1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
4 * Support for Nomadik hardware crypto engine.
5
6 * Copyright (C) ST-Ericsson SA 2010
7 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12 */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/algapi.h>
37
38 #include <linux/platform_data/crypto-ux500.h>
39
40 #include "hash_alg.h"
41
42 static int hash_mode;
43 module_param(hash_mode, int, 0);
44 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
45
46 /* HMAC-SHA1, no key */
47 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
48 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
49 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
50 0x70, 0x69, 0x0e, 0x1d
51 };
52
53 /* HMAC-SHA256, no key */
54 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
55 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
56 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
57 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
58 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
59 };
60
61 /**
62 * struct hash_driver_data - data specific to the driver.
63 *
64 * @device_list: A list of registered devices to choose from.
65 * @device_allocation: A semaphore initialized with number of devices.
66 */
67 struct hash_driver_data {
68 struct klist device_list;
69 struct semaphore device_allocation;
70 };
71
72 static struct hash_driver_data driver_data;
73
74 /* Declaration of functions */
75 /**
76 * hash_messagepad - Pads a message and write the nblw bits.
77 * @device_data: Structure for the hash device.
78 * @message: Last word of a message
79 * @index_bytes: The number of bytes in the last message
80 *
81 * This function manages the final part of the digest calculation, when less
82 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
83 *
84 */
85 static void hash_messagepad(struct hash_device_data *device_data,
86 const u32 *message, u8 index_bytes);
87
88 /**
89 * release_hash_device - Releases a previously allocated hash device.
90 * @device_data: Structure for the hash device.
91 *
92 */
release_hash_device(struct hash_device_data * device_data)93 static void release_hash_device(struct hash_device_data *device_data)
94 {
95 spin_lock(&device_data->ctx_lock);
96 device_data->current_ctx->device = NULL;
97 device_data->current_ctx = NULL;
98 spin_unlock(&device_data->ctx_lock);
99
100 /*
101 * The down_interruptible part for this semaphore is called in
102 * cryp_get_device_data.
103 */
104 up(&driver_data.device_allocation);
105 }
106
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)107 static void hash_dma_setup_channel(struct hash_device_data *device_data,
108 struct device *dev)
109 {
110 struct hash_platform_data *platform_data = dev->platform_data;
111 struct dma_slave_config conf = {
112 .direction = DMA_MEM_TO_DEV,
113 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
114 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
115 .dst_maxburst = 16,
116 };
117
118 dma_cap_zero(device_data->dma.mask);
119 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
120
121 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
122 device_data->dma.chan_mem2hash =
123 dma_request_channel(device_data->dma.mask,
124 platform_data->dma_filter,
125 device_data->dma.cfg_mem2hash);
126
127 dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
128
129 init_completion(&device_data->dma.complete);
130 }
131
hash_dma_callback(void * data)132 static void hash_dma_callback(void *data)
133 {
134 struct hash_ctx *ctx = data;
135
136 complete(&ctx->device->dma.complete);
137 }
138
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)139 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
140 int len, enum dma_data_direction direction)
141 {
142 struct dma_async_tx_descriptor *desc = NULL;
143 struct dma_chan *channel = NULL;
144
145 if (direction != DMA_TO_DEVICE) {
146 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
147 __func__);
148 return -EFAULT;
149 }
150
151 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
152
153 channel = ctx->device->dma.chan_mem2hash;
154 ctx->device->dma.sg = sg;
155 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
156 ctx->device->dma.sg, ctx->device->dma.nents,
157 direction);
158
159 if (!ctx->device->dma.sg_len) {
160 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
161 __func__);
162 return -EFAULT;
163 }
164
165 dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166 __func__);
167 desc = dmaengine_prep_slave_sg(channel,
168 ctx->device->dma.sg, ctx->device->dma.sg_len,
169 DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
170 if (!desc) {
171 dev_err(ctx->device->dev,
172 "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
173 return -EFAULT;
174 }
175
176 desc->callback = hash_dma_callback;
177 desc->callback_param = ctx;
178
179 dmaengine_submit(desc);
180 dma_async_issue_pending(channel);
181
182 return 0;
183 }
184
hash_dma_done(struct hash_ctx * ctx)185 static void hash_dma_done(struct hash_ctx *ctx)
186 {
187 struct dma_chan *chan;
188
189 chan = ctx->device->dma.chan_mem2hash;
190 dmaengine_terminate_all(chan);
191 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
192 ctx->device->dma.sg_len, DMA_TO_DEVICE);
193 }
194
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)195 static int hash_dma_write(struct hash_ctx *ctx,
196 struct scatterlist *sg, int len)
197 {
198 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
199 if (error) {
200 dev_dbg(ctx->device->dev,
201 "%s: hash_set_dma_transfer() failed\n", __func__);
202 return error;
203 }
204
205 return len;
206 }
207
208 /**
209 * get_empty_message_digest - Returns a pre-calculated digest for
210 * the empty message.
211 * @device_data: Structure for the hash device.
212 * @zero_hash: Buffer to return the empty message digest.
213 * @zero_hash_size: Hash size of the empty message digest.
214 * @zero_digest: True if zero_digest returned.
215 */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)216 static int get_empty_message_digest(
217 struct hash_device_data *device_data,
218 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
219 {
220 int ret = 0;
221 struct hash_ctx *ctx = device_data->current_ctx;
222 *zero_digest = false;
223
224 /**
225 * Caller responsible for ctx != NULL.
226 */
227
228 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
229 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
230 memcpy(zero_hash, &sha1_zero_message_hash[0],
231 SHA1_DIGEST_SIZE);
232 *zero_hash_size = SHA1_DIGEST_SIZE;
233 *zero_digest = true;
234 } else if (HASH_ALGO_SHA256 ==
235 ctx->config.algorithm) {
236 memcpy(zero_hash, &sha256_zero_message_hash[0],
237 SHA256_DIGEST_SIZE);
238 *zero_hash_size = SHA256_DIGEST_SIZE;
239 *zero_digest = true;
240 } else {
241 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
242 __func__);
243 ret = -EINVAL;
244 goto out;
245 }
246 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
247 if (!ctx->keylen) {
248 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
249 memcpy(zero_hash, &zero_message_hmac_sha1[0],
250 SHA1_DIGEST_SIZE);
251 *zero_hash_size = SHA1_DIGEST_SIZE;
252 *zero_digest = true;
253 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
254 memcpy(zero_hash, &zero_message_hmac_sha256[0],
255 SHA256_DIGEST_SIZE);
256 *zero_hash_size = SHA256_DIGEST_SIZE;
257 *zero_digest = true;
258 } else {
259 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
260 __func__);
261 ret = -EINVAL;
262 goto out;
263 }
264 } else {
265 dev_dbg(device_data->dev,
266 "%s: Continue hash calculation, since hmac key available\n",
267 __func__);
268 }
269 }
270 out:
271
272 return ret;
273 }
274
275 /**
276 * hash_disable_power - Request to disable power and clock.
277 * @device_data: Structure for the hash device.
278 * @save_device_state: If true, saves the current hw state.
