1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17 *
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19 *
20 * This code is GPL
21 */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_RETRIES 3
46
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
51
52 /*
53 * Status Register bit description. Used by flash devices that don't
54 * support DQ polling (e.g. HyperFlash)
55 */
56 #define CFI_SR_DRB BIT(7)
57 #define CFI_SR_ESB BIT(5)
58 #define CFI_SR_PSB BIT(4)
59 #define CFI_SR_WBASB BIT(3)
60 #define CFI_SR_SLSB BIT(1)
61
62 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
64 #if !FORCE_WORD_WRITE
65 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
66 #endif
67 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
68 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
69 static void cfi_amdstd_sync (struct mtd_info *);
70 static int cfi_amdstd_suspend (struct mtd_info *);
71 static void cfi_amdstd_resume (struct mtd_info *);
72 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
73 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
74 size_t *, struct otp_info *);
75 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
76 size_t *, struct otp_info *);
77 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
78 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
79 size_t *, u_char *);
80 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
81 size_t *, u_char *);
82 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
83 size_t *, u_char *);
84 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
85
86 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
87 size_t *retlen, const u_char *buf);
88
89 static void cfi_amdstd_destroy(struct mtd_info *);
90
91 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
92 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
93
94 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
95 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
96 #include "fwh_lock.h"
97
98 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
99 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
100
101 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
102 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
103 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
104
105 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
106 .probe = NULL, /* Not usable directly */
107 .destroy = cfi_amdstd_destroy,
108 .name = "cfi_cmdset_0002",
109 .module = THIS_MODULE
110 };
111
112 /*
113 * Use status register to poll for Erase/write completion when DQ is not
114 * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
115 * CFI Primary Vendor-Specific Extended Query table 1.5
116 */
cfi_use_status_reg(struct cfi_private * cfi)117 static int cfi_use_status_reg(struct cfi_private *cfi)
118 {
119 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
120 u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
121
122 return extp->MinorVersion >= '5' &&
123 (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
124 }
125
cfi_check_err_status(struct map_info * map,struct flchip * chip,unsigned long adr)126 static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
127 unsigned long adr)
128 {
129 struct cfi_private *cfi = map->fldrv_priv;
130 map_word status;
131
132 if (!cfi_use_status_reg(cfi))
133 return 0;
134
135 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
136 cfi->device_type, NULL);
137 status = map_read(map, adr);
138
139 /* The error bits are invalid while the chip's busy */
140 if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
141 return 0;
142
143 if (map_word_bitsset(map, status, CMD(0x3a))) {
144 unsigned long chipstatus = MERGESTATUS(status);
145
146 if (chipstatus & CFI_SR_ESB)
147 pr_err("%s erase operation failed, status %lx\n",
148 map->name, chipstatus);
149 if (chipstatus & CFI_SR_PSB)
150 pr_err("%s program operation failed, status %lx\n",
151 map->name, chipstatus);
152 if (chipstatus & CFI_SR_WBASB)
153 pr_err("%s buffer program command aborted, status %lx\n",
154 map->name, chipstatus);
155 if (chipstatus & CFI_SR_SLSB)
156 pr_err("%s sector write protected, status %lx\n",
157 map->name, chipstatus);
158
159 /* Erase/Program status bits are set on the operation failure */
160 if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
161 return 1;
162 }
163 return 0;
164 }
165
166 /* #define DEBUG_CFI_FEATURES */
167
168
169 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_amdstd * extp)170 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
171 {
172 const char* erase_suspend[3] = {
173 "Not supported", "Read only", "Read/write"
174 };
175 const char* top_bottom[6] = {
176 "No WP", "8x8KiB sectors at top & bottom, no WP",
177 "Bottom boot", "Top boot",
178 "Uniform, Bottom WP", "Uniform, Top WP"
179 };
180
181 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
182 printk(" Address sensitive unlock: %s\n",
183 (extp->SiliconRevision & 1) ? "Not required" : "Required");
184
185 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
186 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
187 else
188 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
189
190 if (extp->BlkProt == 0)
191 printk(" Block protection: Not supported\n");
192 else
193 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
194
195
196 printk(" Temporary block unprotect: %s\n",
197 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
198 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
199 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
200 printk(" Burst mode: %s\n",
201 extp->BurstMode ? "Supported" : "Not supported");
202 if (extp->PageMode == 0)
203 printk(" Page mode: Not supported\n");
204 else
205 printk(" Page mode: %d word page\n", extp->PageMode << 2);
206
207 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
208 extp->VppMin >> 4, extp->VppMin & 0xf);
209 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
210 extp->VppMax >> 4, extp->VppMax & 0xf);
211
212 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
213 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
214 else
215 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
216 }
217 #endif
218
219 #ifdef AMD_BOOTLOC_BUG
220 /* Wheee. Bring me the head of someone at AMD. */
fixup_amd_bootblock(struct mtd_info * mtd)221 static void fixup_amd_bootblock(struct mtd_info *mtd)
222 {
223 struct map_info *map = mtd->priv;
224 struct cfi_private *cfi = map->fldrv_priv;
225 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
226 __u8 major = extp->MajorVersion;
227 __u8 minor = extp->MinorVersion;
228
229 if (((major << 8) | minor) < 0x3131) {
230 /* CFI version 1.0 => don't trust bootloc */
231
232 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
233 map->name, cfi->mfr, cfi->id);
234
235 /* AFAICS all 29LV400 with a bottom boot block have a device ID
236 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
237 * These were badly detected as they have the 0x80 bit set
238 * so treat them as a special case.
239 */
240 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
241
242 /* Macronix added CFI to their 2nd generation
243 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
244 * Fujitsu, Spansion, EON, ESI and older Macronix)
245 * has CFI.
246 *
247 * Therefore also check the manufacturer.
248 * This reduces the risk of false detection due to
249 * the 8-bit device ID.
250 */
251 (cfi->mfr == CFI_MFR_MACRONIX)) {
252 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
253 " detected\n", map->name);
254 extp->TopBottom = 2; /* bottom boot */
255 } else
256 if (cfi->id & 0x80) {
257 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
258 extp->TopBottom = 3; /* top boot */
259 } else {
260 extp->TopBottom = 2; /* bottom boot */
261 }
262
263 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
264 " deduced %s from Device ID\n", map->name, major, minor,
265 extp->TopBottom == 2 ? "bottom" : "top");
266 }
267 }
268 #endif
269
270 #if !FORCE_WORD_WRITE
fixup_use_write_buffers(struct mtd_info * mtd)271 static void fixup_use_write_buffers(struct mtd_info *mtd)
272 {
273 struct map_info *map = mtd->priv;
274 struct cfi_private *cfi = map->fldrv_priv;
275 if (cfi->cfiq->BufWriteTimeoutTyp) {
276 pr_debug("Using buffer write method\n");
277 mtd->_write = cfi_amdstd_write_buffers;
278 }
279 }
280 #endif /* !FORCE_WORD_WRITE */
281
282 /* Atmel chips don't use the same PRI format as AMD chips */
fixup_convert_atmel_pri(struct mtd_info * mtd)283 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
284 {
285 struct map_info *map = mtd->priv;
286 struct cfi_private *cfi = map->fldrv_priv;
287 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
288 struct cfi_pri_atmel atmel_pri;
289
290 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
291 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
292
293 if (atmel_pri.Features & 0x02)
294 extp->EraseSuspend = 2;
295
296 /* Some chips got it backwards... */
297 if (cfi->id == AT49BV6416) {
298 if (atmel_pri.BottomBoot)
299 extp->TopBottom = 3;
300 else
301 extp->TopBottom = 2;
302 } else {
303 if (atmel_pri.BottomBoot)
304 extp->TopBottom = 2;
305 else
306 extp->TopBottom = 3;
307 }
308
309 /* burst write mode not supported */
310 cfi->cfiq->BufWriteTimeoutTyp = 0;
311 cfi->cfiq->BufWriteTimeoutMax = 0;
312 }
313
fixup_use_secsi(struct mtd_info * mtd)314 static void fixup_use_secsi(struct mtd_info *mtd)
315 {
316 /* Setup for chips with a secsi area */
317 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
318 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
319 }
320
fixup_use_erase_chip(struct mtd_info * mtd)321 static void fixup_use_erase_chip(struct mtd_info *mtd)
322 {
323 struct map_info *map = mtd->priv;
324 struct cfi_private *cfi = map->fldrv_priv;
325 if ((cfi->cfiq->NumEraseRegions == 1) &&
326 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
327 mtd->_erase = cfi_amdstd_erase_chip;
328 }
329
330 }
331
332 /*
333 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
334 * locked by default.
335 */
fixup_use_atmel_lock(struct mtd_info * mtd)336 static void fixup_use_atmel_lock(struct mtd_info *mtd)
337 {
338 mtd->_lock = cfi_atmel_lock;
339 mtd->_unlock = cfi_atmel_unlock;
340 mtd->flags |= MTD_POWERUP_LOCK;
341 }
342
fixup_old_sst_eraseregion(struct mtd_info * mtd)343 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
344 {
345 struct map_info *map = mtd->priv;
346 struct cfi_private *cfi = map->fldrv_priv;
347
348 /*
349 * These flashes report two separate eraseblock regions based on the
350 * sector_erase-size and block_erase-size, although they both operate on the
351 * same memory. This is not allowed according to CFI, so we just pick the
352 * sector_erase-size.
353 */
354 cfi->cfiq->NumEraseRegions = 1;
355 }
356
fixup_sst39vf(struct mtd_info * mtd)357 static void fixup_sst39vf(struct mtd_info *mtd)
358 {
359 struct map_info *map = mtd->priv;
360 struct cfi_private *cfi = map->fldrv_priv;
361
362 fixup_old_sst_eraseregion(mtd);
363
364 cfi->addr_unlock1 = 0x5555;
365 cfi->addr_unlock2 = 0x2AAA;
366 }
367
fixup_sst39vf_rev_b(struct mtd_info * mtd)368 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
369 {
370 struct map_info *map = mtd->priv;
371 struct cfi_private *cfi = map->fldrv_priv;
372
373 fixup_old_sst_eraseregion(mtd);
374
375 cfi->addr_unlock1 = 0x555;
376 cfi->addr_unlock2 = 0x2AA;
377
378 cfi->sector_erase_cmd = CMD(0x50);
379 }
380
fixup_sst38vf640x_sectorsize(struct mtd_info * mtd)381 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
382 {
383 struct map_info *map = mtd->priv;
384 struct cfi_private *cfi = map->fldrv_priv;
385
386 fixup_sst39vf_rev_b(mtd);
387
388 /*
389 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
390 * it should report a size of 8KBytes (0x0020*256).
391 */
392 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
393 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
394 mtd->name);
395 }
396
fixup_s29gl064n_sectors(struct mtd_info * mtd)397 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
398 {
399 struct map_info *map = mtd->priv;
400 struct cfi_private *cfi = map->fldrv_priv;
401
402 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
403 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
404 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
405 mtd->name);
406 }
407 }
408
fixup_s29gl032n_sectors(struct mtd_info * mtd)409 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
410 {
411 struct map_info *map = mtd->priv;
412 struct cfi_private *cfi = map->fldrv_priv;
413
414 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
415 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
416 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
417 mtd->name);
418 }
419 }
420
fixup_s29ns512p_sectors(struct mtd_info * mtd)421 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
422 {
423 struct map_info *map = mtd->priv;
424 struct cfi_private *cfi = map->fldrv_priv;
425
426 /*
427 * S29NS512P flash uses more than 8bits to report number of sectors,
428 * which is not permitted by CFI.
