1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * Copyright (C) ST-Ericsson SA 2010
4  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
5  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
6  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
7  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
8  * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
9  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/irqreturn.h>
22 #include <linux/kernel.h>
23 #include <linux/klist.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/semaphore.h>
29 #include <linux/platform_data/dma-ste-dma40.h>
30 
31 #include <crypto/aes.h>
32 #include <crypto/ctr.h>
33 #include <crypto/internal/des.h>
34 #include <crypto/internal/skcipher.h>
35 #include <crypto/scatterwalk.h>
36 
37 #include <linux/platform_data/crypto-ux500.h>
38 
39 #include "cryp_p.h"
40 #include "cryp.h"
41 
42 #define CRYP_MAX_KEY_SIZE	32
43 #define BYTES_PER_WORD		4
44 
45 static int cryp_mode;
46 static atomic_t session_id;
47 
48 static struct stedma40_chan_cfg *mem_to_engine;
49 static struct stedma40_chan_cfg *engine_to_mem;
50 
51 /**
52  * struct cryp_driver_data - data specific to the driver.
53  *
54  * @device_list: A list of registered devices to choose from.
55  * @device_allocation: A semaphore initialized with number of devices.
56  */
57 struct cryp_driver_data {
58 	struct klist device_list;
59 	struct semaphore device_allocation;
60 };
61 
62 /**
63  * struct cryp_ctx - Crypto context
64  * @config: Crypto mode.
65  * @key[CRYP_MAX_KEY_SIZE]: Key.
66  * @keylen: Length of key.
67  * @iv: Pointer to initialization vector.
68  * @indata: Pointer to indata.
69  * @outdata: Pointer to outdata.
70  * @datalen: Length of indata.
71  * @outlen: Length of outdata.
72  * @blocksize: Size of blocks.
73  * @updated: Updated flag.
74  * @dev_ctx: Device dependent context.
75  * @device: Pointer to the device.
76  */
77 struct cryp_ctx {
78 	struct cryp_config config;
79 	u8 key[CRYP_MAX_KEY_SIZE];
80 	u32 keylen;
81 	u8 *iv;
82 	const u8 *indata;
83 	u8 *outdata;
84 	u32 datalen;
85 	u32 outlen;
86 	u32 blocksize;
87 	u8 updated;
88 	struct cryp_device_context dev_ctx;
89 	struct cryp_device_data *device;
90 	u32 session_id;
91 };
92 
93 static struct cryp_driver_data driver_data;
94 
95 /**
96  * swap_bits_in_byte - mirror the bits in a byte
97  * @b: the byte to be mirrored
98  *
99  * The bits are swapped the following way:
100  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
101  *  nibble 2 (n2) bits 4-7.
102  *
103  *  Nibble 1 (n1):
104  *  (The "old" (moved) bit is replaced with a zero)
105  *  1. Move bit 6 and 7, 4 positions to the left.
106  *  2. Move bit 3 and 5, 2 positions to the left.
107  *  3. Move bit 1-4, 1 position to the left.
108  *
109  *  Nibble 2 (n2):
110  *  1. Move bit 0 and 1, 4 positions to the right.
111  *  2. Move bit 2 and 4, 2 positions to the right.
112  *  3. Move bit 3-6, 1 position to the right.
113  *
114  *  Combine the two nibbles to a complete and swapped byte.
115  */
116 
swap_bits_in_byte(u8 b)117 static inline u8 swap_bits_in_byte(u8 b)
118 {
119 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
120 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
121 				  right shift 2 */
122 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
123 				  right shift 1 */
124 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
125 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
126 				  left shift 2 */
127 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
128 				  left shift 1 */
129 
130 	u8 n1;
131 	u8 n2;
132 
133 	/* Swap most significant nibble */
134 	/* Right shift 4, bits 6 and 7 */
135 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
136 	/* Right shift 2, bits 3 and 5 */
137 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
138 	/* Right shift 1, bits 1-4 */
139 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
140 
141 	/* Swap least significant nibble */
142 	/* Left shift 4, bits 0 and 1 */
143 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
144 	/* Left shift 2, bits 2 and 4 */
145 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
146 	/* Left shift 1, bits 3-6 */
147 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
148 
149 	return n1 | n2;
150 }
151 
swap_words_in_key_and_bits_in_byte(const u8 * in,u8 * out,u32 len)152 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
153 						      u8 *out, u32 len)
154 {
155 	unsigned int i = 0;
156 	int j;
157 	int index = 0;
158 
159 	j = len - BYTES_PER_WORD;
160 	while (j >= 0) {
161 		for (i = 0; i < BYTES_PER_WORD; i++) {
162 			index = len - j - BYTES_PER_WORD + i;
163 			out[j + i] =
164 				swap_bits_in_byte(in[index]);
165 		}
166 		j -= BYTES_PER_WORD;
167 	}
168 }
169 
add_session_id(struct cryp_ctx * ctx)170 static void add_session_id(struct cryp_ctx *ctx)
171 {
172 	/*
173 	 * We never want 0 to be a valid value, since this is the default value
174 	 * for the software context.
