1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // flexcan.c - FLEXCAN CAN controller driver
4 //
5 // Copyright (c) 2005-2006 Varma Electronics Oy
6 // Copyright (c) 2009 Sascha Hauer, Pengutronix
7 // Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
8 // Copyright (c) 2014 David Jander, Protonic Holland
9 //
10 // Based on code originally by Andrey Volkov <avolkov@varma-el.com>
11 
12 #include <linux/bitfield.h>
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16 #include <linux/can/led.h>
17 #include <linux/can/rx-offload.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regmap.h>
31 #include <linux/regulator/consumer.h>
32 
33 #define DRV_NAME			"flexcan"
34 
35 /* 8 for RX fifo and 2 error handling */
36 #define FLEXCAN_NAPI_WEIGHT		(8 + 2)
37 
38 /* FLEXCAN module configuration register (CANMCR) bits */
39 #define FLEXCAN_MCR_MDIS		BIT(31)
40 #define FLEXCAN_MCR_FRZ			BIT(30)
41 #define FLEXCAN_MCR_FEN			BIT(29)
42 #define FLEXCAN_MCR_HALT		BIT(28)
43 #define FLEXCAN_MCR_NOT_RDY		BIT(27)
44 #define FLEXCAN_MCR_WAK_MSK		BIT(26)
45 #define FLEXCAN_MCR_SOFTRST		BIT(25)
46 #define FLEXCAN_MCR_FRZ_ACK		BIT(24)
47 #define FLEXCAN_MCR_SUPV		BIT(23)
48 #define FLEXCAN_MCR_SLF_WAK		BIT(22)
49 #define FLEXCAN_MCR_WRN_EN		BIT(21)
50 #define FLEXCAN_MCR_LPM_ACK		BIT(20)
51 #define FLEXCAN_MCR_WAK_SRC		BIT(19)
52 #define FLEXCAN_MCR_DOZE		BIT(18)
53 #define FLEXCAN_MCR_SRX_DIS		BIT(17)
54 #define FLEXCAN_MCR_IRMQ		BIT(16)
55 #define FLEXCAN_MCR_LPRIO_EN		BIT(13)
56 #define FLEXCAN_MCR_AEN			BIT(12)
57 #define FLEXCAN_MCR_FDEN		BIT(11)
58 /* MCR_MAXMB: maximum used MBs is MAXMB + 1 */
59 #define FLEXCAN_MCR_MAXMB(x)		((x) & 0x7f)
60 #define FLEXCAN_MCR_IDAM_A		(0x0 << 8)
61 #define FLEXCAN_MCR_IDAM_B		(0x1 << 8)
62 #define FLEXCAN_MCR_IDAM_C		(0x2 << 8)
63 #define FLEXCAN_MCR_IDAM_D		(0x3 << 8)
64 
65 /* FLEXCAN control register (CANCTRL) bits */
66 #define FLEXCAN_CTRL_PRESDIV(x)		(((x) & 0xff) << 24)
67 #define FLEXCAN_CTRL_RJW(x)		(((x) & 0x03) << 22)
68 #define FLEXCAN_CTRL_PSEG1(x)		(((x) & 0x07) << 19)
69 #define FLEXCAN_CTRL_PSEG2(x)		(((x) & 0x07) << 16)
70 #define FLEXCAN_CTRL_BOFF_MSK		BIT(15)
71 #define FLEXCAN_CTRL_ERR_MSK		BIT(14)
72 #define FLEXCAN_CTRL_CLK_SRC		BIT(13)
73 #define FLEXCAN_CTRL_LPB		BIT(12)
74 #define FLEXCAN_CTRL_TWRN_MSK		BIT(11)
75 #define FLEXCAN_CTRL_RWRN_MSK		BIT(10)
76 #define FLEXCAN_CTRL_SMP		BIT(7)
77 #define FLEXCAN_CTRL_BOFF_REC		BIT(6)
78 #define FLEXCAN_CTRL_TSYN		BIT(5)
79 #define FLEXCAN_CTRL_LBUF		BIT(4)
80 #define FLEXCAN_CTRL_LOM		BIT(3)
81 #define FLEXCAN_CTRL_PROPSEG(x)		((x) & 0x07)
82 #define FLEXCAN_CTRL_ERR_BUS		(FLEXCAN_CTRL_ERR_MSK)
83 #define FLEXCAN_CTRL_ERR_STATE \
84 	(FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
85 	 FLEXCAN_CTRL_BOFF_MSK)
86 #define FLEXCAN_CTRL_ERR_ALL \
87 	(FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
88 
89 /* FLEXCAN control register 2 (CTRL2) bits */
90 #define FLEXCAN_CTRL2_ECRWRE		BIT(29)
91 #define FLEXCAN_CTRL2_WRMFRZ		BIT(28)
92 #define FLEXCAN_CTRL2_RFFN(x)		(((x) & 0x0f) << 24)
93 #define FLEXCAN_CTRL2_TASD(x)		(((x) & 0x1f) << 19)
94 #define FLEXCAN_CTRL2_MRP		BIT(18)
95 #define FLEXCAN_CTRL2_RRS		BIT(17)
96 #define FLEXCAN_CTRL2_EACEN		BIT(16)
97 #define FLEXCAN_CTRL2_ISOCANFDEN	BIT(12)
98 
99 /* FLEXCAN memory error control register (MECR) bits */
100 #define FLEXCAN_MECR_ECRWRDIS		BIT(31)
101 #define FLEXCAN_MECR_HANCEI_MSK		BIT(19)
102 #define FLEXCAN_MECR_FANCEI_MSK		BIT(18)
103 #define FLEXCAN_MECR_CEI_MSK		BIT(16)
104 #define FLEXCAN_MECR_HAERRIE		BIT(15)
105 #define FLEXCAN_MECR_FAERRIE		BIT(14)
106 #define FLEXCAN_MECR_EXTERRIE		BIT(13)
107 #define FLEXCAN_MECR_RERRDIS		BIT(9)
108 #define FLEXCAN_MECR_ECCDIS		BIT(8)
109 #define FLEXCAN_MECR_NCEFAFRZ		BIT(7)
110 
111 /* FLEXCAN error and status register (ESR) bits */
112 #define FLEXCAN_ESR_TWRN_INT		BIT(17)
113 #define FLEXCAN_ESR_RWRN_INT		BIT(16)
114 #define FLEXCAN_ESR_BIT1_ERR		BIT(15)
115 #define FLEXCAN_ESR_BIT0_ERR		BIT(14)
116 #define FLEXCAN_ESR_ACK_ERR		BIT(13)
117 #define FLEXCAN_ESR_CRC_ERR		BIT(12)
118 #define FLEXCAN_ESR_FRM_ERR		BIT(11)
119 #define FLEXCAN_ESR_STF_ERR		BIT(10)
120 #define FLEXCAN_ESR_TX_WRN		BIT(9)
121 #define FLEXCAN_ESR_RX_WRN		BIT(8)
122 #define FLEXCAN_ESR_IDLE		BIT(7)
123 #define FLEXCAN_ESR_TXRX		BIT(6)
124 #define FLEXCAN_EST_FLT_CONF_SHIFT	(4)
125 #define FLEXCAN_ESR_FLT_CONF_MASK	(0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
126 #define FLEXCAN_ESR_FLT_CONF_ACTIVE	(0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
127 #define FLEXCAN_ESR_FLT_CONF_PASSIVE	(0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
128 #define FLEXCAN_ESR_BOFF_INT		BIT(2)
129 #define FLEXCAN_ESR_ERR_INT		BIT(1)
130 #define FLEXCAN_ESR_WAK_INT		BIT(0)
131 #define FLEXCAN_ESR_ERR_BUS \
132 	(FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
133 	 FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
134 	 FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
135 #define FLEXCAN_ESR_ERR_STATE \
136 	(FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
137 #define FLEXCAN_ESR_ERR_ALL \
138 	(FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
139 #define FLEXCAN_ESR_ALL_INT \
140 	(FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
141 	 FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT)
142 
143 /* FLEXCAN Bit Timing register (CBT) bits */
144 #define FLEXCAN_CBT_BTF			BIT(31)
145 #define FLEXCAN_CBT_EPRESDIV_MASK	GENMASK(30, 21)
146 #define FLEXCAN_CBT_ERJW_MASK		GENMASK(20, 16)
147 #define FLEXCAN_CBT_EPROPSEG_MASK	GENMASK(15, 10)
148 #define FLEXCAN_CBT_EPSEG1_MASK		GENMASK(9, 5)
149 #define FLEXCAN_CBT_EPSEG2_MASK		GENMASK(4, 0)
150 
151 /* FLEXCAN FD control register (FDCTRL) bits */
152 #define FLEXCAN_FDCTRL_FDRATE		BIT(31)
153 #define FLEXCAN_FDCTRL_MBDSR1		GENMASK(20, 19)
154 #define FLEXCAN_FDCTRL_MBDSR0		GENMASK(17, 16)
155 #define FLEXCAN_FDCTRL_MBDSR_8		0x0
156 #define FLEXCAN_FDCTRL_MBDSR_12		0x1
157 #define FLEXCAN_FDCTRL_MBDSR_32		0x2
158 #define FLEXCAN_FDCTRL_MBDSR_64		0x3
159 #define FLEXCAN_FDCTRL_TDCEN		BIT(15)
160 #define FLEXCAN_FDCTRL_TDCFAIL		BIT(14)
161 #define FLEXCAN_FDCTRL_TDCOFF		GENMASK(12, 8)
162 #define FLEXCAN_FDCTRL_TDCVAL		GENMASK(5, 0)
163 
164 /* FLEXCAN FD Bit Timing register (FDCBT) bits */
165 #define FLEXCAN_FDCBT_FPRESDIV_MASK	GENMASK(29, 20)
166 #define FLEXCAN_FDCBT_FRJW_MASK		GENMASK(18, 16)
167 #define FLEXCAN_FDCBT_FPROPSEG_MASK	GENMASK(14, 10)
168 #define FLEXCAN_FDCBT_FPSEG1_MASK	GENMASK(7, 5)
169 #define FLEXCAN_FDCBT_FPSEG2_MASK	GENMASK(2, 0)
170 
171 /* FLEXCAN interrupt flag register (IFLAG) bits */
172 /* Errata ERR005829 step7: Reserve first valid MB */
173 #define FLEXCAN_TX_MB_RESERVED_OFF_FIFO		8
174 #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP	0
175 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST	(FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP + 1)
176 #define FLEXCAN_IFLAG_MB(x)		BIT_ULL(x)
177 #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW	BIT(7)
178 #define FLEXCAN_IFLAG_RX_FIFO_WARN	BIT(6)
179 #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE	BIT(5)
180 
181 /* FLEXCAN message buffers */
182 #define FLEXCAN_MB_CODE_MASK		(0xf << 24)
183 #define FLEXCAN_MB_CODE_RX_BUSY_BIT	(0x1 << 24)
184 #define FLEXCAN_MB_CODE_RX_INACTIVE	(0x0 << 24)
185 #define FLEXCAN_MB_CODE_RX_EMPTY	(0x4 << 24)
186 #define FLEXCAN_MB_CODE_RX_FULL		(0x2 << 24)
187 #define FLEXCAN_MB_CODE_RX_OVERRUN	(0x6 << 24)
188 #define FLEXCAN_MB_CODE_RX_RANSWER	(0xa << 24)
189 
190 #define FLEXCAN_MB_CODE_TX_INACTIVE	(0x8 << 24)
191 #define FLEXCAN_MB_CODE_TX_ABORT	(0x9 << 24)
192 #define FLEXCAN_MB_CODE_TX_DATA		(0xc << 24)
193 #define FLEXCAN_MB_CODE_TX_TANSWER	(0xe << 24)
194 
195 #define FLEXCAN_MB_CNT_EDL		BIT(31)
196 #define FLEXCAN_MB_CNT_BRS		BIT(30)
197 #define FLEXCAN_MB_CNT_ESI		BIT(29)
198 #define FLEXCAN_MB_CNT_SRR		BIT(22)
199 #define FLEXCAN_MB_CNT_IDE		BIT(21)
200 #define FLEXCAN_MB_CNT_RTR		BIT(20)
201 #define FLEXCAN_MB_CNT_LENGTH(x)	(((x) & 0xf) << 16)
202 #define FLEXCAN_MB_CNT_TIMESTAMP(x)	((x) & 0xffff)
203 
204 #define FLEXCAN_TIMEOUT_US		(250)
205 
206 /* FLEXCAN hardware feature flags
207  *
208  * Below is some version info we got:
209  *    SOC   Version   IP-Version  Glitch- [TR]WRN_INT IRQ Err Memory err RTR rece-   FD Mode
210  *                                Filter? connected?  Passive detection  ption in MB Supported?