279 *
280 * This function request for disabling power (regulator) and clock,
281 * and could also save current hw state.
282 */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)283 static int hash_disable_power(struct hash_device_data *device_data,
284 bool save_device_state)
285 {
286 int ret = 0;
287 struct device *dev = device_data->dev;
288
289 spin_lock(&device_data->power_state_lock);
290 if (!device_data->power_state)
291 goto out;
292
293 if (save_device_state) {
294 hash_save_state(device_data,
295 &device_data->state);
296 device_data->restore_dev_state = true;
297 }
298
299 clk_disable(device_data->clk);
300 ret = regulator_disable(device_data->regulator);
301 if (ret)
302 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
303
304 device_data->power_state = false;
305
306 out:
307 spin_unlock(&device_data->power_state_lock);
308
309 return ret;
310 }
311
312 /**
313 * hash_enable_power - Request to enable power and clock.
314 * @device_data: Structure for the hash device.
315 * @restore_device_state: If true, restores a previous saved hw state.
316 *
317 * This function request for enabling power (regulator) and clock,
318 * and could also restore a previously saved hw state.
319 */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)320 static int hash_enable_power(struct hash_device_data *device_data,
321 bool restore_device_state)
322 {
323 int ret = 0;
324 struct device *dev = device_data->dev;
325
326 spin_lock(&device_data->power_state_lock);
327 if (!device_data->power_state) {
328 ret = regulator_enable(device_data->regulator);
329 if (ret) {
330 dev_err(dev, "%s: regulator_enable() failed!\n",
331 __func__);
332 goto out;
333 }
334 ret = clk_enable(device_data->clk);
335 if (ret) {
336 dev_err(dev, "%s: clk_enable() failed!\n", __func__);
337 ret = regulator_disable(
338 device_data->regulator);
339 goto out;
340 }
341 device_data->power_state = true;
342 }
343
344 if (device_data->restore_dev_state) {
345 if (restore_device_state) {
346 device_data->restore_dev_state = false;
347 hash_resume_state(device_data, &device_data->state);
348 }
349 }
350 out:
351 spin_unlock(&device_data->power_state_lock);
352
353 return ret;
354 }
355
356 /**
357 * hash_get_device_data - Checks for an available hash device and return it.
358 * @hash_ctx: Structure for the hash context.
359 * @device_data: Structure for the hash device.
360 *
361 * This function check for an available hash device and return it to
362 * the caller.
363 * Note! Caller need to release the device, calling up().
364 */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)365 static int hash_get_device_data(struct hash_ctx *ctx,
366 struct hash_device_data **device_data)
367 {
368 int ret;
369 struct klist_iter device_iterator;
370 struct klist_node *device_node;
371 struct hash_device_data *local_device_data = NULL;
372
373 /* Wait until a device is available */
374 ret = down_interruptible(&driver_data.device_allocation);
375 if (ret)
376 return ret; /* Interrupted */
377
378 /* Select a device */
379 klist_iter_init(&driver_data.device_list, &device_iterator);
380 device_node = klist_next(&device_iterator);
381 while (device_node) {
382 local_device_data = container_of(device_node,
383 struct hash_device_data, list_node);
384 spin_lock(&local_device_data->ctx_lock);
385 /* current_ctx allocates a device, NULL = unallocated */
386 if (local_device_data->current_ctx) {
387 device_node = klist_next(&device_iterator);
388 } else {
389 local_device_data->current_ctx = ctx;
390 ctx->device = local_device_data;
391 spin_unlock(&local_device_data->ctx_lock);
392 break;
393 }
394 spin_unlock(&local_device_data->ctx_lock);
395 }
396 klist_iter_exit(&device_iterator);
397
398 if (!device_node) {
399 /**
400 * No free device found.
401 * Since we allocated a device with down_interruptible, this
402 * should not be able to happen.
403 * Number of available devices, which are contained in
404 * device_allocation, is therefore decremented by not doing
405 * an up(device_allocation).
406 */
407 return -EBUSY;
408 }
409
410 *device_data = local_device_data;
411
412 return 0;
413 }
414
415 /**
416 * hash_hw_write_key - Writes the key to the hardware registries.
417 *
418 * @device_data: Structure for the hash device.
419 * @key: Key to be written.
420 * @keylen: The lengt of the key.
421 *
422 * Note! This function DOES NOT write to the NBLW registry, even though
423 * specified in the the hw design spec. Either due to incorrect info in the
424 * spec or due to a bug in the hw.
425 */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)426 static void hash_hw_write_key(struct hash_device_data *device_data,
427 const u8 *key, unsigned int keylen)
428 {
429 u32 word = 0;
430 int nwords = 1;
431
432 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
433
434 while (keylen >= 4) {
435 u32 *key_word = (u32 *)key;
436
437 HASH_SET_DIN(key_word, nwords);
438 keylen -= 4;
439 key += 4;
440 }
441
442 /* Take care of the remaining bytes in the last word */
443 if (keylen) {
444 word = 0;
445 while (keylen) {
446 word |= (key[keylen - 1] << (8 * (keylen - 1)));
447 keylen--;
448 }
449
450 HASH_SET_DIN(&word, nwords);
451 }
452
453 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
454 cpu_relax();
455
456 HASH_SET_DCAL;
457
458 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
459 cpu_relax();
460 }
461
462 /**
463 * init_hash_hw - Initialise the hash hardware for a new calculation.
464 * @device_data: Structure for the hash device.
465 * @ctx: The hash context.
466 *
467 * This function will enable the bits needed to clear and start a new
468 * calculation.
469 */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)470 static int init_hash_hw(struct hash_device_data *device_data,
471 struct hash_ctx *ctx)
472 {
473 int ret = 0;
474
475 ret = hash_setconfiguration(device_data, &ctx->config);
476 if (ret) {
477 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
478 __func__);
479 return ret;
480 }
481
482 hash_begin(device_data, ctx);
483
484 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
485 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
486
487 return ret;
488 }
489
490 /**
491 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
492 *
493 * @sg: Scatterlist.
494 * @size: Size in bytes.
495 * @aligned: True if sg data aligned to work in DMA mode.
496 *
497 */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)498 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
499 {
500 int nents = 0;
501 bool aligned_data = true;
502
503 while (size > 0 && sg) {
504 nents++;
505 size -= sg->length;
506
507 /* hash_set_dma_transfer will align last nent */
508 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
509 (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
510 aligned_data = false;
511
512 sg = sg_next(sg);
513 }
514
515 if (aligned)
516 *aligned = aligned_data;
517
518 if (size != 0)
519 return -EFAULT;
520
521 return nents;
522 }
523
524 /**
525 * hash_dma_valid_data - checks for dma valid sg data.
526 * @sg: Scatterlist.
527 * @datasize: Datasize in bytes.
528 *
529 * NOTE! This function checks for dma valid sg data, since dma
530 * only accept datasizes of even wordsize.