175 	 */
176 	if (unlikely(atomic_inc_and_test(&session_id)))
177 		atomic_inc(&session_id);
178 
179 	ctx->session_id = atomic_read(&session_id);
180 }
181 
cryp_interrupt_handler(int irq,void * param)182 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
183 {
184 	struct cryp_ctx *ctx;
185 	int count;
186 	struct cryp_device_data *device_data;
187 
188 	if (param == NULL) {
189 		BUG_ON(!param);
190 		return IRQ_HANDLED;
191 	}
192 
193 	/* The device is coming from the one found in hw_crypt_noxts. */
194 	device_data = (struct cryp_device_data *)param;
195 
196 	ctx = device_data->current_ctx;
197 
198 	if (ctx == NULL) {
199 		BUG_ON(!ctx);
200 		return IRQ_HANDLED;
201 	}
202 
203 	dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
204 		cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
205 		"out" : "in");
206 
207 	if (cryp_pending_irq_src(device_data,
208 				 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
209 		if (ctx->outlen / ctx->blocksize > 0) {
210 			count = ctx->blocksize / 4;
211 
212 			readsl(&device_data->base->dout, ctx->outdata, count);
213 			ctx->outdata += count;
214 			ctx->outlen -= count;
215 
216 			if (ctx->outlen == 0) {
217 				cryp_disable_irq_src(device_data,
218 						     CRYP_IRQ_SRC_OUTPUT_FIFO);
219 			}
220 		}
221 	} else if (cryp_pending_irq_src(device_data,
222 					CRYP_IRQ_SRC_INPUT_FIFO)) {
223 		if (ctx->datalen / ctx->blocksize > 0) {
224 			count = ctx->blocksize / 4;
225 
226 			writesl(&device_data->base->din, ctx->indata, count);
227 
228 			ctx->indata += count;
229 			ctx->datalen -= count;
230 
231 			if (ctx->datalen == 0)
232 				cryp_disable_irq_src(device_data,
233 						   CRYP_IRQ_SRC_INPUT_FIFO);
234 
235 			if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
236 				CRYP_PUT_BITS(&device_data->base->cr,
237 					      CRYP_START_ENABLE,
238 					      CRYP_CR_START_POS,
239 					      CRYP_CR_START_MASK);
240 
241 				cryp_wait_until_done(device_data);
242 			}
243 		}
244 	}
245 
246 	return IRQ_HANDLED;
247 }
248 
mode_is_aes(enum cryp_algo_mode mode)249 static int mode_is_aes(enum cryp_algo_mode mode)
250 {
251 	return	CRYP_ALGO_AES_ECB == mode ||
252 		CRYP_ALGO_AES_CBC == mode ||
253 		CRYP_ALGO_AES_CTR == mode ||
254 		CRYP_ALGO_AES_XTS == mode;
255 }
256 
cfg_iv(struct cryp_device_data * device_data,u32 left,u32 right,enum cryp_init_vector_index index)257 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
258 		  enum cryp_init_vector_index index)
259 {
260 	struct cryp_init_vector_value vector_value;
261 
262 	dev_dbg(device_data->dev, "[%s]", __func__);
263 
264 	vector_value.init_value_left = left;
265 	vector_value.init_value_right = right;
266 
267 	return cryp_configure_init_vector(device_data,
268 					  index,
269 					  vector_value);
270 }
271 
cfg_ivs(struct cryp_device_data * device_data,struct cryp_ctx * ctx)272 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
273 {
274 	int i;
275 	int status = 0;
276 	int num_of_regs = ctx->blocksize / 8;
277 	__be32 *civ = (__be32 *)ctx->iv;
278 	u32 iv[AES_BLOCK_SIZE / 4];
279 
280 	dev_dbg(device_data->dev, "[%s]", __func__);
281 
282 	/*
283 	 * Since we loop on num_of_regs we need to have a check in case
284 	 * someone provides an incorrect blocksize which would force calling
285 	 * cfg_iv with i greater than 2 which is an error.