211  *   MX25  FlexCAN2  03.00.00.00     no        no        no       no        no           no
212  *   MX28  FlexCAN2  03.00.04.00    yes       yes        no       no        no           no
213  *   MX35  FlexCAN2  03.00.00.00     no        no        no       no        no           no
214  *   MX53  FlexCAN2  03.00.00.00    yes        no        no       no        no           no
215  *   MX6s  FlexCAN3  10.00.12.00    yes       yes        no       no       yes           no
216  *   MX8QM FlexCAN3  03.00.23.00    yes       yes        no       no       yes          yes
217  *   MX8MP FlexCAN3  03.00.17.01    yes       yes        no      yes       yes          yes
218  *   VF610 FlexCAN3  ?               no       yes        no      yes       yes?          no
219  * LS1021A FlexCAN2  03.00.04.00     no       yes        no       no       yes           no
220  * LX2160A FlexCAN3  03.00.23.00     no       yes        no      yes       yes          yes
221  *
222  * Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
223  */
224 
225 /* [TR]WRN_INT not connected */
226 #define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1)
227  /* Disable RX FIFO Global mask */
228 #define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2)
229 /* Enable EACEN and RRS bit in ctrl2 */
230 #define FLEXCAN_QUIRK_ENABLE_EACEN_RRS  BIT(3)
231 /* Disable non-correctable errors interrupt and freeze mode */
232 #define FLEXCAN_QUIRK_DISABLE_MECR BIT(4)
233 /* Use timestamp based offloading */
234 #define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5)
235 /* No interrupt for error passive */
236 #define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6)
237 /* default to BE register access */
238 #define FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN BIT(7)
239 /* Setup stop mode to support wakeup */
240 #define FLEXCAN_QUIRK_SETUP_STOP_MODE BIT(8)
241 /* Support CAN-FD mode */
242 #define FLEXCAN_QUIRK_SUPPORT_FD BIT(9)
243 /* support memory detection and correction */
244 #define FLEXCAN_QUIRK_SUPPORT_ECC BIT(10)
245 
246 /* Structure of the message buffer */
247 struct flexcan_mb {
248 	u32 can_ctrl;
249 	u32 can_id;
250 	u32 data[];
251 };
252 
253 /* Structure of the hardware registers */
254 struct flexcan_regs {
255 	u32 mcr;		/* 0x00 */
256 	u32 ctrl;		/* 0x04 - Not affected by Soft Reset */
257 	u32 timer;		/* 0x08 */
258 	u32 tcr;		/* 0x0c */
259 	u32 rxgmask;		/* 0x10 - Not affected by Soft Reset */
260 	u32 rx14mask;		/* 0x14 - Not affected by Soft Reset */
261 	u32 rx15mask;		/* 0x18 - Not affected by Soft Reset */
262 	u32 ecr;		/* 0x1c */
263 	u32 esr;		/* 0x20 */
264 	u32 imask2;		/* 0x24 */
265 	u32 imask1;		/* 0x28 */
266 	u32 iflag2;		/* 0x2c */
267 	u32 iflag1;		/* 0x30 */
268 	union {			/* 0x34 */
269 		u32 gfwr_mx28;	/* MX28, MX53 */
270 		u32 ctrl2;	/* MX6, VF610 - Not affected by Soft Reset */
271 	};
272 	u32 esr2;		/* 0x38 */
273 	u32 imeur;		/* 0x3c */
274 	u32 lrfr;		/* 0x40 */
275 	u32 crcr;		/* 0x44 */
276 	u32 rxfgmask;		/* 0x48 */
277 	u32 rxfir;		/* 0x4c - Not affected by Soft Reset */
278 	u32 cbt;		/* 0x50 - Not affected by Soft Reset */
279 	u32 _reserved2;		/* 0x54 */
280 	u32 dbg1;		/* 0x58 */
281 	u32 dbg2;		/* 0x5c */
282 	u32 _reserved3[8];	/* 0x60 */
283 	u8 mb[2][512];		/* 0x80 - Not affected by Soft Reset */
284 	/* FIFO-mode:
285 	 *			MB
286 	 * 0x080...0x08f	0	RX message buffer
287 	 * 0x090...0x0df	1-5	reserved
288 	 * 0x0e0...0x0ff	6-7	8 entry ID table
289 	 *				(mx25, mx28, mx35, mx53)
290 	 * 0x0e0...0x2df	6-7..37	8..128 entry ID table
291 	 *				size conf'ed via ctrl2::RFFN
292 	 *				(mx6, vf610)
293 	 */
294 	u32 _reserved4[256];	/* 0x480 */
295 	u32 rximr[64];		/* 0x880 - Not affected by Soft Reset */
296 	u32 _reserved5[24];	/* 0x980 */
297 	u32 gfwr_mx6;		/* 0x9e0 - MX6 */
298 	u32 _reserved6[39];	/* 0x9e4 */
299 	u32 _rxfir[6];		/* 0xa80 */
300 	u32 _reserved8[2];	/* 0xa98 */
301 	u32 _rxmgmask;		/* 0xaa0 */
302 	u32 _rxfgmask;		/* 0xaa4 */
303 	u32 _rx14mask;		/* 0xaa8 */
304 	u32 _rx15mask;		/* 0xaac */
305 	u32 tx_smb[4];		/* 0xab0 */
306 	u32 rx_smb0[4];		/* 0xac0 */
307 	u32 rx_smb1[4];		/* 0xad0 */
308 	u32 mecr;		/* 0xae0 */
309 	u32 erriar;		/* 0xae4 */
310 	u32 erridpr;		/* 0xae8 */
311 	u32 errippr;		/* 0xaec */
312 	u32 rerrar;		/* 0xaf0 */
313 	u32 rerrdr;		/* 0xaf4 */
314 	u32 rerrsynr;		/* 0xaf8 */
315 	u32 errsr;		/* 0xafc */
316 	u32 _reserved7[64];	/* 0xb00 */
317 	u32 fdctrl;		/* 0xc00 - Not affected by Soft Reset */
318 	u32 fdcbt;		/* 0xc04 - Not affected by Soft Reset */
319 	u32 fdcrc;		/* 0xc08 */
320 	u32 _reserved9[199];	/* 0xc0c */
321 	u32 tx_smb_fd[18];	/* 0xf28 */
322 	u32 rx_smb0_fd[18];	/* 0xf70 */
323 	u32 rx_smb1_fd[18];	/* 0xfb8 */
324 };
325 
326 static_assert(sizeof(struct flexcan_regs) ==  0x4 * 18 + 0xfb8);
327 
328 struct flexcan_devtype_data {
329 	u32 quirks;		/* quirks needed for different IP cores */
330 };
331 
332 struct flexcan_stop_mode {
333 	struct regmap *gpr;
334 	u8 req_gpr;
335 	u8 req_bit;
336 };
337 
338 struct flexcan_priv {
339 	struct can_priv can;
340 	struct can_rx_offload offload;
341 	struct device *dev;
342 
343 	struct flexcan_regs __iomem *regs;
344 	struct flexcan_mb __iomem *tx_mb;
345 	struct flexcan_mb __iomem *tx_mb_reserved;
346 	u8 tx_mb_idx;
347 	u8 mb_count;
348 	u8 mb_size;
349 	u8 clk_src;	/* clock source of CAN Protocol Engine */
350 
351 	u64 rx_mask;
352 	u64 tx_mask;
353 	u32 reg_ctrl_default;
354 
355 	struct clk *clk_ipg;
356 	struct clk *clk_per;
357 	const struct flexcan_devtype_data *devtype_data;
358 	struct regulator *reg_xceiver;
359 	struct flexcan_stop_mode stm;
360 
361 	/* Read and Write APIs */
362 	u32 (*read)(void __iomem *addr);
363 	void (*write)(u32 val, void __iomem *addr);
364 };
365 
366 static const struct flexcan_devtype_data fsl_p1010_devtype_data = {
367 	.quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
368 		FLEXCAN_QUIRK_BROKEN_PERR_STATE |
369 		FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN,
370 };
371 
372 static const struct flexcan_devtype_data fsl_imx25_devtype_data = {
373 	.quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
374 		FLEXCAN_QUIRK_BROKEN_PERR_STATE,
375 };
376 
377 static const struct flexcan_devtype_data fsl_imx28_devtype_data = {
378 	.quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE,
379 };
380 
381 static const struct flexcan_devtype_data fsl_imx6q_devtype_data = {
382 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
383 		FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
384 		FLEXCAN_QUIRK_SETUP_STOP_MODE,
385 };
386 
387 static const struct flexcan_devtype_data fsl_imx8qm_devtype_data = {
388 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
389 		FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
390 		FLEXCAN_QUIRK_SUPPORT_FD,
391 };
392 
393 static struct flexcan_devtype_data fsl_imx8mp_devtype_data = {
394 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
395 		FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP |
396 		FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE |
397 		FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC,
398 };
399 
400 static const struct flexcan_devtype_data fsl_vf610_devtype_data = {
401 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
402 		FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP |
403 		FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_ECC,
404 };
405 
406 static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = {
407 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
408 		FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP,
409 };
410 
411 static const struct flexcan_devtype_data fsl_lx2160a_r1_devtype_data = {
412 	.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
413 		FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
414 		FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_SUPPORT_FD |
415 		FLEXCAN_QUIRK_SUPPORT_ECC,
416 };
417 
418 static const struct can_bittiming_const flexcan_bittiming_const = {
419 	.name = DRV_NAME,
420 	.tseg1_min = 4,
421 	.tseg1_max = 16,
422 	.tseg2_min = 2,
423 	.tseg2_max = 8,
424 	.sjw_max = 4,
425 	.brp_min = 1,
426 	.brp_max = 256,
427 	.brp_inc = 1,
428 };
429 
430 static const struct can_bittiming_const flexcan_fd_bittiming_const = {
431 	.name = DRV_NAME,
432 	.tseg1_min = 2,
433 	.tseg1_max = 96,
434 	.tseg2_min = 2,
435 	.tseg2_max = 32,
436 	.sjw_max = 16,
437 	.brp_min = 1,
438 	.brp_max = 1024,
439 	.brp_inc = 1,
440 };
441 
442 static const struct can_bittiming_const flexcan_fd_data_bittiming_const = {
443 	.name = DRV_NAME,
444 	.tseg1_min = 2,
445 	.tseg1_max = 39,
446 	.tseg2_min = 2,
447 	.tseg2_max = 8,
448 	.sjw_max = 4,
449 	.brp_min = 1,
450 	.brp_max = 1024,
451 	.brp_inc = 1,
452 };
453 
454 /* FlexCAN module is essentially modelled as a little-endian IP in most
455  * SoCs, i.e the registers as well as the message buffer areas are
456  * implemented in a little-endian fashion.
