1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 // Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 */
11
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/iopoll.h>
22 #include <linux/can/dev.h>
23 #include <linux/pinctrl/consumer.h>
24
25 #include "m_can.h"
26
27 /* registers definition */
28 enum m_can_reg {
29 M_CAN_CREL = 0x0,
30 M_CAN_ENDN = 0x4,
31 M_CAN_CUST = 0x8,
32 M_CAN_DBTP = 0xc,
33 M_CAN_TEST = 0x10,
34 M_CAN_RWD = 0x14,
35 M_CAN_CCCR = 0x18,
36 M_CAN_NBTP = 0x1c,
37 M_CAN_TSCC = 0x20,
38 M_CAN_TSCV = 0x24,
39 M_CAN_TOCC = 0x28,
40 M_CAN_TOCV = 0x2c,
41 M_CAN_ECR = 0x40,
42 M_CAN_PSR = 0x44,
43 /* TDCR Register only available for version >=3.1.x */
44 M_CAN_TDCR = 0x48,
45 M_CAN_IR = 0x50,
46 M_CAN_IE = 0x54,
47 M_CAN_ILS = 0x58,
48 M_CAN_ILE = 0x5c,
49 M_CAN_GFC = 0x80,
50 M_CAN_SIDFC = 0x84,
51 M_CAN_XIDFC = 0x88,
52 M_CAN_XIDAM = 0x90,
53 M_CAN_HPMS = 0x94,
54 M_CAN_NDAT1 = 0x98,
55 M_CAN_NDAT2 = 0x9c,
56 M_CAN_RXF0C = 0xa0,
57 M_CAN_RXF0S = 0xa4,
58 M_CAN_RXF0A = 0xa8,
59 M_CAN_RXBC = 0xac,
60 M_CAN_RXF1C = 0xb0,
61 M_CAN_RXF1S = 0xb4,
62 M_CAN_RXF1A = 0xb8,
63 M_CAN_RXESC = 0xbc,
64 M_CAN_TXBC = 0xc0,
65 M_CAN_TXFQS = 0xc4,
66 M_CAN_TXESC = 0xc8,
67 M_CAN_TXBRP = 0xcc,
68 M_CAN_TXBAR = 0xd0,
69 M_CAN_TXBCR = 0xd4,
70 M_CAN_TXBTO = 0xd8,
71 M_CAN_TXBCF = 0xdc,
72 M_CAN_TXBTIE = 0xe0,
73 M_CAN_TXBCIE = 0xe4,
74 M_CAN_TXEFC = 0xf0,
75 M_CAN_TXEFS = 0xf4,
76 M_CAN_TXEFA = 0xf8,
77 };
78
79 /* napi related */
80 #define M_CAN_NAPI_WEIGHT 64
81
82 /* message ram configuration data length */
83 #define MRAM_CFG_LEN 8
84
85 /* Core Release Register (CREL) */
86 #define CREL_REL_SHIFT 28
87 #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
88 #define CREL_STEP_SHIFT 24
89 #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
90 #define CREL_SUBSTEP_SHIFT 20
91 #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
92
93 /* Data Bit Timing & Prescaler Register (DBTP) */
94 #define DBTP_TDC BIT(23)
95 #define DBTP_DBRP_SHIFT 16
96 #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
97 #define DBTP_DTSEG1_SHIFT 8
98 #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
99 #define DBTP_DTSEG2_SHIFT 4
100 #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
101 #define DBTP_DSJW_SHIFT 0
102 #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
103
104 /* Transmitter Delay Compensation Register (TDCR) */
105 #define TDCR_TDCO_SHIFT 8
106 #define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
107 #define TDCR_TDCF_SHIFT 0
108 #define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
109
110 /* Test Register (TEST) */
111 #define TEST_LBCK BIT(4)
112
113 /* CC Control Register(CCCR) */
114 #define CCCR_CMR_MASK 0x3
115 #define CCCR_CMR_SHIFT 10
116 #define CCCR_CMR_CANFD 0x1
117 #define CCCR_CMR_CANFD_BRS 0x2
118 #define CCCR_CMR_CAN 0x3
119 #define CCCR_CME_MASK 0x3
120 #define CCCR_CME_SHIFT 8
121 #define CCCR_CME_CAN 0
122 #define CCCR_CME_CANFD 0x1
123 #define CCCR_CME_CANFD_BRS 0x2
124 #define CCCR_TXP BIT(14)
125 #define CCCR_TEST BIT(7)
126 #define CCCR_DAR BIT(6)
127 #define CCCR_MON BIT(5)
128 #define CCCR_CSR BIT(4)
129 #define CCCR_CSA BIT(3)
130 #define CCCR_ASM BIT(2)
131 #define CCCR_CCE BIT(1)
132 #define CCCR_INIT BIT(0)
133 #define CCCR_CANFD 0x10
134 /* for version >=3.1.x */
135 #define CCCR_EFBI BIT(13)
136 #define CCCR_PXHD BIT(12)
137 #define CCCR_BRSE BIT(9)
138 #define CCCR_FDOE BIT(8)
139 /* only for version >=3.2.x */
140 #define CCCR_NISO BIT(15)
141
142 /* Nominal Bit Timing & Prescaler Register (NBTP) */
143 #define NBTP_NSJW_SHIFT 25
144 #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
145 #define NBTP_NBRP_SHIFT 16
146 #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
147 #define NBTP_NTSEG1_SHIFT 8
148 #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
149 #define NBTP_NTSEG2_SHIFT 0
150 #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
151
152 /* Error Counter Register(ECR) */
153 #define ECR_RP BIT(15)
154 #define ECR_REC_SHIFT 8
155 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
156 #define ECR_TEC_SHIFT 0
157 #define ECR_TEC_MASK 0xff
158
159 /* Protocol Status Register(PSR) */
160 #define PSR_BO BIT(7)
161 #define PSR_EW BIT(6)
162 #define PSR_EP BIT(5)
163 #define PSR_LEC_MASK 0x7
164
165 /* Interrupt Register(IR) */
166 #define IR_ALL_INT 0xffffffff
167
168 /* Renamed bits for versions > 3.1.x */
169 #define IR_ARA BIT(29)
170 #define IR_PED BIT(28)
171 #define IR_PEA BIT(27)
172
173 /* Bits for version 3.0.x */
174 #define IR_STE BIT(31)
175 #define IR_FOE BIT(30)
176 #define IR_ACKE BIT(29)
177 #define IR_BE BIT(28)
178 #define IR_CRCE BIT(27)
179 #define IR_WDI BIT(26)
180 #define IR_BO BIT(25)
181 #define IR_EW BIT(24)
182 #define IR_EP BIT(23)
183 #define IR_ELO BIT(22)
184 #define IR_BEU BIT(21)
185 #define IR_BEC BIT(20)
186 #define IR_DRX BIT(19)
187 #define IR_TOO BIT(18)
188 #define IR_MRAF BIT(17)
189 #define IR_TSW BIT(16)
190 #define IR_TEFL BIT(15)
191 #define IR_TEFF BIT(14)
192 #define IR_TEFW BIT(13)
193 #define IR_TEFN BIT(12)
194 #define IR_TFE BIT(11)
195 #define IR_TCF BIT(10)
196 #define IR_TC BIT(9)
197 #define IR_HPM BIT(8)
198 #define IR_RF1L BIT(7)
199 #define IR_RF1F BIT(6)
200 #define IR_RF1W BIT(5)
201 #define IR_RF1N BIT(4)
202 #define IR_RF0L BIT(3)
203 #define IR_RF0F BIT(2)
204 #define IR_RF0W BIT(1)
205 #define IR_RF0N BIT(0)
206 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
207
208 /* Interrupts for version 3.0.x */
209 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
210 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
211 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
212 IR_RF1L | IR_RF0L)
213 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
214 /* Interrupts for version >= 3.1.x */
215 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
216 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
217 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
218 IR_RF1L | IR_RF0L)
219 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
220
221 /* Interrupt Line Select (ILS) */
222 #define ILS_ALL_INT0 0x0
223 #define ILS_ALL_INT1 0xFFFFFFFF
224
225 /* Interrupt Line Enable (ILE) */
226 #define ILE_EINT1 BIT(1)
227 #define ILE_EINT0 BIT(0)
228
229 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
230 #define RXFC_FWM_SHIFT 24
231 #define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
232 #define RXFC_FS_SHIFT 16
233 #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
234
235 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
236 #define RXFS_RFL BIT(25)
237 #define RXFS_FF BIT(24)
238 #define RXFS_FPI_SHIFT 16
239 #define RXFS_FPI_MASK 0x3f0000