429 */
430 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
431 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
432 mtd->name);
433 }
434
435 /* Used to fix CFI-Tables of chips without Extended Query Tables */
436 static struct cfi_fixup cfi_nopri_fixup_table[] = {
437 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
438 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
439 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
440 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
441 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
442 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
443 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
444 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
445 { 0, 0, NULL }
446 };
447
448 static struct cfi_fixup cfi_fixup_table[] = {
449 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
450 #ifdef AMD_BOOTLOC_BUG
451 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
452 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
453 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
454 #endif
455 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
456 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
457 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
458 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
459 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
460 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
461 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
462 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
463 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
464 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
465 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
466 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
467 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
468 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
469 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
470 #if !FORCE_WORD_WRITE
471 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
472 #endif
473 { 0, 0, NULL }
474 };
475 static struct cfi_fixup jedec_fixup_table[] = {
476 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
477 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
478 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
479 { 0, 0, NULL }
480 };
481
482 static struct cfi_fixup fixup_table[] = {
483 /* The CFI vendor ids and the JEDEC vendor IDs appear
484 * to be common. It is like the devices id's are as
485 * well. This table is to pick all cases where
486 * we know that is the case.
487 */
488 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
489 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
490 { 0, 0, NULL }
491 };
492
493
cfi_fixup_major_minor(struct cfi_private * cfi,struct cfi_pri_amdstd * extp)494 static void cfi_fixup_major_minor(struct cfi_private *cfi,
495 struct cfi_pri_amdstd *extp)
496 {
497 if (cfi->mfr == CFI_MFR_SAMSUNG) {
498 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
499 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
500 /*
501 * Samsung K8P2815UQB and K8D6x16UxM chips
502 * report major=0 / minor=0.
503 * K8D3x16UxC chips report major=3 / minor=3.
504 */
505 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
506 " Extended Query version to 1.%c\n",
507 extp->MinorVersion);
508 extp->MajorVersion = '1';
509 }
510 }
511
512 /*
513 * SST 38VF640x chips report major=0xFF / minor=0xFF.
514 */
515 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
516 extp->MajorVersion = '1';
517 extp->MinorVersion = '0';
518 }
519 }
520
is_m29ew(struct cfi_private * cfi)521 static int is_m29ew(struct cfi_private *cfi)
522 {
523 if (cfi->mfr == CFI_MFR_INTEL &&
524 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
525 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
526 return 1;
527 return 0;
528 }
529
530 /*
531 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
532 * Some revisions of the M29EW suffer from erase suspend hang ups. In
533 * particular, it can occur when the sequence
534 * Erase Confirm -> Suspend -> Program -> Resume
535 * causes a lockup due to internal timing issues. The consequence is that the
536 * erase cannot be resumed without inserting a dummy command after programming
537 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
538 * that writes an F0 command code before the RESUME command.
539 */
cfi_fixup_m29ew_erase_suspend(struct map_info * map,unsigned long adr)540 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
541 unsigned long adr)
542 {
543 struct cfi_private *cfi = map->fldrv_priv;
544 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
545 if (is_m29ew(cfi))
546 map_write(map, CMD(0xF0), adr);
547 }
548
549 /*
550 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
551 *
552 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
553 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
554 * command is issued after an ERASE RESUME operation without waiting for a
555 * minimum delay. The result is that once the ERASE seems to be completed
556 * (no bits are toggling), the contents of the Flash memory block on which
557 * the erase was ongoing could be inconsistent with the expected values
558 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
559 * values), causing a consequent failure of the ERASE operation.
560 * The occurrence of this issue could be high, especially when file system
561 * operations on the Flash are intensive. As a result, it is recommended
562 * that a patch be applied. Intensive file system operations can cause many
563 * calls to the garbage routine to free Flash space (also by erasing physical
564 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
565 * commands can occur. The problem disappears when a delay is inserted after
566 * the RESUME command by using the udelay() function available in Linux.
567 * The DELAY value must be tuned based on the customer's platform.
568 * The maximum value that fixes the problem in all cases is 500us.
569 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
570 * in most cases.
571 * We have chosen 500µs because this latency is acceptable.
572 */
cfi_fixup_m29ew_delay_after_resume(struct cfi_private * cfi)573 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
574 {
575 /*
576 * Resolving the Delay After Resume Issue see Micron TN-13-07
577 * Worst case delay must be 500µs but 30-50µs should be ok as well
578 */
579 if (is_m29ew(cfi))
580 cfi_udelay(500);
581 }
582
cfi_cmdset_0002(struct map_info * map,int primary)583 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
584 {
585 struct cfi_private *cfi = map->fldrv_priv;
586 struct device_node __maybe_unused *np = map->device_node;
587 struct mtd_info *mtd;
588 int i;
589
590 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
591 if (!mtd)
592 return NULL;
593 mtd->priv = map;
594 mtd->type = MTD_NORFLASH;
595
596 /* Fill in the default mtd operations */
597 mtd->_erase = cfi_amdstd_erase_varsize;
598 mtd->_write = cfi_amdstd_write_words;
599 mtd->_read = cfi_amdstd_read;
600 mtd->_sync = cfi_amdstd_sync;
601 mtd->_suspend = cfi_amdstd_suspend;
602 mtd->_resume = cfi_amdstd_resume;
603 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
604 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
605 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
606 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
607 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
608 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
609 mtd->flags = MTD_CAP_NORFLASH;
610 mtd->name = map->name;
611 mtd->writesize = 1;
612 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
613
614 pr_debug("MTD %s(): write buffer size %d\n", __func__,
615 mtd->writebufsize);
616
617 mtd->_panic_write = cfi_amdstd_panic_write;
618 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
619
620 if (cfi->cfi_mode==CFI_MODE_CFI){
621 unsigned char bootloc;
622 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
623 struct cfi_pri_amdstd *extp;
624
625 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
626 if (extp) {
627 /*
628 * It's a real CFI chip, not one for which the probe
629 * routine faked a CFI structure.
630 */
631 cfi_fixup_major_minor(cfi, extp);
632
633 /*
634 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
635 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
636 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
637 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
638 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
639 */
640 if (extp->MajorVersion != '1' ||
641 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
642 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
643 "version %c.%c (%#02x/%#02x).\n",
644 extp->MajorVersion, extp->MinorVersion,
645 extp->MajorVersion, extp->MinorVersion);
646 kfree(extp);
647 kfree(mtd);
648 return NULL;
649 }
650
651 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
652 extp->MajorVersion, extp->MinorVersion);
653
654 /* Install our own private info structure */
655 cfi->cmdset_priv = extp;
656
657 /* Apply cfi device specific fixups */
658 cfi_fixup(mtd, cfi_fixup_table);
659
660 #ifdef DEBUG_CFI_FEATURES
661 /* Tell the user about it in lots of lovely detail */
662 cfi_tell_features(extp);
663 #endif
664
665 #ifdef CONFIG_OF
666 if (np && of_property_read_bool(
667 np, "use-advanced-sector-protection")
668 && extp->BlkProtUnprot == 8) {
669 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
670 mtd->_lock = cfi_ppb_lock;
671 mtd->_unlock = cfi_ppb_unlock;
672 mtd->_is_locked = cfi_ppb_is_locked;
673 }
674 #endif
675
676 bootloc = extp->TopBottom;
677 if ((bootloc < 2) || (bootloc > 5)) {
678 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
679 "bank location (%d). Assuming bottom.\n",
680 map->name, bootloc);
681 bootloc = 2;
682 }
683
684 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
685 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
686
687 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
688 int j = (cfi->cfiq->NumEraseRegions-1)-i;
689
690 swap(cfi->cfiq->EraseRegionInfo[i],
691 cfi->cfiq->EraseRegionInfo[j]);
692 }
693 }
694 /* Set the default CFI lock/unlock addresses */
695 cfi->addr_unlock1 = 0x555;
696 cfi->addr_unlock2 = 0x2aa;
697 }
698 cfi_fixup(mtd, cfi_nopri_fixup_table);
699
700 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
701 kfree(mtd);
702 return NULL;
703 }
704
705 } /* CFI mode */
706 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
707 /* Apply jedec specific fixups */
708 cfi_fixup(mtd, jedec_fixup_table);
709 }
710 /* Apply generic fixups */
711 cfi_fixup(mtd, fixup_table);
712
713 for (i=0; i< cfi->numchips; i++) {
714 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
715 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
716 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
717 /*
718 * First calculate the timeout max according to timeout field
719 * of struct cfi_ident that probed from chip's CFI aera, if
720 * available. Specify a minimum of 2000us, in case the CFI data
721 * is wrong.
722 */
723 if (cfi->cfiq->BufWriteTimeoutTyp &&
724 cfi->cfiq->BufWriteTimeoutMax)
725 cfi->chips[i].buffer_write_time_max =
726 1 << (cfi->cfiq->BufWriteTimeoutTyp +
727 cfi->cfiq->BufWriteTimeoutMax);
728 else
729 cfi->chips[i].buffer_write_time_max = 0;
730
731 cfi->chips[i].buffer_write_time_max =
732 max(cfi->chips[i].buffer_write_time_max, 2000);
733
734 cfi->chips[i].ref_point_counter = 0;
735 init_waitqueue_head(&(cfi->chips[i].wq));
736 }
737
738 map->fldrv = &cfi_amdstd_chipdrv;
739
740 return cfi_amdstd_setup(mtd);
741 }
742 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
743 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
744 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
745 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
746 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
747
cfi_amdstd_setup(struct mtd_info * mtd)748 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
749 {
750 struct map_info *map = mtd->priv;
751 struct cfi_private *cfi = map->fldrv_priv;
752 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
753 unsigned long offset = 0;
754 int i,j;
755
756 printk(KERN_NOTICE "number of %s chips: %d\n",
757 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
758 /* Select the correct geometry setup */
759 mtd->size = devsize * cfi->numchips;
760
761 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
762 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
763 sizeof(struct mtd_erase_region_info),
764 GFP_KERNEL);
765 if (!mtd->eraseregions)
766 goto setup_err;
767
768 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
769 unsigned long ernum, ersize;
770 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
771 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
772
773 if (mtd->erasesize < ersize) {
774 mtd->erasesize = ersize;
775 }
776 for (j=0; j<cfi->numchips; j++) {
777 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
778 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
779 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
780 }
781 offset += (ersize * ernum);
782 }
783 if (offset != devsize) {
784 /* Argh */
785 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
786 goto setup_err;
787 }
788
789 __module_get(THIS_MODULE);
790 register_reboot_notifier(&mtd->reboot_notifier);
791 return mtd;
792
793 setup_err:
794 kfree(mtd->eraseregions);
795 kfree(mtd);
796 kfree(cfi->cmdset_priv);
797 return NULL;
798 }
799
800 /*
801 * Return true if the chip is ready.
802 *
803 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
804 * non-suspended sector) and is indicated by no toggle bits toggling.
805 *
806 * Note that anything more complicated than checking if no bits are toggling
807 * (including checking DQ5 for an error status) is tricky to get working
808 * correctly and is therefore not done (particularly with interleaved chips
809 * as each chip must be checked independently of the others).
810 */
chip_ready(struct map_info * map,struct flchip * chip,unsigned long addr)811 static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
812 unsigned long addr)
813 {
814 struct cfi_private *cfi = map->fldrv_priv;
815 map_word d, t;
816
817 if (cfi_use_status_reg(cfi)) {
818 map_word ready = CMD(CFI_SR_DRB);
819 /*
820 * For chips that support status register, check device
821 * ready bit
822 */
823 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
824 cfi->device_type, NULL);
825 d = map_read(map, addr);
826
827 return map_word_andequal(map, d, ready, ready);
828 }
829
830 d = map_read(map, addr);
831 t = map_read(map, addr);
832
833 return map_word_equal(map, d, t);
834 }
835
836 /*
837 * Return true if the chip is ready and has the correct value.