531 */
hash_dma_valid_data(struct scatterlist * sg,int datasize)532 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
533 {
534 bool aligned;
535
536 /* Need to include at least one nent, else error */
537 if (hash_get_nents(sg, datasize, &aligned) < 1)
538 return false;
539
540 return aligned;
541 }
542
543 /**
544 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
545 * @req: The hash request for the job.
546 *
547 * Initialize structures.
548 */
ux500_hash_init(struct ahash_request * req)549 static int ux500_hash_init(struct ahash_request *req)
550 {
551 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
553 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
554
555 if (!ctx->key)
556 ctx->keylen = 0;
557
558 memset(&req_ctx->state, 0, sizeof(struct hash_state));
559 req_ctx->updated = 0;
560 if (hash_mode == HASH_MODE_DMA) {
561 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
562 req_ctx->dma_mode = false; /* Don't use DMA */
563
564 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
565 __func__, HASH_DMA_ALIGN_SIZE);
566 } else {
567 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
568 hash_dma_valid_data(req->src, req->nbytes)) {
569 req_ctx->dma_mode = true;
570 } else {
571 req_ctx->dma_mode = false;
572 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573 __func__,
574 HASH_DMA_PERFORMANCE_MIN_SIZE);
575 }
576 }
577 }
578 return 0;
579 }
580
581 /**
582 * hash_processblock - This function processes a single block of 512 bits (64
583 * bytes), word aligned, starting at message.
584 * @device_data: Structure for the hash device.
585 * @message: Block (512 bits) of message to be written to
586 * the HASH hardware.
587 *
588 */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)589 static void hash_processblock(struct hash_device_data *device_data,
590 const u32 *message, int length)
591 {
592 int len = length / HASH_BYTES_PER_WORD;
593 /*
594 * NBLW bits. Reset the number of bits in last word (NBLW).
595 */
596 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
597
598 /*
599 * Write message data to the HASH_DIN register.
600 */
601 HASH_SET_DIN(message, len);
602 }
603
604 /**
605 * hash_messagepad - Pads a message and write the nblw bits.
606 * @device_data: Structure for the hash device.
607 * @message: Last word of a message.
608 * @index_bytes: The number of bytes in the last message.
609 *
610 * This function manages the final part of the digest calculation, when less
611 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
612 *
613 */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)614 static void hash_messagepad(struct hash_device_data *device_data,
615 const u32 *message, u8 index_bytes)
616 {
617 int nwords = 1;
618
619 /*
620 * Clear hash str register, only clear NBLW
621 * since DCAL will be reset by hardware.
622 */
623 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
624
625 /* Main loop */
626 while (index_bytes >= 4) {
627 HASH_SET_DIN(message, nwords);
628 index_bytes -= 4;
629 message++;
630 }
631
632 if (index_bytes)
633 HASH_SET_DIN(message, nwords);
634
635 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
636 cpu_relax();
637
638 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
639 HASH_SET_NBLW(index_bytes * 8);
640 dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
641 __func__, readl_relaxed(&device_data->base->din),
642 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
643 HASH_SET_DCAL;
644 dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
645 __func__, readl_relaxed(&device_data->base->din),
646 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
647
648 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
649 cpu_relax();
650 }
651
652 /**
653 * hash_incrementlength - Increments the length of the current message.
654 * @ctx: Hash context
655 * @incr: Length of message processed already
656 *
657 * Overflow cannot occur, because conditions for overflow are checked in
658 * hash_hw_update.
659 */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)660 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
661 {
662 ctx->state.length.low_word += incr;
663
664 /* Check for wrap-around */
665 if (ctx->state.length.low_word < incr)
666 ctx->state.length.high_word++;
667 }
668
669 /**
670 * hash_setconfiguration - Sets the required configuration for the hash
671 * hardware.
672 * @device_data: Structure for the hash device.
673 * @config: Pointer to a configuration structure.
674 */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)675 int hash_setconfiguration(struct hash_device_data *device_data,
676 struct hash_config *config)
677 {
678 int ret = 0;
679
680 if (config->algorithm != HASH_ALGO_SHA1 &&
681 config->algorithm != HASH_ALGO_SHA256)
682 return -EPERM;
683
684 /*
685 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
686 * to be written to HASH_DIN is considered as 32 bits.
687 */
688 HASH_SET_DATA_FORMAT(config->data_format);
689
690 /*
691 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692 */
693 switch (config->algorithm) {
694 case HASH_ALGO_SHA1:
695 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
696 break;
697
698 case HASH_ALGO_SHA256:
699 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
700 break;
701
702 default:
703 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
704 __func__);
705 return -EPERM;
706 }
707
708 /*
709 * MODE bit. This bit selects between HASH or HMAC mode for the
710 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711 */
712 if (HASH_OPER_MODE_HASH == config->oper_mode)
713 HASH_CLEAR_BITS(&device_data->base->cr,
714 HASH_CR_MODE_MASK);
715 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
716 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
717 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
718 /* Truncate key to blocksize */
719 dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
720 HASH_SET_BITS(&device_data->base->cr,
721 HASH_CR_LKEY_MASK);
722 } else {
723 dev_dbg(device_data->dev, "%s: LKEY cleared\n",
724 __func__);
725 HASH_CLEAR_BITS(&device_data->base->cr,
726 HASH_CR_LKEY_MASK);
727 }
728 } else { /* Wrong hash mode */
729 ret = -EPERM;
730 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
731 __func__);
732 }
733 return ret;
734 }
735
736 /**
737 * hash_begin - This routine resets some globals and initializes the hash
738 * hardware.
739 * @device_data: Structure for the hash device.
740 * @ctx: Hash context.
741 */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)742 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
743 {
744 /* HW and SW initializations */
745 /* Note: there is no need to initialize buffer and digest members */
746
747 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
748 cpu_relax();
749
750 /*
751 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
752 * prepare the initialize the HASH accelerator to compute the message
753 * digest of a new message.
754 */
755 HASH_INITIALIZE;
756
757 /*
758 * NBLW bits. Reset the number of bits in last word (NBLW).