240 #define RXFS_FGI_SHIFT 8
241 #define RXFS_FGI_MASK 0x3f00
242 #define RXFS_FFL_MASK 0x7f
243
244 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
245 #define M_CAN_RXESC_8BYTES 0x0
246 #define M_CAN_RXESC_64BYTES 0x777
247
248 /* Tx Buffer Configuration(TXBC) */
249 #define TXBC_NDTB_SHIFT 16
250 #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
251 #define TXBC_TFQS_SHIFT 24
252 #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
253
254 /* Tx FIFO/Queue Status (TXFQS) */
255 #define TXFQS_TFQF BIT(21)
256 #define TXFQS_TFQPI_SHIFT 16
257 #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
258 #define TXFQS_TFGI_SHIFT 8
259 #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
260 #define TXFQS_TFFL_SHIFT 0
261 #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
262
263 /* Tx Buffer Element Size Configuration(TXESC) */
264 #define TXESC_TBDS_8BYTES 0x0
265 #define TXESC_TBDS_64BYTES 0x7
266
267 /* Tx Event FIFO Configuration (TXEFC) */
268 #define TXEFC_EFS_SHIFT 16
269 #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
270
271 /* Tx Event FIFO Status (TXEFS) */
272 #define TXEFS_TEFL BIT(25)
273 #define TXEFS_EFF BIT(24)
274 #define TXEFS_EFGI_SHIFT 8
275 #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
276 #define TXEFS_EFFL_SHIFT 0
277 #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
278
279 /* Tx Event FIFO Acknowledge (TXEFA) */
280 #define TXEFA_EFAI_SHIFT 0
281 #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
282
283 /* Message RAM Configuration (in bytes) */
284 #define SIDF_ELEMENT_SIZE 4
285 #define XIDF_ELEMENT_SIZE 8
286 #define RXF0_ELEMENT_SIZE 72
287 #define RXF1_ELEMENT_SIZE 72
288 #define RXB_ELEMENT_SIZE 72
289 #define TXE_ELEMENT_SIZE 8
290 #define TXB_ELEMENT_SIZE 72
291
292 /* Message RAM Elements */
293 #define M_CAN_FIFO_ID 0x0
294 #define M_CAN_FIFO_DLC 0x4
295 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
296
297 /* Rx Buffer Element */
298 /* R0 */
299 #define RX_BUF_ESI BIT(31)
300 #define RX_BUF_XTD BIT(30)
301 #define RX_BUF_RTR BIT(29)
302 /* R1 */
303 #define RX_BUF_ANMF BIT(31)
304 #define RX_BUF_FDF BIT(21)
305 #define RX_BUF_BRS BIT(20)
306
307 /* Tx Buffer Element */
308 /* T0 */
309 #define TX_BUF_ESI BIT(31)
310 #define TX_BUF_XTD BIT(30)
311 #define TX_BUF_RTR BIT(29)
312 /* T1 */
313 #define TX_BUF_EFC BIT(23)
314 #define TX_BUF_FDF BIT(21)
315 #define TX_BUF_BRS BIT(20)
316 #define TX_BUF_MM_SHIFT 24
317 #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
318
319 /* Tx event FIFO Element */
320 /* E1 */
321 #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
322 #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
323
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)324 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
325 {
326 return cdev->ops->read_reg(cdev, reg);
327 }
328
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)329 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
330 u32 val)
331 {
332 cdev->ops->write_reg(cdev, reg, val);
333 }
334
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset)335 static u32 m_can_fifo_read(struct m_can_classdev *cdev,
336 u32 fgi, unsigned int offset)
337 {
338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 offset;
340
341 return cdev->ops->read_fifo(cdev, addr_offset);
342 }
343
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,u32 val)344 static void m_can_fifo_write(struct m_can_classdev *cdev,
345 u32 fpi, unsigned int offset, u32 val)
346 {
347 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
348 offset;
349
350 cdev->ops->write_fifo(cdev, addr_offset, val);
351 }
352
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)353 static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
354 u32 fpi, u32 val)
355 {
356 cdev->ops->write_fifo(cdev, fpi, val);
357 }
358
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset)359 static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
360 {
361 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
362 offset;
363
364 return cdev->ops->read_fifo(cdev, addr_offset);
365 }
366
m_can_tx_fifo_full(struct m_can_classdev * cdev)367 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
368 {
369 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
370 }
371
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)372 void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
373 {
374 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
375 u32 timeout = 10;
376 u32 val = 0;
377
378 /* Clear the Clock stop request if it was set */
379 if (cccr & CCCR_CSR)
380 cccr &= ~CCCR_CSR;
381
382 if (enable) {
383 /* Clear the Clock stop request if it was set */
384 if (cccr & CCCR_CSR)
385 cccr &= ~CCCR_CSR;
386
387 /* enable m_can configuration */
388 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
389 udelay(5);
390 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
391 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
392 } else {
393 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
394 }
395
396 /* there's a delay for module initialization */
397 if (enable)
398 val = CCCR_INIT | CCCR_CCE;
399
400 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
401 if (timeout == 0) {
402 netdev_warn(cdev->net, "Failed to init module\n");
403 return;
404 }
405 timeout--;
406 udelay(1);
407 }
408 }
409
m_can_enable_all_interrupts(struct m_can_classdev * cdev)410 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
411 {
412 /* Only interrupt line 0 is used in this driver */
413 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
414 }
415
m_can_disable_all_interrupts(struct m_can_classdev * cdev)416 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
417 {
418 m_can_write(cdev, M_CAN_ILE, 0x0);
419 }
420
m_can_clean(struct net_device * net)421 static void m_can_clean(struct net_device *net)
422 {
423 struct m_can_classdev *cdev = netdev_priv(net);
424
425 if (cdev->tx_skb) {
426 int putidx = 0;
427
428 net->stats.tx_errors++;
429 if (cdev->version > 30)
430 putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
431 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
432
433 can_free_echo_skb(cdev->net, putidx);
434 cdev->tx_skb = NULL;
435 }
436 }
437
m_can_read_fifo(struct net_device * dev,u32 rxfs)438 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
439 {
440 struct net_device_stats *stats = &dev->stats;
441 struct m_can_classdev *cdev = netdev_priv(dev);
442 struct canfd_frame *cf;
443 struct sk_buff *skb;
444 u32 id, fgi, dlc;
445 int i;
446
447 /* calculate the fifo get index for where to read data */
448 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