838 *
839 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
840 * non-suspended sector) and it is indicated by no bits toggling.
841 *
842 * Error are indicated by toggling bits or bits held with the wrong value,
843 * or with bits toggling.
844 *
845 * Note that anything more complicated than checking if no bits are toggling
846 * (including checking DQ5 for an error status) is tricky to get working
847 * correctly and is therefore not done (particularly with interleaved chips
848 * as each chip must be checked independently of the others).
849 *
850 */
chip_good(struct map_info * map,struct flchip * chip,unsigned long addr,map_word expected)851 static int __xipram chip_good(struct map_info *map, struct flchip *chip,
852 unsigned long addr, map_word expected)
853 {
854 struct cfi_private *cfi = map->fldrv_priv;
855 map_word oldd, curd;
856
857 if (cfi_use_status_reg(cfi)) {
858 map_word ready = CMD(CFI_SR_DRB);
859
860 /*
861 * For chips that support status register, check device
862 * ready bit
863 */
864 cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
865 cfi->device_type, NULL);
866 curd = map_read(map, addr);
867
868 return map_word_andequal(map, curd, ready, ready);
869 }
870
871 oldd = map_read(map, addr);
872 curd = map_read(map, addr);
873
874 return map_word_equal(map, oldd, curd) &&
875 map_word_equal(map, curd, expected);
876 }
877
get_chip(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)878 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
879 {
880 DECLARE_WAITQUEUE(wait, current);
881 struct cfi_private *cfi = map->fldrv_priv;
882 unsigned long timeo;
883 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
884
885 resettime:
886 timeo = jiffies + HZ;
887 retry:
888 switch (chip->state) {
889
890 case FL_STATUS:
891 for (;;) {
892 if (chip_ready(map, chip, adr))
893 break;
894
895 if (time_after(jiffies, timeo)) {
896 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
897 return -EIO;
898 }
899 mutex_unlock(&chip->mutex);
900 cfi_udelay(1);
901 mutex_lock(&chip->mutex);
902 /* Someone else might have been playing with it. */
903 goto retry;
904 }
905
906 case FL_READY:
907 case FL_CFI_QUERY:
908 case FL_JEDEC_QUERY:
909 return 0;
910
911 case FL_ERASING:
912 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
913 !(mode == FL_READY || mode == FL_POINT ||
914 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
915 goto sleep;
916
917 /* Do not allow suspend iff read/write to EB address */
918 if ((adr & chip->in_progress_block_mask) ==
919 chip->in_progress_block_addr)
920 goto sleep;
921
922 /* Erase suspend */
923 /* It's harmless to issue the Erase-Suspend and Erase-Resume
924 * commands when the erase algorithm isn't in progress. */
925 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
926 chip->oldstate = FL_ERASING;
927 chip->state = FL_ERASE_SUSPENDING;
928 chip->erase_suspended = 1;
929 for (;;) {
930 if (chip_ready(map, chip, adr))
931 break;
932
933 if (time_after(jiffies, timeo)) {
934 /* Should have suspended the erase by now.
935 * Send an Erase-Resume command as either
936 * there was an error (so leave the erase
937 * routine to recover from it) or we trying to
938 * use the erase-in-progress sector. */
939 put_chip(map, chip, adr);
940 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
941 return -EIO;
942 }
943
944 mutex_unlock(&chip->mutex);
945 cfi_udelay(1);
946 mutex_lock(&chip->mutex);
947 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
948 So we can just loop here. */
949 }
950 chip->state = FL_READY;
951 return 0;
952
953 case FL_XIP_WHILE_ERASING:
954 if (mode != FL_READY && mode != FL_POINT &&
955 (!cfip || !(cfip->EraseSuspend&2)))
956 goto sleep;
957 chip->oldstate = chip->state;
958 chip->state = FL_READY;
959 return 0;
960
961 case FL_SHUTDOWN:
962 /* The machine is rebooting */
963 return -EIO;
964
965 case FL_POINT:
966 /* Only if there's no operation suspended... */
967 if (mode == FL_READY && chip->oldstate == FL_READY)
968 return 0;
969 fallthrough;
970 default:
971 sleep:
972 set_current_state(TASK_UNINTERRUPTIBLE);
973 add_wait_queue(&chip->wq, &wait);
974 mutex_unlock(&chip->mutex);
975 schedule();
976 remove_wait_queue(&chip->wq, &wait);
977 mutex_lock(&chip->mutex);
978 goto resettime;
979 }
980 }
981
982
put_chip(struct map_info * map,struct flchip * chip,unsigned long adr)983 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
984 {
985 struct cfi_private *cfi = map->fldrv_priv;
986
987 switch(chip->oldstate) {
988 case FL_ERASING:
989 cfi_fixup_m29ew_erase_suspend(map,
990 chip->in_progress_block_addr);
991 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
992 cfi_fixup_m29ew_delay_after_resume(cfi);
993 chip->oldstate = FL_READY;
994 chip->state = FL_ERASING;
995 break;
996
997 case FL_XIP_WHILE_ERASING:
998 chip->state = chip->oldstate;
999 chip->oldstate = FL_READY;
1000 break;
1001
1002 case FL_READY:
1003 case FL_STATUS:
1004 break;
1005 default:
1006 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
1007 }
1008 wake_up(&chip->wq);
1009 }
1010
1011 #ifdef CONFIG_MTD_XIP
1012
1013 /*
1014 * No interrupt what so ever can be serviced while the flash isn't in array
1015 * mode. This is ensured by the xip_disable() and xip_enable() functions
1016 * enclosing any code path where the flash is known not to be in array mode.
1017 * And within a XIP disabled code path, only functions marked with __xipram
1018 * may be called and nothing else (it's a good thing to inspect generated
1019 * assembly to make sure inline functions were actually inlined and that gcc
1020 * didn't emit calls to its own support functions). Also configuring MTD CFI
1021 * support to a single buswidth and a single interleave is also recommended.
1022 */
1023
xip_disable(struct map_info * map,struct flchip * chip,unsigned long adr)1024 static void xip_disable(struct map_info *map, struct flchip *chip,
1025 unsigned long adr)
1026 {
1027 /* TODO: chips with no XIP use should ignore and return */
1028 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
1029 local_irq_disable();
1030 }
1031
xip_enable(struct map_info * map,struct flchip * chip,unsigned long adr)1032 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
1033 unsigned long adr)
1034 {
1035 struct cfi_private *cfi = map->fldrv_priv;
1036
1037 if (chip->state != FL_POINT && chip->state != FL_READY) {
1038 map_write(map, CMD(0xf0), adr);
1039 chip->state = FL_READY;
1040 }
1041 (void) map_read(map, adr);
1042 xip_iprefetch();
1043 local_irq_enable();
1044 }
1045
1046 /*
1047 * When a delay is required for the flash operation to complete, the
1048 * xip_udelay() function is polling for both the given timeout and pending
1049 * (but still masked) hardware interrupts. Whenever there is an interrupt
1050 * pending then the flash erase operation is suspended, array mode restored
1051 * and interrupts unmasked. Task scheduling might also happen at that
1052 * point. The CPU eventually returns from the interrupt or the call to
1053 * schedule() and the suspended flash operation is resumed for the remaining
1054 * of the delay period.
1055 *
1056 * Warning: this function _will_ fool interrupt latency tracing tools.
1057 */
1058
xip_udelay(struct map_info * map,struct flchip * chip,unsigned long adr,int usec)1059 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
1060 unsigned long adr, int usec)
1061 {
1062 struct cfi_private *cfi = map->fldrv_priv;
1063 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
1064 map_word status, OK = CMD(0x80);
1065 unsigned long suspended, start = xip_currtime();
1066 flstate_t oldstate;
1067
1068 do {
1069 cpu_relax();
1070 if (xip_irqpending() && extp &&
1071 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
1072 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
1073 /*
1074 * Let's suspend the erase operation when supported.
1075 * Note that we currently don't try to suspend
1076 * interleaved chips if there is already another
1077 * operation suspended (imagine what happens
1078 * when one chip was already done with the current
1079 * operation while another chip suspended it, then
1080 * we resume the whole thing at once). Yes, it
1081 * can happen!
1082 */
1083 map_write(map, CMD(0xb0), adr);
1084 usec -= xip_elapsed_since(start);
1085 suspended = xip_currtime();
1086 do {
1087 if (xip_elapsed_since(suspended) > 100000) {
1088 /*
1089 * The chip doesn't want to suspend
1090 * after waiting for 100 msecs.
1091 * This is a critical error but there
1092 * is not much we can do here.
1093 */
1094 return;
1095 }
1096 status = map_read(map, adr);
1097 } while (!map_word_andequal(map, status, OK, OK));
1098
1099 /* Suspend succeeded */
1100 oldstate = chip->state;
1101 if (!map_word_bitsset(map, status, CMD(0x40)))
1102 break;
1103 chip->state = FL_XIP_WHILE_ERASING;
1104 chip->erase_suspended = 1;
1105 map_write(map, CMD(0xf0), adr);
1106 (void) map_read(map, adr);
1107 xip_iprefetch();
1108 local_irq_enable();
1109 mutex_unlock(&chip->mutex);
1110 xip_iprefetch();
1111 cond_resched();
1112
1113 /*
1114 * We're back. However someone else might have
1115 * decided to go write to the chip if we are in
1116 * a suspended erase state. If so let's wait
1117 * until it's done.
1118 */
1119 mutex_lock(&chip->mutex);
1120 while (chip->state != FL_XIP_WHILE_ERASING) {
1121 DECLARE_WAITQUEUE(wait, current);
1122 set_current_state(TASK_UNINTERRUPTIBLE);
1123 add_wait_queue(&chip->wq, &wait);
1124 mutex_unlock(&chip->mutex);
1125 schedule();
1126 remove_wait_queue(&chip->wq, &wait);
1127 mutex_lock(&chip->mutex);
1128 }
1129 /* Disallow XIP again */
1130 local_irq_disable();
1131
1132 /* Correct Erase Suspend Hangups for M29EW */
1133 cfi_fixup_m29ew_erase_suspend(map, adr);
1134 /* Resume the write or erase operation */
1135 map_write(map, cfi->sector_erase_cmd, adr);
1136 chip->state = oldstate;
1137 start = xip_currtime();
1138 } else if (usec >= 1000000/HZ) {
1139 /*
1140 * Try to save on CPU power when waiting delay
1141 * is at least a system timer tick period.
1142 * No need to be extremely accurate here.
1143 */
1144 xip_cpu_idle();
1145 }
1146 status = map_read(map, adr);
1147 } while (!map_word_andequal(map, status, OK, OK)
1148 && xip_elapsed_since(start) < usec);
1149 }
1150
1151 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1152
1153 /*
1154 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1155 * the flash is actively programming or erasing since we have to poll for
1156 * the operation to complete anyway. We can't do that in a generic way with
1157 * a XIP setup so do it before the actual flash operation in this case
1158 * and stub it out from INVALIDATE_CACHE_UDELAY.
1159 */
1160 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1161 INVALIDATE_CACHED_RANGE(map, from, size)
1162
1163 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1164 UDELAY(map, chip, adr, usec)
1165
1166 /*
1167 * Extra notes:
1168 *
1169 * Activating this XIP support changes the way the code works a bit. For
1170 * example the code to suspend the current process when concurrent access
1171 * happens is never executed because xip_udelay() will always return with the
1172 * same chip state as it was entered with. This is why there is no care for
1173 * the presence of add_wait_queue() or schedule() calls from within a couple
1174 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1175 * The queueing and scheduling are always happening within xip_udelay().
