *icreq;
1217 struct nvme_tcp_icresp_pdu *icresp;
1218 struct msghdr msg = {};
1219 struct kvec iov;
1220 bool ctrl_hdgst, ctrl_ddgst;
1221 int ret;
1222
1223 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1224 if (!icreq)
1225 return -ENOMEM;
1226
1227 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1228 if (!icresp) {
1229 ret = -ENOMEM;
1230 goto free_icreq;
1231 }
1232
1233 icreq->hdr.type = nvme_tcp_icreq;
1234 icreq->hdr.hlen = sizeof(*icreq);
1235 icreq->hdr.pdo = 0;
1236 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1237 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1238 icreq->maxr2t = 0; /* single inflight r2t supported */
1239 icreq->hpda = 0; /* no alignment constraint */
1240 if (queue->hdr_digest)
1241 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1242 if (queue->data_digest)
1243 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1244
1245 iov.iov_base = icreq;
1246 iov.iov_len = sizeof(*icreq);
1247 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1248 if (ret < 0)
1249 goto free_icresp;
1250
1251 memset(&msg, 0, sizeof(msg));
1252 iov.iov_base = icresp;
1253 iov.iov_len = sizeof(*icresp);
1254 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1255 iov.iov_len, msg.msg_flags);
1256 if (ret < 0)
1257 goto free_icresp;
1258
1259 ret = -EINVAL;
1260 if (icresp->hdr.type != nvme_tcp_icresp) {
1261 pr_err("queue %d: bad type returned %d\n",
1262 nvme_tcp_queue_id(queue), icresp->hdr.type);
1263 goto free_icresp;
1264 }
1265
1266 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1267 pr_err("queue %d: bad pdu length returned %d\n",
1268 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1269 goto free_icresp;
1270 }
1271
1272 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1273 pr_err("queue %d: bad pfv returned %d\n",
1274 nvme_tcp_queue_id(queue), icresp->pfv);
1275 goto free_icresp;
1276 }
1277
1278 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1279 if ((queue->data_digest && !ctrl_ddgst) ||
1280 (!queue->data_digest && ctrl_ddgst)) {
1281 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1282 nvme_tcp_queue_id(queue),
1283 queue->data_digest ? "enabled" : "disabled",
1284 ctrl_ddgst ? "enabled" : "disabled");
1285 goto free_icresp;
1286 }
1287
1288 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1289 if ((queue->hdr_digest && !ctrl_hdgst) ||
1290 (!queue->hdr_digest && ctrl_hdgst)) {
1291 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1292 nvme_tcp_queue_id(queue),
1293 queue->hdr_digest ? "enabled" : "disabled",
1294 ctrl_hdgst ? "enabled" : "disabled");
1295 goto free_icresp;
1296 }
1297
1298 if (icresp->cpda != 0) {
1299 pr_err("queue %d: unsupported cpda returned %d\n",
1300 nvme_tcp_queue_id(queue), icresp->cpda);
1301 goto free_icresp;
1302 }
1303
1304 ret = 0;
1305 free_icresp:
1306 kfree(icresp);
1307 free_icreq:
1308 kfree(icreq);
1309 return ret;
1310 }
1311
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1312 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1313 {
1314 return nvme_tcp_queue_id(queue) == 0;
1315 }
1316
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1317 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1318 {
1319 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1320 int qid = nvme_tcp_queue_id(queue);
1321
1322 return !nvme_tcp_admin_queue(queue) &&
1323 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1324 }
1325
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1326 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1327 {
1328 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1329 int qid = nvme_tcp_queue_id(queue);
1330
1331 return !nvme_tcp_admin_queue(queue) &&
1332 !nvme_tcp_default_queue(queue) &&
1333 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1334 ctrl->io_queues[HCTX_TYPE_READ];
1335 }
1336
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1337 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1338 {
1339 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1340 int qid = nvme_tcp_queue_id(queue);
1341
1342 return !nvme_tcp_admin_queue(queue) &&
1343 !nvme_tcp_default_queue(queue) &&
1344 !nvme_tcp_read_queue(queue) &&
1345 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1346 ctrl->io_queues[HCTX_TYPE_READ] +
1347 ctrl->io_queues[HCTX_TYPE_POLL];
1348 }
1349
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1350 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1351 {
1352 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353 int qid = nvme_tcp_queue_id(queue);
1354 int n = 0;
1355
1356 if (nvme_tcp_default_queue(queue))
1357 n = qid - 1;
1358 else if (nvme_tcp_read_queue(queue))
1359 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1360 else if (nvme_tcp_poll_queue(queue))
1361 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1362 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1363 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1364 }
1365
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1366 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1367 int qid, size_t queue_size)
1368 {
1369 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1370 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1371 int ret, rcv_pdu_size;
1372
1373 queue->ctrl = ctrl;
1374 init_llist_head(&queue->req_list);
1375 INIT_LIST_HEAD(&queue->send_list);
1376 mutex_init(&queue->send_mutex);
1377 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1378 queue->queue_size = queue_size;
1379
1380 if (qid > 0)
1381 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1382 else
1383 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1384 NVME_TCP_ADMIN_CCSZ;
1385
1386 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1387 IPPROTO_TCP, &queue->sock);
1388 if (ret) {
1389 dev_err(nctrl->device,
1390 "failed to create socket: %d\n", ret);
1391 return ret;
1392 }
1393
1394 /* Single syn retry */
1395 tcp_sock_set_syncnt(queue->sock->sk, 1);
1396
1397 /* Set TCP no delay */
1398 tcp_sock_set_nodelay(queue->sock->sk);
1399
1400 /*
1401 * Cleanup whatever is sitting in the TCP transmit queue on socket
1402 * close. This is done to prevent stale data from being sent should
1403 * the network connection be restored before TCP times out.