759 */
760 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
761 }
762
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)763 static int hash_process_data(struct hash_device_data *device_data,
764 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
765 int msg_length, u8 *data_buffer, u8 *buffer,
766 u8 *index)
767 {
768 int ret = 0;
769 u32 count;
770
771 do {
772 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
773 for (count = 0; count < msg_length; count++) {
774 buffer[*index + count] =
775 *(data_buffer + count);
776 }
777 *index += msg_length;
778 msg_length = 0;
779 } else {
780 if (req_ctx->updated) {
781 ret = hash_resume_state(device_data,
782 &device_data->state);
783 memmove(req_ctx->state.buffer,
784 device_data->state.buffer,
785 HASH_BLOCK_SIZE);
786 if (ret) {
787 dev_err(device_data->dev,
788 "%s: hash_resume_state() failed!\n",
789 __func__);
790 goto out;
791 }
792 } else {
793 ret = init_hash_hw(device_data, ctx);
794 if (ret) {
795 dev_err(device_data->dev,
796 "%s: init_hash_hw() failed!\n",
797 __func__);
798 goto out;
799 }
800 req_ctx->updated = 1;
801 }
802 /*
803 * If 'data_buffer' is four byte aligned and
804 * local buffer does not have any data, we can
805 * write data directly from 'data_buffer' to
806 * HW peripheral, otherwise we first copy data
807 * to a local buffer
808 */
809 if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
810 (0 == *index))
811 hash_processblock(device_data,
812 (const u32 *)data_buffer,
813 HASH_BLOCK_SIZE);
814 else {
815 for (count = 0;
816 count < (u32)(HASH_BLOCK_SIZE - *index);
817 count++) {
818 buffer[*index + count] =
819 *(data_buffer + count);
820 }
821 hash_processblock(device_data,
822 (const u32 *)buffer,
823 HASH_BLOCK_SIZE);
824 }
825 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
826 data_buffer += (HASH_BLOCK_SIZE - *index);
827
828 msg_length -= (HASH_BLOCK_SIZE - *index);
829 *index = 0;
830
831 ret = hash_save_state(device_data,
832 &device_data->state);
833
834 memmove(device_data->state.buffer,
835 req_ctx->state.buffer,
836 HASH_BLOCK_SIZE);
837 if (ret) {
838 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
839 __func__);
840 goto out;
841 }
842 }
843 } while (msg_length != 0);
844 out:
845
846 return ret;
847 }
848
849 /**
850 * hash_dma_final - The hash dma final function for SHA1/SHA256.
851 * @req: The hash request for the job.
852 */
hash_dma_final(struct ahash_request * req)853 static int hash_dma_final(struct ahash_request *req)
854 {
855 int ret = 0;
856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
858 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
859 struct hash_device_data *device_data;
860 u8 digest[SHA256_DIGEST_SIZE];
861 int bytes_written = 0;
862
863 ret = hash_get_device_data(ctx, &device_data);
864 if (ret)
865 return ret;
866
867 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
868 (unsigned long)ctx);
869
870 if (req_ctx->updated) {
871 ret = hash_resume_state(device_data, &device_data->state);
872
873 if (ret) {
874 dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
875 __func__);
876 goto out;
877 }
878 }
879
880 if (!req_ctx->updated) {
881 ret = hash_setconfiguration(device_data, &ctx->config);
882 if (ret) {
883 dev_err(device_data->dev,
884 "%s: hash_setconfiguration() failed!\n",
885 __func__);
886 goto out;
887 }
888
889 /* Enable DMA input */
890 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891 HASH_CLEAR_BITS(&device_data->base->cr,
892 HASH_CR_DMAE_MASK);
893 } else {
894 HASH_SET_BITS(&device_data->base->cr,
895 HASH_CR_DMAE_MASK);
896 HASH_SET_BITS(&device_data->base->cr,
897 HASH_CR_PRIVN_MASK);
898 }
899
900 HASH_INITIALIZE;
901
902 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904
905 /* Number of bits in last word = (nbytes * 8) % 32 */
906 HASH_SET_NBLW((req->nbytes * 8) % 32);
907 req_ctx->updated = 1;
908 }
909
910 /* Store the nents in the dma struct. */
911 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912 if (!ctx->device->dma.nents) {
913 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914 __func__);
915 ret = ctx->device->dma.nents;
916 goto out;
917 }
918
919 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920 if (bytes_written != req->nbytes) {
921 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922 __func__);
923 ret = bytes_written;
924 goto out;
925 }
926
927 wait_for_completion(&ctx->device->dma.complete);
928 hash_dma_done(ctx);
929
930 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931 cpu_relax();
932
933 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934 unsigned int keylen = ctx->keylen;
935 u8 *key = ctx->key;
936
937 dev_dbg(device_data->dev, "%s: keylen: %d\n",
938 __func__, ctx->keylen);
939 hash_hw_write_key(device_data, key, keylen);
940 }
941
942 hash_get_digest(device_data, digest, ctx->config.algorithm);
943 memcpy(req->result, digest, ctx->digestsize);
944
945 out:
946 release_hash_device(device_data);
947
948 /**
949 * Allocated in setkey, and only used in HMAC.
950 */
951 kfree(ctx->key);
952
953 return ret;
954 }
955
956 /**
957 * hash_hw_final - The final hash calculation function
958 * @req: The hash request for the job.
959 */
hash_hw_final(struct ahash_request * req)960 static int hash_hw_final(struct ahash_request *req)
961 {
962 int ret = 0;
963 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966 struct hash_device_data *device_data;
967 u8 digest[SHA256_DIGEST_SIZE];
968
969 ret = hash_get_device_data(ctx, &device_data);
970 if (ret)
971 return ret;
972
973 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974 (unsigned long)ctx);
975
976 if (req_ctx->updated) {
977 ret = hash_resume_state(device_data, &device_data->state);
978
979 if (ret) {
980 dev_err(device_data->dev,
981 "%s: hash_resume_state() failed!\n", __func__);
982 goto out;
983 }
984 } else if (req->nbytes == 0 && ctx->keylen == 0) {
985 u8 zero_hash[SHA256_DIGEST_SIZE];
986 u32 zero_hash_size = 0;
987 bool zero_digest = false;
988 /**
989 * Use a pre-calculated empty message digest
990 * (workaround since hw return zeroes, hw bug!?)
991 */
992 ret = get_empty_message_digest(device_data, &zero_hash[0],
993 &zero_hash_size, &zero_digest);
994 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995 zero_digest) {
996 memcpy(req->result, &zero_hash[0], ctx->digestsize);
997 goto out;
998 } else if (!ret && !zero_digest) {
999 dev_dbg(device_data->dev,
1000 "%s: HMAC zero msg with key, continue...\n",
1001 __func__);
1002 } else {
1003 dev_err(device_data->dev,
1004 "%s: ret=%d, or wrong digest size? %s\n",
1005 __func__, ret,
1006 zero_hash_size == ctx->digestsize ?
1007 "true" : "false");
1008 /* Return error */
1009 goto out;
1010 }
1011 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1012 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1013 __func__);
1014 goto out;
1015 }
1016
1017 if (!req_ctx->updated) {
1018 ret = init_hash_hw(device_data, ctx);
1019 if (ret) {
1020 dev_err(device_data->dev,
1021 "%s: init_hash_hw() failed!\n", __func__);
1022 goto out;
1023 }
1024 }
1025
1026 if (req_ctx->state.index) {
1027 hash_messagepad(device_data, req_ctx->state.buffer,
1028 req_ctx->state.index);
1029 } else {
1030 HASH_SET_DCAL;
1031 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1032 cpu_relax();
1033 }
1034
1035 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1036 unsigned int keylen = ctx->keylen;
1037 u8 *key = ctx->key;
1038
1039 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1040 __func__, ctx->keylen);
1041 hash_hw_write_key(device_data, key, keylen);
1042 }
1043
1044 hash_get_digest(device_data, digest, ctx->config.algorithm);
1045 memcpy(req->result, digest, ctx->digestsize);
1046
1047 out:
1048 release_hash_device(device_data);
1049
1050 /**
1051 * Allocated in setkey, and only used in HMAC.