1176 *
1177 * Similarly, get_chip() and put_chip() just happen to always be executed
1178 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1179 * is in array mode, therefore never executing many cases therein and not
1180 * causing any problem with XIP.
1181 */
1182
1183 #else
1184
1185 #define xip_disable(map, chip, adr)
1186 #define xip_enable(map, chip, adr)
1187 #define XIP_INVAL_CACHED_RANGE(x...)
1188
1189 #define UDELAY(map, chip, adr, usec) \
1190 do { \
1191 mutex_unlock(&chip->mutex); \
1192 cfi_udelay(usec); \
1193 mutex_lock(&chip->mutex); \
1194 } while (0)
1195
1196 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1197 do { \
1198 mutex_unlock(&chip->mutex); \
1199 INVALIDATE_CACHED_RANGE(map, adr, len); \
1200 cfi_udelay(usec); \
1201 mutex_lock(&chip->mutex); \
1202 } while (0)
1203
1204 #endif
1205
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)1206 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1207 {
1208 unsigned long cmd_addr;
1209 struct cfi_private *cfi = map->fldrv_priv;
1210 int ret;
1211
1212 adr += chip->start;
1213
1214 /* Ensure cmd read/writes are aligned. */
1215 cmd_addr = adr & ~(map_bankwidth(map)-1);
1216
1217 mutex_lock(&chip->mutex);
1218 ret = get_chip(map, chip, cmd_addr, FL_READY);
1219 if (ret) {
1220 mutex_unlock(&chip->mutex);
1221 return ret;
1222 }
1223
1224 if (chip->state != FL_POINT && chip->state != FL_READY) {
1225 map_write(map, CMD(0xf0), cmd_addr);
1226 chip->state = FL_READY;
1227 }
1228
1229 map_copy_from(map, buf, adr, len);
1230
1231 put_chip(map, chip, cmd_addr);
1232
1233 mutex_unlock(&chip->mutex);
1234 return 0;
1235 }
1236
1237
cfi_amdstd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1238 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1239 {
1240 struct map_info *map = mtd->priv;
1241 struct cfi_private *cfi = map->fldrv_priv;
1242 unsigned long ofs;
1243 int chipnum;
1244 int ret = 0;
1245
1246 /* ofs: offset within the first chip that the first read should start */
1247 chipnum = (from >> cfi->chipshift);
1248 ofs = from - (chipnum << cfi->chipshift);
1249
1250 while (len) {
1251 unsigned long thislen;
1252
1253 if (chipnum >= cfi->numchips)
1254 break;
1255
1256 if ((len + ofs -1) >> cfi->chipshift)
1257 thislen = (1<<cfi->chipshift) - ofs;
1258 else
1259 thislen = len;
1260
1261 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1262 if (ret)
1263 break;
1264
1265 *retlen += thislen;
1266 len -= thislen;
1267 buf += thislen;
1268
1269 ofs = 0;
1270 chipnum++;
1271 }
1272 return ret;
1273 }
1274
1275 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1276 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1277
otp_enter(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1278 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1279 loff_t adr, size_t len)
1280 {
1281 struct cfi_private *cfi = map->fldrv_priv;
1282
1283 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1284 cfi->device_type, NULL);
1285 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1286 cfi->device_type, NULL);
1287 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1288 cfi->device_type, NULL);
1289
1290 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1291 }
1292
otp_exit(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1293 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1294 loff_t adr, size_t len)
1295 {
1296 struct cfi_private *cfi = map->fldrv_priv;
1297
1298 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1299 cfi->device_type, NULL);
1300 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1301 cfi->device_type, NULL);
1302 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1303 cfi->device_type, NULL);
1304 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1305 cfi->device_type, NULL);
1306
1307 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1308 }
1309
do_read_secsi_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1310 static inline int do_read_secsi_onechip(struct map_info *map,
1311 struct flchip *chip, loff_t adr,
1312 size_t len, u_char *buf,
1313 size_t grouplen)
1314 {
1315 DECLARE_WAITQUEUE(wait, current);
1316
1317 retry:
1318 mutex_lock(&chip->mutex);
1319
1320 if (chip->state != FL_READY){
1321 set_current_state(TASK_UNINTERRUPTIBLE);
1322 add_wait_queue(&chip->wq, &wait);
1323
1324 mutex_unlock(&chip->mutex);
1325
1326 schedule();
1327 remove_wait_queue(&chip->wq, &wait);
1328
1329 goto retry;
1330 }
1331
1332 adr += chip->start;
1333
1334 chip->state = FL_READY;
1335
1336 otp_enter(map, chip, adr, len);
1337 map_copy_from(map, buf, adr, len);
1338 otp_exit(map, chip, adr, len);
1339
1340 wake_up(&chip->wq);
1341 mutex_unlock(&chip->mutex);
1342
1343 return 0;
1344 }
1345
cfi_amdstd_secsi_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1346 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1347 {
1348 struct map_info *map = mtd->priv;
1349 struct cfi_private *cfi = map->fldrv_priv;
1350 unsigned long ofs;
1351 int chipnum;
1352 int ret = 0;
1353
1354 /* ofs: offset within the first chip that the first read should start */
1355 /* 8 secsi bytes per chip */
1356 chipnum=from>>3;
1357 ofs=from & 7;
1358
1359 while (len) {
1360 unsigned long thislen;
1361
1362 if (chipnum >= cfi->numchips)
1363 break;
1364
1365 if ((len + ofs -1) >> 3)
1366 thislen = (1<<3) - ofs;
1367 else
1368 thislen = len;
1369
1370 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1371 thislen, buf, 0);
1372 if (ret)
1373 break;
1374
1375 *retlen += thislen;
1376 len -= thislen;
1377 buf += thislen;
1378
1379 ofs = 0;
1380 chipnum++;
1381 }
1382 return ret;
1383 }
1384
1385 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1386 unsigned long adr, map_word datum,
1387 int mode);
1388
do_otp_write(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1389 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1390 size_t len, u_char *buf, size_t grouplen)
1391 {
1392 int ret;
1393 while (len) {
1394 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1395 int gap = adr - bus_ofs;
1396 int n = min_t(int, len, map_bankwidth(map) - gap);
1397 map_word datum = map_word_ff(map);
1398
1399 if (n != map_bankwidth(map)) {
1400 /* partial write of a word, load old contents */
1401 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1402 datum = map_read(map, bus_ofs);
1403 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1404 }
1405
1406 datum = map_word_load_partial(map, datum, buf, gap, n);
1407 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1408 if (ret)
1409 return ret;
1410
1411 adr += n;
1412 buf += n;
1413 len -= n;
1414 }
1415
1416 return 0;
1417 }
1418
do_otp_lock(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1419 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1420 size_t len, u_char *buf, size_t grouplen)
1421 {
1422 struct cfi_private *cfi = map->fldrv_priv;
1423 uint8_t lockreg;
1424 unsigned long timeo;
1425 int ret;
1426
1427 /* make sure area matches group boundaries */
1428 if ((adr != 0) || (len != grouplen))
1429 return -EINVAL;
1430
1431 mutex_lock(&chip->mutex);
1432 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1433 if (ret) {
1434 mutex_unlock(&chip->mutex);
1435 return ret;
1436 }
1437 chip->state = FL_LOCKING;
1438
1439 /* Enter lock register command */
1440 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1441 cfi->device_type, NULL);
1442 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1443 cfi->device_type, NULL);
1444 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1445 cfi->device_type, NULL);
1446
1447 /* read lock register */
1448 lockreg = cfi_read_query(map, 0);
1449
1450 /* set bit 0 to protect extended memory block */
1451 lockreg &= ~0x01;
1452
1453 /* set bit 0 to protect extended memory block */
1454 /* write lock register */
1455 map_write(map, CMD(0xA0), chip->start);
1456 map_write(map, CMD(lockreg), chip->start);
1457
1458 /* wait for chip to become ready */
1459 timeo = jiffies + msecs_to_jiffies(2);
1460 for (;;) {
1461 if (chip_ready(map, chip, adr))
1462 break;
1463
1464 if (time_after(jiffies, timeo)) {
1465 pr_err("Waiting for chip to be ready timed out.\n");
1466 ret = -EIO;
1467 break;
1468 }
1469 UDELAY(map, chip, 0, 1);
1470 }
1471
1472 /* exit protection commands */
1473 map_write(map, CMD(0x90), chip->start);
1474 map_write(map, CMD(0x00), chip->start);
1475
1476 chip->state = FL_READY;
1477 put_chip(map, chip, chip->start);
1478 mutex_unlock(&chip->mutex);
1479
1480 return ret;
1481 }
1482
cfi_amdstd_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int user_regs)1483 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1484 size_t *retlen, u_char *buf,
1485 otp_op_t action, int user_regs)
1486 {
1487 struct map_info *map = mtd->priv;
1488 struct cfi_private *cfi = map->fldrv_priv;
1489 int ofs_factor = cfi->interleave * cfi->device_type;
1490 unsigned long base;
1491 int chipnum;
1492 struct flchip *chip;
1493 uint8_t otp, lockreg;
1494 int ret;
1495
1496 size_t user_size, factory_size, otpsize;
1497 loff_t user_offset, factory_offset, otpoffset;
1498 int user_locked = 0, otplocked;
1499
1500 *retlen = 0;
1501
1502 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1503 chip = &cfi->chips[chipnum];
1504 factory_size = 0;
1505 user_size = 0;
1506
1507 /* Micron M29EW family */
1508 if (is_m29ew(cfi)) {
1509 base = chip->start;
1510
1511 /* check whether secsi area is factory locked
1512 or user lockable */
1513 mutex_lock(&chip->mutex);
1514 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1515 if (ret) {
1516 mutex_unlock(&chip->mutex);
1517 return ret;
1518 }
1519 cfi_qry_mode_on(base, map, cfi);
1520 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1521 cfi_qry_mode_off(base, map, cfi);
1522 put_chip(map, chip, base);
1523 mutex_unlock(&chip->mutex);
1524
1525 if (otp & 0x80) {
1526 /* factory locked */
1527 factory_offset = 0;
1528 factory_size = 0x100;
1529 } else {
1530 /* customer lockable */
1531 user_offset = 0;
1532 user_size = 0x100;
1533
1534 mutex_lock(&chip->mutex);
1535 ret = get_chip(map, chip, base, FL_LOCKING);
1536 if (ret) {
1537 mutex_unlock(&chip->mutex);
1538 return ret;
1539 }
1540
1541 /* Enter lock register command */
1542 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1543 chip->start, map, cfi,
1544 cfi->device_type, NULL);
1545 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1546 chip->start, map, cfi,
1547 cfi->device_type, NULL);
1548 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1549 chip->start, map, cfi,
1550 cfi->device_type, NULL);
1551 /* read lock register */
1552 lockreg = cfi_read_query(map, 0);
1553 /* exit protection commands */
1554 map_write(map, CMD(0x90), chip->start);
1555 map_write(map, CMD(0x00), chip->start);
1556 put_chip(map, chip, chip->start);
1557 mutex_unlock(&chip->mutex);
1558
1559 user_locked = ((lockreg & 0x01) == 0x00);
1560 }
1561 }
1562
1563 otpsize = user_regs ? user_size : factory_size;
1564 if (!otpsize)
1565 continue;
1566 otpoffset = user_regs ? user_offset : factory_offset;
1567 otplocked = user_regs ? user_locked : 1;
1568
1569 if (!action) {
1570 /* return otpinfo */
1571 struct otp_info *otpinfo;
1572 len -= sizeof(*otpinfo);
1573 if (len <= 0)
1574 return -ENOSPC;
1575 otpinfo = (struct otp_info *)buf;
1576 otpinfo->start = from;
1577 otpinfo->length = otpsize;
1578 otpinfo->locked = otplocked;
1579 buf += sizeof(*otpinfo);
1580 *retlen += sizeof(*otpinfo);
1581 from += otpsize;
1582 } else if ((from < otpsize) && (len > 0)) {
1583 size_t size;
1584 size = (len < otpsize - from) ? len : otpsize - from;
1585 ret = action(map, chip, otpoffset + from, size, buf,
1586 otpsize);
1587 if (ret < 0)
1588 return ret;
1589
1590 buf += size;
1591 len -= size;
1592 *retlen += size;
1593 from = 0;
1594 } else {
1595 from -= otpsize;
1596 }
1597 }
1598 return 0;
1599 }
1600
cfi_amdstd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1601 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1602 size_t *retlen, struct otp_info *buf)
1603 {
1604 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1605 NULL, 0);
1606 }
1607
cfi_amdstd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1608 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1609 size_t *retlen, struct otp_info *buf)
1610 {
1611 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1612 NULL, 1);
1613 }
1614
cfi_amdstd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1615 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1616 size_t len, size_t *retlen,
1617 u_char *buf)
1618 {
1619 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1620 buf, do_read_secsi_onechip, 0);
1621 }
1622
cfi_amdstd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1623 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1624 size_t len, size_t *retlen,
1625 u_char *buf)
1626 {
1627 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1628 buf, do_read_secsi_onechip, 1);
1629 }
1630
cfi_amdstd_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1631 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1632 size_t len, size_t *retlen,
1633 u_char *buf)
1634 {
1635 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1636 do_otp_write, 1);
1637 }
1638
cfi_amdstd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1639 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1640 size_t len)
1641 {
1642 size_t retlen;
1643 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1644 do_otp_lock, 1);
1645 }
1646
do_write_oneword_once(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode,struct cfi_private * cfi)1647 static int __xipram do_write_oneword_once(struct map_info *map,
1648 struct flchip *chip,
1649 unsigned long adr, map_word datum,
1650 int mode, struct cfi_private *cfi)
1651 {
1652 unsigned long timeo = jiffies + HZ;
1653 /*
1654 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1655 * have a max write time of a few hundreds usec). However, we should
1656 * use the maximum timeout value given by the chip at probe time
1657 * instead. Unfortunately, struct flchip does have a field for
1658 * maximum timeout, only for typical which can be far too short
1659 * depending of the conditions. The ' + 1' is to avoid having a
1660 * timeout of 0 jiffies if HZ is smaller than 1000.