449 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
450 if (dlc & RX_BUF_FDF)
451 skb = alloc_canfd_skb(dev, &cf);
452 else
453 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
454 if (!skb) {
455 stats->rx_dropped++;
456 return;
457 }
458
459 if (dlc & RX_BUF_FDF)
460 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
461 else
462 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
463
464 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
465 if (id & RX_BUF_XTD)
466 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
467 else
468 cf->can_id = (id >> 18) & CAN_SFF_MASK;
469
470 if (id & RX_BUF_ESI) {
471 cf->flags |= CANFD_ESI;
472 netdev_dbg(dev, "ESI Error\n");
473 }
474
475 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
476 cf->can_id |= CAN_RTR_FLAG;
477 } else {
478 if (dlc & RX_BUF_BRS)
479 cf->flags |= CANFD_BRS;
480
481 for (i = 0; i < cf->len; i += 4)
482 *(u32 *)(cf->data + i) =
483 m_can_fifo_read(cdev, fgi,
484 M_CAN_FIFO_DATA(i / 4));
485 }
486
487 /* acknowledge rx fifo 0 */
488 m_can_write(cdev, M_CAN_RXF0A, fgi);
489
490 stats->rx_packets++;
491 stats->rx_bytes += cf->len;
492
493 netif_receive_skb(skb);
494 }
495
m_can_do_rx_poll(struct net_device * dev,int quota)496 static int m_can_do_rx_poll(struct net_device *dev, int quota)
497 {
498 struct m_can_classdev *cdev = netdev_priv(dev);
499 u32 pkts = 0;
500 u32 rxfs;
501
502 rxfs = m_can_read(cdev, M_CAN_RXF0S);
503 if (!(rxfs & RXFS_FFL_MASK)) {
504 netdev_dbg(dev, "no messages in fifo0\n");
505 return 0;
506 }
507
508 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
509 if (rxfs & RXFS_RFL)
510 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
511
512 m_can_read_fifo(dev, rxfs);
513
514 quota--;
515 pkts++;
516 rxfs = m_can_read(cdev, M_CAN_RXF0S);
517 }
518
519 if (pkts)
520 can_led_event(dev, CAN_LED_EVENT_RX);
521
522 return pkts;
523 }
524
m_can_handle_lost_msg(struct net_device * dev)525 static int m_can_handle_lost_msg(struct net_device *dev)
526 {
527 struct net_device_stats *stats = &dev->stats;
528 struct sk_buff *skb;
529 struct can_frame *frame;
530
531 netdev_err(dev, "msg lost in rxf0\n");
532
533 stats->rx_errors++;
534 stats->rx_over_errors++;
535
536 skb = alloc_can_err_skb(dev, &frame);
537 if (unlikely(!skb))
538 return 0;
539
540 frame->can_id |= CAN_ERR_CRTL;
541 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
542
543 netif_receive_skb(skb);
544
545 return 1;
546 }
547
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)548 static int m_can_handle_lec_err(struct net_device *dev,
549 enum m_can_lec_type lec_type)
550 {
551 struct m_can_classdev *cdev = netdev_priv(dev);
552 struct net_device_stats *stats = &dev->stats;
553 struct can_frame *cf;
554 struct sk_buff *skb;
555
556 cdev->can.can_stats.bus_error++;
557 stats->rx_errors++;
558
559 /* propagate the error condition to the CAN stack */
560 skb = alloc_can_err_skb(dev, &cf);
561 if (unlikely(!skb))
562 return 0;
563
564 /* check for 'last error code' which tells us the
565 * type of the last error to occur on the CAN bus
566 */
567 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
568
569 switch (lec_type) {
570 case LEC_STUFF_ERROR:
571 netdev_dbg(dev, "stuff error\n");
572 cf->data[2] |= CAN_ERR_PROT_STUFF;
573 break;
574 case LEC_FORM_ERROR:
575 netdev_dbg(dev, "form error\n");
576 cf->data[2] |= CAN_ERR_PROT_FORM;
577 break;
578 case LEC_ACK_ERROR:
579 netdev_dbg(dev, "ack error\n");
580 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
581 break;
582 case LEC_BIT1_ERROR:
583 netdev_dbg(dev, "bit1 error\n");
584 cf->data[2] |= CAN_ERR_PROT_BIT1;
585 break;
586 case LEC_BIT0_ERROR:
587 netdev_dbg(dev, "bit0 error\n");
588 cf->data[2] |= CAN_ERR_PROT_BIT0;
589 break;
590 case LEC_CRC_ERROR:
591 netdev_dbg(dev, "CRC error\n");
592 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
593 break;
594 default:
595 break;
596 }
597
598 stats->rx_packets++;
599 stats->rx_bytes += cf->can_dlc;
600 netif_receive_skb(skb);
601
602 return 1;
603 }
604
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)605 static int __m_can_get_berr_counter(const struct net_device *dev,
606 struct can_berr_counter *bec)
607 {
608 struct m_can_classdev *cdev = netdev_priv(dev);
609 unsigned int ecr;
610
611 ecr = m_can_read(cdev, M_CAN_ECR);
612 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
613 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
614
615 return 0;
616 }
617
m_can_clk_start(struct m_can_classdev * cdev)618 static int m_can_clk_start(struct m_can_classdev *cdev)
619 {
620 int err;
621
622 if (cdev->pm_clock_support == 0)
623 return 0;
624
625 err = pm_runtime_get_sync(cdev->dev);
626 if (err < 0) {
627 pm_runtime_put_noidle(cdev->dev);
628 return err;
629 }
630
631 return 0;
632 }
633
m_can_clk_stop(struct m_can_classdev * cdev)634 static void m_can_clk_stop(struct m_can_classdev *cdev)
635 {
636 if (cdev->pm_clock_support)
637 pm_runtime_put_sync(cdev->dev);
638 }
639
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)640 static int m_can_get_berr_counter(const struct net_device *dev,
641 struct can_berr_counter *bec)
642 {
643 struct m_can_classdev *cdev = netdev_priv(dev);
644 int err;
645
646 err = m_can_clk_start(cdev);
647 if (err)
648 return err;
649
650 __m_can_get_berr_counter(dev, bec);
651
652 m_can_clk_stop(cdev);
653
654 return 0;
655 }
656
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)657 static int m_can_handle_state_change(struct net_device *dev,
658 enum can_state new_state)
659 {
660 struct m_can_classdev *cdev = netdev_priv(dev);
661 struct net_device_stats *stats = &dev->stats;
662 struct can_frame *cf;
663 struct sk_buff *skb;
664 struct can_berr_counter bec;
665 unsigned int ecr;
666
667 switch (new_state) {
668 case CAN_STATE_ERROR_WARNING:
669 /* error warning state */
670 cdev->can.can_stats.error_warning++;
671 cdev->can.state = CAN_STATE_ERROR_WARNING;
672 break;
673 case CAN_STATE_ERROR_PASSIVE:
674 /* error passive state */
675 cdev->can.can_stats.error_passive++;
676 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
677 break;
678 case CAN_STATE_BUS_OFF:
679 /* bus-off state */
680 cdev->can.state = CAN_STATE_BUS_OFF;
681 m_can_disable_all_interrupts(cdev);
682 cdev->can.can_stats.bus_off++;
683 can_bus_off(dev);
684 break;
685 default:
686 break;
687 }
688
689 /* propagate the error condition to the CAN stack */
690 skb = alloc_can_err_skb(dev, &cf);
691 if (unlikely(!skb))
692 return 0;
693
694 __m_can_get_berr_counter(dev, &bec);
695
696 switch (new_state) {
697 case CAN_STATE_ERROR_WARNING:
698 /* error warning state */
699 cf->can_id |= CAN_ERR_CRTL;
700 cf->data[1] = (bec.txerr > bec.rxerr) ?