1404 */
1405 sock_no_linger(queue->sock->sk);
1406
1407 if (so_priority > 0)
1408 sock_set_priority(queue->sock->sk, so_priority);
1409
1410 /* Set socket type of service */
1411 if (nctrl->opts->tos >= 0)
1412 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1413
1414 /* Set 10 seconds timeout for icresp recvmsg */
1415 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1416
1417 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1418 nvme_tcp_set_queue_io_cpu(queue);
1419 queue->request = NULL;
1420 queue->data_remaining = 0;
1421 queue->ddgst_remaining = 0;
1422 queue->pdu_remaining = 0;
1423 queue->pdu_offset = 0;
1424 sk_set_memalloc(queue->sock->sk);
1425
1426 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1427 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1428 sizeof(ctrl->src_addr));
1429 if (ret) {
1430 dev_err(nctrl->device,
1431 "failed to bind queue %d socket %d\n",
1432 qid, ret);
1433 goto err_sock;
1434 }
1435 }
1436
1437 queue->hdr_digest = nctrl->opts->hdr_digest;
1438 queue->data_digest = nctrl->opts->data_digest;
1439 if (queue->hdr_digest || queue->data_digest) {
1440 ret = nvme_tcp_alloc_crypto(queue);
1441 if (ret) {
1442 dev_err(nctrl->device,
1443 "failed to allocate queue %d crypto\n", qid);
1444 goto err_sock;
1445 }
1446 }
1447
1448 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1449 nvme_tcp_hdgst_len(queue);
1450 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1451 if (!queue->pdu) {
1452 ret = -ENOMEM;
1453 goto err_crypto;
1454 }
1455
1456 dev_dbg(nctrl->device, "connecting queue %d\n",
1457 nvme_tcp_queue_id(queue));
1458
1459 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1460 sizeof(ctrl->addr), 0);
1461 if (ret) {
1462 dev_err(nctrl->device,
1463 "failed to connect socket: %d\n", ret);
1464 goto err_rcv_pdu;
1465 }
1466
1467 ret = nvme_tcp_init_connection(queue);
1468 if (ret)
1469 goto err_init_connect;
1470
1471 queue->rd_enabled = true;
1472 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1473 nvme_tcp_init_recv_ctx(queue);
1474
1475 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1476 queue->sock->sk->sk_user_data = queue;
1477 queue->state_change = queue->sock->sk->sk_state_change;
1478 queue->data_ready = queue->sock->sk->sk_data_ready;
1479 queue->write_space = queue->sock->sk->sk_write_space;
1480 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1481 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1482 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1483 #ifdef CONFIG_NET_RX_BUSY_POLL
1484 queue->sock->sk->sk_ll_usec = 1;
1485 #endif
1486 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1487
1488 return 0;
1489
1490 err_init_connect:
1491 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1492 err_rcv_pdu:
1493 kfree(queue->pdu);
1494 err_crypto:
1495 if (queue->hdr_digest || queue->data_digest)
1496 nvme_tcp_free_crypto(queue);
1497 err_sock:
1498 sock_release(queue->sock);
1499 queue->sock = NULL;
1500 return ret;
1501 }
1502
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1503 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1504 {
1505 struct socket *sock = queue->sock;
1506
1507 write_lock_bh(&sock->sk->sk_callback_lock);
1508 sock->sk->sk_user_data = NULL;
1509 sock->sk->sk_data_ready = queue->data_ready;
1510 sock->sk->sk_state_change = queue->state_change;
1511 sock->sk->sk_write_space = queue->write_space;
1512 write_unlock_bh(&sock->sk->sk_callback_lock);
1513 }
1514
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1515 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1516 {
1517 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1518 nvme_tcp_restore_sock_calls(queue);
1519 cancel_work_sync(&queue->io_work);
1520 }
1521
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1522 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1523 {
1524 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1525 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1526
1527 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1528 return;
1529 __nvme_tcp_stop_queue(queue);
1530 }
1531
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1532 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1533 {
1534 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1535 int ret;
1536
1537 if (idx)
1538 ret = nvmf_connect_io_queue(nctrl, idx, false);
1539 else
1540 ret = nvmf_connect_admin_queue(nctrl);
1541
1542 if (!ret) {
1543 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1544 } else {
1545 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1546 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1547 dev_err(nctrl->device,
1548 "failed to connect queue: %d ret=%d\n", idx, ret);
1549 }
1550 return ret;
1551 }
1552