286 	 */
287 	if (num_of_regs > 2) {
288 		dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
289 			__func__, ctx->blocksize);
290 		return -EINVAL;
291 	}
292 
293 	for (i = 0; i < ctx->blocksize / 4; i++)
294 		iv[i] = be32_to_cpup(civ + i);
295 
296 	for (i = 0; i < num_of_regs; i++) {
297 		status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
298 				(enum cryp_init_vector_index) i);
299 		if (status != 0)
300 			return status;
301 	}
302 	return status;
303 }
304 
set_key(struct cryp_device_data * device_data,u32 left_key,u32 right_key,enum cryp_key_reg_index index)305 static int set_key(struct cryp_device_data *device_data,
306 		   u32 left_key,
307 		   u32 right_key,
308 		   enum cryp_key_reg_index index)
309 {
310 	struct cryp_key_value key_value;
311 	int cryp_error;
312 
313 	dev_dbg(device_data->dev, "[%s]", __func__);
314 
315 	key_value.key_value_left = left_key;
316 	key_value.key_value_right = right_key;
317 
318 	cryp_error = cryp_configure_key_values(device_data,
319 					       index,
320 					       key_value);
321 	if (cryp_error != 0)
322 		dev_err(device_data->dev, "[%s]: "
323 			"cryp_configure_key_values() failed!", __func__);
324 
325 	return cryp_error;
326 }
327 
cfg_keys(struct cryp_ctx * ctx)328 static int cfg_keys(struct cryp_ctx *ctx)
329 {
330 	int i;
331 	int num_of_regs = ctx->keylen / 8;
332 	u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
333 	__be32 *ckey = (__be32 *)ctx->key;
334 	int cryp_error = 0;
335 
336 	dev_dbg(ctx->device->dev, "[%s]", __func__);
337 
338 	if (mode_is_aes(ctx->config.algomode)) {
339 		swap_words_in_key_and_bits_in_byte((u8 *)ckey,
340 						   (u8 *)swapped_key,
341 						   ctx->keylen);
342 	} else {
343 		for (i = 0; i < ctx->keylen / 4; i++)
344 			swapped_key[i] = be32_to_cpup(ckey + i);
345 	}
346 
347 	for (i = 0; i < num_of_regs; i++) {
348 		cryp_error = set_key(ctx->device,
349 				     swapped_key[i * 2],
350 				     swapped_key[i * 2 + 1],
351 				     (enum cryp_key_reg_index) i);
352 
353 		if (cryp_error != 0) {
354 			dev_err(ctx->device->dev, "[%s]: set_key() failed!",
355 					__func__);
356 			return cryp_error;
357 		}
358 	}
359 	return cryp_error;
360 }
361 
cryp_setup_context(struct cryp_ctx * ctx,struct cryp_device_data * device_data)362 static int cryp_setup_context(struct cryp_ctx *ctx,
363 			      struct cryp_device_data *device_data)
364 {
365 	u32 control_register = CRYP_CR_DEFAULT;
366 
367 	switch (cryp_mode) {
368 	case CRYP_MODE_INTERRUPT:
369 		writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
370 		break;
371 
372 	case CRYP_MODE_DMA:
373 		writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
374 		break;
375 
376 	default:
377 		break;
378 	}
379 
380 	if (ctx->updated == 0) {
381 		cryp_flush_inoutfifo(device_data);
382 		if (cfg_keys(ctx) != 0) {
383 			dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
384 				__func__);
385 			return -EINVAL;
386 		}
387 
388 		if (ctx->iv &&
389 		    CRYP_ALGO_AES_ECB != ctx->config.algomode &&
390 		    CRYP_ALGO_DES_ECB != ctx->config.algomode &&
391 		    CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
392 			if (cfg_ivs(device_data, ctx) != 0)
393 				return -EPERM;
394 		}
395 
396 		cryp_set_configuration(device_data, &ctx->config,
397 				       &control_register);
398 		add_session_id(ctx);
399 	} else if (ctx->updated == 1 &&
400 		   ctx->session_id != atomic_read(&session_id)) {
401 		cryp_flush_inoutfifo(device_data);
402 		cryp_restore_device_context(device_data, &ctx->dev_ctx);
403 
404 		add_session_id(ctx);
405 		control_register = ctx->dev_ctx.cr;
406 	} else
407 		control_register = ctx->dev_ctx.cr;
408 
409 	writel(control_register |
410 	       (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
411 	       &device_data->base->cr);
412 
413 	return 0;
414 }
415 
cryp_get_device_data(struct cryp_ctx * ctx,struct cryp_device_data ** device_data)416 static int cryp_get_device_data(struct cryp_ctx *ctx,
417 				struct cryp_device_data **device_data)
418 {
419 	int ret;
420 	struct klist_iter device_iterator;
421 	struct klist_node *device_node;
422 	struct cryp_device_data *local_device_data = NULL;
423 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
424 
425 	/* Wait until a device is available */
426 	ret = down_interruptible(&driver_data.device_allocation);
427 	if (ret)
428 		return ret;  /* Interrupted */
429 
430 	/* Select a device */
431 	klist_iter_init(&driver_data.device_list, &device_iterator);
432 
433 	device_node = klist_next(&device_iterator);
434 	while (device_node) {
435 		local_device_data = container_of(device_node,
436 					   struct cryp_device_data, list_node);
437 		spin_lock(&local_device_data->ctx_lock);
438 		/* current_ctx allocates a device, NULL = unallocated */
439 		if (local_device_data->current_ctx) {
440 			device_node = klist_next(&device_iterator);
441 		} else {
442 			local_device_data->current_ctx = ctx;
443 			ctx->device = local_device_data;
444 			spin_unlock(&local_device_data->ctx_lock);
445 			break;
446 		}
447 		spin_unlock(&local_device_data->ctx_lock);
448 	}
449 	klist_iter_exit(&device_iterator);
450 
451 	if (!device_node) {
452 		/**
453 		 * No free device found.
454 		 * Since we allocated a device with down_interruptible, this
455 		 * should not be able to happen.
456 		 * Number of available devices, which are contained in
457 		 * device_allocation, is therefore decremented by not doing
458 		 * an up(device_allocation).