701 CAN_ERR_CRTL_TX_WARNING :
702 CAN_ERR_CRTL_RX_WARNING;
703 cf->data[6] = bec.txerr;
704 cf->data[7] = bec.rxerr;
705 break;
706 case CAN_STATE_ERROR_PASSIVE:
707 /* error passive state */
708 cf->can_id |= CAN_ERR_CRTL;
709 ecr = m_can_read(cdev, M_CAN_ECR);
710 if (ecr & ECR_RP)
711 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
712 if (bec.txerr > 127)
713 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
714 cf->data[6] = bec.txerr;
715 cf->data[7] = bec.rxerr;
716 break;
717 case CAN_STATE_BUS_OFF:
718 /* bus-off state */
719 cf->can_id |= CAN_ERR_BUSOFF;
720 break;
721 default:
722 break;
723 }
724
725 stats->rx_packets++;
726 stats->rx_bytes += cf->can_dlc;
727 netif_receive_skb(skb);
728
729 return 1;
730 }
731
m_can_handle_state_errors(struct net_device * dev,u32 psr)732 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
733 {
734 struct m_can_classdev *cdev = netdev_priv(dev);
735 int work_done = 0;
736
737 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
738 netdev_dbg(dev, "entered error warning state\n");
739 work_done += m_can_handle_state_change(dev,
740 CAN_STATE_ERROR_WARNING);
741 }
742
743 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
744 netdev_dbg(dev, "entered error passive state\n");
745 work_done += m_can_handle_state_change(dev,
746 CAN_STATE_ERROR_PASSIVE);
747 }
748
749 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
750 netdev_dbg(dev, "entered error bus off state\n");
751 work_done += m_can_handle_state_change(dev,
752 CAN_STATE_BUS_OFF);
753 }
754
755 return work_done;
756 }
757
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)758 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
759 {
760 if (irqstatus & IR_WDI)
761 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
762 if (irqstatus & IR_ELO)
763 netdev_err(dev, "Error Logging Overflow\n");
764 if (irqstatus & IR_BEU)
765 netdev_err(dev, "Bit Error Uncorrected\n");
766 if (irqstatus & IR_BEC)
767 netdev_err(dev, "Bit Error Corrected\n");
768 if (irqstatus & IR_TOO)
769 netdev_err(dev, "Timeout reached\n");
770 if (irqstatus & IR_MRAF)
771 netdev_err(dev, "Message RAM access failure occurred\n");
772 }
773
is_lec_err(u32 psr)774 static inline bool is_lec_err(u32 psr)
775 {
776 psr &= LEC_UNUSED;
777
778 return psr && (psr != LEC_UNUSED);
779 }
780
m_can_is_protocol_err(u32 irqstatus)781 static inline bool m_can_is_protocol_err(u32 irqstatus)
782 {
783 return irqstatus & IR_ERR_LEC_31X;
784 }
785
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)786 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
787 {
788 struct net_device_stats *stats = &dev->stats;
789 struct m_can_classdev *cdev = netdev_priv(dev);
790 struct can_frame *cf;
791 struct sk_buff *skb;
792
793 /* propagate the error condition to the CAN stack */
794 skb = alloc_can_err_skb(dev, &cf);
795
796 /* update tx error stats since there is protocol error */
797 stats->tx_errors++;
798
799 /* update arbitration lost status */
800 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
801 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
802 cdev->can.can_stats.arbitration_lost++;
803 if (skb) {
804 cf->can_id |= CAN_ERR_LOSTARB;
805 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
806 }
807 }
808
809 if (unlikely(!skb)) {
810 netdev_dbg(dev, "allocation of skb failed\n");
811 return 0;
812 }
813 netif_receive_skb(skb);
814
815 return 1;
816 }
817
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)818 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
819 u32 psr)
820 {
821 struct m_can_classdev *cdev = netdev_priv(dev);
822 int work_done = 0;
823
824 if (irqstatus & IR_RF0L)
825 work_done += m_can_handle_lost_msg(dev);
826
827 /* handle lec errors on the bus */
828 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
829 is_lec_err(psr))
830 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
831
832 /* handle protocol errors in arbitration phase */
833 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
834 m_can_is_protocol_err(irqstatus))
835 work_done += m_can_handle_protocol_error(dev, irqstatus);
836
837 /* other unproccessed error interrupts */
838 m_can_handle_other_err(dev, irqstatus);
839
840 return work_done;
841 }
842
m_can_rx_handler(struct net_device * dev,int quota)843 static int m_can_rx_handler(struct net_device *dev, int quota)
844 {
845 struct m_can_classdev *cdev = netdev_priv(dev);
846 int work_done = 0;
847 u32 irqstatus, psr;
848
849 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
850 if (!irqstatus)
851 goto end;
852
853 /* Errata workaround for issue "Needless activation of MRAF irq"
854 * During frame reception while the MCAN is in Error Passive state
855 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
856 * it may happen that MCAN_IR.MRAF is set although there was no
857 * Message RAM access failure.
858 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
859 * The Message RAM Access Failure interrupt routine needs to check
860 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
861 * In this case, reset MCAN_IR.MRAF. No further action is required.
862 */
863 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
864 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
865 struct can_berr_counter bec;
866
867 __m_can_get_berr_counter(dev, &bec);
868 if (bec.rxerr == 127) {
869 m_can_write(cdev, M_CAN_IR, IR_MRAF);
870 irqstatus &= ~IR_MRAF;
871 }
872 }
873
874 psr = m_can_read(cdev, M_CAN_PSR);
875
876 if (irqstatus & IR_ERR_STATE)
877 work_done += m_can_handle_state_errors(dev, psr);
878
879 if (irqstatus & IR_ERR_BUS_30X)
880 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
881
882 if (irqstatus & IR_RF0N)
883 work_done += m_can_do_rx_poll(dev, (quota - work_done));
884 end:
885 return work_done;
886 }
887
m_can_rx_peripheral(struct net_device * dev)888 static int m_can_rx_peripheral(struct net_device *dev)
889 {
890 struct m_can_classdev *cdev = netdev_priv(dev);
891
892 m_can_rx_handler(dev, 1);
893
894 m_can_enable_all_interrupts(cdev);
895
896 return 0;
897 }
898
m_can_poll(struct napi_struct * napi,int quota)899 static int m_can_poll(struct napi_struct *napi, int quota)
900 {
901 struct net_device *dev = napi->dev;
902 struct m_can_classdev *cdev = netdev_priv(dev);
903 int work_done;
904
905 work_done = m_can_rx_handler(dev, quota);
906 if (work_done < quota) {
907 napi_complete_done(napi, work_done);
908 m_can_enable_all_interrupts(cdev);
909 }
910
911 return work_done;
912 }
913
m_can_echo_tx_event(struct net_device * dev)914 static void m_can_echo_tx_event(struct net_device *dev)
915 {
916 u32 txe_count = 0;
917 u32 m_can_txefs;
918 u32 fgi = 0;
919 int i = 0;
920 unsigned int msg_mark;
921
922 struct m_can_classdev *cdev = netdev_priv(dev);
923 struct net_device_stats *stats = &dev->stats;
924
925 /* read tx event fifo status */
926 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