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1553 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1554 bool admin)
1555 {
1556 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1557 struct blk_mq_tag_set *set;
1558 int ret;
1559
1560 if (admin) {
1561 set = &ctrl->admin_tag_set;
1562 memset(set, 0, sizeof(*set));
1563 set->ops = &nvme_tcp_admin_mq_ops;
1564 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1565 set->reserved_tags = 2; /* connect + keep-alive */
1566 set->numa_node = nctrl->numa_node;
1567 set->flags = BLK_MQ_F_BLOCKING;
1568 set->cmd_size = sizeof(struct nvme_tcp_request);
1569 set->driver_data = ctrl;
1570 set->nr_hw_queues = 1;
1571 set->timeout = ADMIN_TIMEOUT;
1572 } else {
1573 set = &ctrl->tag_set;
1574 memset(set, 0, sizeof(*set));
1575 set->ops = &nvme_tcp_mq_ops;
1576 set->queue_depth = nctrl->sqsize + 1;
1577 set->reserved_tags = 1; /* fabric connect */
1578 set->numa_node = nctrl->numa_node;
1579 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1580 set->cmd_size = sizeof(struct nvme_tcp_request);
1581 set->driver_data = ctrl;
1582 set->nr_hw_queues = nctrl->queue_count - 1;
1583 set->timeout = NVME_IO_TIMEOUT;
1584 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1585 }
1586
1587 ret = blk_mq_alloc_tag_set(set);
1588 if (ret)
1589 return ERR_PTR(ret);
1590
1591 return set;
1592 }
1593
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1594 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1595 {
1596 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1597 cancel_work_sync(&ctrl->async_event_work);
1598 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1599 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1600 }
1601
1602 nvme_tcp_free_queue(ctrl, 0);
1603 }
1604
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1605 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1606 {
1607 int i;
1608
1609 for (i = 1; i < ctrl->queue_count; i++)
1610 nvme_tcp_free_queue(ctrl, i);
1611 }
1612
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1613 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1614 {
1615 int i;
1616
1617 for (i = 1; i < ctrl->queue_count; i++)
1618 nvme_tcp_stop_queue(ctrl, i);
1619 }
1620
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1621 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1622 {
1623 int i, ret = 0;
1624
1625 for (i = 1; i < ctrl->queue_count; i++) {
1626 ret = nvme_tcp_start_queue(ctrl, i);
1627 if (ret)
1628 goto out_stop_queues;
1629 }
1630
1631 return 0;
1632
1633 out_stop_queues:
1634 for (i--; i >= 1; i--)
1635 nvme_tcp_stop_queue(ctrl, i);
1636 return ret;
1637 }
1638
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1639 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1640 {
1641 int ret;
1642
1643 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1644 if (ret)
1645 return ret;
1646
1647 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1648 if (ret)
1649 goto out_free_queue;
1650
1651 return 0;
1652
1653 out_free_queue:
1654 nvme_tcp_free_queue(ctrl, 0);
1655 return ret;
1656 }
1657
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1658 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1659 {
1660 int i, ret;
1661
1662 for (i = 1; i < ctrl->queue_count; i++) {
1663 ret = nvme_tcp_alloc_queue(ctrl, i,
1664 ctrl->sqsize + 1);
1665 if (ret)
1666 goto out_free_queues;
1667 }
1668
1669 return 0;
1670
1671 out_free_queues:
1672 for (i--; i >= 1; i--)
1673 nvme_tcp_free_queue(ctrl, i);
1674
1675 return ret;
1676 }
1677
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1678 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1679 {
1680 unsigned int nr_io_queues;
1681
1682 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1683 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1684 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1685
1686 return nr_io_queues;
1687 }
1688
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1689 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1690 unsigned int nr_io_queues)
1691 {
1692 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1693 struct nvmf_ctrl_options *opts = nctrl->opts;
1694
1695 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1696 /*
1697 * separate read/write queues
1698 * hand out dedicated default queues only after we have
1699 * sufficient read queues.
1700 */
1701 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1702 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1703 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1704 min(opts->nr_write_queues, nr_io_queues);
1705 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1706 } else {
1707 /*
1708 * shared read/write queues
1709 * either no write queues were requested, or we don't have
1710 * sufficient queue count to have dedicated default queues.