457  *
458  * However there are some SoCs (e.g. LS1021A) which implement the FlexCAN
459  * module in a big-endian fashion (i.e the registers as well as the
460  * message buffer areas are implemented in a big-endian way).
461  *
462  * In addition, the FlexCAN module can be found on SoCs having ARM or
463  * PPC cores. So, we need to abstract off the register read/write
464  * functions, ensuring that these cater to all the combinations of module
465  * endianness and underlying CPU endianness.
466  */
flexcan_read_be(void __iomem * addr)467 static inline u32 flexcan_read_be(void __iomem *addr)
468 {
469 	return ioread32be(addr);
470 }
471 
flexcan_write_be(u32 val,void __iomem * addr)472 static inline void flexcan_write_be(u32 val, void __iomem *addr)
473 {
474 	iowrite32be(val, addr);
475 }
476 
flexcan_read_le(void __iomem * addr)477 static inline u32 flexcan_read_le(void __iomem *addr)
478 {
479 	return ioread32(addr);
480 }
481 
flexcan_write_le(u32 val,void __iomem * addr)482 static inline void flexcan_write_le(u32 val, void __iomem *addr)
483 {
484 	iowrite32(val, addr);
485 }
486 
flexcan_get_mb(const struct flexcan_priv * priv,u8 mb_index)487 static struct flexcan_mb __iomem *flexcan_get_mb(const struct flexcan_priv *priv,
488 						 u8 mb_index)
489 {
490 	u8 bank_size;
491 	bool bank;
492 
493 	if (WARN_ON(mb_index >= priv->mb_count))
494 		return NULL;
495 
496 	bank_size = sizeof(priv->regs->mb[0]) / priv->mb_size;
497 
498 	bank = mb_index >= bank_size;
499 	if (bank)
500 		mb_index -= bank_size;
501 
502 	return (struct flexcan_mb __iomem *)
503 		(&priv->regs->mb[bank][priv->mb_size * mb_index]);
504 }
505 
flexcan_low_power_enter_ack(struct flexcan_priv * priv)506 static int flexcan_low_power_enter_ack(struct flexcan_priv *priv)
507 {
508 	struct flexcan_regs __iomem *regs = priv->regs;
509 	unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
510 
511 	while (timeout-- && !(priv->read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
512 		udelay(10);
513 
514 	if (!(priv->read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
515 		return -ETIMEDOUT;
516 
517 	return 0;
518 }
519 
flexcan_low_power_exit_ack(struct flexcan_priv * priv)520 static int flexcan_low_power_exit_ack(struct flexcan_priv *priv)
521 {
522 	struct flexcan_regs __iomem *regs = priv->regs;
523 	unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
524 
525 	while (timeout-- && (priv->read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK))
526 		udelay(10);
527 
528 	if (priv->read(&regs->mcr) & FLEXCAN_MCR_LPM_ACK)
529 		return -ETIMEDOUT;
530 
531 	return 0;
532 }
533 
flexcan_enable_wakeup_irq(struct flexcan_priv * priv,bool enable)534 static void flexcan_enable_wakeup_irq(struct flexcan_priv *priv, bool enable)
535 {
536 	struct flexcan_regs __iomem *regs = priv->regs;
537 	u32 reg_mcr;
538 
539 	reg_mcr = priv->read(&regs->mcr);
540 
541 	if (enable)
542 		reg_mcr |= FLEXCAN_MCR_WAK_MSK;
543 	else
544 		reg_mcr &= ~FLEXCAN_MCR_WAK_MSK;
545 
546 	priv->write(reg_mcr, &regs->mcr);
547 }
548 
flexcan_enter_stop_mode(struct flexcan_priv * priv)549 static inline int flexcan_enter_stop_mode(struct flexcan_priv *priv)
550 {
551 	struct flexcan_regs __iomem *regs = priv->regs;
552 	u32 reg_mcr;
553 
554 	reg_mcr = priv->read(&regs->mcr);
555 	reg_mcr |= FLEXCAN_MCR_SLF_WAK;
556 	priv->write(reg_mcr, &regs->mcr);
557 
558 	/* enable stop request */
559 	regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
560 			   1 << priv->stm.req_bit, 1 << priv->stm.req_bit);
561 
562 	return flexcan_low_power_enter_ack(priv);
563 }
564 
flexcan_exit_stop_mode(struct flexcan_priv * priv)565 static inline int flexcan_exit_stop_mode(struct flexcan_priv *priv)
566 {
567 	struct flexcan_regs __iomem *regs = priv->regs;
568 	u32 reg_mcr;
569 
570 	/* remove stop request */
571 	regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr,
572 			   1 << priv->stm.req_bit, 0);
573 
574 	reg_mcr = priv->read(&regs->mcr);
575 	reg_mcr &= ~FLEXCAN_MCR_SLF_WAK;
576 	priv->write(reg_mcr, &regs->mcr);
577 
578 	return flexcan_low_power_exit_ack(priv);
579 }
580 
flexcan_error_irq_enable(const struct flexcan_priv * priv)581 static inline void flexcan_error_irq_enable(const struct flexcan_priv *priv)
582 {
583 	struct flexcan_regs __iomem *regs = priv->regs;
584 	u32 reg_ctrl = (priv->reg_ctrl_default | FLEXCAN_CTRL_ERR_MSK);
585 
586 	priv->write(reg_ctrl, &regs->ctrl);
587 }
588 
flexcan_error_irq_disable(const struct flexcan_priv * priv)589 static inline void flexcan_error_irq_disable(const struct flexcan_priv *priv)
590 {
591 	struct flexcan_regs __iomem *regs = priv->regs;
592 	u32 reg_ctrl = (priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_MSK);
593 
594 	priv->write(reg_ctrl, &regs->ctrl);
595 }
596 
flexcan_clks_enable(const struct flexcan_priv * priv)597 static int flexcan_clks_enable(const struct flexcan_priv *priv)
598 {
599 	int err;
600 
601 	err = clk_prepare_enable(priv->clk_ipg);
602 	if (err)
603 		return err;
604 
605 	err = clk_prepare_enable(priv->clk_per);
606 	if (err)
607 		clk_disable_unprepare(priv->clk_ipg);
608 
609 	return err;
610 }
611 
flexcan_clks_disable(const struct flexcan_priv * priv)612 static void flexcan_clks_disable(const struct flexcan_priv *priv)
613 {
614 	clk_disable_unprepare(priv->clk_per);
615 	clk_disable_unprepare(priv->clk_ipg);
616 }
617 
flexcan_transceiver_enable(const struct flexcan_priv * priv)618 static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv)
619 {
620 	if (!priv->reg_xceiver)
621 		return 0;
622 
623 	return regulator_enable(priv->reg_xceiver);
624 }
625 
flexcan_transceiver_disable(const struct flexcan_priv * priv)626 static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
627 {
628 	if (!priv->reg_xceiver)
629 		return 0;
630 
631 	return regulator_disable(priv->reg_xceiver);
632 }
633 
flexcan_chip_enable(struct flexcan_priv * priv)634 static int flexcan_chip_enable(struct flexcan_priv *priv)
635 {
636 	struct flexcan_regs __iomem *regs = priv->regs;
637 	u32 reg;
638 
639 	reg = priv->read(&regs->mcr);
640 	reg &= ~FLEXCAN_MCR_MDIS;
641 	priv->write(reg, &regs->mcr);
642 
643 	return flexcan_low_power_exit_ack(priv);
644 }
645 
flexcan_chip_disable(struct flexcan_priv * priv)646 static int flexcan_chip_disable(struct flexcan_priv *priv)
647 {
648 	struct flexcan_regs __iomem *regs = priv->regs;
649 	u32 reg;
650 
651 	reg = priv->read(&regs->mcr);
652 	reg |= FLEXCAN_MCR_MDIS;
653 	priv->write(reg, &regs->mcr);
654 
655 	return flexcan_low_power_enter_ack(priv);
656 }
657 
flexcan_chip_freeze(struct flexcan_priv * priv)658 static int flexcan_chip_freeze(struct flexcan_priv *priv)
659 {
660 	struct flexcan_regs __iomem *regs = priv->regs;
661 	unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate;
662 	u32 reg;
663 
664 	reg = priv->read(&regs->mcr);
665 	reg |= FLEXCAN_MCR_HALT;
666 	priv->write(reg, &regs->mcr);
667 
668 	while (timeout-- && !(priv->read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
669 		udelay(100);
670 
671 	if (!(priv->read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
672 		return -ETIMEDOUT;
673 
674 	return 0;
675 }
676 
flexcan_chip_unfreeze(struct flexcan_priv * priv)677 static int flexcan_chip_unfreeze(struct flexcan_priv *priv)
678 {
679 	struct flexcan_regs __iomem *regs = priv->regs;
680 	unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
681 	u32 reg;
682 
683 	reg = priv->read(&regs->mcr);
684 	reg &= ~FLEXCAN_MCR_HALT;
685 	priv->write(reg, &regs->mcr);
686 
687 	while (timeout-- && (priv->read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK))
688 		udelay(10);
689 
690 	if (priv->read(&regs->mcr) & FLEXCAN_MCR_FRZ_ACK)
691 		return -ETIMEDOUT;
692 
693 	return 0;
694 }
695 
flexcan_chip_softreset(struct flexcan_priv * priv)696 static int flexcan_chip_softreset(struct flexcan_priv *priv)
697 {
698 	struct flexcan_regs __iomem *regs = priv->regs;
699 	unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
700 
701 	priv->write(FLEXCAN_MCR_SOFTRST, &regs->mcr);
702 	while (timeout-- && (priv->read(&regs->mcr) & FLEXCAN_MCR_SOFTRST))
703 		udelay(10);
704 
705 	if (priv->read(&regs->mcr) & FLEXCAN_MCR_SOFTRST)
706 		return -ETIMEDOUT;
707 
708 	return 0;
709 }
710 
__flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)711 static int __flexcan_get_berr_counter(const struct net_device *dev,
712 				      struct can_berr_counter *bec)
713 {
714 	const struct flexcan_priv *priv = netdev_priv(dev);
715 	struct flexcan_regs __iomem *regs = priv->regs;
716 	u32 reg = priv->read(&regs->ecr);
717 
718 	bec->txerr = (reg >> 0) & 0xff;
719 	bec->rxerr = (reg >> 8) & 0xff;
720 
721 	return 0;
722 }
723 
flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)724 static int flexcan_get_berr_counter(const struct net_device *dev,
725 				    struct can_berr_counter *bec)
726 {
727 	const struct flexcan_priv *priv = netdev_priv(dev);
728 	int err;
729 
730 	err = pm_runtime_get_sync(priv->dev);
731 	if (err < 0) {
732 		pm_runtime_put_noidle(priv->dev);
733 		return err;
734 	}
735 
736 	err = __flexcan_get_berr_counter(dev, bec);
737 
738 	pm_runtime_put(priv->dev);
739 
740 	return err;
741 }
742 
flexcan_start_xmit(struct sk_buff * skb,struct net_device * dev)743 static netdev_tx_t flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
744 {
745 	const struct flexcan_priv *priv = netdev_priv(dev);
746 	struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
747 	u32 can_id;
748 	u32 data;
749 	u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | ((can_len2dlc(cfd->len)) << 16);
750 	int i;
751 
752 	if (can_dropped_invalid_skb(dev, skb))
753 		return NETDEV_TX_OK;
754 
755 	netif_stop_queue(dev);
756 
757 	if (cfd->can_id & CAN_EFF_FLAG) {
758 		can_id = cfd->can_id & CAN_EFF_MASK;
759 		ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
760 	} else {
761 		can_id = (cfd->can_id & CAN_SFF_MASK) << 18;
762 	}
763 
764 	if (cfd->can_id & CAN_RTR_FLAG)
765 		ctrl |= FLEXCAN_MB_CNT_RTR;
766 
767 	if (can_is_canfd_skb(skb)) {
768 		ctrl |= FLEXCAN_MB_CNT_EDL;
769 
770 		if (cfd->flags & CANFD_BRS)
771 			ctrl |= FLEXCAN_MB_CNT_BRS;
772 	}
773 
774 	for (i = 0; i < cfd->len; i += sizeof(u32)) {
775 		data = be32_to_cpup((__be32 *)&cfd->data[i]);
776 		priv->write(data, &priv->tx_mb->data[i / sizeof(u32)]);
777 	}
778 
779 	can_put_echo_skb(skb, dev, 0);
780 
781 	priv->write(can_id, &priv->tx_mb->can_id);
782 	priv->write(ctrl, &priv->tx_mb->can_ctrl);
783 
784 	/* Errata ERR005829 step8:
785 	 * Write twice INACTIVE(0x8) code to first MB.