1661 */
1662 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1663 int ret = 0;
1664
1665 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1666 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1667 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1668 map_write(map, datum, adr);
1669 chip->state = mode;
1670
1671 INVALIDATE_CACHE_UDELAY(map, chip,
1672 adr, map_bankwidth(map),
1673 chip->word_write_time);
1674
1675 /* See comment above for timeout value. */
1676 timeo = jiffies + uWriteTimeout;
1677 for (;;) {
1678 if (chip->state != mode) {
1679 /* Someone's suspended the write. Sleep */
1680 DECLARE_WAITQUEUE(wait, current);
1681
1682 set_current_state(TASK_UNINTERRUPTIBLE);
1683 add_wait_queue(&chip->wq, &wait);
1684 mutex_unlock(&chip->mutex);
1685 schedule();
1686 remove_wait_queue(&chip->wq, &wait);
1687 timeo = jiffies + (HZ / 2); /* FIXME */
1688 mutex_lock(&chip->mutex);
1689 continue;
1690 }
1691
1692 /*
1693 * We check "time_after" and "!chip_good" before checking
1694 * "chip_good" to avoid the failure due to scheduling.
1695 */
1696 if (time_after(jiffies, timeo) &&
1697 !chip_good(map, chip, adr, datum)) {
1698 xip_enable(map, chip, adr);
1699 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1700 xip_disable(map, chip, adr);
1701 ret = -EIO;
1702 break;
1703 }
1704
1705 if (chip_good(map, chip, adr, datum)) {
1706 if (cfi_check_err_status(map, chip, adr))
1707 ret = -EIO;
1708 break;
1709 }
1710
1711 /* Latency issues. Drop the lock, wait a while and retry */
1712 UDELAY(map, chip, adr, 1);
1713 }
1714
1715 return ret;
1716 }
1717
do_write_oneword_start(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1718 static int __xipram do_write_oneword_start(struct map_info *map,
1719 struct flchip *chip,
1720 unsigned long adr, int mode)
1721 {
1722 int ret;
1723
1724 mutex_lock(&chip->mutex);
1725
1726 ret = get_chip(map, chip, adr, mode);
1727 if (ret) {
1728 mutex_unlock(&chip->mutex);
1729 return ret;
1730 }
1731
1732 if (mode == FL_OTP_WRITE)
1733 otp_enter(map, chip, adr, map_bankwidth(map));
1734
1735 return ret;
1736 }
1737
do_write_oneword_done(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)1738 static void __xipram do_write_oneword_done(struct map_info *map,
1739 struct flchip *chip,
1740 unsigned long adr, int mode)
1741 {
1742 if (mode == FL_OTP_WRITE)
1743 otp_exit(map, chip, adr, map_bankwidth(map));
1744
1745 chip->state = FL_READY;
1746 DISABLE_VPP(map);
1747 put_chip(map, chip, adr);
1748
1749 mutex_unlock(&chip->mutex);
1750 }
1751
do_write_oneword_retry(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1752 static int __xipram do_write_oneword_retry(struct map_info *map,
1753 struct flchip *chip,
1754 unsigned long adr, map_word datum,
1755 int mode)
1756 {
1757 struct cfi_private *cfi = map->fldrv_priv;
1758 int ret = 0;
1759 map_word oldd;
1760 int retry_cnt = 0;
1761
1762 /*
1763 * Check for a NOP for the case when the datum to write is already
1764 * present - it saves time and works around buggy chips that corrupt
1765 * data at other locations when 0xff is written to a location that
1766 * already contains 0xff.
1767 */
1768 oldd = map_read(map, adr);
1769 if (map_word_equal(map, oldd, datum)) {
1770 pr_debug("MTD %s(): NOP\n", __func__);
1771 return ret;
1772 }
1773
1774 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1775 ENABLE_VPP(map);
1776 xip_disable(map, chip, adr);
1777
1778 retry:
1779 ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
1780 if (ret) {
1781 /* reset on all failures. */
1782 map_write(map, CMD(0xF0), chip->start);
1783 /* FIXME - should have reset delay before continuing */
1784
1785 if (++retry_cnt <= MAX_RETRIES) {
1786 ret = 0;
1787 goto retry;
1788 }
1789 }
1790 xip_enable(map, chip, adr);
1791
1792 return ret;
1793 }
1794
do_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1795 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1796 unsigned long adr, map_word datum,
1797 int mode)
1798 {
1799 int ret;
1800
1801 adr += chip->start;
1802
1803 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
1804 datum.x[0]);
1805
1806 ret = do_write_oneword_start(map, chip, adr, mode);
1807 if (ret)
1808 return ret;
1809
1810 ret = do_write_oneword_retry(map, chip, adr, datum, mode);
1811
1812 do_write_oneword_done(map, chip, adr, mode);
1813
1814 return ret;
1815 }
1816
1817
cfi_amdstd_write_words(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1818 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1819 size_t *retlen, const u_char *buf)
1820 {
1821 struct map_info *map = mtd->priv;
1822 struct cfi_private *cfi = map->fldrv_priv;
1823 int ret;
1824 int chipnum;
1825 unsigned long ofs, chipstart;
1826 DECLARE_WAITQUEUE(wait, current);
1827
1828 chipnum = to >> cfi->chipshift;
1829 ofs = to - (chipnum << cfi->chipshift);
1830 chipstart = cfi->chips[chipnum].start;
1831
1832 /* If it's not bus-aligned, do the first byte write */
1833 if (ofs & (map_bankwidth(map)-1)) {
1834 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1835 int i = ofs - bus_ofs;
1836 int n = 0;
1837 map_word tmp_buf;
1838
1839 retry:
1840 mutex_lock(&cfi->chips[chipnum].mutex);
1841
1842 if (cfi->chips[chipnum].state != FL_READY) {
1843 set_current_state(TASK_UNINTERRUPTIBLE);
1844 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1845
1846 mutex_unlock(&cfi->chips[chipnum].mutex);
1847
1848 schedule();
1849 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1850 goto retry;
1851 }
1852
1853 /* Load 'tmp_buf' with old contents of flash */
1854 tmp_buf = map_read(map, bus_ofs+chipstart);
1855
1856 mutex_unlock(&cfi->chips[chipnum].mutex);
1857
1858 /* Number of bytes to copy from buffer */
1859 n = min_t(int, len, map_bankwidth(map)-i);
1860
1861 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1862
1863 ret = do_write_oneword(map, &cfi->chips[chipnum],
1864 bus_ofs, tmp_buf, FL_WRITING);
1865 if (ret)
1866 return ret;
1867
1868 ofs += n;
1869 buf += n;
1870 (*retlen) += n;
1871 len -= n;
1872
1873 if (ofs >> cfi->chipshift) {
1874 chipnum ++;
1875 ofs = 0;
1876 if (chipnum == cfi->numchips)
1877 return 0;
1878 }
1879 }
1880
1881 /* We are now aligned, write as much as possible */
1882 while(len >= map_bankwidth(map)) {
1883 map_word datum;
1884
1885 datum = map_word_load(map, buf);
1886
1887 ret = do_write_oneword(map, &cfi->chips[chipnum],
1888 ofs, datum, FL_WRITING);
1889 if (ret)
1890 return ret;
1891
1892 ofs += map_bankwidth(map);
1893 buf += map_bankwidth(map);
1894 (*retlen) += map_bankwidth(map);
1895 len -= map_bankwidth(map);
1896
1897 if (ofs >> cfi->chipshift) {
1898 chipnum ++;
1899 ofs = 0;
1900 if (chipnum == cfi->numchips)
1901 return 0;
1902 chipstart = cfi->chips[chipnum].start;
1903 }
1904 }
1905
1906 /* Write the trailing bytes if any */
1907 if (len & (map_bankwidth(map)-1)) {
1908 map_word tmp_buf;
1909
1910 retry1:
1911 mutex_lock(&cfi->chips[chipnum].mutex);
1912
1913 if (cfi->chips[chipnum].state != FL_READY) {
1914 set_current_state(TASK_UNINTERRUPTIBLE);
1915 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1916
1917 mutex_unlock(&cfi->chips[chipnum].mutex);
1918
1919 schedule();
1920 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1921 goto retry1;
1922 }
1923
1924 tmp_buf = map_read(map, ofs + chipstart);
1925
1926 mutex_unlock(&cfi->chips[chipnum].mutex);
1927
1928 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1929
1930 ret = do_write_oneword(map, &cfi->chips[chipnum],
1931 ofs, tmp_buf, FL_WRITING);
1932 if (ret)
1933 return ret;
1934
1935 (*retlen) += len;
1936 }
1937
1938 return 0;
1939 }
1940
1941 #if !FORCE_WORD_WRITE
do_write_buffer_wait(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)1942 static int __xipram do_write_buffer_wait(struct map_info *map,
1943 struct flchip *chip, unsigned long adr,
1944 map_word datum)
1945 {
1946 unsigned long timeo;
1947 unsigned long u_write_timeout;
1948 int ret = 0;
1949
1950 /*
1951 * Timeout is calculated according to CFI data, if available.
1952 * See more comments in cfi_cmdset_0002().