1711 */
1712 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1713 min(opts->nr_io_queues, nr_io_queues);
1714 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1715 }
1716
1717 if (opts->nr_poll_queues && nr_io_queues) {
1718 /* map dedicated poll queues only if we have queues left */
1719 ctrl->io_queues[HCTX_TYPE_POLL] =
1720 min(opts->nr_poll_queues, nr_io_queues);
1721 }
1722 }
1723
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1724 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1725 {
1726 unsigned int nr_io_queues;
1727 int ret;
1728
1729 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1730 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1731 if (ret)
1732 return ret;
1733
1734 ctrl->queue_count = nr_io_queues + 1;
1735 if (ctrl->queue_count < 2)
1736 return 0;
1737
1738 dev_info(ctrl->device,
1739 "creating %d I/O queues.\n", nr_io_queues);
1740
1741 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1742
1743 return __nvme_tcp_alloc_io_queues(ctrl);
1744 }
1745
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1746 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1747 {
1748 nvme_tcp_stop_io_queues(ctrl);
1749 if (remove) {
1750 blk_cleanup_queue(ctrl->connect_q);
1751 blk_mq_free_tag_set(ctrl->tagset);
1752 }
1753 nvme_tcp_free_io_queues(ctrl);
1754 }
1755
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1756 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1757 {
1758 int ret;
1759
1760 ret = nvme_tcp_alloc_io_queues(ctrl);
1761 if (ret)
1762 return ret;
1763
1764 if (new) {
1765 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1766 if (IS_ERR(ctrl->tagset)) {
1767 ret = PTR_ERR(ctrl->tagset);
1768 goto out_free_io_queues;
1769 }
1770
1771 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1772 if (IS_ERR(ctrl->connect_q)) {
1773 ret = PTR_ERR(ctrl->connect_q);
1774 goto out_free_tag_set;
1775 }
1776 }
1777
1778 ret = nvme_tcp_start_io_queues(ctrl);
1779 if (ret)
1780 goto out_cleanup_connect_q;
1781
1782 if (!new) {
1783 nvme_start_queues(ctrl);
1784 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1785 /*
1786 * If we timed out waiting for freeze we are likely to
1787 * be stuck. Fail the controller initialization just
1788 * to be safe.
1789 */
1790 ret = -ENODEV;
1791 goto out_wait_freeze_timed_out;
1792 }
1793 blk_mq_update_nr_hw_queues(ctrl->tagset,
1794 ctrl->queue_count - 1);
1795 nvme_unfreeze(ctrl);
1796 }
1797
1798 return 0;
1799
1800 out_wait_freeze_timed_out:
1801 nvme_stop_queues(ctrl);
1802 nvme_tcp_stop_io_queues(ctrl);
1803 out_cleanup_connect_q:
1804 if (new)
1805 blk_cleanup_queue(ctrl->connect_q);
1806 out_free_tag_set:
1807 if (new)
1808 blk_mq_free_tag_set(ctrl->tagset);
1809 out_free_io_queues:
1810 nvme_tcp_free_io_queues(ctrl);
1811 return ret;
1812 }
1813
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1814 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1815 {
1816 nvme_tcp_stop_queue(ctrl, 0);
1817 if (remove) {
1818 blk_cleanup_queue(ctrl->admin_q);
1819 blk_cleanup_queue(ctrl->fabrics_q);
1820 blk_mq_free_tag_set(ctrl->admin_tagset);
1821 }
1822 nvme_tcp_free_admin_queue(ctrl);
1823 }
1824
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1825 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1826 {
1827 int error;
1828
1829 error = nvme_tcp_alloc_admin_queue(ctrl);
1830 if (error)
1831 return error;
1832
1833 if (new) {
1834 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1835 if (IS_ERR(ctrl->admin_tagset)) {
1836 error = PTR_ERR(ctrl->admin_tagset);
1837 goto out_free_queue;
1838 }
1839
1840 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1841 if (IS_ERR(ctrl->fabrics_q)) {
1842 error = PTR_ERR(ctrl->fabrics_q);
1843 goto out_free_tagset;
1844 }
1845
1846 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1847 if (IS_ERR(ctrl->admin_q)) {
1848 error = PTR_ERR(ctrl->admin_q);
1849 goto out_cleanup_fabrics_q;
1850 }
1851 }
1852
1853 error = nvme_tcp_start_queue(ctrl, 0);
1854 if (error)
1855 goto out_cleanup_queue;
1856
1857 error = nvme_enable_ctrl(ctrl);
1858 if (error)
1859 goto out_stop_queue;
1860
1861 blk_mq_unquiesce_queue(ctrl->admin_q);
1862
1863 error = nvme_init_identify(ctrl);
1864 if (error)
1865 goto out_stop_queue;
1866
1867 return 0;
1868
1869 out_stop_queue:
1870 nvme_tcp_stop_queue(ctrl, 0);
1871 out_cleanup_queue:
1872 if (new)
1873 blk_cleanup_queue(ctrl->admin_q);
1874 out_cleanup_fabrics_q:
1875 if (new)
1876 blk_cleanup_queue(ctrl->fabrics_q);
1877 out_free_tagset:
1878 if (new)
1879 blk_mq_free_tag_set(ctrl->admin_tagset);
1880 out_free_queue:
1881 nvme_tcp_free_admin_queue(ctrl);
1882 return error;
1883 }
1884
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1885 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1886 bool remove)
1887 {
1888 blk_mq_quiesce_queue(ctrl->admin_q);
1889 blk_sync_queue(ctrl->admin_q);
1890 nvme_tcp_stop_queue(ctrl, 0);
1891 if (ctrl->admin_tagset) {
1892 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1893 nvme_cancel_request, ctrl);
1894 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1895 }
1896 if (remove)
1897 blk_mq_unquiesce_queue(ctrl->admin_q);
1898 nvme_tcp_destroy_admin_queue(ctrl, remove);
1899 }
1900
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1901 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1902 bool remove)
1903 {
1904 if (ctrl->queue_count <= 1)
1905 return;
1906 blk_mq_quiesce_queue(ctrl->admin_q);
1907 nvme_start_freeze(ctrl);
1908 nvme_stop_queues(ctrl);
1909 nvme_sync_io_queues(ctrl);
1910 nvme_tcp_stop_io_queues(ctrl);
1911 if (ctrl->tagset) {