786 	 */
787 	priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
788 		    &priv->tx_mb_reserved->can_ctrl);
789 	priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
790 		    &priv->tx_mb_reserved->can_ctrl);
791 
792 	return NETDEV_TX_OK;
793 }
794 
flexcan_irq_bus_err(struct net_device * dev,u32 reg_esr)795 static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr)
796 {
797 	struct flexcan_priv *priv = netdev_priv(dev);
798 	struct flexcan_regs __iomem *regs = priv->regs;
799 	struct sk_buff *skb;
800 	struct can_frame *cf;
801 	bool rx_errors = false, tx_errors = false;
802 	u32 timestamp;
803 	int err;
804 
805 	timestamp = priv->read(&regs->timer) << 16;
806 
807 	skb = alloc_can_err_skb(dev, &cf);
808 	if (unlikely(!skb))
809 		return;
810 
811 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
812 
813 	if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
814 		netdev_dbg(dev, "BIT1_ERR irq\n");
815 		cf->data[2] |= CAN_ERR_PROT_BIT1;
816 		tx_errors = true;
817 	}
818 	if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
819 		netdev_dbg(dev, "BIT0_ERR irq\n");
820 		cf->data[2] |= CAN_ERR_PROT_BIT0;
821 		tx_errors = true;
822 	}
823 	if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
824 		netdev_dbg(dev, "ACK_ERR irq\n");
825 		cf->can_id |= CAN_ERR_ACK;
826 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
827 		tx_errors = true;
828 	}
829 	if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
830 		netdev_dbg(dev, "CRC_ERR irq\n");
831 		cf->data[2] |= CAN_ERR_PROT_BIT;
832 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
833 		rx_errors = true;
834 	}
835 	if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
836 		netdev_dbg(dev, "FRM_ERR irq\n");
837 		cf->data[2] |= CAN_ERR_PROT_FORM;
838 		rx_errors = true;
839 	}
840 	if (reg_esr & FLEXCAN_ESR_STF_ERR) {
841 		netdev_dbg(dev, "STF_ERR irq\n");
842 		cf->data[2] |= CAN_ERR_PROT_STUFF;
843 		rx_errors = true;
844 	}
845 
846 	priv->can.can_stats.bus_error++;
847 	if (rx_errors)
848 		dev->stats.rx_errors++;
849 	if (tx_errors)
850 		dev->stats.tx_errors++;
851 
852 	err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
853 	if (err)
854 		dev->stats.rx_fifo_errors++;
855 }
856 
flexcan_irq_state(struct net_device * dev,u32 reg_esr)857 static void flexcan_irq_state(struct net_device *dev, u32 reg_esr)
858 {
859 	struct flexcan_priv *priv = netdev_priv(dev);
860 	struct flexcan_regs __iomem *regs = priv->regs;
861 	struct sk_buff *skb;
862 	struct can_frame *cf;
863 	enum can_state new_state, rx_state, tx_state;
864 	int flt;
865 	struct can_berr_counter bec;
866 	u32 timestamp;
867 	int err;
868 
869 	flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
870 	if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
871 		tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ?
872 			CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
873 		rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ?
874 			CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
875 		new_state = max(tx_state, rx_state);
876 	} else {
877 		__flexcan_get_berr_counter(dev, &bec);
878 		new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ?
879 			CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF;
880 		rx_state = bec.rxerr >= bec.txerr ? new_state : 0;
881 		tx_state = bec.rxerr <= bec.txerr ? new_state : 0;
882 	}
883 
884 	/* state hasn't changed */
885 	if (likely(new_state == priv->can.state))
886 		return;
887 
888 	timestamp = priv->read(&regs->timer) << 16;
889 
890 	skb = alloc_can_err_skb(dev, &cf);
891 	if (unlikely(!skb))
892 		return;
893 
894 	can_change_state(dev, cf, tx_state, rx_state);
895 
896 	if (unlikely(new_state == CAN_STATE_BUS_OFF))
897 		can_bus_off(dev);
898 
899 	err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
900 	if (err)
901 		dev->stats.rx_fifo_errors++;
902 }
903 
flexcan_read64_mask(struct flexcan_priv * priv,void __iomem * addr,u64 mask)904 static inline u64 flexcan_read64_mask(struct flexcan_priv *priv, void __iomem *addr, u64 mask)
905 {
906 	u64 reg = 0;
907 
908 	if (upper_32_bits(mask))
909 		reg = (u64)priv->read(addr - 4) << 32;
910 	if (lower_32_bits(mask))
911 		reg |= priv->read(addr);
912 
913 	return reg & mask;
914 }
915 
flexcan_write64(struct flexcan_priv * priv,u64 val,void __iomem * addr)916 static inline void flexcan_write64(struct flexcan_priv *priv, u64 val, void __iomem *addr)
917 {
918 	if (upper_32_bits(val))
919 		priv->write(upper_32_bits(val), addr - 4);
920 	if (lower_32_bits(val))
921 		priv->write(lower_32_bits(val), addr);
922 }
923 
flexcan_read_reg_iflag_rx(struct flexcan_priv * priv)924 static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv)
925 {
926 	return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->rx_mask);
927 }
928 
flexcan_read_reg_iflag_tx(struct flexcan_priv * priv)929 static inline u64 flexcan_read_reg_iflag_tx(struct flexcan_priv *priv)
930 {
931 	return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->tx_mask);
932 }
933 
rx_offload_to_priv(struct can_rx_offload * offload)934 static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
935 {
936 	return container_of(offload, struct flexcan_priv, offload);
937 }
938 
flexcan_mailbox_read(struct can_rx_offload * offload,unsigned int n,u32 * timestamp,bool drop)939 static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload,
940 					    unsigned int n, u32 *timestamp,
941 					    bool drop)
942 {
943 	struct flexcan_priv *priv = rx_offload_to_priv(offload);
944 	struct flexcan_regs __iomem *regs = priv->regs;
945 	struct flexcan_mb __iomem *mb;
946 	struct sk_buff *skb;
947 	struct canfd_frame *cfd;
948 	u32 reg_ctrl, reg_id, reg_iflag1;
949 	int i;
950 
951 	if (unlikely(drop)) {
952 		skb = ERR_PTR(-ENOBUFS);
953 		goto mark_as_read;
954 	}
955 
956 	mb = flexcan_get_mb(priv, n);
957 
958 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
959 		u32 code;
960 
961 		do {
962 			reg_ctrl = priv->read(&mb->can_ctrl);
963 		} while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT);
964 
965 		/* is this MB empty? */
966 		code = reg_ctrl & FLEXCAN_MB_CODE_MASK;
967 		if ((code != FLEXCAN_MB_CODE_RX_FULL) &&
968 		    (code != FLEXCAN_MB_CODE_RX_OVERRUN))
969 			return NULL;
970 
971 		if (code == FLEXCAN_MB_CODE_RX_OVERRUN) {
972 			/* This MB was overrun, we lost data */
973 			offload->dev->stats.rx_over_errors++;
974 			offload->dev->stats.rx_errors++;
975 		}
976 	} else {
977 		reg_iflag1 = priv->read(&regs->iflag1);
978 		if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE))
979 			return NULL;
980 
981 		reg_ctrl = priv->read(&mb->can_ctrl);
982 	}
983 
984 	if (reg_ctrl & FLEXCAN_MB_CNT_EDL)
985 		skb = alloc_canfd_skb(offload->dev, &cfd);
986 	else
987 		skb = alloc_can_skb(offload->dev, (struct can_frame **)&cfd);
988 	if (unlikely(!skb)) {
989 		skb = ERR_PTR(-ENOMEM);
990 		goto mark_as_read;
991 	}
992 
993 	/* increase timstamp to full 32 bit */
994 	*timestamp = reg_ctrl << 16;
995 
996 	reg_id = priv->read(&mb->can_id);
997 	if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
998 		cfd->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
999 	else
1000 		cfd->can_id = (reg_id >> 18) & CAN_SFF_MASK;
1001 
1002 	if (reg_ctrl & FLEXCAN_MB_CNT_EDL) {
1003 		cfd->len = can_dlc2len(get_canfd_dlc((reg_ctrl >> 16) & 0xf));
1004 
1005 		if (reg_ctrl & FLEXCAN_MB_CNT_BRS)
1006 			cfd->flags |= CANFD_BRS;
1007 	} else {
1008 		cfd->len = get_can_dlc((reg_ctrl >> 16) & 0xf);
1009 
1010 		if (reg_ctrl & FLEXCAN_MB_CNT_RTR)
1011 			cfd->can_id |= CAN_RTR_FLAG;
1012 	}
1013 
1014 	if (reg_ctrl & FLEXCAN_MB_CNT_ESI)
1015 		cfd->flags |= CANFD_ESI;
1016 
1017 	for (i = 0; i < cfd->len; i += sizeof(u32)) {
1018 		__be32 data = cpu_to_be32(priv->read(&mb->data[i / sizeof(u32)]));
1019 		*(__be32 *)(cfd->data + i) = data;
1020 	}
1021 
1022  mark_as_read:
1023 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)
1024 		flexcan_write64(priv, FLEXCAN_IFLAG_MB(n), &regs->iflag1);
1025 	else
1026 		priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1);
1027 
1028 	/* Read the Free Running Timer. It is optional but recommended
1029 	 * to unlock Mailbox as soon as possible and make it available
1030 	 * for reception.