927
928 /* Get Tx Event fifo element count */
929 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
930 >> TXEFS_EFFL_SHIFT;
931
932 /* Get and process all sent elements */
933 for (i = 0; i < txe_count; i++) {
934 /* retrieve get index */
935 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
936 >> TXEFS_EFGI_SHIFT;
937
938 /* get message marker */
939 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
940 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
941
942 /* ack txe element */
943 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
944 (fgi << TXEFA_EFAI_SHIFT)));
945
946 /* update stats */
947 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
948 stats->tx_packets++;
949 }
950 }
951
m_can_isr(int irq,void * dev_id)952 static irqreturn_t m_can_isr(int irq, void *dev_id)
953 {
954 struct net_device *dev = (struct net_device *)dev_id;
955 struct m_can_classdev *cdev = netdev_priv(dev);
956 struct net_device_stats *stats = &dev->stats;
957 u32 ir;
958
959 if (pm_runtime_suspended(cdev->dev))
960 return IRQ_NONE;
961 ir = m_can_read(cdev, M_CAN_IR);
962 if (!ir)
963 return IRQ_NONE;
964
965 /* ACK all irqs */
966 if (ir & IR_ALL_INT)
967 m_can_write(cdev, M_CAN_IR, ir);
968
969 if (cdev->ops->clear_interrupts)
970 cdev->ops->clear_interrupts(cdev);
971
972 /* schedule NAPI in case of
973 * - rx IRQ
974 * - state change IRQ
975 * - bus error IRQ and bus error reporting
976 */
977 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
978 cdev->irqstatus = ir;
979 m_can_disable_all_interrupts(cdev);
980 if (!cdev->is_peripheral)
981 napi_schedule(&cdev->napi);
982 else
983 m_can_rx_peripheral(dev);
984 }
985
986 if (cdev->version == 30) {
987 if (ir & IR_TC) {
988 /* Transmission Complete Interrupt*/
989 stats->tx_bytes += can_get_echo_skb(dev, 0);
990 stats->tx_packets++;
991 can_led_event(dev, CAN_LED_EVENT_TX);
992 netif_wake_queue(dev);
993 }
994 } else {
995 if (ir & IR_TEFN) {
996 /* New TX FIFO Element arrived */
997 m_can_echo_tx_event(dev);
998 can_led_event(dev, CAN_LED_EVENT_TX);
999 if (netif_queue_stopped(dev) &&
1000 !m_can_tx_fifo_full(cdev))
1001 netif_wake_queue(dev);
1002 }
1003 }
1004
1005 return IRQ_HANDLED;
1006 }
1007
1008 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1009 .name = KBUILD_MODNAME,
1010 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1011 .tseg1_max = 64,
1012 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1013 .tseg2_max = 16,
1014 .sjw_max = 16,
1015 .brp_min = 1,
1016 .brp_max = 1024,
1017 .brp_inc = 1,
1018 };
1019
1020 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1021 .name = KBUILD_MODNAME,
1022 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1023 .tseg1_max = 16,
1024 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1025 .tseg2_max = 8,
1026 .sjw_max = 4,
1027 .brp_min = 1,
1028 .brp_max = 32,
1029 .brp_inc = 1,
1030 };
1031
1032 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1033 .name = KBUILD_MODNAME,
1034 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1035 .tseg1_max = 256,
1036 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1037 .tseg2_max = 128,
1038 .sjw_max = 128,
1039 .brp_min = 1,
1040 .brp_max = 512,
1041 .brp_inc = 1,
1042 };
1043
1044 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1045 .name = KBUILD_MODNAME,
1046 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1047 .tseg1_max = 32,
1048 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1049 .tseg2_max = 16,
1050 .sjw_max = 16,
1051 .brp_min = 1,
1052 .brp_max = 32,
1053 .brp_inc = 1,
1054 };
1055
m_can_set_bittiming(struct net_device * dev)1056 static int m_can_set_bittiming(struct net_device *dev)
1057 {
1058 struct m_can_classdev *cdev = netdev_priv(dev);
1059 const struct can_bittiming *bt = &cdev->can.bittiming;
1060 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1061 u16 brp, sjw, tseg1, tseg2;
1062 u32 reg_btp;
1063
1064 brp = bt->brp - 1;
1065 sjw = bt->sjw - 1;
1066 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1067 tseg2 = bt->phase_seg2 - 1;
1068 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1069 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1070 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1071
1072 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1073 reg_btp = 0;
1074 brp = dbt->brp - 1;
1075 sjw = dbt->sjw - 1;
1076 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1077 tseg2 = dbt->phase_seg2 - 1;
1078
1079 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1080 * This is mentioned in the "Bit Time Requirements for CAN FD"
1081 * paper presented at the International CAN Conference 2013
1082 */
1083 if (dbt->bitrate > 2500000) {
1084 u32 tdco, ssp;
1085
1086 /* Use the same value of secondary sampling point
1087 * as the data sampling point
1088 */
1089 ssp = dbt->sample_point;
1090
1091 /* Equation based on Bosch's M_CAN User Manual's
1092 * Transmitter Delay Compensation Section
1093 */
1094 tdco = (cdev->can.clock.freq / 1000) *
1095 ssp / dbt->bitrate;
1096
1097 /* Max valid TDCO value is 127 */
1098 if (tdco > 127) {
1099 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1100 tdco);
1101 tdco = 127;
1102 }
1103
1104 reg_btp |= DBTP_TDC;
1105 m_can_write(cdev, M_CAN_TDCR,
1106 tdco << TDCR_TDCO_SHIFT);
1107 }
1108
1109 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1110 (sjw << DBTP_DSJW_SHIFT) |
1111 (tseg1 << DBTP_DTSEG1_SHIFT) |
1112 (tseg2 << DBTP_DTSEG2_SHIFT);
1113
1114 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1115 }
1116
1117 return 0;
1118 }
1119
1120 /* Configure M_CAN chip:
1121 * - set rx buffer/fifo element size
1122 * - configure rx fifo
1123 * - accept non-matching frame into fifo 0
1124 * - configure tx buffer
1125 * - >= v3.1.x: TX FIFO is used
1126 * - configure mode
1127 * - setup bittiming
1128 */
m_can_chip_config(struct net_device * dev)1129 static void m_can_chip_config(struct net_device *dev)
1130 {
1131 struct m_can_classdev *cdev = netdev_priv(dev);
1132 u32 cccr, test;
1133
1134 m_can_config_endisable(cdev, true);
1135
1136 /* RX Buffer/FIFO Element Size 64 bytes data field */
1137 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1138
1139 /* Accept Non-matching Frames Into FIFO 0 */
1140 m_can_write(cdev, M_CAN_GFC, 0x0);
1141
1142 if (cdev->version == 30) {
1143 /* only support one Tx Buffer currently */
1144 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1145 cdev->mcfg[MRAM_TXB].off);
1146 } else {
1147 /* TX FIFO is used for newer IP Core versions */
1148 m_can_write(cdev, M_CAN_TXBC,
1149 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1150 (cdev->mcfg[MRAM_TXB].off));
1151 }
1152
1153 /* support 64 bytes payload */
1154 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1155
1156 /* TX Event FIFO */
1157 if (cdev->version == 30) {
1158 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1159 cdev->mcfg[MRAM_TXE].off);