1052 */
1053 kfree(ctx->key);
1054
1055 return ret;
1056 }
1057
1058 /**
1059 * hash_hw_update - Updates current HASH computation hashing another part of
1060 * the message.
1061 * @req: Byte array containing the message to be hashed (caller
1062 * allocated).
1063 */
hash_hw_update(struct ahash_request * req)1064 int hash_hw_update(struct ahash_request *req)
1065 {
1066 int ret = 0;
1067 u8 index = 0;
1068 u8 *buffer;
1069 struct hash_device_data *device_data;
1070 u8 *data_buffer;
1071 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1072 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1073 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1074 struct crypto_hash_walk walk;
1075 int msg_length;
1076
1077 index = req_ctx->state.index;
1078 buffer = (u8 *)req_ctx->state.buffer;
1079
1080 ret = hash_get_device_data(ctx, &device_data);
1081 if (ret)
1082 return ret;
1083
1084 msg_length = crypto_hash_walk_first(req, &walk);
1085
1086 /* Empty message ("") is correct indata */
1087 if (msg_length == 0) {
1088 ret = 0;
1089 goto release_dev;
1090 }
1091
1092 /* Check if ctx->state.length + msg_length
1093 overflows */
1094 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1095 HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1096 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1097 ret = crypto_hash_walk_done(&walk, -EPERM);
1098 goto release_dev;
1099 }
1100
1101 /* Main loop */
1102 while (0 != msg_length) {
1103 data_buffer = walk.data;
1104 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1105 data_buffer, buffer, &index);
1106
1107 if (ret) {
1108 dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1109 __func__);
1110 crypto_hash_walk_done(&walk, ret);
1111 goto release_dev;
1112 }
1113
1114 msg_length = crypto_hash_walk_done(&walk, 0);
1115 }
1116
1117 req_ctx->state.index = index;
1118 dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1119 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1120
1121 release_dev:
1122 release_hash_device(device_data);
1123
1124 return ret;
1125 }
1126
1127 /**
1128 * hash_resume_state - Function that resumes the state of an calculation.
1129 * @device_data: Pointer to the device structure.
1130 * @device_state: The state to be restored in the hash hardware
1131 */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1132 int hash_resume_state(struct hash_device_data *device_data,
1133 const struct hash_state *device_state)
1134 {
1135 u32 temp_cr;
1136 s32 count;
1137 int hash_mode = HASH_OPER_MODE_HASH;
1138
1139 if (NULL == device_state) {
1140 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1141 __func__);
1142 return -EPERM;
1143 }
1144
1145 /* Check correctness of index and length members */
1146 if (device_state->index > HASH_BLOCK_SIZE ||
1147 (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1148 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1149 __func__);
1150 return -EPERM;
1151 }
1152
1153 /*
1154 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1155 * prepare the initialize the HASH accelerator to compute the message
1156 * digest of a new message.
1157 */
1158 HASH_INITIALIZE;
1159
1160 temp_cr = device_state->temp_cr;
1161 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1162
1163 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1164 hash_mode = HASH_OPER_MODE_HMAC;
1165 else
1166 hash_mode = HASH_OPER_MODE_HASH;
1167
1168 for (count = 0; count < HASH_CSR_COUNT; count++) {
1169 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1170 break;
1171
1172 writel_relaxed(device_state->csr[count],
1173 &device_data->base->csrx[count]);
1174 }
1175
1176 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1177 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1178
1179 writel_relaxed(device_state->str_reg, &device_data->base->str);
1180 writel_relaxed(temp_cr, &device_data->base->cr);
1181
1182 return 0;
1183 }
1184
1185 /**
1186 * hash_save_state - Function that saves the state of hardware.
1187 * @device_data: Pointer to the device structure.
1188 * @device_state: The strucure where the hardware state should be saved.
1189 */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1190 int hash_save_state(struct hash_device_data *device_data,
1191 struct hash_state *device_state)
1192 {
1193 u32 temp_cr;
1194 u32 count;
1195 int hash_mode = HASH_OPER_MODE_HASH;
1196
1197 if (NULL == device_state) {
1198 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1199 __func__);
1200 return -ENOTSUPP;
1201 }
1202
1203 /* Write dummy value to force digest intermediate calculation. This
1204 * actually makes sure that there isn't any ongoing calculation in the
1205 * hardware.
1206 */
1207 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1208 cpu_relax();
1209
1210 temp_cr = readl_relaxed(&device_data->base->cr);
1211
1212 device_state->str_reg = readl_relaxed(&device_data->base->str);
1213
1214 device_state->din_reg = readl_relaxed(&device_data->base->din);
1215
1216 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1217 hash_mode = HASH_OPER_MODE_HMAC;
1218 else
1219 hash_mode = HASH_OPER_MODE_HASH;
1220
1221 for (count = 0; count < HASH_CSR_COUNT; count++) {
1222 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1223 break;
1224
1225 device_state->csr[count] =
1226 readl_relaxed(&device_data->base->csrx[count]);
1227 }
1228
1229 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1230 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1231
1232 device_state->temp_cr = temp_cr;
1233
1234 return 0;
1235 }
1236
1237 /**
1238 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1239 * @device_data:
1240 *
1241 */
hash_check_hw(struct hash_device_data * device_data)1242 int hash_check_hw(struct hash_device_data *device_data)
1243 {
1244 /* Checking Peripheral Ids */
1245 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1246 HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1247 HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1248 HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1249 HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1250 HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1251 HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1252 HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1253 return 0;
1254 }
1255
1256 dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1257 return -ENOTSUPP;
1258 }
1259
1260 /**
1261 * hash_get_digest - Gets the digest.
1262 * @device_data: Pointer to the device structure.
1263 * @digest: User allocated byte array for the calculated digest.
1264 * @algorithm: The algorithm in use.
1265 */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1266 void hash_get_digest(struct hash_device_data *device_data,
1267 u8 *digest, int algorithm)
1268 {
1269 u32 temp_hx_val, count;
1270 int loop_ctr;
1271
1272 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1273 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1274 __func__, algorithm);
1275 return;
1276 }
1277
1278 if (algorithm == HASH_ALGO_SHA1)
1279 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1280 else
1281 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1282
1283 dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1284 __func__, (unsigned long)digest);
1285
1286 /* Copy result into digest array */
1287 for (count = 0; count < loop_ctr; count++) {
1288 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1289 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1290 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1291 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1292 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1293 }
1294 }
1295
1296 /**
1297 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1298 * @req: The hash request for the job.
1299 */
ahash_update(struct ahash_request * req)1300 static int ahash_update(struct ahash_request *req)
1301 {
1302 int ret = 0;
1303 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1304
1305 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1306 ret = hash_hw_update(req);
1307 /* Skip update for DMA, all data will be passed to DMA in final */
1308
1309 if (ret) {
1310 pr_err("%s: hash_hw_update() failed!\n", __func__);
1311 }
1312
1313 return ret;
1314 }
1315
1316 /**
1317 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1318 * @req: The hash request for the job.