1912 blk_mq_tagset_busy_iter(ctrl->tagset,
1913 nvme_cancel_request, ctrl);
1914 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1915 }
1916 if (remove)
1917 nvme_start_queues(ctrl);
1918 nvme_tcp_destroy_io_queues(ctrl, remove);
1919 }
1920
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)1921 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1922 {
1923 /* If we are resetting/deleting then do nothing */
1924 if (ctrl->state != NVME_CTRL_CONNECTING) {
1925 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1926 ctrl->state == NVME_CTRL_LIVE);
1927 return;
1928 }
1929
1930 if (nvmf_should_reconnect(ctrl)) {
1931 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1932 ctrl->opts->reconnect_delay);
1933 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1934 ctrl->opts->reconnect_delay * HZ);
1935 } else {
1936 dev_info(ctrl->device, "Removing controller...\n");
1937 nvme_delete_ctrl(ctrl);
1938 }
1939 }
1940
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)1941 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1942 {
1943 struct nvmf_ctrl_options *opts = ctrl->opts;
1944 int ret;
1945
1946 ret = nvme_tcp_configure_admin_queue(ctrl, new);
1947 if (ret)
1948 return ret;
1949
1950 if (ctrl->icdoff) {
1951 dev_err(ctrl->device, "icdoff is not supported!\n");
1952 goto destroy_admin;
1953 }
1954
1955 if (opts->queue_size > ctrl->sqsize + 1)
1956 dev_warn(ctrl->device,
1957 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1958 opts->queue_size, ctrl->sqsize + 1);
1959
1960 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1961 dev_warn(ctrl->device,
1962 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1963 ctrl->sqsize + 1, ctrl->maxcmd);
1964 ctrl->sqsize = ctrl->maxcmd - 1;
1965 }
1966
1967 if (ctrl->queue_count > 1) {
1968 ret = nvme_tcp_configure_io_queues(ctrl, new);
1969 if (ret)
1970 goto destroy_admin;
1971 }
1972
1973 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1974 /*
1975 * state change failure is ok if we started ctrl delete,
1976 * unless we're during creation of a new controller to
1977 * avoid races with teardown flow.
1978 */
1979 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1980 ctrl->state != NVME_CTRL_DELETING_NOIO);
1981 WARN_ON_ONCE(new);
1982 ret = -EINVAL;
1983 goto destroy_io;
1984 }
1985
1986 nvme_start_ctrl(ctrl);
1987 return 0;
1988
1989 destroy_io:
1990 if (ctrl->queue_count > 1)
1991 nvme_tcp_destroy_io_queues(ctrl, new);
1992 destroy_admin:
1993 nvme_tcp_stop_queue(ctrl, 0);
1994 nvme_tcp_destroy_admin_queue(ctrl, new);
1995 return ret;
1996 }
1997
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)1998 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1999 {
2000 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2001 struct nvme_tcp_ctrl, connect_work);
2002 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2003
2004 ++ctrl->nr_reconnects;
2005
2006 if (nvme_tcp_setup_ctrl(ctrl, false))
2007 goto requeue;
2008
2009 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2010 ctrl->nr_reconnects);
2011
2012 ctrl->nr_reconnects = 0;
2013
2014 return;
2015
2016 requeue:
2017 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2018 ctrl->nr_reconnects);
2019 nvme_tcp_reconnect_or_remove(ctrl);
2020 }
2021
nvme_tcp_error_recovery_work(struct work_struct * work)2022 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2023 {
2024 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2025 struct nvme_tcp_ctrl, err_work);
2026 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2027
2028 nvme_stop_keep_alive(ctrl);
2029 nvme_tcp_teardown_io_queues(ctrl, false);
2030 /* unquiesce to fail fast pending requests */
2031 nvme_start_queues(ctrl);
2032 nvme_tcp_teardown_admin_queue(ctrl, false);
2033 blk_mq_unquiesce_queue(ctrl->admin_q);
2034
2035 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2036 /* state change failure is ok if we started ctrl delete */
2037 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2038 ctrl->state != NVME_CTRL_DELETING_NOIO);
2039 return;
2040 }
2041
2042 nvme_tcp_reconnect_or_remove(ctrl);
2043 }
2044
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2045 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2046 {
2047 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2048 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2049
2050 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2051 blk_mq_quiesce_queue(ctrl->admin_q);
2052 if (shutdown)
2053 nvme_shutdown_ctrl(ctrl);
2054 else
2055 nvme_disable_ctrl(ctrl);
2056 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2057 }
2058
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2059 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2060 {
2061 nvme_tcp_teardown_ctrl(ctrl, true);
2062 }
2063
nvme_reset_ctrl_work(struct work_struct * work)2064 static void nvme_reset_ctrl_work(struct work_struct *work)
2065 {
2066 struct nvme_ctrl *ctrl =
2067 container_of(work, struct nvme_ctrl, reset_work);
2068
2069 nvme_stop_ctrl(ctrl);
2070 nvme_tcp_teardown_ctrl(ctrl, false);
2071
2072 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2073 /* state change failure is ok if we started ctrl delete */
2074 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2075 ctrl->state != NVME_CTRL_DELETING_NOIO);
2076 return;
2077 }
2078
2079 if (nvme_tcp_setup_ctrl(ctrl, false))
2080 goto out_fail;
2081
2082 return;
2083
2084 out_fail:
2085 ++ctrl->nr_reconnects;
2086 nvme_tcp_reconnect_or_remove(ctrl);
2087 }
2088
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2089 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2090 {