459 		 */
460 		return -EBUSY;
461 	}
462 
463 	*device_data = local_device_data;
464 
465 	return 0;
466 }
467 
cryp_dma_setup_channel(struct cryp_device_data * device_data,struct device * dev)468 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
469 				   struct device *dev)
470 {
471 	struct dma_slave_config mem2cryp = {
472 		.direction = DMA_MEM_TO_DEV,
473 		.dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
474 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
475 		.dst_maxburst = 4,
476 	};
477 	struct dma_slave_config cryp2mem = {
478 		.direction = DMA_DEV_TO_MEM,
479 		.src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
480 		.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
481 		.src_maxburst = 4,
482 	};
483 
484 	dma_cap_zero(device_data->dma.mask);
485 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
486 
487 	device_data->dma.cfg_mem2cryp = mem_to_engine;
488 	device_data->dma.chan_mem2cryp =
489 		dma_request_channel(device_data->dma.mask,
490 				    stedma40_filter,
491 				    device_data->dma.cfg_mem2cryp);
492 
493 	device_data->dma.cfg_cryp2mem = engine_to_mem;
494 	device_data->dma.chan_cryp2mem =
495 		dma_request_channel(device_data->dma.mask,
496 				    stedma40_filter,
497 				    device_data->dma.cfg_cryp2mem);
498 
499 	dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
500 	dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
501 
502 	init_completion(&device_data->dma.cryp_dma_complete);
503 }
504 
cryp_dma_out_callback(void * data)505 static void cryp_dma_out_callback(void *data)
506 {
507 	struct cryp_ctx *ctx = (struct cryp_ctx *) data;
508 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
509 
510 	complete(&ctx->device->dma.cryp_dma_complete);
511 }
512 
cryp_set_dma_transfer(struct cryp_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)513 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
514 				 struct scatterlist *sg,
515 				 int len,
516 				 enum dma_data_direction direction)
517 {
518 	struct dma_async_tx_descriptor *desc;
519 	struct dma_chan *channel = NULL;
520 	dma_cookie_t cookie;
521 
522 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
523 
524 	if (unlikely(!IS_ALIGNED((unsigned long)sg, 4))) {
525 		dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
526 			"aligned! Addr: 0x%08lx", __func__, (unsigned long)sg);
527 		return -EFAULT;
528 	}
529 
530 	switch (direction) {
531 	case DMA_TO_DEVICE:
532 		channel = ctx->device->dma.chan_mem2cryp;
533 		ctx->device->dma.sg_src = sg;
534 		ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
535 						 ctx->device->dma.sg_src,
536 						 ctx->device->dma.nents_src,
537 						 direction);
538 
539 		if (!ctx->device->dma.sg_src_len) {
540 			dev_dbg(ctx->device->dev,
541 				"[%s]: Could not map the sg list (TO_DEVICE)",
542 				__func__);
543 			return -EFAULT;
544 		}
545 
546 		dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
547 			"(TO_DEVICE)", __func__);
548 
549 		desc = dmaengine_prep_slave_sg(channel,
550 				ctx->device->dma.sg_src,
551 				ctx->device->dma.sg_src_len,
552 				DMA_MEM_TO_DEV, DMA_CTRL_ACK);
553 		break;
554 
555 	case DMA_FROM_DEVICE:
556 		channel = ctx->device->dma.chan_cryp2mem;
557 		ctx->device->dma.sg_dst = sg;
558 		ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
559 						 ctx->device->dma.sg_dst,
560 						 ctx->device->dma.nents_dst,
561 						 direction);
562 
563 		if (!ctx->device->dma.sg_dst_len) {
564 			dev_dbg(ctx->device->dev,
565 				"[%s]: Could not map the sg list (FROM_DEVICE)",
566 				__func__);
567 			return -EFAULT;
568 		}
569 
570 		dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
571 			"(FROM_DEVICE)", __func__);
572 
573 		desc = dmaengine_prep_slave_sg(channel,
574 				ctx->device->dma.sg_dst,
575 				ctx->device->dma.sg_dst_len,
576 				DMA_DEV_TO_MEM,
577 				DMA_CTRL_ACK |
578 				DMA_PREP_INTERRUPT);
579 
580 		desc->callback = cryp_dma_out_callback;
581 		desc->callback_param = ctx;
582 		break;
583 
584 	default:
585 		dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
586 			__func__);
587 		return -EFAULT;
588 	}
589 
590 	cookie = dmaengine_submit(desc);
591 	if (dma_submit_error(cookie)) {
592 		dev_dbg(ctx->device->dev, "[%s]: DMA submission failed\n",
593 			__func__);
594 		return cookie;
595 	}
596 
597 	dma_async_issue_pending(channel);
598 
599 	return 0;
600 }
601 
cryp_dma_done(struct cryp_ctx * ctx)602 static void cryp_dma_done(struct cryp_ctx *ctx)
603 {
604 	struct dma_chan *chan;
605 
606 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
607 
608 	chan = ctx->device->dma.chan_mem2cryp;
609 	dmaengine_terminate_all(chan);
610 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
611 		     ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
612 
613 	chan = ctx->device->dma.chan_cryp2mem;
614 	dmaengine_terminate_all(chan);
615 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
616 		     ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