1160 } else {
1161 /* Full TX Event FIFO is used */
1162 m_can_write(cdev, M_CAN_TXEFC,
1163 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1164 & TXEFC_EFS_MASK) |
1165 cdev->mcfg[MRAM_TXE].off);
1166 }
1167
1168 /* rx fifo configuration, blocking mode, fifo size 1 */
1169 m_can_write(cdev, M_CAN_RXF0C,
1170 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1171 cdev->mcfg[MRAM_RXF0].off);
1172
1173 m_can_write(cdev, M_CAN_RXF1C,
1174 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1175 cdev->mcfg[MRAM_RXF1].off);
1176
1177 cccr = m_can_read(cdev, M_CAN_CCCR);
1178 test = m_can_read(cdev, M_CAN_TEST);
1179 test &= ~TEST_LBCK;
1180 if (cdev->version == 30) {
1181 /* Version 3.0.x */
1182
1183 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1184 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1185 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1186
1187 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1188 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1189
1190 } else {
1191 /* Version 3.1.x or 3.2.x */
1192 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1193 CCCR_NISO | CCCR_DAR);
1194
1195 /* Only 3.2.x has NISO Bit implemented */
1196 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1197 cccr |= CCCR_NISO;
1198
1199 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1200 cccr |= (CCCR_BRSE | CCCR_FDOE);
1201 }
1202
1203 /* Loopback Mode */
1204 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1205 cccr |= CCCR_TEST | CCCR_MON;
1206 test |= TEST_LBCK;
1207 }
1208
1209 /* Enable Monitoring (all versions) */
1210 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1211 cccr |= CCCR_MON;
1212
1213 /* Disable Auto Retransmission (all versions) */
1214 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1215 cccr |= CCCR_DAR;
1216
1217 /* Write config */
1218 m_can_write(cdev, M_CAN_CCCR, cccr);
1219 m_can_write(cdev, M_CAN_TEST, test);
1220
1221 /* Enable interrupts */
1222 m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1223 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1224 if (cdev->version == 30)
1225 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1226 ~(IR_ERR_LEC_30X));
1227 else
1228 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1229 ~(IR_ERR_LEC_31X));
1230 else
1231 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1232
1233 /* route all interrupts to INT0 */
1234 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1235
1236 /* set bittiming params */
1237 m_can_set_bittiming(dev);
1238
1239 m_can_config_endisable(cdev, false);
1240
1241 if (cdev->ops->init)
1242 cdev->ops->init(cdev);
1243 }
1244
m_can_start(struct net_device * dev)1245 static void m_can_start(struct net_device *dev)
1246 {
1247 struct m_can_classdev *cdev = netdev_priv(dev);
1248
1249 /* basic m_can configuration */
1250 m_can_chip_config(dev);
1251
1252 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1253
1254 m_can_enable_all_interrupts(cdev);
1255 }
1256
m_can_set_mode(struct net_device * dev,enum can_mode mode)1257 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1258 {
1259 switch (mode) {
1260 case CAN_MODE_START:
1261 m_can_clean(dev);
1262 m_can_start(dev);
1263 netif_wake_queue(dev);
1264 break;
1265 default:
1266 return -EOPNOTSUPP;
1267 }
1268
1269 return 0;
1270 }
1271
1272 /* Checks core release number of M_CAN
1273 * returns 0 if an unsupported device is detected
1274 * else it returns the release and step coded as:
1275 * return value = 10 * <release> + 1 * <step>
1276 */
m_can_check_core_release(struct m_can_classdev * cdev)1277 static int m_can_check_core_release(struct m_can_classdev *cdev)
1278 {
1279 u32 crel_reg;
1280 u8 rel;
1281 u8 step;
1282 int res;
1283
1284 /* Read Core Release Version and split into version number
1285 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1286 */
1287 crel_reg = m_can_read(cdev, M_CAN_CREL);
1288 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1289 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1290
1291 if (rel == 3) {
1292 /* M_CAN v3.x.y: create return value */
1293 res = 30 + step;
1294 } else {
1295 /* Unsupported M_CAN version */
1296 res = 0;
1297 }
1298
1299 return res;
1300 }
1301
1302 /* Selectable Non ISO support only in version 3.2.x
1303 * This function checks if the bit is writable.
1304 */
m_can_niso_supported(struct m_can_classdev * cdev)1305 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1306 {
1307 u32 cccr_reg, cccr_poll = 0;
1308 int niso_timeout = -ETIMEDOUT;
1309 int i;
1310
1311 m_can_config_endisable(cdev, true);
1312 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1313 cccr_reg |= CCCR_NISO;
1314 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1315
1316 for (i = 0; i <= 10; i++) {
1317 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1318 if (cccr_poll == cccr_reg) {
1319 niso_timeout = 0;
1320 break;
1321 }
1322
1323 usleep_range(1, 5);
1324 }
1325
1326 /* Clear NISO */
1327 cccr_reg &= ~(CCCR_NISO);
1328 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1329
1330 m_can_config_endisable(cdev, false);
1331
1332 /* return false if time out (-ETIMEDOUT), else return true */
1333 return !niso_timeout;
1334 }
1335
m_can_dev_setup(struct m_can_classdev * m_can_dev)1336 static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1337 {
1338 struct net_device *dev = m_can_dev->net;
1339 int m_can_version;
1340
1341 m_can_version = m_can_check_core_release(m_can_dev);
1342 /* return if unsupported version */
1343 if (!m_can_version) {
1344 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1345 m_can_version);
1346 return -EINVAL;
1347 }
1348
1349 if (!m_can_dev->is_peripheral)
1350 netif_napi_add(dev, &m_can_dev->napi,
1351 m_can_poll, M_CAN_NAPI_WEIGHT);
1352
1353 /* Shared properties of all M_CAN versions */
1354 m_can_dev->version = m_can_version;
1355 m_can_dev->can.do_set_mode = m_can_set_mode;
1356 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1357
1358 /* Set M_CAN supported operations */
1359 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1360 CAN_CTRLMODE_LISTENONLY |
1361 CAN_CTRLMODE_BERR_REPORTING |
1362 CAN_CTRLMODE_FD |
1363 CAN_CTRLMODE_ONE_SHOT;
1364
1365 /* Set properties depending on M_CAN version */
1366 switch (m_can_dev->version) {
1367 case 30:
1368 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1369 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1370 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1371 m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1372
1373 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1374 m_can_dev->data_timing :
1375 &m_can_data_bittiming_const_30X;
1376 break;
1377 case 31:
1378 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1379 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1380 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1381 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1382