1031 	 */
1032 	priv->read(&regs->timer);
1033 
1034 	return skb;
1035 }
1036 
flexcan_irq(int irq,void * dev_id)1037 static irqreturn_t flexcan_irq(int irq, void *dev_id)
1038 {
1039 	struct net_device *dev = dev_id;
1040 	struct net_device_stats *stats = &dev->stats;
1041 	struct flexcan_priv *priv = netdev_priv(dev);
1042 	struct flexcan_regs __iomem *regs = priv->regs;
1043 	irqreturn_t handled = IRQ_NONE;
1044 	u64 reg_iflag_tx;
1045 	u32 reg_esr;
1046 	enum can_state last_state = priv->can.state;
1047 
1048 	/* reception interrupt */
1049 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
1050 		u64 reg_iflag_rx;
1051 		int ret;
1052 
1053 		while ((reg_iflag_rx = flexcan_read_reg_iflag_rx(priv))) {
1054 			handled = IRQ_HANDLED;
1055 			ret = can_rx_offload_irq_offload_timestamp(&priv->offload,
1056 								   reg_iflag_rx);
1057 			if (!ret)
1058 				break;
1059 		}
1060 	} else {
1061 		u32 reg_iflag1;
1062 
1063 		reg_iflag1 = priv->read(&regs->iflag1);
1064 		if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) {
1065 			handled = IRQ_HANDLED;
1066 			can_rx_offload_irq_offload_fifo(&priv->offload);
1067 		}
1068 
1069 		/* FIFO overflow interrupt */
1070 		if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
1071 			handled = IRQ_HANDLED;
1072 			priv->write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW,
1073 				    &regs->iflag1);
1074 			dev->stats.rx_over_errors++;
1075 			dev->stats.rx_errors++;
1076 		}
1077 	}
1078 
1079 	reg_iflag_tx = flexcan_read_reg_iflag_tx(priv);
1080 
1081 	/* transmission complete interrupt */
1082 	if (reg_iflag_tx & priv->tx_mask) {
1083 		u32 reg_ctrl = priv->read(&priv->tx_mb->can_ctrl);
1084 
1085 		handled = IRQ_HANDLED;
1086 		stats->tx_bytes += can_rx_offload_get_echo_skb(&priv->offload,
1087 							       0, reg_ctrl << 16);
1088 		stats->tx_packets++;
1089 		can_led_event(dev, CAN_LED_EVENT_TX);
1090 
1091 		/* after sending a RTR frame MB is in RX mode */
1092 		priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1093 			    &priv->tx_mb->can_ctrl);
1094 		flexcan_write64(priv, priv->tx_mask, &regs->iflag1);
1095 		netif_wake_queue(dev);
1096 	}
1097 
1098 	reg_esr = priv->read(&regs->esr);
1099 
1100 	/* ACK all bus error, state change and wake IRQ sources */
1101 	if (reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT)) {
1102 		handled = IRQ_HANDLED;
1103 		priv->write(reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT), &regs->esr);
1104 	}
1105 
1106 	/* state change interrupt or broken error state quirk fix is enabled */
1107 	if ((reg_esr & FLEXCAN_ESR_ERR_STATE) ||
1108 	    (priv->devtype_data->quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE |
1109 					   FLEXCAN_QUIRK_BROKEN_PERR_STATE)))
1110 		flexcan_irq_state(dev, reg_esr);
1111 
1112 	/* bus error IRQ - handle if bus error reporting is activated */
1113 	if ((reg_esr & FLEXCAN_ESR_ERR_BUS) &&
1114 	    (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1115 		flexcan_irq_bus_err(dev, reg_esr);
1116 
1117 	/* availability of error interrupt among state transitions in case
1118 	 * bus error reporting is de-activated and
1119 	 * FLEXCAN_QUIRK_BROKEN_PERR_STATE is enabled:
1120 	 *  +--------------------------------------------------------------+
1121 	 *  | +----------------------------------------------+ [stopped /  |
1122 	 *  | |                                              |  sleeping] -+
1123 	 *  +-+-> active <-> warning <-> passive -> bus off -+
1124 	 *        ___________^^^^^^^^^^^^_______________________________
1125 	 *        disabled(1)  enabled             disabled
1126 	 *
1127 	 * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled
1128 	 */
1129 	if ((last_state != priv->can.state) &&
1130 	    (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) &&
1131 	    !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1132 		switch (priv->can.state) {
1133 		case CAN_STATE_ERROR_ACTIVE:
1134 			if (priv->devtype_data->quirks &
1135 			    FLEXCAN_QUIRK_BROKEN_WERR_STATE)
1136 				flexcan_error_irq_enable(priv);
1137 			else
1138 				flexcan_error_irq_disable(priv);
1139 			break;
1140 
1141 		case CAN_STATE_ERROR_WARNING:
1142 			flexcan_error_irq_enable(priv);
1143 			break;
1144 
1145 		case CAN_STATE_ERROR_PASSIVE:
1146 		case CAN_STATE_BUS_OFF:
1147 			flexcan_error_irq_disable(priv);
1148 			break;
1149 
1150 		default:
1151 			break;
1152 		}
1153 	}
1154 
1155 	return handled;
1156 }
1157 
flexcan_set_bittiming_ctrl(const struct net_device * dev)1158 static void flexcan_set_bittiming_ctrl(const struct net_device *dev)
1159 {
1160 	const struct flexcan_priv *priv = netdev_priv(dev);
1161 	const struct can_bittiming *bt = &priv->can.bittiming;
1162 	struct flexcan_regs __iomem *regs = priv->regs;
1163 	u32 reg;
1164 
1165 	reg = priv->read(&regs->ctrl);
1166 	reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
1167 		 FLEXCAN_CTRL_RJW(0x3) |
1168 		 FLEXCAN_CTRL_PSEG1(0x7) |
1169 		 FLEXCAN_CTRL_PSEG2(0x7) |
1170 		 FLEXCAN_CTRL_PROPSEG(0x7));
1171 
1172 	reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
1173 		FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
1174 		FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
1175 		FLEXCAN_CTRL_RJW(bt->sjw - 1) |
1176 		FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
1177 
1178 	netdev_dbg(dev, "writing ctrl=0x%08x\n", reg);
1179 	priv->write(reg, &regs->ctrl);
1180 
1181 	/* print chip status */
1182 	netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
1183 		   priv->read(&regs->mcr), priv->read(&regs->ctrl));
1184 }
1185 
flexcan_set_bittiming_cbt(const struct net_device * dev)1186 static void flexcan_set_bittiming_cbt(const struct net_device *dev)
1187 {
1188 	struct flexcan_priv *priv = netdev_priv(dev);
1189 	struct can_bittiming *bt = &priv->can.bittiming;
1190 	struct can_bittiming *dbt = &priv->can.data_bittiming;
1191 	struct flexcan_regs __iomem *regs = priv->regs;
1192 	u32 reg_cbt, reg_fdctrl;
1193 
1194 	/* CBT */
1195 	/* CBT[EPSEG1] is 5 bit long and CBT[EPROPSEG] is 6 bit
1196 	 * long. The can_calc_bittiming() tries to divide the tseg1
1197 	 * equally between phase_seg1 and prop_seg, which may not fit
1198 	 * in CBT register. Therefore, if phase_seg1 is more than
1199 	 * possible value, increase prop_seg and decrease phase_seg1.
1200 	 */
1201 	if (bt->phase_seg1 > 0x20) {
1202 		bt->prop_seg += (bt->phase_seg1 - 0x20);
1203 		bt->phase_seg1 = 0x20;
1204 	}
1205 
1206 	reg_cbt = FLEXCAN_CBT_BTF |
1207 		FIELD_PREP(FLEXCAN_CBT_EPRESDIV_MASK, bt->brp - 1) |
1208 		FIELD_PREP(FLEXCAN_CBT_ERJW_MASK, bt->sjw - 1) |
1209 		FIELD_PREP(FLEXCAN_CBT_EPROPSEG_MASK, bt->prop_seg - 1) |
1210 		FIELD_PREP(FLEXCAN_CBT_EPSEG1_MASK, bt->phase_seg1 - 1) |
1211 		FIELD_PREP(FLEXCAN_CBT_EPSEG2_MASK, bt->phase_seg2 - 1);
1212 
1213 	netdev_dbg(dev, "writing cbt=0x%08x\n", reg_cbt);
1214 	priv->write(reg_cbt, &regs->cbt);
1215 
1216 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1217 		u32 reg_fdcbt, reg_ctrl2;
1218 
1219 		if (bt->brp != dbt->brp)
1220 			netdev_warn(dev, "Data brp=%d and brp=%d don't match, this may result in a phase error. Consider using different bitrate and/or data bitrate.\n",
1221 				    dbt->brp, bt->brp);
1222 
1223 		/* FDCBT */
1224 		/* FDCBT[FPSEG1] is 3 bit long and FDCBT[FPROPSEG] is
1225 		 * 5 bit long. The can_calc_bittiming tries to divide
1226 		 * the tseg1 equally between phase_seg1 and prop_seg,
1227 		 * which may not fit in FDCBT register. Therefore, if
1228 		 * phase_seg1 is more than possible value, increase
1229 		 * prop_seg and decrease phase_seg1
1230 		 */
1231 		if (dbt->phase_seg1 > 0x8) {
1232 			dbt->prop_seg += (dbt->phase_seg1 - 0x8);
1233 			dbt->phase_seg1 = 0x8;
1234 		}
1235 
1236 		reg_fdcbt = priv->read(&regs->fdcbt);
1237 		reg_fdcbt &= ~(FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, 0x3ff) |
1238 			       FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, 0x7) |
1239 			       FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, 0x1f) |
1240 			       FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, 0x7) |
1241 			       FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, 0x7));
1242 
1243 		reg_fdcbt |= FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, dbt->brp - 1) |
1244 			FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, dbt->sjw - 1) |
1245 			FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, dbt->prop_seg) |
1246 			FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, dbt->phase_seg1 - 1) |
1247 			FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, dbt->phase_seg2 - 1);
1248 
1249 		netdev_dbg(dev, "writing fdcbt=0x%08x\n", reg_fdcbt);
1250 		priv->write(reg_fdcbt, &regs->fdcbt);
1251 
1252 		/* CTRL2 */
1253 		reg_ctrl2 = priv->read(&regs->ctrl2);
1254 		reg_ctrl2 &= ~FLEXCAN_CTRL2_ISOCANFDEN;
1255 		if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO))
1256 			reg_ctrl2 |= FLEXCAN_CTRL2_ISOCANFDEN;
1257 
1258 		netdev_dbg(dev, "writing ctrl2=0x%08x\n", reg_ctrl2);
1259 		priv->write(reg_ctrl2, &regs->ctrl2);
1260 	}
1261 
1262 	/* FDCTRL */
1263 	reg_fdctrl = priv->read(&regs->fdctrl);
1264 	reg_fdctrl &= ~(FLEXCAN_FDCTRL_FDRATE |
1265 			FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF, 0x1f));
1266 
1267 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1268 		reg_fdctrl |= FLEXCAN_FDCTRL_FDRATE;
1269 
1270 		if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1271 			/* TDC must be disabled for Loop Back mode */
1272 			reg_fdctrl &= ~FLEXCAN_FDCTRL_TDCEN;
1273 		} else {
1274 			reg_fdctrl |= FLEXCAN_FDCTRL_TDCEN |
1275 				FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF,
1276 					   ((dbt->phase_seg1 - 1) +
1277 					    dbt->prop_seg + 2) *
1278 					   ((dbt->brp - 1 ) + 1));
1279 		}
1280 	}
1281 
1282 	netdev_dbg(dev, "writing fdctrl=0x%08x\n", reg_fdctrl);
1283 	priv->write(reg_fdctrl, &regs->fdctrl);
1284 
1285 	netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x ctrl2=0x%08x fdctrl=0x%08x cbt=0x%08x fdcbt=0x%08x\n",
1286 		   __func__,
1287 		   priv->read(&regs->mcr), priv->read(&regs->ctrl),
1288 		   priv->read(&regs->ctrl2), priv->read(&regs->fdctrl),
1289 		   priv->read(&regs->cbt), priv->read(&regs->fdcbt));
1290 }
1291 
flexcan_set_bittiming(struct net_device * dev)1292 static void flexcan_set_bittiming(struct net_device *dev)
1293 {
1294 	const struct flexcan_priv *priv = netdev_priv(dev);
1295 	struct flexcan_regs __iomem *regs = priv->regs;
1296 	u32 reg;
1297 
1298 	reg = priv->read(&regs->ctrl);
1299 	reg &= ~(FLEXCAN_CTRL_LPB | FLEXCAN_CTRL_SMP |
1300 		 FLEXCAN_CTRL_LOM);
1301 
1302 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
1303 		reg |= FLEXCAN_CTRL_LPB;
1304 	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1305 		reg |= FLEXCAN_CTRL_LOM;
1306 	if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
1307 		reg |= FLEXCAN_CTRL_SMP;
1308 
1309 	netdev_dbg(dev, "writing ctrl=0x%08x\n", reg);
1310 	priv->write(reg, &regs->ctrl);
1311 
1312 	if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD)
1313 		return flexcan_set_bittiming_cbt(dev);
1314 	else
1315 		return flexcan_set_bittiming_ctrl(dev);
1316 }
1317 
flexcan_ram_init(struct net_device * dev)1318 static void flexcan_ram_init(struct net_device *dev)
1319 {
1320 	struct flexcan_priv *priv = netdev_priv(dev);
1321 	struct flexcan_regs __iomem *regs = priv->regs;
1322 	u32 reg_ctrl2;
1323 
1324 	/* 11.8.3.13 Detection and correction of memory errors:
1325 	 * CTRL2[WRMFRZ] grants write access to all memory positions
1326 	 * that require initialization, ranging from 0x080 to 0xADF
1327 	 * and from 0xF28 to 0xFFF when the CAN FD feature is enabled.