1319 */
ahash_final(struct ahash_request * req)1320 static int ahash_final(struct ahash_request *req)
1321 {
1322 int ret = 0;
1323 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1324
1325 pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1326
1327 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1328 ret = hash_dma_final(req);
1329 else
1330 ret = hash_hw_final(req);
1331
1332 if (ret) {
1333 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1334 }
1335
1336 return ret;
1337 }
1338
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1339 static int hash_setkey(struct crypto_ahash *tfm,
1340 const u8 *key, unsigned int keylen, int alg)
1341 {
1342 int ret = 0;
1343 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1344
1345 /**
1346 * Freed in final.
1347 */
1348 ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1349 if (!ctx->key) {
1350 pr_err("%s: Failed to allocate ctx->key for %d\n",
1351 __func__, alg);
1352 return -ENOMEM;
1353 }
1354 ctx->keylen = keylen;
1355
1356 return ret;
1357 }
1358
ahash_sha1_init(struct ahash_request * req)1359 static int ahash_sha1_init(struct ahash_request *req)
1360 {
1361 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1362 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1363
1364 ctx->config.data_format = HASH_DATA_8_BITS;
1365 ctx->config.algorithm = HASH_ALGO_SHA1;
1366 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1367 ctx->digestsize = SHA1_DIGEST_SIZE;
1368
1369 return ux500_hash_init(req);
1370 }
1371
ahash_sha256_init(struct ahash_request * req)1372 static int ahash_sha256_init(struct ahash_request *req)
1373 {
1374 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1375 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1376
1377 ctx->config.data_format = HASH_DATA_8_BITS;
1378 ctx->config.algorithm = HASH_ALGO_SHA256;
1379 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1380 ctx->digestsize = SHA256_DIGEST_SIZE;
1381
1382 return ux500_hash_init(req);
1383 }
1384
ahash_sha1_digest(struct ahash_request * req)1385 static int ahash_sha1_digest(struct ahash_request *req)
1386 {
1387 int ret2, ret1;
1388
1389 ret1 = ahash_sha1_init(req);
1390 if (ret1)
1391 goto out;
1392
1393 ret1 = ahash_update(req);
1394 ret2 = ahash_final(req);
1395
1396 out:
1397 return ret1 ? ret1 : ret2;
1398 }
1399
ahash_sha256_digest(struct ahash_request * req)1400 static int ahash_sha256_digest(struct ahash_request *req)
1401 {
1402 int ret2, ret1;
1403
1404 ret1 = ahash_sha256_init(req);
1405 if (ret1)
1406 goto out;
1407
1408 ret1 = ahash_update(req);
1409 ret2 = ahash_final(req);
1410
1411 out:
1412 return ret1 ? ret1 : ret2;
1413 }
1414
ahash_noimport(struct ahash_request * req,const void * in)1415 static int ahash_noimport(struct ahash_request *req, const void *in)
1416 {
1417 return -ENOSYS;
1418 }
1419
ahash_noexport(struct ahash_request * req,void * out)1420 static int ahash_noexport(struct ahash_request *req, void *out)
1421 {
1422 return -ENOSYS;
1423 }
1424
hmac_sha1_init(struct ahash_request * req)1425 static int hmac_sha1_init(struct ahash_request *req)
1426 {
1427 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1428 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1429
1430 ctx->config.data_format = HASH_DATA_8_BITS;
1431 ctx->config.algorithm = HASH_ALGO_SHA1;
1432 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1433 ctx->digestsize = SHA1_DIGEST_SIZE;
1434
1435 return ux500_hash_init(req);
1436 }
1437
hmac_sha256_init(struct ahash_request * req)1438 static int hmac_sha256_init(struct ahash_request *req)
1439 {
1440 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1441 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1442
1443 ctx->config.data_format = HASH_DATA_8_BITS;
1444 ctx->config.algorithm = HASH_ALGO_SHA256;
1445 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1446 ctx->digestsize = SHA256_DIGEST_SIZE;
1447
1448 return ux500_hash_init(req);
1449 }
1450
hmac_sha1_digest(struct ahash_request * req)1451 static int hmac_sha1_digest(struct ahash_request *req)
1452 {
1453 int ret2, ret1;
1454
1455 ret1 = hmac_sha1_init(req);
1456 if (ret1)
1457 goto out;
1458
1459 ret1 = ahash_update(req);
1460 ret2 = ahash_final(req);
1461
1462 out:
1463 return ret1 ? ret1 : ret2;
1464 }
1465
hmac_sha256_digest(struct ahash_request * req)1466 static int hmac_sha256_digest(struct ahash_request *req)
1467 {
1468 int ret2, ret1;
1469
1470 ret1 = hmac_sha256_init(req);
1471 if (ret1)
1472 goto out;
1473
1474 ret1 = ahash_update(req);
1475 ret2 = ahash_final(req);
1476
1477 out:
1478 return ret1 ? ret1 : ret2;
1479 }
1480
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1481 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1482 const u8 *key, unsigned int keylen)
1483 {
1484 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1485 }
1486
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1487 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1488 const u8 *key, unsigned int keylen)
1489 {
1490 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1491 }
1492
1493 struct hash_algo_template {
1494 struct hash_config conf;
1495 struct ahash_alg hash;
1496 };
1497
hash_cra_init(struct crypto_tfm * tfm)1498 static int hash_cra_init(struct crypto_tfm *tfm)
1499 {
1500 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1501 struct crypto_alg *alg = tfm->__crt_alg;
1502 struct hash_algo_template *hash_alg;
1503
1504 hash_alg = container_of(__crypto_ahash_alg(alg),
1505 struct hash_algo_template,
1506 hash);
1507
1508 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1509 sizeof(struct hash_req_ctx));
1510
1511 ctx->config.data_format = HASH_DATA_8_BITS;
1512 ctx->config.algorithm = hash_alg->conf.algorithm;
1513 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1514
1515 ctx->digestsize = hash_alg->hash.halg.digestsize;
1516
1517 return 0;
1518 }
1519
1520 static struct hash_algo_template hash_algs[] = {
1521 {
1522 .conf.algorithm = HASH_ALGO_SHA1,
1523 .conf.oper_mode = HASH_OPER_MODE_HASH,
1524 .hash = {
1525 .init = ux500_hash_init,
1526 .update = ahash_update,
1527 .final = ahash_final,
1528 .digest = ahash_sha1_digest,
1529 .export = ahash_noexport,
1530 .import = ahash_noimport,
1531 .halg.digestsize = SHA1_DIGEST_SIZE,
1532 .halg.statesize = sizeof(struct hash_ctx),
1533 .halg.base = {
1534 .cra_name = "sha1",
1535 .cra_driver_name = "sha1-ux500",
1536 .cra_flags = CRYPTO_ALG_ASYNC,