1383 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1384 m_can_dev->data_timing :
1385 &m_can_data_bittiming_const_31X;
1386 break;
1387 case 32:
1388 case 33:
1389 /* Support both MCAN version v3.2.x and v3.3.0 */
1390 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1391 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1392
1393 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1394 m_can_dev->data_timing :
1395 &m_can_data_bittiming_const_31X;
1396
1397 m_can_dev->can.ctrlmode_supported |=
1398 (m_can_niso_supported(m_can_dev)
1399 ? CAN_CTRLMODE_FD_NON_ISO
1400 : 0);
1401 break;
1402 default:
1403 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1404 m_can_dev->version);
1405 return -EINVAL;
1406 }
1407
1408 if (m_can_dev->ops->init)
1409 m_can_dev->ops->init(m_can_dev);
1410
1411 return 0;
1412 }
1413
m_can_stop(struct net_device * dev)1414 static void m_can_stop(struct net_device *dev)
1415 {
1416 struct m_can_classdev *cdev = netdev_priv(dev);
1417
1418 /* disable all interrupts */
1419 m_can_disable_all_interrupts(cdev);
1420
1421 /* Set init mode to disengage from the network */
1422 m_can_config_endisable(cdev, true);
1423
1424 /* set the state as STOPPED */
1425 cdev->can.state = CAN_STATE_STOPPED;
1426 }
1427
m_can_close(struct net_device * dev)1428 static int m_can_close(struct net_device *dev)
1429 {
1430 struct m_can_classdev *cdev = netdev_priv(dev);
1431
1432 netif_stop_queue(dev);
1433
1434 if (!cdev->is_peripheral)
1435 napi_disable(&cdev->napi);
1436
1437 m_can_stop(dev);
1438 m_can_clk_stop(cdev);
1439 free_irq(dev->irq, dev);
1440
1441 if (cdev->is_peripheral) {
1442 cdev->tx_skb = NULL;
1443 destroy_workqueue(cdev->tx_wq);
1444 cdev->tx_wq = NULL;
1445 }
1446
1447 close_candev(dev);
1448 can_led_event(dev, CAN_LED_EVENT_STOP);
1449
1450 return 0;
1451 }
1452
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1453 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1454 {
1455 struct m_can_classdev *cdev = netdev_priv(dev);
1456 /*get wrap around for loopback skb index */
1457 unsigned int wrap = cdev->can.echo_skb_max;
1458 int next_idx;
1459
1460 /* calculate next index */
1461 next_idx = (++putidx >= wrap ? 0 : putidx);
1462
1463 /* check if occupied */
1464 return !!cdev->can.echo_skb[next_idx];
1465 }
1466
m_can_tx_handler(struct m_can_classdev * cdev)1467 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1468 {
1469 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1470 struct net_device *dev = cdev->net;
1471 struct sk_buff *skb = cdev->tx_skb;
1472 u32 id, cccr, fdflags;
1473 int i;
1474 int putidx;
1475
1476 /* Generate ID field for TX buffer Element */
1477 /* Common to all supported M_CAN versions */
1478 if (cf->can_id & CAN_EFF_FLAG) {
1479 id = cf->can_id & CAN_EFF_MASK;
1480 id |= TX_BUF_XTD;
1481 } else {
1482 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1483 }
1484
1485 if (cf->can_id & CAN_RTR_FLAG)
1486 id |= TX_BUF_RTR;
1487
1488 if (cdev->version == 30) {
1489 netif_stop_queue(dev);
1490
1491 /* message ram configuration */
1492 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1493 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1494 can_len2dlc(cf->len) << 16);
1495
1496 for (i = 0; i < cf->len; i += 4)
1497 m_can_fifo_write(cdev, 0,
1498 M_CAN_FIFO_DATA(i / 4),
1499 *(u32 *)(cf->data + i));
1500
1501 can_put_echo_skb(skb, dev, 0);
1502
1503 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1504 cccr = m_can_read(cdev, M_CAN_CCCR);
1505 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1506 if (can_is_canfd_skb(skb)) {
1507 if (cf->flags & CANFD_BRS)
1508 cccr |= CCCR_CMR_CANFD_BRS <<
1509 CCCR_CMR_SHIFT;
1510 else
1511 cccr |= CCCR_CMR_CANFD <<
1512 CCCR_CMR_SHIFT;
1513 } else {
1514 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1515 }
1516 m_can_write(cdev, M_CAN_CCCR, cccr);
1517 }
1518 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1519 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1520 /* End of xmit function for version 3.0.x */
1521 } else {
1522 /* Transmit routine for version >= v3.1.x */
1523
1524 /* Check if FIFO full */
1525 if (m_can_tx_fifo_full(cdev)) {
1526 /* This shouldn't happen */
1527 netif_stop_queue(dev);
1528 netdev_warn(dev,
1529 "TX queue active although FIFO is full.");
1530
1531 if (cdev->is_peripheral) {
1532 kfree_skb(skb);
1533 dev->stats.tx_dropped++;
1534 return NETDEV_TX_OK;
1535 } else {
1536 return NETDEV_TX_BUSY;
1537 }
1538 }
1539
1540 /* get put index for frame */
1541 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1542 >> TXFQS_TFQPI_SHIFT);
1543 /* Write ID Field to FIFO Element */
1544 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1545
1546 /* get CAN FD configuration of frame */
1547 fdflags = 0;
1548 if (can_is_canfd_skb(skb)) {
1549 fdflags |= TX_BUF_FDF;
1550 if (cf->flags & CANFD_BRS)
1551 fdflags |= TX_BUF_BRS;
1552 }
1553
1554 /* Construct DLC Field. Also contains CAN-FD configuration
1555 * use put index of fifo as message marker
1556 * it is used in TX interrupt for
1557 * sending the correct echo frame
1558 */
1559 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1560 ((putidx << TX_BUF_MM_SHIFT) &
1561 TX_BUF_MM_MASK) |
1562 (can_len2dlc(cf->len) << 16) |
1563 fdflags | TX_BUF_EFC);
1564
1565 for (i = 0; i < cf->len; i += 4)
1566 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1567 *(u32 *)(cf->data + i));
1568
1569 /* Push loopback echo.
1570 * Will be looped back on TX interrupt based on message marker
1571 */
1572 can_put_echo_skb(skb, dev, putidx);
1573
1574 /* Enable TX FIFO element to start transfer */
1575 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1576
1577 /* stop network queue if fifo full */
1578 if (m_can_tx_fifo_full(cdev) ||
1579 m_can_next_echo_skb_occupied(dev, putidx))
1580 netif_stop_queue(dev);
1581 }
1582
1583 return NETDEV_TX_OK;
1584 }
1585
m_can_tx_work_queue(struct work_struct * ws)1586 static void m_can_tx_work_queue(struct work_struct *ws)
1587 {
1588 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1589 tx_work);
1590
1591 m_can_tx_handler(cdev);
1592 cdev->tx_skb = NULL;
1593 }
1594
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1595 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1596 struct net_device *dev)
1597 {
1598 struct m_can_classdev *cdev = netdev_priv(dev);
1599
1600 if (can_dropped_invalid_skb(dev, skb))
1601 return NETDEV_TX_OK;
1602
1603 if (cdev->is_peripheral) {
1604 if (cdev->tx_skb) {
1605 netdev_err(dev, "hard_xmit called while tx busy\n");
1606 return NETDEV_TX_BUSY;
1607 }
1608
1609 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1610 m_can_clean(dev);
1611 } else {
1612 /* Need to stop the queue to avoid numerous requests
1613 * from being sent. Suggested improvement is to create
1614 * a queueing mechanism that will queue the skbs and
1615 * process them in order.