1953 */
1954 u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
1955 timeo = jiffies + u_write_timeout;
1956
1957 for (;;) {
1958 if (chip->state != FL_WRITING) {
1959 /* Someone's suspended the write. Sleep */
1960 DECLARE_WAITQUEUE(wait, current);
1961
1962 set_current_state(TASK_UNINTERRUPTIBLE);
1963 add_wait_queue(&chip->wq, &wait);
1964 mutex_unlock(&chip->mutex);
1965 schedule();
1966 remove_wait_queue(&chip->wq, &wait);
1967 timeo = jiffies + (HZ / 2); /* FIXME */
1968 mutex_lock(&chip->mutex);
1969 continue;
1970 }
1971
1972 /*
1973 * We check "time_after" and "!chip_good" before checking
1974 * "chip_good" to avoid the failure due to scheduling.
1975 */
1976 if (time_after(jiffies, timeo) &&
1977 !chip_good(map, chip, adr, datum)) {
1978 pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
1979 __func__, adr);
1980 ret = -EIO;
1981 break;
1982 }
1983
1984 if (chip_good(map, chip, adr, datum)) {
1985 if (cfi_check_err_status(map, chip, adr))
1986 ret = -EIO;
1987 break;
1988 }
1989
1990 /* Latency issues. Drop the lock, wait a while and retry */
1991 UDELAY(map, chip, adr, 1);
1992 }
1993
1994 return ret;
1995 }
1996
do_write_buffer_reset(struct map_info * map,struct flchip * chip,struct cfi_private * cfi)1997 static void __xipram do_write_buffer_reset(struct map_info *map,
1998 struct flchip *chip,
1999 struct cfi_private *cfi)
2000 {
2001 /*
2002 * Recovery from write-buffer programming failures requires
2003 * the write-to-buffer-reset sequence. Since the last part
2004 * of the sequence also works as a normal reset, we can run
2005 * the same commands regardless of why we are here.
2006 * See e.g.
2007 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
2008 */
2009 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2010 cfi->device_type, NULL);
2011 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2012 cfi->device_type, NULL);
2013 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
2014 cfi->device_type, NULL);
2015
2016 /* FIXME - should have reset delay before continuing */
2017 }
2018
2019 /*
2020 * FIXME: interleaved mode not tested, and probably not supported!
2021 */
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)2022 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
2023 unsigned long adr, const u_char *buf,
2024 int len)
2025 {
2026 struct cfi_private *cfi = map->fldrv_priv;
2027 int ret;
2028 unsigned long cmd_adr;
2029 int z, words;
2030 map_word datum;
2031
2032 adr += chip->start;
2033 cmd_adr = adr;
2034
2035 mutex_lock(&chip->mutex);
2036 ret = get_chip(map, chip, adr, FL_WRITING);
2037 if (ret) {
2038 mutex_unlock(&chip->mutex);
2039 return ret;
2040 }
2041
2042 datum = map_word_load(map, buf);
2043
2044 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
2045 __func__, adr, datum.x[0]);
2046
2047 XIP_INVAL_CACHED_RANGE(map, adr, len);
2048 ENABLE_VPP(map);
2049 xip_disable(map, chip, cmd_adr);
2050
2051 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2052 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2053
2054 /* Write Buffer Load */
2055 map_write(map, CMD(0x25), cmd_adr);
2056
2057 chip->state = FL_WRITING_TO_BUFFER;
2058
2059 /* Write length of data to come */
2060 words = len / map_bankwidth(map);
2061 map_write(map, CMD(words - 1), cmd_adr);
2062 /* Write data */
2063 z = 0;
2064 while(z < words * map_bankwidth(map)) {
2065 datum = map_word_load(map, buf);
2066 map_write(map, datum, adr + z);
2067
2068 z += map_bankwidth(map);
2069 buf += map_bankwidth(map);
2070 }
2071 z -= map_bankwidth(map);
2072
2073 adr += z;
2074
2075 /* Write Buffer Program Confirm: GO GO GO */
2076 map_write(map, CMD(0x29), cmd_adr);
2077 chip->state = FL_WRITING;
2078
2079 INVALIDATE_CACHE_UDELAY(map, chip,
2080 adr, map_bankwidth(map),
2081 chip->word_write_time);
2082
2083 ret = do_write_buffer_wait(map, chip, adr, datum);
2084 if (ret)
2085 do_write_buffer_reset(map, chip, cfi);
2086
2087 xip_enable(map, chip, adr);
2088
2089 chip->state = FL_READY;
2090 DISABLE_VPP(map);
2091 put_chip(map, chip, adr);
2092 mutex_unlock(&chip->mutex);
2093
2094 return ret;
2095 }
2096
2097
cfi_amdstd_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2098 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
2099 size_t *retlen, const u_char *buf)
2100 {
2101 struct map_info *map = mtd->priv;
2102 struct cfi_private *cfi = map->fldrv_priv;
2103 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
2104 int ret;
2105 int chipnum;
2106 unsigned long ofs;
2107
2108 chipnum = to >> cfi->chipshift;
2109 ofs = to - (chipnum << cfi->chipshift);
2110
2111 /* If it's not bus-aligned, do the first word write */
2112 if (ofs & (map_bankwidth(map)-1)) {
2113 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
2114 if (local_len > len)
2115 local_len = len;
2116 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2117 local_len, retlen, buf);
2118 if (ret)
2119 return ret;
2120 ofs += local_len;
2121 buf += local_len;
2122 len -= local_len;
2123
2124 if (ofs >> cfi->chipshift) {
2125 chipnum ++;
2126 ofs = 0;
2127 if (chipnum == cfi->numchips)
2128 return 0;
2129 }
2130 }
2131
2132 /* Write buffer is worth it only if more than one word to write... */
2133 while (len >= map_bankwidth(map) * 2) {
2134 /* We must not cross write block boundaries */
2135 int size = wbufsize - (ofs & (wbufsize-1));
2136
2137 if (size > len)
2138 size = len;
2139 if (size % map_bankwidth(map))
2140 size -= size % map_bankwidth(map);
2141
2142 ret = do_write_buffer(map, &cfi->chips[chipnum],
2143 ofs, buf, size);
2144 if (ret)
2145 return ret;
2146
2147 ofs += size;
2148 buf += size;
2149 (*retlen) += size;
2150 len -= size;
2151
2152 if (ofs >> cfi->chipshift) {
2153 chipnum ++;
2154 ofs = 0;
2155 if (chipnum == cfi->numchips)
2156 return 0;
2157 }
2158 }
2159
2160 if (len) {
2161 size_t retlen_dregs = 0;
2162
2163 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
2164 len, &retlen_dregs, buf);
2165
2166 *retlen += retlen_dregs;
2167 return ret;
2168 }
2169
2170 return 0;
2171 }
2172 #endif /* !FORCE_WORD_WRITE */
2173
2174 /*
2175 * Wait for the flash chip to become ready to write data
2176 *
2177 * This is only called during the panic_write() path. When panic_write()
2178 * is called, the kernel is in the process of a panic, and will soon be
2179 * dead. Therefore we don't take any locks, and attempt to get access
2180 * to the chip as soon as possible.
2181 */
cfi_amdstd_panic_wait(struct map_info * map,struct flchip * chip,unsigned long adr)2182 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2183 unsigned long adr)
2184 {
2185 struct cfi_private *cfi = map->fldrv_priv;
2186 int retries = 10;
2187 int i;
2188
2189 /*
2190 * If the driver thinks the chip is idle, and no toggle bits
2191 * are changing, then the chip is actually idle for sure.
2192 */
2193 if (chip->state == FL_READY && chip_ready(map, chip, adr))
2194 return 0;
2195
2196 /*
2197 * Try several times to reset the chip and then wait for it
2198 * to become idle. The upper limit of a few milliseconds of
2199 * delay isn't a big problem: the kernel is dying anyway. It
2200 * is more important to save the messages.
2201 */
2202 while (retries > 0) {
2203 const unsigned long timeo = (HZ / 1000) + 1;
2204
2205 /* send the reset command */
2206 map_write(map, CMD(0xF0), chip->start);
2207
2208 /* wait for the chip to become ready */
2209 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2210 if (chip_ready(map, chip, adr))
2211 return 0;
2212
2213 udelay(1);
2214 }
2215
2216 retries--;
2217 }
2218
2219 /* the chip never became ready */
2220 return -EBUSY;
2221 }
2222
2223 /*
2224 * Write out one word of data to a single flash chip during a kernel panic
2225 *
2226 * This is only called during the panic_write() path. When panic_write()
2227 * is called, the kernel is in the process of a panic, and will soon be
2228 * dead. Therefore we don't take any locks, and attempt to get access
2229 * to the chip as soon as possible.
2230 *
2231 * The implementation of this routine is intentionally similar to
2232 * do_write_oneword(), in order to ease code maintenance.
2233 */
do_panic_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)2234 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2235 unsigned long adr, map_word datum)
2236 {
2237 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2238 struct cfi_private *cfi = map->fldrv_priv;
2239 int retry_cnt = 0;
2240 map_word oldd;
2241 int ret;
2242 int i;
2243
2244 adr += chip->start;
2245
2246 ret = cfi_amdstd_panic_wait(map, chip, adr);
2247 if (ret)
2248 return ret;
2249
2250 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2251 __func__, adr, datum.x[0]);
2252
2253 /*
2254 * Check for a NOP for the case when the datum to write is already
2255 * present - it saves time and works around buggy chips that corrupt
2256 * data at other locations when 0xff is written to a location that
2257 * already contains 0xff.
2258 */
2259 oldd = map_read(map, adr);
2260 if (map_word_equal(map, oldd, datum)) {
2261 pr_debug("MTD %s(): NOP\n", __func__);
2262 goto op_done;
2263 }
2264
2265 ENABLE_VPP(map);
2266
2267 retry:
2268 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2269 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2270 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271 map_write(map, datum, adr);
2272
2273 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2274 if (chip_ready(map, chip, adr))
2275 break;
2276
2277 udelay(1);
2278 }
2279
2280 if (!chip_good(map, chip, adr, datum) ||
2281 cfi_check_err_status(map, chip, adr)) {
2282 /* reset on all failures. */
2283 map_write(map, CMD(0xF0), chip->start);
2284 /* FIXME - should have reset delay before continuing */
2285
2286 if (++retry_cnt <= MAX_RETRIES)
2287 goto retry;
2288
2289 ret = -EIO;
2290 }
2291
2292 op_done:
2293 DISABLE_VPP(map);
2294 return ret;
2295 }
2296
2297 /*
2298 * Write out some data during a kernel panic
2299 *
2300 * This is used by the mtdoops driver to save the dying messages from a
2301 * kernel which has panic'd.
2302 *
2303 * This routine ignores all of the locking used throughout the rest of the
2304 * driver, in order to ensure that the data gets written out no matter what
2305 * state this driver (and the flash chip itself) was in when the kernel crashed.
2306 *
2307 * The implementation of this routine is intentionally similar to
2308 * cfi_amdstd_write_words(), in order to ease code maintenance.