1537 .cra_blocksize = SHA1_BLOCK_SIZE,
1538 .cra_ctxsize = sizeof(struct hash_ctx),
1539 .cra_init = hash_cra_init,
1540 .cra_module = THIS_MODULE,
1541 }
1542 }
1543 },
1544 {
1545 .conf.algorithm = HASH_ALGO_SHA256,
1546 .conf.oper_mode = HASH_OPER_MODE_HASH,
1547 .hash = {
1548 .init = ux500_hash_init,
1549 .update = ahash_update,
1550 .final = ahash_final,
1551 .digest = ahash_sha256_digest,
1552 .export = ahash_noexport,
1553 .import = ahash_noimport,
1554 .halg.digestsize = SHA256_DIGEST_SIZE,
1555 .halg.statesize = sizeof(struct hash_ctx),
1556 .halg.base = {
1557 .cra_name = "sha256",
1558 .cra_driver_name = "sha256-ux500",
1559 .cra_flags = CRYPTO_ALG_ASYNC,
1560 .cra_blocksize = SHA256_BLOCK_SIZE,
1561 .cra_ctxsize = sizeof(struct hash_ctx),
1562 .cra_init = hash_cra_init,
1563 .cra_module = THIS_MODULE,
1564 }
1565 }
1566 },
1567 {
1568 .conf.algorithm = HASH_ALGO_SHA1,
1569 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1570 .hash = {
1571 .init = ux500_hash_init,
1572 .update = ahash_update,
1573 .final = ahash_final,
1574 .digest = hmac_sha1_digest,
1575 .setkey = hmac_sha1_setkey,
1576 .export = ahash_noexport,
1577 .import = ahash_noimport,
1578 .halg.digestsize = SHA1_DIGEST_SIZE,
1579 .halg.statesize = sizeof(struct hash_ctx),
1580 .halg.base = {
1581 .cra_name = "hmac(sha1)",
1582 .cra_driver_name = "hmac-sha1-ux500",
1583 .cra_flags = CRYPTO_ALG_ASYNC,
1584 .cra_blocksize = SHA1_BLOCK_SIZE,
1585 .cra_ctxsize = sizeof(struct hash_ctx),
1586 .cra_init = hash_cra_init,
1587 .cra_module = THIS_MODULE,
1588 }
1589 }
1590 },
1591 {
1592 .conf.algorithm = HASH_ALGO_SHA256,
1593 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1594 .hash = {
1595 .init = ux500_hash_init,
1596 .update = ahash_update,
1597 .final = ahash_final,
1598 .digest = hmac_sha256_digest,
1599 .setkey = hmac_sha256_setkey,
1600 .export = ahash_noexport,
1601 .import = ahash_noimport,
1602 .halg.digestsize = SHA256_DIGEST_SIZE,
1603 .halg.statesize = sizeof(struct hash_ctx),
1604 .halg.base = {
1605 .cra_name = "hmac(sha256)",
1606 .cra_driver_name = "hmac-sha256-ux500",
1607 .cra_flags = CRYPTO_ALG_ASYNC,
1608 .cra_blocksize = SHA256_BLOCK_SIZE,
1609 .cra_ctxsize = sizeof(struct hash_ctx),
1610 .cra_init = hash_cra_init,
1611 .cra_module = THIS_MODULE,
1612 }
1613 }
1614 }
1615 };
1616
1617 /**
1618 * hash_algs_register_all -
1619 */
ahash_algs_register_all(struct hash_device_data * device_data)1620 static int ahash_algs_register_all(struct hash_device_data *device_data)
1621 {
1622 int ret;
1623 int i;
1624 int count;
1625
1626 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1627 ret = crypto_register_ahash(&hash_algs[i].hash);
1628 if (ret) {
1629 count = i;
1630 dev_err(device_data->dev, "%s: alg registration failed\n",
1631 hash_algs[i].hash.halg.base.cra_driver_name);
1632 goto unreg;
1633 }
1634 }
1635 return 0;
1636 unreg:
1637 for (i = 0; i < count; i++)
1638 crypto_unregister_ahash(&hash_algs[i].hash);
1639 return ret;
1640 }
1641
1642 /**
1643 * hash_algs_unregister_all -
1644 */
ahash_algs_unregister_all(struct hash_device_data * device_data)1645 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1646 {
1647 int i;
1648
1649 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1650 crypto_unregister_ahash(&hash_algs[i].hash);
1651 }
1652
1653 /**
1654 * ux500_hash_probe - Function that probes the hash hardware.
1655 * @pdev: The platform device.
1656 */
ux500_hash_probe(struct platform_device * pdev)1657 static int ux500_hash_probe(struct platform_device *pdev)
1658 {
1659 int ret = 0;
1660 struct resource *res = NULL;
1661 struct hash_device_data *device_data;
1662 struct device *dev = &pdev->dev;
1663
1664 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1665 if (!device_data) {
1666 ret = -ENOMEM;
1667 goto out;
1668 }
1669
1670 device_data->dev = dev;
1671 device_data->current_ctx = NULL;
1672
1673 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1674 if (!res) {
1675 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1676 ret = -ENODEV;
1677 goto out;
1678 }
1679
1680 device_data->phybase = res->start;
1681 device_data->base = devm_ioremap_resource(dev, res);
1682 if (IS_ERR(device_data->base)) {
1683 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1684 ret = PTR_ERR(device_data->base);
1685 goto out;
1686 }
1687 spin_lock_init(&device_data->ctx_lock);
1688 spin_lock_init(&device_data->power_state_lock);
1689
1690 /* Enable power for HASH1 hardware block */
1691 device_data->regulator = regulator_get(dev, "v-ape");
1692 if (IS_ERR(device_data->regulator)) {
1693 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1694 ret = PTR_ERR(device_data->regulator);
1695 device_data->regulator = NULL;
1696 goto out;
1697 }
1698
1699 /* Enable the clock for HASH1 hardware block */
1700 device_data->clk = devm_clk_get(dev, NULL);
1701 if (IS_ERR(device_data->clk)) {
1702 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1703 ret = PTR_ERR(device_data->clk);
1704 goto out_regulator;
1705 }
1706
1707 ret = clk_prepare(device_data->clk);
1708 if (ret) {
1709 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1710 goto out_regulator;
1711 }
1712
1713 /* Enable device power (and clock) */
1714 ret = hash_enable_power(device_data, false);
1715 if (ret) {
1716 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1717 goto out_clk_unprepare;
1718 }
1719
1720 ret = hash_check_hw(device_data);
1721 if (ret) {
1722 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1723 goto out_power;
1724 }
1725
1726 if (hash_mode == HASH_MODE_DMA)
1727 hash_dma_setup_channel(device_data, dev);
1728
1729 platform_set_drvdata(pdev, device_data);
1730
1731 /* Put the new device into the device list... */
1732 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1733 /* ... and signal that a new device is available. */
1734 up(&driver_data.device_allocation);
1735
1736 ret = ahash_algs_register_all(device_data);
1737 if (ret) {
1738 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1739 __func__);
1740 goto out_power;
1741 }
1742
1743 dev_info(dev, "successfully registered\n");
1744 return 0;
1745
1746 out_power:
1747 hash_disable_power(device_data, false);
1748
1749 out_clk_unprepare:
1750 clk_unprepare(device_data->clk);
1751
1752 out_regulator:
1753 regulator_put(device_data->regulator);
1754
1755 out:
1756 return ret;
1757 }
1758
1759 /**
1760 * ux500_hash_remove - Function that removes the hash device from the platform.