617 }
618 
cryp_dma_write(struct cryp_ctx * ctx,struct scatterlist * sg,int len)619 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
620 			  int len)
621 {
622 	int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
623 	dev_dbg(ctx->device->dev, "[%s]: ", __func__);
624 
625 	if (error) {
626 		dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
627 			"failed", __func__);
628 		return error;
629 	}
630 
631 	return len;
632 }
633 
cryp_dma_read(struct cryp_ctx * ctx,struct scatterlist * sg,int len)634 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
635 {
636 	int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
637 	if (error) {
638 		dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
639 			"failed", __func__);
640 		return error;
641 	}
642 
643 	return len;
644 }
645 
cryp_polling_mode(struct cryp_ctx * ctx,struct cryp_device_data * device_data)646 static void cryp_polling_mode(struct cryp_ctx *ctx,
647 			      struct cryp_device_data *device_data)
648 {
649 	int len = ctx->blocksize / BYTES_PER_WORD;
650 	int remaining_length = ctx->datalen;
651 	u32 *indata = (u32 *)ctx->indata;
652 	u32 *outdata = (u32 *)ctx->outdata;
653 
654 	while (remaining_length > 0) {
655 		writesl(&device_data->base->din, indata, len);
656 		indata += len;
657 		remaining_length -= (len * BYTES_PER_WORD);
658 		cryp_wait_until_done(device_data);
659 
660 		readsl(&device_data->base->dout, outdata, len);
661 		outdata += len;
662 		cryp_wait_until_done(device_data);
663 	}
664 }
665 
cryp_disable_power(struct device * dev,struct cryp_device_data * device_data,bool save_device_context)666 static int cryp_disable_power(struct device *dev,
667 			      struct cryp_device_data *device_data,
668 			      bool save_device_context)
669 {
670 	int ret = 0;
671 
672 	dev_dbg(dev, "[%s]", __func__);
673 
674 	spin_lock(&device_data->power_state_spinlock);
675 	if (!device_data->power_state)
676 		goto out;
677 
678 	spin_lock(&device_data->ctx_lock);
679 	if (save_device_context && device_data->current_ctx) {
680 		cryp_save_device_context(device_data,
681 				&device_data->current_ctx->dev_ctx,
682 				cryp_mode);
683 		device_data->restore_dev_ctx = true;
684 	}
685 	spin_unlock(&device_data->ctx_lock);
686 
687 	clk_disable(device_data->clk);
688 	ret = regulator_disable(device_data->pwr_regulator);
689 	if (ret)
690 		dev_err(dev, "[%s]: "
691 				"regulator_disable() failed!",
692 				__func__);
693 
694 	device_data->power_state = false;
695 
696 out:
697 	spin_unlock(&device_data->power_state_spinlock);
698 
699 	return ret;
700 }
701 
cryp_enable_power(struct device * dev,struct cryp_device_data * device_data,bool restore_device_context)702 static int cryp_enable_power(
703 		struct device *dev,
704 		struct cryp_device_data *device_data,
705 		bool restore_device_context)
706 {
707 	int ret = 0;
708 
709 	dev_dbg(dev, "[%s]", __func__);
710 
711 	spin_lock(&device_data->power_state_spinlock);
712 	if (!device_data->power_state) {
713 		ret = regulator_enable(device_data->pwr_regulator);
714 		if (ret) {
715 			dev_err(dev, "[%s]: regulator_enable() failed!",
716 					__func__);
717 			goto out;
718 		}
719 
720 		ret = clk_enable(device_data->clk);
721 		if (ret) {
722 			dev_err(dev, "[%s]: clk_enable() failed!",
723 					__func__);
724 			regulator_disable(device_data->pwr_regulator);
725 			goto out;
726 		}
727 		device_data->power_state = true;
728 	}
729 
730 	if (device_data->restore_dev_ctx) {
731 		spin_lock(&device_data->ctx_lock);
732 		if (restore_device_context && device_data->current_ctx) {
733 			device_data->restore_dev_ctx = false;
734 			cryp_restore_device_context(device_data,
735 					&device_data->current_ctx->dev_ctx);
736 		}
737 		spin_unlock(&device_data->ctx_lock);
738 	}
739 out:
740 	spin_unlock(&device_data->power_state_spinlock);
741 
742 	return ret;
743 }
744 
hw_crypt_noxts(struct cryp_ctx * ctx,struct cryp_device_data * device_data)745 static int hw_crypt_noxts(struct cryp_ctx *ctx,
746 			  struct cryp_device_data *device_data)
747 {
748 	int ret = 0;
749 
750 	const u8 *indata = ctx->indata;
751 	u8 *outdata = ctx->outdata;
752 	u32 datalen = ctx->datalen;
753 	u32 outlen = datalen;
754 
755 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
756 
757 	ctx->outlen = ctx->datalen;
758 
759 	if (unlikely(!IS_ALIGNED((unsigned long)indata, 4))) {
760 		pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
761 			 "0x%08lx", __func__, (unsigned long)indata);
762 		return -EINVAL;
763 	}
764 
765 	ret = cryp_setup_context(ctx, device_data);
766 
767 	if (ret)
768 		goto out;
769 
770 	if (cryp_mode == CRYP_MODE_INTERRUPT) {
771 		cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
772 				    CRYP_IRQ_SRC_OUTPUT_FIFO);
773 
774 		/*
775 		 * ctx->outlen is decremented in the cryp_interrupt_handler
776 		 * function. We had to add cpu_relax() (barrier) to make sure
777 		 * that gcc didn't optimze away this variable.