2309 */
cfi_amdstd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2310 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2311 size_t *retlen, const u_char *buf)
2312 {
2313 struct map_info *map = mtd->priv;
2314 struct cfi_private *cfi = map->fldrv_priv;
2315 unsigned long ofs, chipstart;
2316 int ret;
2317 int chipnum;
2318
2319 chipnum = to >> cfi->chipshift;
2320 ofs = to - (chipnum << cfi->chipshift);
2321 chipstart = cfi->chips[chipnum].start;
2322
2323 /* If it's not bus aligned, do the first byte write */
2324 if (ofs & (map_bankwidth(map) - 1)) {
2325 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2326 int i = ofs - bus_ofs;
2327 int n = 0;
2328 map_word tmp_buf;
2329
2330 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2331 if (ret)
2332 return ret;
2333
2334 /* Load 'tmp_buf' with old contents of flash */
2335 tmp_buf = map_read(map, bus_ofs + chipstart);
2336
2337 /* Number of bytes to copy from buffer */
2338 n = min_t(int, len, map_bankwidth(map) - i);
2339
2340 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2341
2342 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2343 bus_ofs, tmp_buf);
2344 if (ret)
2345 return ret;
2346
2347 ofs += n;
2348 buf += n;
2349 (*retlen) += n;
2350 len -= n;
2351
2352 if (ofs >> cfi->chipshift) {
2353 chipnum++;
2354 ofs = 0;
2355 if (chipnum == cfi->numchips)
2356 return 0;
2357 }
2358 }
2359
2360 /* We are now aligned, write as much as possible */
2361 while (len >= map_bankwidth(map)) {
2362 map_word datum;
2363
2364 datum = map_word_load(map, buf);
2365
2366 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2367 ofs, datum);
2368 if (ret)
2369 return ret;
2370
2371 ofs += map_bankwidth(map);
2372 buf += map_bankwidth(map);
2373 (*retlen) += map_bankwidth(map);
2374 len -= map_bankwidth(map);
2375
2376 if (ofs >> cfi->chipshift) {
2377 chipnum++;
2378 ofs = 0;
2379 if (chipnum == cfi->numchips)
2380 return 0;
2381
2382 chipstart = cfi->chips[chipnum].start;
2383 }
2384 }
2385
2386 /* Write the trailing bytes if any */
2387 if (len & (map_bankwidth(map) - 1)) {
2388 map_word tmp_buf;
2389
2390 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2391 if (ret)
2392 return ret;
2393
2394 tmp_buf = map_read(map, ofs + chipstart);
2395
2396 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2397
2398 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2399 ofs, tmp_buf);
2400 if (ret)
2401 return ret;
2402
2403 (*retlen) += len;
2404 }
2405
2406 return 0;
2407 }
2408
2409
2410 /*
2411 * Handle devices with one erase region, that only implement
2412 * the chip erase command.
2413 */
do_erase_chip(struct map_info * map,struct flchip * chip)2414 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2415 {
2416 struct cfi_private *cfi = map->fldrv_priv;
2417 unsigned long timeo = jiffies + HZ;
2418 unsigned long int adr;
2419 DECLARE_WAITQUEUE(wait, current);
2420 int ret;
2421 int retry_cnt = 0;
2422
2423 adr = cfi->addr_unlock1;
2424
2425 mutex_lock(&chip->mutex);
2426 ret = get_chip(map, chip, adr, FL_ERASING);
2427 if (ret) {
2428 mutex_unlock(&chip->mutex);
2429 return ret;
2430 }
2431
2432 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2433 __func__, chip->start);
2434
2435 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2436 ENABLE_VPP(map);
2437 xip_disable(map, chip, adr);
2438
2439 retry:
2440 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2441 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2442 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2443 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2444 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2445 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2446
2447 chip->state = FL_ERASING;
2448 chip->erase_suspended = 0;
2449 chip->in_progress_block_addr = adr;
2450 chip->in_progress_block_mask = ~(map->size - 1);
2451
2452 INVALIDATE_CACHE_UDELAY(map, chip,
2453 adr, map->size,
2454 chip->erase_time*500);
2455
2456 timeo = jiffies + (HZ*20);
2457
2458 for (;;) {
2459 if (chip->state != FL_ERASING) {
2460 /* Someone's suspended the erase. Sleep */
2461 set_current_state(TASK_UNINTERRUPTIBLE);
2462 add_wait_queue(&chip->wq, &wait);
2463 mutex_unlock(&chip->mutex);
2464 schedule();
2465 remove_wait_queue(&chip->wq, &wait);
2466 mutex_lock(&chip->mutex);
2467 continue;
2468 }
2469 if (chip->erase_suspended) {
2470 /* This erase was suspended and resumed.
2471 Adjust the timeout */
2472 timeo = jiffies + (HZ*20); /* FIXME */
2473 chip->erase_suspended = 0;
2474 }
2475
2476 if (chip_good(map, chip, adr, map_word_ff(map))) {
2477 if (cfi_check_err_status(map, chip, adr))
2478 ret = -EIO;
2479 break;
2480 }
2481
2482 if (time_after(jiffies, timeo)) {
2483 printk(KERN_WARNING "MTD %s(): software timeout\n",
2484 __func__);
2485 ret = -EIO;
2486 break;
2487 }
2488
2489 /* Latency issues. Drop the lock, wait a while and retry */
2490 UDELAY(map, chip, adr, 1000000/HZ);
2491 }
2492 /* Did we succeed? */
2493 if (ret) {
2494 /* reset on all failures. */
2495 map_write(map, CMD(0xF0), chip->start);
2496 /* FIXME - should have reset delay before continuing */
2497
2498 if (++retry_cnt <= MAX_RETRIES) {
2499 ret = 0;
2500 goto retry;
2501 }
2502 }
2503
2504 chip->state = FL_READY;
2505 xip_enable(map, chip, adr);
2506 DISABLE_VPP(map);
2507 put_chip(map, chip, adr);
2508 mutex_unlock(&chip->mutex);
2509
2510 return ret;
2511 }
2512
2513
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2514 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2515 {
2516 struct cfi_private *cfi = map->fldrv_priv;
2517 unsigned long timeo = jiffies + HZ;
2518 DECLARE_WAITQUEUE(wait, current);
2519 int ret;
2520 int retry_cnt = 0;
2521
2522 adr += chip->start;
2523
2524 mutex_lock(&chip->mutex);
2525 ret = get_chip(map, chip, adr, FL_ERASING);
2526 if (ret) {
2527 mutex_unlock(&chip->mutex);
2528 return ret;
2529 }
2530
2531 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2532 __func__, adr);
2533
2534 XIP_INVAL_CACHED_RANGE(map, adr, len);
2535 ENABLE_VPP(map);
2536 xip_disable(map, chip, adr);
2537
2538 retry:
2539 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2540 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2541 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2542 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2543 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2544 map_write(map, cfi->sector_erase_cmd, adr);
2545
2546 chip->state = FL_ERASING;
2547 chip->erase_suspended = 0;
2548 chip->in_progress_block_addr = adr;
2549 chip->in_progress_block_mask = ~(len - 1);
2550
2551 INVALIDATE_CACHE_UDELAY(map, chip,
2552 adr, len,
2553 chip->erase_time*500);
2554
2555 timeo = jiffies + (HZ*20);
2556
2557 for (;;) {
2558 if (chip->state != FL_ERASING) {
2559 /* Someone's suspended the erase. Sleep */
2560 set_current_state(TASK_UNINTERRUPTIBLE);
2561 add_wait_queue(&chip->wq, &wait);
2562 mutex_unlock(&chip->mutex);
2563 schedule();
2564 remove_wait_queue(&chip->wq, &wait);
2565 mutex_lock(&chip->mutex);
2566 continue;
2567 }
2568 if (chip->erase_suspended) {
2569 /* This erase was suspended and resumed.
2570 Adjust the timeout */
2571 timeo = jiffies + (HZ*20); /* FIXME */
2572 chip->erase_suspended = 0;
2573 }
2574
2575 if (chip_good(map, chip, adr, map_word_ff(map))) {
2576 if (cfi_check_err_status(map, chip, adr))
2577 ret = -EIO;
2578 break;
2579 }
2580
2581 if (time_after(jiffies, timeo)) {
2582 printk(KERN_WARNING "MTD %s(): software timeout\n",
2583 __func__);
2584 ret = -EIO;
2585 break;
2586 }
2587
2588 /* Latency issues. Drop the lock, wait a while and retry */
2589 UDELAY(map, chip, adr, 1000000/HZ);
2590 }
2591 /* Did we succeed? */
2592 if (ret) {
2593 /* reset on all failures. */
2594 map_write(map, CMD(0xF0), chip->start);
2595 /* FIXME - should have reset delay before continuing */
2596
2597 if (++retry_cnt <= MAX_RETRIES) {
2598 ret = 0;
2599 goto retry;
2600 }
2601 }
2602
2603 chip->state = FL_READY;
2604 xip_enable(map, chip, adr);
2605 DISABLE_VPP(map);
2606 put_chip(map, chip, adr);
2607 mutex_unlock(&chip->mutex);
2608 return ret;
2609 }
2610
2611
cfi_amdstd_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)2612 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2613 {
2614 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2615 instr->len, NULL);
2616 }
2617
2618
cfi_amdstd_erase_chip(struct mtd_info * mtd,struct erase_info * instr)2619 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2620 {
2621 struct map_info *map = mtd->priv;
2622 struct cfi_private *cfi = map->fldrv_priv;
2623
2624 if (instr->addr != 0)
2625 return -EINVAL;
2626
2627 if (instr->len != mtd->size)
2628 return -EINVAL;
2629
2630 return do_erase_chip(map, &cfi->chips[0]);
2631 }
2632
do_atmel_lock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2633 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2634 unsigned long adr, int len, void *thunk)
2635 {
2636 struct cfi_private *cfi = map->fldrv_priv;
2637 int ret;
2638
2639 mutex_lock(&chip->mutex);
2640 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2641 if (ret)
2642 goto out_unlock;
2643 chip->state = FL_LOCKING;
2644
2645 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2646
2647 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2648 cfi->device_type, NULL);
2649 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2650 cfi->device_type, NULL);
2651 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2652 cfi->device_type, NULL);
2653 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2654 cfi->device_type, NULL);
2655 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2656 cfi->device_type, NULL);
2657 map_write(map, CMD(0x40), chip->start + adr);
2658
2659 chip->state = FL_READY;
2660 put_chip(map, chip, adr + chip->start);
2661 ret = 0;
2662
2663 out_unlock:
2664 mutex_unlock(&chip->mutex);
2665 return ret;
2666 }
2667
do_atmel_unlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2668 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2669 unsigned long adr, int len, void *thunk)
2670 {
2671 struct cfi_private *cfi = map->fldrv_priv;
2672 int ret;
2673
2674 mutex_lock(&chip->mutex);
2675 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2676 if (ret)
2677 goto out_unlock;
2678 chip->state = FL_UNLOCKING;
2679
2680 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2681
2682 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2683 cfi->device_type, NULL);
2684 map_write(map, CMD(0x70), adr);
2685
2686 chip->state = FL_READY;
2687 put_chip(map, chip, adr + chip->start);
2688 ret = 0;
2689
2690 out_unlock:
2691 mutex_unlock(&chip->mutex);
2692 return ret;
2693 }
2694
cfi_atmel_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2695 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2696 {
2697 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2698 }
2699
cfi_atmel_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2700 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2701 {
2702 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2703 }
2704
2705 /*
2706 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2707 */
2708
2709 struct ppb_lock {
2710 struct flchip *chip;
2711 unsigned long adr;
2712 int locked;
2713 };
2714
2715 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2716 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2717 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2718
do_ppb_xxlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2719 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2720 struct flchip *chip,
2721 unsigned long adr, int len, void *thunk)
2722 {
2723 struct cfi_private *cfi = map->fldrv_priv;
2724 unsigned long timeo;
2725 int ret;
2726
2727 adr += chip->start;
2728 mutex_lock(&chip->mutex);
2729 ret = get_chip(map, chip, adr, FL_LOCKING);
2730 if (ret) {
2731 mutex_unlock(&chip->mutex);
2732 return ret;
2733 }
2734
2735 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2736
2737 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2738 cfi->device_type, NULL);
2739 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2740 cfi->device_type, NULL);
2741 /* PPB entry command */
2742 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2743 cfi->device_type, NULL);
2744
2745 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2746 chip->state = FL_LOCKING;
2747 map_write(map, CMD(0xA0), adr);
2748 map_write(map, CMD(0x00), adr);
2749 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2750 /*
2751 * Unlocking of one specific sector is not supported, so we
2752 * have to unlock all sectors of this device instead
2753 */
2754 chip->state = FL_UNLOCKING;
2755 map_write(map, CMD(0x80), chip->start);
2756 map_write(map, CMD(0x30), chip->start);
2757 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2758 chip->state = FL_JEDEC_QUERY;
2759 /* Return locked status: 0->locked, 1->unlocked */
2760 ret = !cfi_read_query(map, adr);
2761 } else
2762 BUG();
2763
2764 /*
2765 * Wait for some time as unlocking of all sectors takes quite long
2766 */
2767 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2768 for (;;) {
2769 if (chip_ready(map, chip, adr))
2770 break;
2771
2772 if (time_after(jiffies, timeo)) {
2773 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2774 ret = -EIO;
2775 break;
2776 }
2777
2778 UDELAY(map, chip, adr, 1);
2779 }
2780
2781 /* Exit BC commands */
2782 map_write(map, CMD(0x90), chip->start);
2783 map_write(map, CMD(0x00), chip->start);
2784
2785 chip->state = FL_READY;
2786 put_chip(map, chip, adr);
2787 mutex_unlock(&chip->mutex);
2788
2789 return ret;
2790 }
2791
cfi_ppb_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2792 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2793 uint64_t len)
2794 {
2795 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2796 DO_XXLOCK_ONEBLOCK_LOCK);
2797 }
2798
cfi_ppb_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2799 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2800 uint64_t len)
2801 {
2802 struct mtd_erase_region_info *regions = mtd->eraseregions;
2803 struct map_info *map = mtd->priv;
2804 struct cfi_private *cfi = map->fldrv_priv;
2805 struct ppb_lock *sect;
2806 unsigned long adr;
2807 loff_t offset;
2808 uint64_t length;
2809 int chipnum;
2810 int i;
2811 int sectors;
2812 int ret;
2813 int max_sectors;
2814
2815 /*
2816 * PPB unlocking always unlocks all sectors of the flash chip.