2091 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2092
2093 if (list_empty(&ctrl->list))
2094 goto free_ctrl;
2095
2096 mutex_lock(&nvme_tcp_ctrl_mutex);
2097 list_del(&ctrl->list);
2098 mutex_unlock(&nvme_tcp_ctrl_mutex);
2099
2100 nvmf_free_options(nctrl->opts);
2101 free_ctrl:
2102 kfree(ctrl->queues);
2103 kfree(ctrl);
2104 }
2105
nvme_tcp_set_sg_null(struct nvme_command * c)2106 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2107 {
2108 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2109
2110 sg->addr = 0;
2111 sg->length = 0;
2112 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2113 NVME_SGL_FMT_TRANSPORT_A;
2114 }
2115
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2116 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2117 struct nvme_command *c, u32 data_len)
2118 {
2119 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2120
2121 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2122 sg->length = cpu_to_le32(data_len);
2123 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2124 }
2125
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2126 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2127 u32 data_len)
2128 {
2129 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2130
2131 sg->addr = 0;
2132 sg->length = cpu_to_le32(data_len);
2133 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2134 NVME_SGL_FMT_TRANSPORT_A;
2135 }
2136
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2137 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2138 {
2139 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2140 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2141 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2142 struct nvme_command *cmd = &pdu->cmd;
2143 u8 hdgst = nvme_tcp_hdgst_len(queue);
2144
2145 memset(pdu, 0, sizeof(*pdu));
2146 pdu->hdr.type = nvme_tcp_cmd;
2147 if (queue->hdr_digest)
2148 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2149 pdu->hdr.hlen = sizeof(*pdu);
2150 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2151
2152 cmd->common.opcode = nvme_admin_async_event;
2153 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2154 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2155 nvme_tcp_set_sg_null(cmd);
2156
2157 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2158 ctrl->async_req.offset = 0;
2159 ctrl->async_req.curr_bio = NULL;
2160 ctrl->async_req.data_len = 0;
2161
2162 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2163 }
2164
nvme_tcp_complete_timed_out(struct request * rq)2165 static void nvme_tcp_complete_timed_out(struct request *rq)
2166 {
2167 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2168 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2169
2170 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2171 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2172 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2173 blk_mq_complete_request(rq);
2174 }
2175 }
2176
2177 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2178 nvme_tcp_timeout(struct request *rq, bool reserved)
2179 {
2180 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2181 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2182 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2183
2184 dev_warn(ctrl->device,
2185 "queue %d: timeout request %#x type %d\n",
2186 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2187
2188 if (ctrl->state != NVME_CTRL_LIVE) {
2189 /*
2190 * If we are resetting, connecting or deleting we should
2191 * complete immediately because we may block controller
2192 * teardown or setup sequence
2193 * - ctrl disable/shutdown fabrics requests
2194 * - connect requests
2195 * - initialization admin requests
2196 * - I/O requests that entered after unquiescing and
2197 * the controller stopped responding
2198 *
2199 * All other requests should be cancelled by the error
2200 * recovery work, so it's fine that we fail it here.
2201 */
2202 nvme_tcp_complete_timed_out(rq);
2203 return BLK_EH_DONE;
2204 }
2205
2206 /*
2207 * LIVE state should trigger the normal error recovery which will
2208 * handle completing this request.
2209 */
2210 nvme_tcp_error_recovery(ctrl);
2211 return BLK_EH_RESET_TIMER;
2212 }
2213
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2214 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2215 struct request *rq)
2216 {
2217 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2218 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2219 struct nvme_command *c = &pdu->cmd;
2220
2221 c->common.flags |= NVME_CMD_SGL_METABUF;
2222
2223 if (!blk_rq_nr_phys_segments(rq))
2224 nvme_tcp_set_sg_null(c);
2225 else if (rq_data_dir(rq) == WRITE &&
2226 req->data_len <= nvme_tcp_inline_data_size(queue))
2227 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2228 else
2229 nvme_tcp_set_sg_host_data(c, req->data_len);
2230
2231 return 0;
2232 }
2233
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2234 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2235 struct request *rq)
2236 {
2237 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2238 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2239 struct nvme_tcp_queue *queue = req->queue;
2240 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2241 blk_status_t ret;
2242
2243 ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2244 if (ret)
2245 return ret;
2246
2247 req->state = NVME_TCP_SEND_CMD_PDU;
2248 req->offset = 0;
2249 req->data_sent = 0;
2250 req->pdu_len = 0;
2251 req->pdu_sent = 0;
2252 req->data_len = blk_rq_nr_phys_segments(rq) ?