1616 */
1617 cdev->tx_skb = skb;
1618 netif_stop_queue(cdev->net);
1619 queue_work(cdev->tx_wq, &cdev->tx_work);
1620 }
1621 } else {
1622 cdev->tx_skb = skb;
1623 return m_can_tx_handler(cdev);
1624 }
1625
1626 return NETDEV_TX_OK;
1627 }
1628
m_can_open(struct net_device * dev)1629 static int m_can_open(struct net_device *dev)
1630 {
1631 struct m_can_classdev *cdev = netdev_priv(dev);
1632 int err;
1633
1634 err = m_can_clk_start(cdev);
1635 if (err)
1636 return err;
1637
1638 /* open the can device */
1639 err = open_candev(dev);
1640 if (err) {
1641 netdev_err(dev, "failed to open can device\n");
1642 goto exit_disable_clks;
1643 }
1644
1645 /* register interrupt handler */
1646 if (cdev->is_peripheral) {
1647 cdev->tx_skb = NULL;
1648 cdev->tx_wq = alloc_workqueue("mcan_wq",
1649 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1650 if (!cdev->tx_wq) {
1651 err = -ENOMEM;
1652 goto out_wq_fail;
1653 }
1654
1655 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1656
1657 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1658 IRQF_ONESHOT,
1659 dev->name, dev);
1660 } else {
1661 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1662 dev);
1663 }
1664
1665 if (err < 0) {
1666 netdev_err(dev, "failed to request interrupt\n");
1667 goto exit_irq_fail;
1668 }
1669
1670 /* start the m_can controller */
1671 m_can_start(dev);
1672
1673 can_led_event(dev, CAN_LED_EVENT_OPEN);
1674
1675 if (!cdev->is_peripheral)
1676 napi_enable(&cdev->napi);
1677
1678 netif_start_queue(dev);
1679
1680 return 0;
1681
1682 exit_irq_fail:
1683 if (cdev->is_peripheral)
1684 destroy_workqueue(cdev->tx_wq);
1685 out_wq_fail:
1686 close_candev(dev);
1687 exit_disable_clks:
1688 m_can_clk_stop(cdev);
1689 return err;
1690 }
1691
1692 static const struct net_device_ops m_can_netdev_ops = {
1693 .ndo_open = m_can_open,
1694 .ndo_stop = m_can_close,
1695 .ndo_start_xmit = m_can_start_xmit,
1696 .ndo_change_mtu = can_change_mtu,
1697 };
1698
register_m_can_dev(struct net_device * dev)1699 static int register_m_can_dev(struct net_device *dev)
1700 {
1701 dev->flags |= IFF_ECHO; /* we support local echo */
1702 dev->netdev_ops = &m_can_netdev_ops;
1703
1704 return register_candev(dev);
1705 }
1706
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1707 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1708 const u32 *mram_config_vals)
1709 {
1710 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1711 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1712 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1713 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1714 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1715 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1716 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1717 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1718 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1719 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1720 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1721 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1722 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1723 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1724 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1725 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1726 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1727 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1728 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1729 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1730 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1731 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1732 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1733
1734 dev_dbg(cdev->dev,
1735 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1736 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1737 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1738 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1739 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1740 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1741 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1742 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1743 }
1744
m_can_init_ram(struct m_can_classdev * cdev)1745 void m_can_init_ram(struct m_can_classdev *cdev)
1746 {
1747 int end, i, start;
1748
1749 /* initialize the entire Message RAM in use to avoid possible
1750 * ECC/parity checksum errors when reading an uninitialized buffer
1751 */
1752 start = cdev->mcfg[MRAM_SIDF].off;
1753 end = cdev->mcfg[MRAM_TXB].off +
1754 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1755
1756 for (i = start; i < end; i += 4)
1757 m_can_fifo_write_no_off(cdev, i, 0x0);
1758 }
1759 EXPORT_SYMBOL_GPL(m_can_init_ram);
1760
m_can_class_get_clocks(struct m_can_classdev * m_can_dev)1761 int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1762 {
1763 int ret = 0;
1764
1765 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1766 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1767
1768 if (IS_ERR(m_can_dev->cclk)) {
1769 dev_err(m_can_dev->dev, "no clock found\n");
1770 ret = -ENODEV;
1771 }
1772
1773 return ret;
1774 }
1775 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1776
m_can_class_allocate_dev(struct device * dev)1777 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1778 {
1779 struct m_can_classdev *class_dev = NULL;
1780 u32 mram_config_vals[MRAM_CFG_LEN];
1781 struct net_device *net_dev;
1782 u32 tx_fifo_size;
1783 int ret;
1784
1785 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1786 "bosch,mram-cfg",
1787 mram_config_vals,
1788 sizeof(mram_config_vals) / 4);
1789 if (ret) {
1790 dev_err(dev, "Could not get Message RAM configuration.");
1791 goto out;
1792 }
1793
1794 /* Get TX FIFO size
1795 * Defines the total amount of echo buffers for loopback
1796 */
1797 tx_fifo_size = mram_config_vals[7];
1798
1799 /* allocate the m_can device */
1800 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1801 if (!net_dev) {
1802 dev_err(dev, "Failed to allocate CAN device");
1803 goto out;
1804 }
1805
1806 class_dev = netdev_priv(net_dev);
1807 if (!class_dev) {
1808 dev_err(dev, "Failed to init netdev cdevate");
1809 goto out;
1810 }
1811
1812 class_dev->net = net_dev;
1813 class_dev->dev = dev;
1814 SET_NETDEV_DEV(net_dev, dev);
1815
1816 m_can_of_parse_mram(class_dev, mram_config_vals);
1817 out:
1818 return class_dev;
1819 }
1820 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1821
m_can_class_free_dev(struct net_device * net)1822 void m_can_class_free_dev(struct net_device *net)
1823 {
1824 free_candev(net);
1825 }
1826 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
1827
m_can_class_register(struct m_can_classdev * m_can_dev)1828 int m_can_class_register(struct m_can_classdev *m_can_dev)
1829 {
1830 int ret;
1831
1832 if (m_can_dev->pm_clock_support) {
1833 pm_runtime_enable(m_can_dev->dev);
1834 ret = m_can_clk_start(m_can_dev);
1835 if (ret)
1836 goto pm_runtime_fail;
1837 }
1838
1839 ret = m_can_dev_setup(m_can_dev);
1840 if (ret)
1841 goto clk_disable;
1842
1843 ret = register_m_can_dev(m_can_dev->net);
1844 if (ret) {
1845 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1846 m_can_dev->net->name, ret);
1847 goto clk_disable;
1848 }
1849
1850 devm_can_led_init(m_can_dev->net);
1851
1852 of_can_transceiver(m_can_dev->net);
1853
1854 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1855 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1856
1857 /* Probe finished
1858 * Stop clocks. They will be reactivated once the M_CAN device is opened
1859 */
1860 clk_disable:
1861 m_can_clk_stop(m_can_dev);
1862 pm_runtime_fail:
1863 if (ret) {
1864 if (m_can_dev->pm_clock_support)
1865 pm_runtime_disable(m_can_dev->dev);
1866 }
1867
1868 return ret;
1869 }
1870 EXPORT_SYMBOL_GPL(m_can_class_register);
1871
m_can_class_suspend(struct device * dev)1872 int m_can_class_suspend(struct device *dev)
1873 {
1874 struct net_device *ndev = dev_get_drvdata(dev);
1875 struct m_can_classdev *cdev = netdev_priv(ndev);
1876
1877 if (netif_running(ndev)) {
1878 netif_stop_queue(ndev);
1879 netif_device_detach(ndev);
1880 m_can_stop(ndev);
1881 m_can_clk_stop(cdev);
1882 }
1883
1884 pinctrl_pm_select_sleep_state(dev);
1885
1886 cdev->can.state = CAN_STATE_SLEEPING;
1887
1888 return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(m_can_class_suspend);
1891
m_can_class_resume(struct device * dev)1892 int m_can_class_resume(struct device *dev)
1893 {
1894 struct net_device *ndev = dev_get_drvdata(dev);
1895 struct m_can_classdev *cdev = netdev_priv(ndev);
1896
1897 pinctrl_pm_select_default_state(dev);
1898
1899 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1900
1901 if (netif_running(ndev)) {
1902 int ret;
1903
1904 ret = m_can_clk_start(cdev);
1905 if (ret)
1906 return ret;
1907
1908 m_can_init_ram(cdev);
1909 m_can_start(ndev);
1910 netif_device_attach(ndev);
1911 netif_start_queue(ndev);
1912 }
1913
1914 return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(m_can_class_resume);
1917
m_can_class_unregister(struct m_can_classdev * m_can_dev)1918 void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1919 {
1920 unregister_candev(m_can_dev->net);
1921
1922 m_can_clk_stop(m_can_dev);
1923 }
1924 EXPORT_SYMBOL_GPL(m_can_class_unregister);
1925
1926 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1927 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1928 MODULE_LICENSE("GPL v2");
1929 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1930