778 		 */
779 		while (ctx->outlen > 0)
780 			cpu_relax();
781 	} else if (cryp_mode == CRYP_MODE_POLLING ||
782 		   cryp_mode == CRYP_MODE_DMA) {
783 		/*
784 		 * The reason for having DMA in this if case is that if we are
785 		 * running cryp_mode = 2, then we separate DMA routines for
786 		 * handling cipher/plaintext > blocksize, except when
787 		 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
788 		 * the polling mode. Overhead of doing DMA setup eats up the
789 		 * benefits using it.
790 		 */
791 		cryp_polling_mode(ctx, device_data);
792 	} else {
793 		dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
794 			__func__);
795 		ret = -EPERM;
796 		goto out;
797 	}
798 
799 	cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
800 	ctx->updated = 1;
801 
802 out:
803 	ctx->indata = indata;
804 	ctx->outdata = outdata;
805 	ctx->datalen = datalen;
806 	ctx->outlen = outlen;
807 
808 	return ret;
809 }
810 
get_nents(struct scatterlist * sg,int nbytes)811 static int get_nents(struct scatterlist *sg, int nbytes)
812 {
813 	int nents = 0;
814 
815 	while (nbytes > 0) {
816 		nbytes -= sg->length;
817 		sg = sg_next(sg);
818 		nents++;
819 	}
820 
821 	return nents;
822 }
823 
ablk_dma_crypt(struct skcipher_request * areq)824 static int ablk_dma_crypt(struct skcipher_request *areq)
825 {
826 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
827 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
828 	struct cryp_device_data *device_data;
829 
830 	int bytes_written = 0;
831 	int bytes_read = 0;
832 	int ret;
833 
834 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
835 
836 	ctx->datalen = areq->cryptlen;
837 	ctx->outlen = areq->cryptlen;
838 
839 	ret = cryp_get_device_data(ctx, &device_data);
840 	if (ret)
841 		return ret;
842 
843 	ret = cryp_setup_context(ctx, device_data);
844 	if (ret)
845 		goto out;
846 
847 	/* We have the device now, so store the nents in the dma struct. */
848 	ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
849 	ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
850 
851 	/* Enable DMA in- and output. */
852 	cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
853 
854 	bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
855 	bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
856 
857 	wait_for_completion(&ctx->device->dma.cryp_dma_complete);
858 	cryp_dma_done(ctx);
859 
860 	cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
861 	ctx->updated = 1;
862 
863 out:
864 	spin_lock(&device_data->ctx_lock);
865 	device_data->current_ctx = NULL;
866 	ctx->device = NULL;
867 	spin_unlock(&device_data->ctx_lock);
868 
869 	/*
870 	 * The down_interruptible part for this semaphore is called in
871 	 * cryp_get_device_data.
872 	 */
873 	up(&driver_data.device_allocation);
874 
875 	if (unlikely(bytes_written != bytes_read))
876 		return -EPERM;
877 
878 	return 0;
879 }
880 
ablk_crypt(struct skcipher_request * areq)881 static int ablk_crypt(struct skcipher_request *areq)
882 {
883 	struct skcipher_walk walk;
884 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
885 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
886 	struct cryp_device_data *device_data;
887 	unsigned long src_paddr;
888 	unsigned long dst_paddr;
889 	int ret;
890 	int nbytes;
891 
892 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
893 
894 	ret = cryp_get_device_data(ctx, &device_data);
895 	if (ret)
896 		goto out;
897 
898 	ret = skcipher_walk_async(&walk, areq);
899 
900 	if (ret) {
901 		pr_err(DEV_DBG_NAME "[%s]: skcipher_walk_async() failed!",
902 			__func__);
903 		goto out;
904 	}
905 
906 	while ((nbytes = walk.nbytes) > 0) {
907 		ctx->iv = walk.iv;
908 		src_paddr = (page_to_phys(walk.src.phys.page) + walk.src.phys.offset);
909 		ctx->indata = phys_to_virt(src_paddr);
910 
911 		dst_paddr = (page_to_phys(walk.dst.phys.page) + walk.dst.phys.offset);
912 		ctx->outdata = phys_to_virt(dst_paddr);
913 
914 		ctx->datalen = nbytes - (nbytes % ctx->blocksize);
915 
916 		ret = hw_crypt_noxts(ctx, device_data);
917 		if (ret)
918 			goto out;
919 
920 		nbytes -= ctx->datalen;
921 		ret = skcipher_walk_done(&walk, nbytes);
922 		if (ret)
923 			goto out;
924 	}
925 
926 out:
927 	/* Release the device */
928 	spin_lock(&device_data->ctx_lock);
929 	device_data->current_ctx = NULL;
930 	ctx->device = NULL;
931 	spin_unlock(&device_data->ctx_lock);
932 
933 	/*
934 	 * The down_interruptible part for this semaphore is called in
935 	 * cryp_get_device_data.