2253 blk_rq_payload_bytes(rq) : 0;
2254 req->curr_bio = rq->bio;
2255
2256 if (rq_data_dir(rq) == WRITE &&
2257 req->data_len <= nvme_tcp_inline_data_size(queue))
2258 req->pdu_len = req->data_len;
2259 else if (req->curr_bio)
2260 nvme_tcp_init_iter(req, READ);
2261
2262 pdu->hdr.type = nvme_tcp_cmd;
2263 pdu->hdr.flags = 0;
2264 if (queue->hdr_digest)
2265 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2266 if (queue->data_digest && req->pdu_len) {
2267 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2268 ddgst = nvme_tcp_ddgst_len(queue);
2269 }
2270 pdu->hdr.hlen = sizeof(*pdu);
2271 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2272 pdu->hdr.plen =
2273 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2274
2275 ret = nvme_tcp_map_data(queue, rq);
2276 if (unlikely(ret)) {
2277 nvme_cleanup_cmd(rq);
2278 dev_err(queue->ctrl->ctrl.device,
2279 "Failed to map data (%d)\n", ret);
2280 return ret;
2281 }
2282
2283 return 0;
2284 }
2285
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2286 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2287 {
2288 struct nvme_tcp_queue *queue = hctx->driver_data;
2289
2290 if (!llist_empty(&queue->req_list))
2291 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2292 }
2293
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2294 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2295 const struct blk_mq_queue_data *bd)
2296 {
2297 struct nvme_ns *ns = hctx->queue->queuedata;
2298 struct nvme_tcp_queue *queue = hctx->driver_data;
2299 struct request *rq = bd->rq;
2300 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2301 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2302 blk_status_t ret;
2303
2304 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2305 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2306
2307 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2308 if (unlikely(ret))
2309 return ret;
2310
2311 blk_mq_start_request(rq);
2312
2313 nvme_tcp_queue_request(req, true, bd->last);
2314
2315 return BLK_STS_OK;
2316 }
2317
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2318 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2319 {
2320 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2321 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2322
2323 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2324 /* separate read/write queues */
2325 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2326 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2327 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2328 set->map[HCTX_TYPE_READ].nr_queues =
2329 ctrl->io_queues[HCTX_TYPE_READ];
2330 set->map[HCTX_TYPE_READ].queue_offset =
2331 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2332 } else {
2333 /* shared read/write queues */
2334 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2335 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2336 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2337 set->map[HCTX_TYPE_READ].nr_queues =
2338 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2339 set->map[HCTX_TYPE_READ].queue_offset = 0;
2340 }
2341 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2342 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2343
2344 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2345 /* map dedicated poll queues only if we have queues left */
2346 set->map[HCTX_TYPE_POLL].nr_queues =
2347 ctrl->io_queues[HCTX_TYPE_POLL];
2348 set->map[HCTX_TYPE_POLL].queue_offset =
2349 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2350 ctrl->io_queues[HCTX_TYPE_READ];
2351 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2352 }
2353
2354 dev_info(ctrl->ctrl.device,
2355 "mapped %d/%d/%d default/read/poll queues.\n",
2356 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2357 ctrl->io_queues[HCTX_TYPE_READ],
2358 ctrl->io_queues[HCTX_TYPE_POLL]);
2359
2360 return 0;
2361 }
2362
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2363 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2364 {
2365 struct nvme_tcp_queue *queue = hctx->driver_data;
2366 struct sock *sk = queue->sock->sk;
2367
2368 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2369 return 0;
2370
2371 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2372 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2373 sk_busy_loop(sk, true);
2374 nvme_tcp_try_recv(queue);
2375 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2376 return queue->nr_cqe;
2377 }
2378
2379 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2380 .queue_rq = nvme_tcp_queue_rq,
2381 .commit_rqs = nvme_tcp_commit_rqs,
2382 .complete = nvme_complete_rq,
2383 .init_request = nvme_tcp_init_request,
2384 .exit_request = nvme_tcp_exit_request,
2385 .init_hctx = nvme_tcp_init_hctx,
2386 .timeout = nvme_tcp_timeout,
2387 .map_queues = nvme_tcp_map_queues,
2388 .poll = nvme_tcp_poll,
2389 };
2390
2391 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2392 .queue_rq = nvme_tcp_queue_rq,
2393 .complete = nvme_complete_rq,
2394 .init_request = nvme_tcp_init_request,
2395 .exit_request = nvme_tcp_exit_request,