1328 	 * The RXMGMASK, RX14MASK, RX15MASK, and RXFGMASK registers
1329 	 * need to be initialized as well. MCR[RFEN] must not be set
1330 	 * during memory initialization.
1331 	 */
1332 	reg_ctrl2 = priv->read(&regs->ctrl2);
1333 	reg_ctrl2 |= FLEXCAN_CTRL2_WRMFRZ;
1334 	priv->write(reg_ctrl2, &regs->ctrl2);
1335 
1336 	memset_io(&regs->mb[0][0], 0,
1337 		  offsetof(struct flexcan_regs, rx_smb1[3]) -
1338 		  offsetof(struct flexcan_regs, mb[0][0]) + 0x4);
1339 
1340 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1341 		memset_io(&regs->tx_smb_fd[0], 0,
1342 			  offsetof(struct flexcan_regs, rx_smb1_fd[17]) -
1343 			  offsetof(struct flexcan_regs, tx_smb_fd[0]) + 0x4);
1344 
1345 	reg_ctrl2 &= ~FLEXCAN_CTRL2_WRMFRZ;
1346 	priv->write(reg_ctrl2, &regs->ctrl2);
1347 }
1348 
1349 /* flexcan_chip_start
1350  *
1351  * this functions is entered with clocks enabled
1352  *
1353  */
flexcan_chip_start(struct net_device * dev)1354 static int flexcan_chip_start(struct net_device *dev)
1355 {
1356 	struct flexcan_priv *priv = netdev_priv(dev);
1357 	struct flexcan_regs __iomem *regs = priv->regs;
1358 	u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr;
1359 	u64 reg_imask;
1360 	int err, i;
1361 	struct flexcan_mb __iomem *mb;
1362 
1363 	/* enable module */
1364 	err = flexcan_chip_enable(priv);
1365 	if (err)
1366 		return err;
1367 
1368 	/* soft reset */
1369 	err = flexcan_chip_softreset(priv);
1370 	if (err)
1371 		goto out_chip_disable;
1372 
1373 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_ECC)
1374 		flexcan_ram_init(dev);
1375 
1376 	flexcan_set_bittiming(dev);
1377 
1378 	/* MCR
1379 	 *
1380 	 * enable freeze
1381 	 * halt now
1382 	 * only supervisor access
1383 	 * enable warning int
1384 	 * enable individual RX masking
1385 	 * choose format C
1386 	 * set max mailbox number
1387 	 */
1388 	reg_mcr = priv->read(&regs->mcr);
1389 	reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
1390 	reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_SUPV |
1391 		FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_IRMQ | FLEXCAN_MCR_IDAM_C |
1392 		FLEXCAN_MCR_MAXMB(priv->tx_mb_idx);
1393 
1394 	/* MCR
1395 	 *
1396 	 * FIFO:
1397 	 * - disable for timestamp mode
1398 	 * - enable for FIFO mode
1399 	 */
1400 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)
1401 		reg_mcr &= ~FLEXCAN_MCR_FEN;
1402 	else
1403 		reg_mcr |= FLEXCAN_MCR_FEN;
1404 
1405 	/* MCR
1406 	 *
1407 	 * NOTE: In loopback mode, the CAN_MCR[SRXDIS] cannot be
1408 	 *       asserted because this will impede the self reception
1409 	 *       of a transmitted message. This is not documented in
1410 	 *       earlier versions of flexcan block guide.
1411 	 *
1412 	 * Self Reception:
1413 	 * - enable Self Reception for loopback mode
1414 	 *   (by clearing "Self Reception Disable" bit)
1415 	 * - disable for normal operation
1416 	 */
1417 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
1418 		reg_mcr &= ~FLEXCAN_MCR_SRX_DIS;
1419 	else
1420 		reg_mcr |= FLEXCAN_MCR_SRX_DIS;
1421 
1422 	/* MCR - CAN-FD */
1423 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1424 		reg_mcr |= FLEXCAN_MCR_FDEN;
1425 	else
1426 		reg_mcr &= ~FLEXCAN_MCR_FDEN;
1427 
1428 	netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
1429 	priv->write(reg_mcr, &regs->mcr);
1430 
1431 	/* CTRL
1432 	 *
1433 	 * disable timer sync feature
1434 	 *
1435 	 * disable auto busoff recovery
1436 	 * transmit lowest buffer first
1437 	 *
1438 	 * enable tx and rx warning interrupt
1439 	 * enable bus off interrupt
1440 	 * (== FLEXCAN_CTRL_ERR_STATE)
1441 	 */
1442 	reg_ctrl = priv->read(&regs->ctrl);
1443 	reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
1444 	reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
1445 		FLEXCAN_CTRL_ERR_STATE;
1446 
1447 	/* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK),
1448 	 * on most Flexcan cores, too. Otherwise we don't get
1449 	 * any error warning or passive interrupts.
1450 	 */
1451 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE ||
1452 	    priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
1453 		reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
1454 	else
1455 		reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK;
1456 
1457 	/* save for later use */
1458 	priv->reg_ctrl_default = reg_ctrl;
1459 	/* leave interrupts disabled for now */
1460 	reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL;
1461 	netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
1462 	priv->write(reg_ctrl, &regs->ctrl);
1463 
1464 	if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) {
1465 		reg_ctrl2 = priv->read(&regs->ctrl2);
1466 		reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS;
1467 		priv->write(reg_ctrl2, &regs->ctrl2);
1468 	}
1469 
1470 	if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1471 		u32 reg_fdctrl;
1472 
1473 		reg_fdctrl = priv->read(&regs->fdctrl);
1474 		reg_fdctrl &= ~(FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1, 0x3) |
1475 				FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0, 0x3));
1476 
1477 		if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1478 			reg_fdctrl |=
1479 				FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1,
1480 					   FLEXCAN_FDCTRL_MBDSR_64) |
1481 				FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0,
1482 					   FLEXCAN_FDCTRL_MBDSR_64);
1483 		} else {
1484 			reg_fdctrl |=
1485 				FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1,
1486 					   FLEXCAN_FDCTRL_MBDSR_8) |
1487 				FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0,
1488 					   FLEXCAN_FDCTRL_MBDSR_8);
1489 		}
1490 
1491 		netdev_dbg(dev, "%s: writing fdctrl=0x%08x",
1492 			   __func__, reg_fdctrl);
1493 		priv->write(reg_fdctrl, &regs->fdctrl);
1494 	}
1495 
1496 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
1497 		for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) {
1498 			mb = flexcan_get_mb(priv, i);
1499 			priv->write(FLEXCAN_MB_CODE_RX_EMPTY,
1500 				    &mb->can_ctrl);
1501 		}
1502 	} else {
1503 		/* clear and invalidate unused mailboxes first */
1504 		for (i = FLEXCAN_TX_MB_RESERVED_OFF_FIFO; i < priv->mb_count; i++) {
1505 			mb = flexcan_get_mb(priv, i);
1506 			priv->write(FLEXCAN_MB_CODE_RX_INACTIVE,
1507 				    &mb->can_ctrl);
1508 		}
1509 	}
1510 
1511 	/* Errata ERR005829: mark first TX mailbox as INACTIVE */
1512 	priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1513 		    &priv->tx_mb_reserved->can_ctrl);
1514 
1515 	/* mark TX mailbox as INACTIVE */
1516 	priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1517 		    &priv->tx_mb->can_ctrl);
1518 
1519 	/* acceptance mask/acceptance code (accept everything) */
1520 	priv->write(0x0, &regs->rxgmask);
1521 	priv->write(0x0, &regs->rx14mask);
1522 	priv->write(0x0, &regs->rx15mask);
1523 
1524 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
1525 		priv->write(0x0, &regs->rxfgmask);
1526 
1527 	/* clear acceptance filters */
1528 	for (i = 0; i < priv->mb_count; i++)
1529 		priv->write(0, &regs->rximr[i]);
1530 
1531 	/* On Vybrid, disable non-correctable errors interrupt and
1532 	 * freeze mode. It still can correct the correctable errors
1533 	 * when HW supports ECC.
1534 	 *
1535 	 * This also works around errata e5295 which generates false
1536 	 * positive memory errors and put the device in freeze mode.