1761 * @pdev: The platform device.
1762 */
ux500_hash_remove(struct platform_device * pdev)1763 static int ux500_hash_remove(struct platform_device *pdev)
1764 {
1765 struct hash_device_data *device_data;
1766 struct device *dev = &pdev->dev;
1767
1768 device_data = platform_get_drvdata(pdev);
1769 if (!device_data) {
1770 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1771 return -ENOMEM;
1772 }
1773
1774 /* Try to decrease the number of available devices. */
1775 if (down_trylock(&driver_data.device_allocation))
1776 return -EBUSY;
1777
1778 /* Check that the device is free */
1779 spin_lock(&device_data->ctx_lock);
1780 /* current_ctx allocates a device, NULL = unallocated */
1781 if (device_data->current_ctx) {
1782 /* The device is busy */
1783 spin_unlock(&device_data->ctx_lock);
1784 /* Return the device to the pool. */
1785 up(&driver_data.device_allocation);
1786 return -EBUSY;
1787 }
1788
1789 spin_unlock(&device_data->ctx_lock);
1790
1791 /* Remove the device from the list */
1792 if (klist_node_attached(&device_data->list_node))
1793 klist_remove(&device_data->list_node);
1794
1795 /* If this was the last device, remove the services */
1796 if (list_empty(&driver_data.device_list.k_list))
1797 ahash_algs_unregister_all(device_data);
1798
1799 if (hash_disable_power(device_data, false))
1800 dev_err(dev, "%s: hash_disable_power() failed\n",
1801 __func__);
1802
1803 clk_unprepare(device_data->clk);
1804 regulator_put(device_data->regulator);
1805
1806 return 0;
1807 }
1808
1809 /**
1810 * ux500_hash_shutdown - Function that shutdown the hash device.
1811 * @pdev: The platform device
1812 */
ux500_hash_shutdown(struct platform_device * pdev)1813 static void ux500_hash_shutdown(struct platform_device *pdev)
1814 {
1815 struct hash_device_data *device_data;
1816
1817 device_data = platform_get_drvdata(pdev);
1818 if (!device_data) {
1819 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1820 __func__);
1821 return;
1822 }
1823
1824 /* Check that the device is free */
1825 spin_lock(&device_data->ctx_lock);
1826 /* current_ctx allocates a device, NULL = unallocated */
1827 if (!device_data->current_ctx) {
1828 if (down_trylock(&driver_data.device_allocation))
1829 dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1830 __func__);
1831 /**
1832 * (Allocate the device)
1833 * Need to set this to non-null (dummy) value,
1834 * to avoid usage if context switching.
1835 */
1836 device_data->current_ctx++;
1837 }
1838 spin_unlock(&device_data->ctx_lock);
1839
1840 /* Remove the device from the list */
1841 if (klist_node_attached(&device_data->list_node))
1842 klist_remove(&device_data->list_node);
1843
1844 /* If this was the last device, remove the services */
1845 if (list_empty(&driver_data.device_list.k_list))
1846 ahash_algs_unregister_all(device_data);
1847
1848 if (hash_disable_power(device_data, false))
1849 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1850 __func__);
1851 }
1852
1853 #ifdef CONFIG_PM_SLEEP
1854 /**
1855 * ux500_hash_suspend - Function that suspends the hash device.
1856 * @dev: Device to suspend.
1857 */
ux500_hash_suspend(struct device * dev)1858 static int ux500_hash_suspend(struct device *dev)
1859 {
1860 int ret;
1861 struct hash_device_data *device_data;
1862 struct hash_ctx *temp_ctx = NULL;
1863
1864 device_data = dev_get_drvdata(dev);
1865 if (!device_data) {
1866 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1867 return -ENOMEM;
1868 }
1869
1870 spin_lock(&device_data->ctx_lock);
1871 if (!device_data->current_ctx)
1872 device_data->current_ctx++;
1873 spin_unlock(&device_data->ctx_lock);
1874
1875 if (device_data->current_ctx == ++temp_ctx) {
1876 if (down_interruptible(&driver_data.device_allocation))
1877 dev_dbg(dev, "%s: down_interruptible() failed\n",
1878 __func__);
1879 ret = hash_disable_power(device_data, false);
1880
1881 } else {
1882 ret = hash_disable_power(device_data, true);
1883 }
1884
1885 if (ret)
1886 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1887
1888 return ret;
1889 }
1890
1891 /**
1892 * ux500_hash_resume - Function that resume the hash device.
1893 * @dev: Device to resume.
1894 */
ux500_hash_resume(struct device * dev)1895 static int ux500_hash_resume(struct device *dev)
1896 {
1897 int ret = 0;
1898 struct hash_device_data *device_data;
1899 struct hash_ctx *temp_ctx = NULL;
1900
1901 device_data = dev_get_drvdata(dev);
1902 if (!device_data) {
1903 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1904 return -ENOMEM;
1905 }
1906
1907 spin_lock(&device_data->ctx_lock);
1908 if (device_data->current_ctx == ++temp_ctx)
1909 device_data->current_ctx = NULL;
1910 spin_unlock(&device_data->ctx_lock);
1911
1912 if (!device_data->current_ctx)
1913 up(&driver_data.device_allocation);
1914 else
1915 ret = hash_enable_power(device_data, true);
1916
1917 if (ret)
1918 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1919
1920 return ret;
1921 }
1922 #endif
1923
1924 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1925
1926 static const struct of_device_id ux500_hash_match[] = {
1927 { .compatible = "stericsson,ux500-hash" },
1928 { },
1929 };
1930 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1931
1932 static struct platform_driver hash_driver = {
1933 .probe = ux500_hash_probe,
1934 .remove = ux500_hash_remove,
1935 .shutdown = ux500_hash_shutdown,
1936 .driver = {
1937 .name = "hash1",
1938 .of_match_table = ux500_hash_match,
1939 .pm = &ux500_hash_pm,
1940 }
1941 };
1942
1943 /**
1944 * ux500_hash_mod_init - The kernel module init function.
1945 */
ux500_hash_mod_init(void)1946 static int __init ux500_hash_mod_init(void)
1947 {
1948 klist_init(&driver_data.device_list, NULL, NULL);
1949 /* Initialize the semaphore to 0 devices (locked state) */
1950 sema_init(&driver_data.device_allocation, 0);
1951
1952 return platform_driver_register(&hash_driver);
1953 }
1954
1955 /**
1956 * ux500_hash_mod_fini - The kernel module exit function.
1957 */
ux500_hash_mod_fini(void)1958 static void __exit ux500_hash_mod_fini(void)
1959 {
1960 platform_driver_unregister(&hash_driver);
1961 }
1962
1963 module_init(ux500_hash_mod_init);
1964 module_exit(ux500_hash_mod_fini);
1965
1966 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1967 MODULE_LICENSE("GPL");
1968
1969 MODULE_ALIAS_CRYPTO("sha1-all");
1970 MODULE_ALIAS_CRYPTO("sha256-all");
1971 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1972 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1973