936 	 */
937 	up(&driver_data.device_allocation);
938 
939 	return ret;
940 }
941 
aes_skcipher_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)942 static int aes_skcipher_setkey(struct crypto_skcipher *cipher,
943 				 const u8 *key, unsigned int keylen)
944 {
945 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
946 
947 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
948 
949 	switch (keylen) {
950 	case AES_KEYSIZE_128:
951 		ctx->config.keysize = CRYP_KEY_SIZE_128;
952 		break;
953 
954 	case AES_KEYSIZE_192:
955 		ctx->config.keysize = CRYP_KEY_SIZE_192;
956 		break;
957 
958 	case AES_KEYSIZE_256:
959 		ctx->config.keysize = CRYP_KEY_SIZE_256;
960 		break;
961 
962 	default:
963 		pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
964 		return -EINVAL;
965 	}
966 
967 	memcpy(ctx->key, key, keylen);
968 	ctx->keylen = keylen;
969 
970 	ctx->updated = 0;
971 
972 	return 0;
973 }
974 
des_skcipher_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)975 static int des_skcipher_setkey(struct crypto_skcipher *cipher,
976 				 const u8 *key, unsigned int keylen)
977 {
978 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
979 	int err;
980 
981 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
982 
983 	err = verify_skcipher_des_key(cipher, key);
984 	if (err)
985 		return err;
986 
987 	memcpy(ctx->key, key, keylen);
988 	ctx->keylen = keylen;
989 
990 	ctx->updated = 0;
991 	return 0;
992 }
993 
des3_skcipher_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)994 static int des3_skcipher_setkey(struct crypto_skcipher *cipher,
995 				  const u8 *key, unsigned int keylen)
996 {
997 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
998 	int err;
999 
1000 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1001 
1002 	err = verify_skcipher_des3_key(cipher, key);
1003 	if (err)
1004 		return err;
1005 
1006 	memcpy(ctx->key, key, keylen);
1007 	ctx->keylen = keylen;
1008 
1009 	ctx->updated = 0;
1010 	return 0;
1011 }
1012 
cryp_blk_encrypt(struct skcipher_request * areq)1013 static int cryp_blk_encrypt(struct skcipher_request *areq)
1014 {
1015 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
1016 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
1017 
1018 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1019 
1020 	ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1021 
1022 	/*
1023 	 * DMA does not work for DES due to a hw bug */
1024 	if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1025 		return ablk_dma_crypt(areq);
1026 
1027 	/* For everything except DMA, we run the non DMA version. */
1028 	return ablk_crypt(areq);
1029 }
1030 
cryp_blk_decrypt(struct skcipher_request * areq)1031 static int cryp_blk_decrypt(struct skcipher_request *areq)
1032 {
1033 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(areq);
1034 	struct cryp_ctx *ctx = crypto_skcipher_ctx(cipher);
1035 
1036 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1037 
1038 	ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1039 
1040 	/* DMA does not work for DES due to a hw bug */
1041 	if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1042 		return ablk_dma_crypt(areq);
1043 
1044 	/* For everything except DMA, we run the non DMA version. */
1045 	return ablk_crypt(areq);
1046 }
1047 
1048 struct cryp_algo_template {
1049 	enum cryp_algo_mode algomode;
1050 	struct skcipher_alg skcipher;
1051 };
1052 
cryp_init_tfm(struct crypto_skcipher * tfm)1053 static int cryp_init_tfm(struct crypto_skcipher *tfm)
1054 {
1055 	struct cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
1056 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
1057 	struct cryp_algo_template *cryp_alg = container_of(alg,
1058 			struct cryp_algo_template,
1059 			skcipher);
1060 
1061 	ctx->config.algomode = cryp_alg->algomode;
1062 	ctx->blocksize = crypto_skcipher_blocksize(tfm);
1063 
1064 	return 0;
1065 }
1066 
1067 static struct cryp_algo_template cryp_algs[] = {
1068 	{
1069 		.algomode = CRYP_ALGO_AES_ECB,
1070 		.skcipher = {
1071 			.base.cra_name		= "ecb(aes)",
1072 			.base.cra_driver_name	= "ecb-aes-ux500",
1073 			.base.cra_priority	= 300,