1537 	 */
1538 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) {
1539 		/* Follow the protocol as described in "Detection
1540 		 * and Correction of Memory Errors" to write to
1541 		 * MECR register (step 1 - 5)
1542 		 *
1543 		 * 1. By default, CTRL2[ECRWRE] = 0, MECR[ECRWRDIS] = 1
1544 		 * 2. set CTRL2[ECRWRE]
1545 		 */
1546 		reg_ctrl2 = priv->read(&regs->ctrl2);
1547 		reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE;
1548 		priv->write(reg_ctrl2, &regs->ctrl2);
1549 
1550 		/* 3. clear MECR[ECRWRDIS] */
1551 		reg_mecr = priv->read(&regs->mecr);
1552 		reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS;
1553 		priv->write(reg_mecr, &regs->mecr);
1554 
1555 		/* 4. all writes to MECR must keep MECR[ECRWRDIS] cleared */
1556 		reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK |
1557 			      FLEXCAN_MECR_FANCEI_MSK);
1558 		priv->write(reg_mecr, &regs->mecr);
1559 
1560 		/* 5. after configuration done, lock MECR by either
1561 		 * setting MECR[ECRWRDIS] or clearing CTRL2[ECRWRE]
1562 		 */
1563 		reg_mecr |= FLEXCAN_MECR_ECRWRDIS;
1564 		priv->write(reg_mecr, &regs->mecr);
1565 
1566 		reg_ctrl2 &= ~FLEXCAN_CTRL2_ECRWRE;
1567 		priv->write(reg_ctrl2, &regs->ctrl2);
1568 	}
1569 
1570 	/* synchronize with the can bus */
1571 	err = flexcan_chip_unfreeze(priv);
1572 	if (err)
1573 		goto out_chip_disable;
1574 
1575 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1576 
1577 	/* enable interrupts atomically */
1578 	disable_irq(dev->irq);
1579 	priv->write(priv->reg_ctrl_default, &regs->ctrl);
1580 	reg_imask = priv->rx_mask | priv->tx_mask;
1581 	priv->write(upper_32_bits(reg_imask), &regs->imask2);
1582 	priv->write(lower_32_bits(reg_imask), &regs->imask1);
1583 	enable_irq(dev->irq);
1584 
1585 	/* print chip status */
1586 	netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
1587 		   priv->read(&regs->mcr), priv->read(&regs->ctrl));
1588 
1589 	return 0;
1590 
1591  out_chip_disable:
1592 	flexcan_chip_disable(priv);
1593 	return err;
1594 }
1595 
1596 /* __flexcan_chip_stop
1597  *
1598  * this function is entered with clocks enabled
1599  */
__flexcan_chip_stop(struct net_device * dev,bool disable_on_error)1600 static int __flexcan_chip_stop(struct net_device *dev, bool disable_on_error)
1601 {
1602 	struct flexcan_priv *priv = netdev_priv(dev);
1603 	struct flexcan_regs __iomem *regs = priv->regs;
1604 	int err;
1605 
1606 	/* freeze + disable module */
1607 	err = flexcan_chip_freeze(priv);
1608 	if (err && !disable_on_error)
1609 		return err;
1610 	err = flexcan_chip_disable(priv);
1611 	if (err && !disable_on_error)
1612 		goto out_chip_unfreeze;
1613 
1614 	/* Disable all interrupts */
1615 	priv->write(0, &regs->imask2);
1616 	priv->write(0, &regs->imask1);
1617 	priv->write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
1618 		    &regs->ctrl);
1619 
1620 	priv->can.state = CAN_STATE_STOPPED;
1621 
1622 	return 0;
1623 
1624  out_chip_unfreeze:
1625 	flexcan_chip_unfreeze(priv);
1626 
1627 	return err;
1628 }
1629 
flexcan_chip_stop_disable_on_error(struct net_device * dev)1630 static inline int flexcan_chip_stop_disable_on_error(struct net_device *dev)
1631 {
1632 	return __flexcan_chip_stop(dev, true);
1633 }
1634 
flexcan_chip_stop(struct net_device * dev)1635 static inline int flexcan_chip_stop(struct net_device *dev)
1636 {
1637 	return __flexcan_chip_stop(dev, false);
1638 }
1639 
flexcan_open(struct net_device * dev)1640 static int flexcan_open(struct net_device *dev)
1641 {
1642 	struct flexcan_priv *priv = netdev_priv(dev);
1643 	int err;
1644 
1645 	if ((priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) &&
1646 	    (priv->can.ctrlmode & CAN_CTRLMODE_FD)) {
1647 		netdev_err(dev, "Three Samples mode and CAN-FD mode can't be used together\n");
1648 		return -EINVAL;
1649 	}
1650 
1651 	err = pm_runtime_get_sync(priv->dev);
1652 	if (err < 0) {
1653 		pm_runtime_put_noidle(priv->dev);
1654 		return err;
1655 	}
1656 
1657 	err = open_candev(dev);
1658 	if (err)
1659 		goto out_runtime_put;
1660 
1661 	err = flexcan_transceiver_enable(priv);
1662 	if (err)
1663 		goto out_close;
1664 
1665 	err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
1666 	if (err)
1667 		goto out_transceiver_disable;
1668 
1669 	if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
1670 		priv->mb_size = sizeof(struct flexcan_mb) + CANFD_MAX_DLEN;
1671 	else
1672 		priv->mb_size = sizeof(struct flexcan_mb) + CAN_MAX_DLEN;
1673 	priv->mb_count = (sizeof(priv->regs->mb[0]) / priv->mb_size) +
1674 			 (sizeof(priv->regs->mb[1]) / priv->mb_size);
1675 
1676 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)
1677 		priv->tx_mb_reserved =
1678 			flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP);
1679 	else
1680 		priv->tx_mb_reserved =
1681 			flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_FIFO);
1682 	priv->tx_mb_idx = priv->mb_count - 1;
1683 	priv->tx_mb = flexcan_get_mb(priv, priv->tx_mb_idx);
1684 	priv->tx_mask = FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
1685 
1686 	priv->offload.mailbox_read = flexcan_mailbox_read;
1687 
1688 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
1689 		priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST;
1690 		priv->offload.mb_last = priv->mb_count - 2;
1691 
1692 		priv->rx_mask = GENMASK_ULL(priv->offload.mb_last,
1693 					    priv->offload.mb_first);
1694 		err = can_rx_offload_add_timestamp(dev, &priv->offload);
1695 	} else {
1696 		priv->rx_mask = FLEXCAN_IFLAG_RX_FIFO_OVERFLOW |
1697 			FLEXCAN_IFLAG_RX_FIFO_AVAILABLE;
1698 		err = can_rx_offload_add_fifo(dev, &priv->offload,
1699 					      FLEXCAN_NAPI_WEIGHT);
1700 	}
1701 	if (err)
1702 		goto out_free_irq;
1703 
1704 	/* start chip and queuing */
1705 	err = flexcan_chip_start(dev);
1706 	if (err)
1707 		goto out_offload_del;
1708 
1709 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1710 
1711 	can_rx_offload_enable(&priv->offload);
1712 	netif_start_queue(dev);
1713 
1714 	return 0;
1715 
1716  out_offload_del:
1717 	can_rx_offload_del(&priv->offload);
1718  out_free_irq:
1719 	free_irq(dev->irq, dev);
1720  out_transceiver_disable:
1721 	flexcan_transceiver_disable(priv);
1722  out_close:
1723 	close_candev(dev);
1724  out_runtime_put:
1725 	pm_runtime_put(priv->dev);
1726 
1727 	return err;
1728 }
1729 
flexcan_close(struct net_device * dev)1730 static int flexcan_close(struct net_device *dev)
1731 {
1732 	struct flexcan_priv *priv = netdev_priv(dev);
1733 
1734 	netif_stop_queue(dev);
1735 	can_rx_offload_disable(&priv->offload);
1736 	flexcan_chip_stop_disable_on_error(dev);
1737 
1738 	can_rx_offload_del(&priv->offload);
1739 	free_irq(dev->irq, dev);
1740 	flexcan_transceiver_disable(priv);
1741 
1742 	close_candev(dev);
1743 	pm_runtime_put(priv->dev);
1744 
1745 	can_led_event(dev, CAN_LED_EVENT_STOP);
1746 
1747 	return 0;
1748 }
1749 
flexcan_set_mode(struct net_device * dev,enum can_mode mode)1750 static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
1751 {
1752 	int err;
1753 
1754 	switch (mode) {
1755 	case CAN_MODE_START:
1756 		err = flexcan_chip_start(dev);
1757 		if (err)
1758 			return err;
1759 
1760 		netif_wake_queue(dev);
1761 		break;
1762 
1763 	default:
1764 		return -EOPNOTSUPP;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static const struct net_device_ops flexcan_netdev_ops = {
1771 	.ndo_open	= flexcan_open,
1772 	.ndo_stop	= flexcan_close,
1773 	.ndo_start_xmit	= flexcan_start_xmit,
1774 	.ndo_change_mtu = can_change_mtu,
1775 };
1776 
register_flexcandev(struct net_device * dev)1777 static int register_flexcandev(struct net_device *dev)
1778 {
1779 	struct flexcan_priv *priv = netdev_priv(dev);
1780 	struct flexcan_regs __iomem *regs = priv->regs;
1781 	u32 reg, err;
1782 
1783 	err = flexcan_clks_enable(priv);
1784 	if (err)
1785 		return err;
1786 
1787 	/* select "bus clock", chip must be disabled */
1788 	err = flexcan_chip_disable(priv);
1789 	if (err)
1790 		goto out_clks_disable;
1791 
1792 	reg = priv->read(&regs->ctrl);
1793 	if (priv->clk_src)
1794 		reg |= FLEXCAN_CTRL_CLK_SRC;
1795 	else
1796 		reg &= ~FLEXCAN_CTRL_CLK_SRC;
1797 	priv->write(reg, &regs->ctrl);
1798 
1799 	err = flexcan_chip_enable(priv);
1800 	if (err)
1801 		goto out_chip_disable;
1802 
1803 	/* set freeze, halt and activate FIFO, restrict register access */
1804 	reg = priv->read(&regs->mcr);
1805 	reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
1806 		FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV;
1807 	priv->write(reg, &regs->mcr);
1808 
1809 	/* Currently we only support newer versions of this core
1810 	 * featuring a RX hardware FIFO (although this driver doesn't
1811 	 * make use of it on some cores). Older cores, found on some
1812 	 * Coldfire derivates are not tested.
1813 	 */
1814 	reg = priv->read(&regs->mcr);
1815 	if (!(reg & FLEXCAN_MCR_FEN)) {
1816 		netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
1817 		err = -ENODEV;
1818 		goto out_chip_disable;
1819 	}
1820 
1821 	err = register_candev(dev);
1822 	if (err)
1823 		goto out_chip_disable;
1824 
1825 	/* Disable core and let pm_runtime_put() disable the clocks.
1826 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
1827 	 */
1828 	flexcan_chip_disable(priv);
1829 	pm_runtime_put(priv->dev);
1830 
1831 	return 0;
1832 
1833  out_chip_disable:
1834 	flexcan_chip_disable(priv);
1835  out_clks_disable:
1836 	flexcan_clks_disable(priv);
1837 	return err;
1838 }
1839 
unregister_flexcandev(struct net_device * dev)1840 static void unregister_flexcandev(struct net_device *dev)
1841 {
1842 	unregister_candev(dev);
1843 }
1844 
flexcan_setup_stop_mode(struct platform_device * pdev)1845 static int flexcan_setup_stop_mode(struct platform_device *pdev)
1846 {
1847 	struct net_device *dev = platform_get_drvdata(pdev);
1848 	struct device_node *np = pdev->dev.of_node;
1849 	struct device_node *gpr_np;
1850 	struct flexcan_priv *priv;
1851 	phandle phandle;
1852 	u32 out_val[3];
1853 	int ret;
1854 
1855 	if (!np)
1856 		return -EINVAL;
1857 
1858 	/* stop mode property format is:
1859 	 * <&gpr req_gpr req_bit>.