2817 * We need to re-lock all previously locked sectors. So lets
2818 * first check the locking status of all sectors and save
2819 * it for future use.
2820 */
2821 max_sectors = 0;
2822 for (i = 0; i < mtd->numeraseregions; i++)
2823 max_sectors += regions[i].numblocks;
2824
2825 sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
2826 if (!sect)
2827 return -ENOMEM;
2828
2829 /*
2830 * This code to walk all sectors is a slightly modified version
2831 * of the cfi_varsize_frob() code.
2832 */
2833 i = 0;
2834 chipnum = 0;
2835 adr = 0;
2836 sectors = 0;
2837 offset = 0;
2838 length = mtd->size;
2839
2840 while (length) {
2841 int size = regions[i].erasesize;
2842
2843 /*
2844 * Only test sectors that shall not be unlocked. The other
2845 * sectors shall be unlocked, so lets keep their locking
2846 * status at "unlocked" (locked=0) for the final re-locking.
2847 */
2848 if ((offset < ofs) || (offset >= (ofs + len))) {
2849 sect[sectors].chip = &cfi->chips[chipnum];
2850 sect[sectors].adr = adr;
2851 sect[sectors].locked = do_ppb_xxlock(
2852 map, &cfi->chips[chipnum], adr, 0,
2853 DO_XXLOCK_ONEBLOCK_GETLOCK);
2854 }
2855
2856 adr += size;
2857 offset += size;
2858 length -= size;
2859
2860 if (offset == regions[i].offset + size * regions[i].numblocks)
2861 i++;
2862
2863 if (adr >> cfi->chipshift) {
2864 if (offset >= (ofs + len))
2865 break;
2866 adr = 0;
2867 chipnum++;
2868
2869 if (chipnum >= cfi->numchips)
2870 break;
2871 }
2872
2873 sectors++;
2874 if (sectors >= max_sectors) {
2875 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2876 max_sectors);
2877 kfree(sect);
2878 return -EINVAL;
2879 }
2880 }
2881
2882 /* Now unlock the whole chip */
2883 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2884 DO_XXLOCK_ONEBLOCK_UNLOCK);
2885 if (ret) {
2886 kfree(sect);
2887 return ret;
2888 }
2889
2890 /*
2891 * PPB unlocking always unlocks all sectors of the flash chip.
2892 * We need to re-lock all previously locked sectors.
2893 */
2894 for (i = 0; i < sectors; i++) {
2895 if (sect[i].locked)
2896 do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2897 DO_XXLOCK_ONEBLOCK_LOCK);
2898 }
2899
2900 kfree(sect);
2901 return ret;
2902 }
2903
cfi_ppb_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2904 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2905 uint64_t len)
2906 {
2907 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2908 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2909 }
2910
cfi_amdstd_sync(struct mtd_info * mtd)2911 static void cfi_amdstd_sync (struct mtd_info *mtd)
2912 {
2913 struct map_info *map = mtd->priv;
2914 struct cfi_private *cfi = map->fldrv_priv;
2915 int i;
2916 struct flchip *chip;
2917 int ret = 0;
2918 DECLARE_WAITQUEUE(wait, current);
2919
2920 for (i=0; !ret && i<cfi->numchips; i++) {
2921 chip = &cfi->chips[i];
2922
2923 retry:
2924 mutex_lock(&chip->mutex);
2925
2926 switch(chip->state) {
2927 case FL_READY:
2928 case FL_STATUS:
2929 case FL_CFI_QUERY:
2930 case FL_JEDEC_QUERY:
2931 chip->oldstate = chip->state;
2932 chip->state = FL_SYNCING;
2933 /* No need to wake_up() on this state change -
2934 * as the whole point is that nobody can do anything
2935 * with the chip now anyway.
2936 */
2937 fallthrough;
2938 case FL_SYNCING:
2939 mutex_unlock(&chip->mutex);
2940 break;
2941
2942 default:
2943 /* Not an idle state */
2944 set_current_state(TASK_UNINTERRUPTIBLE);
2945 add_wait_queue(&chip->wq, &wait);
2946
2947 mutex_unlock(&chip->mutex);
2948
2949 schedule();
2950
2951 remove_wait_queue(&chip->wq, &wait);
2952
2953 goto retry;
2954 }
2955 }
2956
2957 /* Unlock the chips again */
2958
2959 for (i--; i >=0; i--) {
2960 chip = &cfi->chips[i];
2961
2962 mutex_lock(&chip->mutex);
2963
2964 if (chip->state == FL_SYNCING) {
2965 chip->state = chip->oldstate;
2966 wake_up(&chip->wq);
2967 }
2968 mutex_unlock(&chip->mutex);
2969 }
2970 }
2971
2972
cfi_amdstd_suspend(struct mtd_info * mtd)2973 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2974 {
2975 struct map_info *map = mtd->priv;
2976 struct cfi_private *cfi = map->fldrv_priv;
2977 int i;
2978 struct flchip *chip;
2979 int ret = 0;
2980
2981 for (i=0; !ret && i<cfi->numchips; i++) {
2982 chip = &cfi->chips[i];
2983
2984 mutex_lock(&chip->mutex);
2985
2986 switch(chip->state) {
2987 case FL_READY:
2988 case FL_STATUS:
2989 case FL_CFI_QUERY:
2990 case FL_JEDEC_QUERY:
2991 chip->oldstate = chip->state;
2992 chip->state = FL_PM_SUSPENDED;
2993 /* No need to wake_up() on this state change -
2994 * as the whole point is that nobody can do anything
2995 * with the chip now anyway.
2996 */
2997 case FL_PM_SUSPENDED:
2998 break;
2999
3000 default:
3001 ret = -EAGAIN;
3002 break;
3003 }
3004 mutex_unlock(&chip->mutex);
3005 }
3006
3007 /* Unlock the chips again */
3008
3009 if (ret) {
3010 for (i--; i >=0; i--) {
3011 chip = &cfi->chips[i];
3012
3013 mutex_lock(&chip->mutex);
3014
3015 if (chip->state == FL_PM_SUSPENDED) {
3016 chip->state = chip->oldstate;
3017 wake_up(&chip->wq);
3018 }
3019 mutex_unlock(&chip->mutex);
3020 }
3021 }
3022
3023 return ret;
3024 }
3025
3026
cfi_amdstd_resume(struct mtd_info * mtd)3027 static void cfi_amdstd_resume(struct mtd_info *mtd)
3028 {
3029 struct map_info *map = mtd->priv;
3030 struct cfi_private *cfi = map->fldrv_priv;
3031 int i;
3032 struct flchip *chip;
3033
3034 for (i=0; i<cfi->numchips; i++) {
3035
3036 chip = &cfi->chips[i];
3037
3038 mutex_lock(&chip->mutex);
3039
3040 if (chip->state == FL_PM_SUSPENDED) {
3041 chip->state = FL_READY;
3042 map_write(map, CMD(0xF0), chip->start);
3043 wake_up(&chip->wq);
3044 }
3045 else
3046 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
3047
3048 mutex_unlock(&chip->mutex);
3049 }
3050 }
3051
3052
3053 /*
3054 * Ensure that the flash device is put back into read array mode before
3055 * unloading the driver or rebooting. On some systems, rebooting while
3056 * the flash is in query/program/erase mode will prevent the CPU from
3057 * fetching the bootloader code, requiring a hard reset or power cycle.
3058 */
cfi_amdstd_reset(struct mtd_info * mtd)3059 static int cfi_amdstd_reset(struct mtd_info *mtd)
3060 {
3061 struct map_info *map = mtd->priv;
3062 struct cfi_private *cfi = map->fldrv_priv;
3063 int i, ret;
3064 struct flchip *chip;
3065
3066 for (i = 0; i < cfi->numchips; i++) {
3067
3068 chip = &cfi->chips[i];
3069
3070 mutex_lock(&chip->mutex);
3071
3072 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
3073 if (!ret) {
3074 map_write(map, CMD(0xF0), chip->start);
3075 chip->state = FL_SHUTDOWN;
3076 put_chip(map, chip, chip->start);
3077 }
3078
3079 mutex_unlock(&chip->mutex);
3080 }
3081
3082 return 0;
3083 }
3084
3085
cfi_amdstd_reboot(struct notifier_block * nb,unsigned long val,void * v)3086 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
3087 void *v)
3088 {
3089 struct mtd_info *mtd;
3090
3091 mtd = container_of(nb, struct mtd_info, reboot_notifier);
3092 cfi_amdstd_reset(mtd);
3093 return NOTIFY_DONE;
3094 }
3095
3096
cfi_amdstd_destroy(struct mtd_info * mtd)3097 static void cfi_amdstd_destroy(struct mtd_info *mtd)
3098 {
3099 struct map_info *map = mtd->priv;
3100 struct cfi_private *cfi = map->fldrv_priv;
3101
3102 cfi_amdstd_reset(mtd);
3103 unregister_reboot_notifier(&mtd->reboot_notifier);
3104 kfree(cfi->cmdset_priv);
3105 kfree(cfi->cfiq);
3106 kfree(cfi);
3107 kfree(mtd->eraseregions);
3108 }
3109
3110 MODULE_LICENSE("GPL");
3111 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
3112 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
3113 MODULE_ALIAS("cfi_cmdset_0006");
3114 MODULE_ALIAS("cfi_cmdset_0701");
3115