2396 .init_hctx = nvme_tcp_init_admin_hctx,
2397 .timeout = nvme_tcp_timeout,
2398 };
2399
2400 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2401 .name = "tcp",
2402 .module = THIS_MODULE,
2403 .flags = NVME_F_FABRICS,
2404 .reg_read32 = nvmf_reg_read32,
2405 .reg_read64 = nvmf_reg_read64,
2406 .reg_write32 = nvmf_reg_write32,
2407 .free_ctrl = nvme_tcp_free_ctrl,
2408 .submit_async_event = nvme_tcp_submit_async_event,
2409 .delete_ctrl = nvme_tcp_delete_ctrl,
2410 .get_address = nvmf_get_address,
2411 };
2412
2413 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2414 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2415 {
2416 struct nvme_tcp_ctrl *ctrl;
2417 bool found = false;
2418
2419 mutex_lock(&nvme_tcp_ctrl_mutex);
2420 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2421 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2422 if (found)
2423 break;
2424 }
2425 mutex_unlock(&nvme_tcp_ctrl_mutex);
2426
2427 return found;
2428 }
2429
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2430 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2431 struct nvmf_ctrl_options *opts)
2432 {
2433 struct nvme_tcp_ctrl *ctrl;
2434 int ret;
2435
2436 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2437 if (!ctrl)
2438 return ERR_PTR(-ENOMEM);
2439
2440 INIT_LIST_HEAD(&ctrl->list);
2441 ctrl->ctrl.opts = opts;
2442 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2443 opts->nr_poll_queues + 1;
2444 ctrl->ctrl.sqsize = opts->queue_size - 1;
2445 ctrl->ctrl.kato = opts->kato;
2446
2447 INIT_DELAYED_WORK(&ctrl->connect_work,
2448 nvme_tcp_reconnect_ctrl_work);
2449 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2450 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2451
2452 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2453 opts->trsvcid =
2454 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2455 if (!opts->trsvcid) {
2456 ret = -ENOMEM;
2457 goto out_free_ctrl;
2458 }
2459 opts->mask |= NVMF_OPT_TRSVCID;
2460 }
2461
2462 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2463 opts->traddr, opts->trsvcid, &ctrl->addr);
2464 if (ret) {
2465 pr_err("malformed address passed: %s:%s\n",
2466 opts->traddr, opts->trsvcid);
2467 goto out_free_ctrl;
2468 }
2469
2470 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2471 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2472 opts->host_traddr, NULL, &ctrl->src_addr);
2473 if (ret) {
2474 pr_err("malformed src address passed: %s\n",
2475 opts->host_traddr);
2476 goto out_free_ctrl;
2477 }
2478 }
2479
2480 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2481 ret = -EALREADY;
2482 goto out_free_ctrl;
2483 }
2484
2485 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2486 GFP_KERNEL);
2487 if (!ctrl->queues) {
2488 ret = -ENOMEM;
2489 goto out_free_ctrl;
2490 }
2491
2492 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2493 if (ret)
2494 goto out_kfree_queues;
2495
2496 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2497 WARN_ON_ONCE(1);
2498 ret = -EINTR;
2499 goto out_uninit_ctrl;
2500 }
2501
2502 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2503 if (ret)
2504 goto out_uninit_ctrl;
2505
2506 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2507 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2508
2509 mutex_lock(&nvme_tcp_ctrl_mutex);
2510 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2511 mutex_unlock(&nvme_tcp_ctrl_mutex);
2512
2513 return &ctrl->ctrl;
2514
2515 out_uninit_ctrl:
2516 nvme_uninit_ctrl(&ctrl->ctrl);
2517 nvme_put_ctrl(&ctrl->ctrl);
2518 if (ret > 0)
2519 ret = -EIO;
2520 return ERR_PTR(ret);
2521 out_kfree_queues:
2522 kfree(ctrl->queues);
2523 out_free_ctrl:
2524 kfree(ctrl);
2525 return ERR_PTR(ret);
2526 }
2527
2528 static struct nvmf_transport_ops nvme_tcp_transport = {
2529 .name = "tcp",
2530 .module = THIS_MODULE,
2531 .required_opts = NVMF_OPT_TRADDR,
2532 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2533 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2534 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2535 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2536 NVMF_OPT_TOS,
2537 .create_ctrl = nvme_tcp_create_ctrl,
2538 };
2539
nvme_tcp_init_module(void)2540 static int __init nvme_tcp_init_module(void)
2541 {
2542 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2543 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2544 if (!nvme_tcp_wq)
2545 return -ENOMEM;
2546
2547 nvmf_register_transport(&nvme_tcp_transport);
2548 return 0;
2549 }
2550
nvme_tcp_cleanup_module(void)2551 static void __exit nvme_tcp_cleanup_module(void)
2552 {
2553 struct nvme_tcp_ctrl *ctrl;
2554
2555 nvmf_unregister_transport(&nvme_tcp_transport);
2556
2557 mutex_lock(&nvme_tcp_ctrl_mutex);
2558 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2559 nvme_delete_ctrl(&ctrl->ctrl);
2560 mutex_unlock(&nvme_tcp_ctrl_mutex);
2561 flush_workqueue(nvme_delete_wq);
2562
2563 destroy_workqueue(nvme_tcp_wq);
2564 }
2565
2566 module_init(nvme_tcp_init_module);
2567 module_exit(nvme_tcp_cleanup_module);
2568
2569 MODULE_LICENSE("GPL v2");
2570