1860 	 */
1861 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
1862 					 ARRAY_SIZE(out_val));
1863 	if (ret) {
1864 		dev_dbg(&pdev->dev, "no stop-mode property\n");
1865 		return ret;
1866 	}
1867 	phandle = *out_val;
1868 
1869 	gpr_np = of_find_node_by_phandle(phandle);
1870 	if (!gpr_np) {
1871 		dev_dbg(&pdev->dev, "could not find gpr node by phandle\n");
1872 		return -ENODEV;
1873 	}
1874 
1875 	priv = netdev_priv(dev);
1876 	priv->stm.gpr = syscon_node_to_regmap(gpr_np);
1877 	if (IS_ERR(priv->stm.gpr)) {
1878 		dev_dbg(&pdev->dev, "could not find gpr regmap\n");
1879 		ret = PTR_ERR(priv->stm.gpr);
1880 		goto out_put_node;
1881 	}
1882 
1883 	priv->stm.req_gpr = out_val[1];
1884 	priv->stm.req_bit = out_val[2];
1885 
1886 	dev_dbg(&pdev->dev,
1887 		"gpr %s req_gpr=0x02%x req_bit=%u\n",
1888 		gpr_np->full_name, priv->stm.req_gpr, priv->stm.req_bit);
1889 
1890 	device_set_wakeup_capable(&pdev->dev, true);
1891 
1892 	if (of_property_read_bool(np, "wakeup-source"))
1893 		device_set_wakeup_enable(&pdev->dev, true);
1894 
1895 	return 0;
1896 
1897 out_put_node:
1898 	of_node_put(gpr_np);
1899 	return ret;
1900 }
1901 
1902 static const struct of_device_id flexcan_of_match[] = {
1903 	{ .compatible = "fsl,imx8qm-flexcan", .data = &fsl_imx8qm_devtype_data, },
1904 	{ .compatible = "fsl,imx8mp-flexcan", .data = &fsl_imx8mp_devtype_data, },
1905 	{ .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
1906 	{ .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, },
1907 	{ .compatible = "fsl,imx53-flexcan", .data = &fsl_imx25_devtype_data, },
1908 	{ .compatible = "fsl,imx35-flexcan", .data = &fsl_imx25_devtype_data, },
1909 	{ .compatible = "fsl,imx25-flexcan", .data = &fsl_imx25_devtype_data, },
1910 	{ .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
1911 	{ .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, },
1912 	{ .compatible = "fsl,ls1021ar2-flexcan", .data = &fsl_ls1021a_r2_devtype_data, },
1913 	{ .compatible = "fsl,lx2160ar1-flexcan", .data = &fsl_lx2160a_r1_devtype_data, },
1914 	{ /* sentinel */ },
1915 };
1916 MODULE_DEVICE_TABLE(of, flexcan_of_match);
1917 
1918 static const struct platform_device_id flexcan_id_table[] = {
1919 	{ .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, },
1920 	{ /* sentinel */ },
1921 };
1922 MODULE_DEVICE_TABLE(platform, flexcan_id_table);
1923 
flexcan_probe(struct platform_device * pdev)1924 static int flexcan_probe(struct platform_device *pdev)
1925 {
1926 	const struct of_device_id *of_id;
1927 	const struct flexcan_devtype_data *devtype_data;
1928 	struct net_device *dev;
1929 	struct flexcan_priv *priv;
1930 	struct regulator *reg_xceiver;
1931 	struct clk *clk_ipg = NULL, *clk_per = NULL;
1932 	struct flexcan_regs __iomem *regs;
1933 	int err, irq;
1934 	u8 clk_src = 1;
1935 	u32 clock_freq = 0;
1936 
1937 	reg_xceiver = devm_regulator_get_optional(&pdev->dev, "xceiver");
1938 	if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
1939 		return -EPROBE_DEFER;
1940 	else if (PTR_ERR(reg_xceiver) == -ENODEV)
1941 		reg_xceiver = NULL;
1942 	else if (IS_ERR(reg_xceiver))
1943 		return PTR_ERR(reg_xceiver);
1944 
1945 	if (pdev->dev.of_node) {
1946 		of_property_read_u32(pdev->dev.of_node,
1947 				     "clock-frequency", &clock_freq);
1948 		of_property_read_u8(pdev->dev.of_node,
1949 				    "fsl,clk-source", &clk_src);
1950 	}
1951 
1952 	if (!clock_freq) {
1953 		clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1954 		if (IS_ERR(clk_ipg)) {
1955 			dev_err(&pdev->dev, "no ipg clock defined\n");
1956 			return PTR_ERR(clk_ipg);
1957 		}
1958 
1959 		clk_per = devm_clk_get(&pdev->dev, "per");
1960 		if (IS_ERR(clk_per)) {
1961 			dev_err(&pdev->dev, "no per clock defined\n");
1962 			return PTR_ERR(clk_per);
1963 		}
1964 		clock_freq = clk_get_rate(clk_per);
1965 	}
1966 
1967 	irq = platform_get_irq(pdev, 0);
1968 	if (irq <= 0)
1969 		return -ENODEV;
1970 
1971 	regs = devm_platform_ioremap_resource(pdev, 0);
1972 	if (IS_ERR(regs))
1973 		return PTR_ERR(regs);
1974 
1975 	of_id = of_match_device(flexcan_of_match, &pdev->dev);
1976 	if (of_id) {
1977 		devtype_data = of_id->data;
1978 	} else if (platform_get_device_id(pdev)->driver_data) {
1979 		devtype_data = (struct flexcan_devtype_data *)
1980 			platform_get_device_id(pdev)->driver_data;
1981 	} else {
1982 		return -ENODEV;
1983 	}
1984 
1985 	if ((devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) &&
1986 	    !(devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)) {
1987 		dev_err(&pdev->dev, "CAN-FD mode doesn't work with FIFO mode!\n");
1988 		return -EINVAL;
1989 	}
1990 
1991 	dev = alloc_candev(sizeof(struct flexcan_priv), 1);
1992 	if (!dev)
1993 		return -ENOMEM;
1994 
1995 	platform_set_drvdata(pdev, dev);
1996 	SET_NETDEV_DEV(dev, &pdev->dev);
1997 
1998 	dev->netdev_ops = &flexcan_netdev_ops;
1999 	dev->irq = irq;
2000 	dev->flags |= IFF_ECHO;
2001 
2002 	priv = netdev_priv(dev);
2003 
2004 	if (of_property_read_bool(pdev->dev.of_node, "big-endian") ||
2005 	    devtype_data->quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) {
2006 		priv->read = flexcan_read_be;
2007 		priv->write = flexcan_write_be;
2008 	} else {
2009 		priv->read = flexcan_read_le;
2010 		priv->write = flexcan_write_le;
2011 	}
2012 
2013 	priv->dev = &pdev->dev;
2014 	priv->can.clock.freq = clock_freq;
2015 	priv->can.do_set_mode = flexcan_set_mode;
2016 	priv->can.do_get_berr_counter = flexcan_get_berr_counter;
2017 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
2018 		CAN_CTRLMODE_LISTENONLY	| CAN_CTRLMODE_3_SAMPLES |
2019 		CAN_CTRLMODE_BERR_REPORTING;
2020 	priv->regs = regs;
2021 	priv->clk_ipg = clk_ipg;
2022 	priv->clk_per = clk_per;
2023 	priv->clk_src = clk_src;
2024 	priv->devtype_data = devtype_data;
2025 	priv->reg_xceiver = reg_xceiver;
2026 
2027 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) {
2028 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
2029 			CAN_CTRLMODE_FD_NON_ISO;
2030 		priv->can.bittiming_const = &flexcan_fd_bittiming_const;
2031 		priv->can.data_bittiming_const =
2032 			&flexcan_fd_data_bittiming_const;
2033 	} else {
2034 		priv->can.bittiming_const = &flexcan_bittiming_const;
2035 	}
2036 
2037 	pm_runtime_get_noresume(&pdev->dev);
2038 	pm_runtime_set_active(&pdev->dev);
2039 	pm_runtime_enable(&pdev->dev);
2040 
2041 	err = register_flexcandev(dev);
2042 	if (err) {
2043 		dev_err(&pdev->dev, "registering netdev failed\n");
2044 		goto failed_register;
2045 	}
2046 
2047 	of_can_transceiver(dev);
2048 	devm_can_led_init(dev);
2049 
2050 	if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE) {
2051 		err = flexcan_setup_stop_mode(pdev);
2052 		if (err)
2053 			dev_dbg(&pdev->dev, "failed to setup stop-mode\n");
2054 	}
2055 
2056 	return 0;
2057 
2058  failed_register:
2059 	pm_runtime_put_noidle(&pdev->dev);
2060 	pm_runtime_disable(&pdev->dev);
2061 	free_candev(dev);
2062 	return err;
2063 }
2064 
flexcan_remove(struct platform_device * pdev)2065 static int flexcan_remove(struct platform_device *pdev)
2066 {
2067 	struct net_device *dev = platform_get_drvdata(pdev);
2068 
2069 	device_set_wakeup_enable(&pdev->dev, false);
2070 	device_set_wakeup_capable(&pdev->dev, false);
2071 	unregister_flexcandev(dev);
2072 	pm_runtime_disable(&pdev->dev);
2073 	free_candev(dev);
2074 
2075 	return 0;
2076 }
2077 
flexcan_suspend(struct device * device)2078 static int __maybe_unused flexcan_suspend(struct device *device)
2079 {
2080 	struct net_device *dev = dev_get_drvdata(device);
2081 	struct flexcan_priv *priv = netdev_priv(dev);
2082 	int err;
2083 
2084 	if (netif_running(dev)) {
2085 		/* if wakeup is enabled, enter stop mode
2086 		 * else enter disabled mode.
2087 		 */
2088 		if (device_may_wakeup(device)) {
2089 			enable_irq_wake(dev->irq);
2090 			err = flexcan_enter_stop_mode(priv);
2091 			if (err)
2092 				return err;
2093 		} else {
2094 			err = flexcan_chip_stop(dev);
2095 			if (err)
2096 				return err;
2097 
2098 			err = pinctrl_pm_select_sleep_state(device);
2099 			if (err)
2100 				return err;
2101 		}
2102 		netif_stop_queue(dev);
2103 		netif_device_detach(dev);
2104 	}
2105 	priv->can.state = CAN_STATE_SLEEPING;
2106 
2107 	return 0;
2108 }
2109 
flexcan_resume(struct device * device)2110 static int __maybe_unused flexcan_resume(struct device *device)
2111 {
2112 	struct net_device *dev = dev_get_drvdata(device);
2113 	struct flexcan_priv *priv = netdev_priv(dev);
2114 	int err;
2115 
2116 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
2117 	if (netif_running(dev)) {
2118 		netif_device_attach(dev);
2119 		netif_start_queue(dev);
2120 		if (device_may_wakeup(device)) {
2121 			disable_irq_wake(dev->irq);
2122 			err = flexcan_exit_stop_mode(priv);
2123 			if (err)
2124 				return err;
2125 		} else {
2126 			err = pinctrl_pm_select_default_state(device);
2127 			if (err)
2128 				return err;
2129 
2130 			err = flexcan_chip_start(dev);
2131 			if (err)
2132 				return err;
2133 		}
2134 	}
2135 
2136 	return 0;
2137 }
2138 
flexcan_runtime_suspend(struct device * device)2139 static int __maybe_unused flexcan_runtime_suspend(struct device *device)
2140 {
2141 	struct net_device *dev = dev_get_drvdata(device);
2142 	struct flexcan_priv *priv = netdev_priv(dev);
2143 
2144 	flexcan_clks_disable(priv);
2145 
2146 	return 0;
2147 }
2148 
flexcan_runtime_resume(struct device * device)2149 static int __maybe_unused flexcan_runtime_resume(struct device *device)
2150 {
2151 	struct net_device *dev = dev_get_drvdata(device);
2152 	struct flexcan_priv *priv = netdev_priv(dev);
2153 
2154 	return flexcan_clks_enable(priv);
2155 }
2156 
flexcan_noirq_suspend(struct device * device)2157 static int __maybe_unused flexcan_noirq_suspend(struct device *device)
2158 {
2159 	struct net_device *dev = dev_get_drvdata(device);
2160 	struct flexcan_priv *priv = netdev_priv(dev);
2161 
2162 	if (netif_running(dev)) {
2163 		int err;
2164 
2165 		if (device_may_wakeup(device))
2166 			flexcan_enable_wakeup_irq(priv, true);
2167 
2168 		err = pm_runtime_force_suspend(device);
2169 		if (err)
2170 			return err;
2171 	}
2172 
2173 	return 0;
2174 }
2175 
flexcan_noirq_resume(struct device * device)2176 static int __maybe_unused flexcan_noirq_resume(struct device *device)
2177 {
2178 	struct net_device *dev = dev_get_drvdata(device);
2179 	struct flexcan_priv *priv = netdev_priv(dev);
2180 
2181 	if (netif_running(dev)) {
2182 		int err;
2183 
2184 		err = pm_runtime_force_resume(device);
2185 		if (err)
2186 			return err;
2187 
2188 		if (device_may_wakeup(device))
2189 			flexcan_enable_wakeup_irq(priv, false);
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static const struct dev_pm_ops flexcan_pm_ops = {
2196 	SET_SYSTEM_SLEEP_PM_OPS(flexcan_suspend, flexcan_resume)
2197 	SET_RUNTIME_PM_OPS(flexcan_runtime_suspend, flexcan_runtime_resume, NULL)
2198 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(flexcan_noirq_suspend, flexcan_noirq_resume)
2199 };
2200 
2201 static struct platform_driver flexcan_driver = {
2202 	.driver = {
2203 		.name = DRV_NAME,
2204 		.pm = &flexcan_pm_ops,
2205 		.of_match_table = flexcan_of_match,
2206 	},
2207 	.probe = flexcan_probe,
2208 	.remove = flexcan_remove,
2209 	.id_table = flexcan_id_table,
2210 };
2211 
2212 module_platform_driver(flexcan_driver);
2213 
2214 MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
2215 	      "Marc Kleine-Budde <kernel@pengutronix.de>");
2216 MODULE_LICENSE("GPL v2");
2217 MODULE_DESCRIPTION("CAN port driver for flexcan based chip");
2218