1074 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1075 			.base.cra_blocksize	= AES_BLOCK_SIZE,
1076 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1077 			.base.cra_alignmask	= 3,
1078 			.base.cra_module	= THIS_MODULE,
1079 
1080 			.min_keysize		= AES_MIN_KEY_SIZE,
1081 			.max_keysize		= AES_MAX_KEY_SIZE,
1082 			.setkey			= aes_skcipher_setkey,
1083 			.encrypt		= cryp_blk_encrypt,
1084 			.decrypt		= cryp_blk_decrypt,
1085 			.init			= cryp_init_tfm,
1086 		}
1087 	},
1088 	{
1089 		.algomode = CRYP_ALGO_AES_CBC,
1090 		.skcipher = {
1091 			.base.cra_name		= "cbc(aes)",
1092 			.base.cra_driver_name	= "cbc-aes-ux500",
1093 			.base.cra_priority	= 300,
1094 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1095 			.base.cra_blocksize	= AES_BLOCK_SIZE,
1096 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1097 			.base.cra_alignmask	= 3,
1098 			.base.cra_module	= THIS_MODULE,
1099 
1100 			.min_keysize		= AES_MIN_KEY_SIZE,
1101 			.max_keysize		= AES_MAX_KEY_SIZE,
1102 			.setkey			= aes_skcipher_setkey,
1103 			.encrypt		= cryp_blk_encrypt,
1104 			.decrypt		= cryp_blk_decrypt,
1105 			.init			= cryp_init_tfm,
1106 			.ivsize			= AES_BLOCK_SIZE,
1107 		}
1108 	},
1109 	{
1110 		.algomode = CRYP_ALGO_AES_CTR,
1111 		.skcipher = {
1112 			.base.cra_name		= "ctr(aes)",
1113 			.base.cra_driver_name	= "ctr-aes-ux500",
1114 			.base.cra_priority	= 300,
1115 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1116 			.base.cra_blocksize	= 1,
1117 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1118 			.base.cra_alignmask	= 3,
1119 			.base.cra_module	= THIS_MODULE,
1120 
1121 			.min_keysize		= AES_MIN_KEY_SIZE,
1122 			.max_keysize		= AES_MAX_KEY_SIZE,
1123 			.setkey			= aes_skcipher_setkey,
1124 			.encrypt		= cryp_blk_encrypt,
1125 			.decrypt		= cryp_blk_decrypt,
1126 			.init			= cryp_init_tfm,
1127 			.ivsize			= AES_BLOCK_SIZE,
1128 			.chunksize		= AES_BLOCK_SIZE,
1129 		}
1130 	},
1131 	{
1132 		.algomode = CRYP_ALGO_DES_ECB,
1133 		.skcipher = {
1134 			.base.cra_name		= "ecb(des)",
1135 			.base.cra_driver_name	= "ecb-des-ux500",
1136 			.base.cra_priority	= 300,
1137 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1138 			.base.cra_blocksize	= DES_BLOCK_SIZE,
1139 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1140 			.base.cra_alignmask	= 3,
1141 			.base.cra_module	= THIS_MODULE,
1142 
1143 			.min_keysize		= DES_KEY_SIZE,
1144 			.max_keysize		= DES_KEY_SIZE,
1145 			.setkey			= des_skcipher_setkey,
1146 			.encrypt		= cryp_blk_encrypt,
1147 			.decrypt		= cryp_blk_decrypt,
1148 			.init			= cryp_init_tfm,
1149 		}
1150 	},
1151 	{
1152 		.algomode = CRYP_ALGO_TDES_ECB,
1153 		.skcipher = {
1154 			.base.cra_name		= "ecb(des3_ede)",
1155 			.base.cra_driver_name	= "ecb-des3_ede-ux500",
1156 			.base.cra_priority	= 300,
1157 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1158 			.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1159 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1160 			.base.cra_alignmask	= 3,
1161 			.base.cra_module	= THIS_MODULE,
1162 
1163 			.min_keysize		= DES3_EDE_KEY_SIZE,
1164 			.max_keysize		= DES3_EDE_KEY_SIZE,
1165 			.setkey			= des3_skcipher_setkey,
1166 			.encrypt		= cryp_blk_encrypt,
1167 			.decrypt		= cryp_blk_decrypt,
1168 			.init			= cryp_init_tfm,
1169 		}
1170 	},
1171 	{
1172 		.algomode = CRYP_ALGO_DES_CBC,
1173 		.skcipher = {
1174 			.base.cra_name		= "cbc(des)",
1175 			.base.cra_driver_name	= "cbc-des-ux500",
1176 			.base.cra_priority	= 300,
1177 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1178 			.base.cra_blocksize	= DES_BLOCK_SIZE,
1179 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1180 			.base.cra_alignmask	= 3,
1181 			.base.cra_module	= THIS_MODULE,
1182 
1183 			.min_keysize		= DES_KEY_SIZE,
1184 			.max_keysize		= DES_KEY_SIZE,
1185 			.setkey			= des_skcipher_setkey,
1186 			.encrypt		= cryp_blk_encrypt,
1187 			.decrypt		= cryp_blk_decrypt,
1188 			.ivsize			= DES_BLOCK_SIZE,
1189 			.init			= cryp_init_tfm,
1190 		}
1191 	},
1192 	{
1193 		.algomode = CRYP_ALGO_TDES_CBC,
1194 		.skcipher = {
1195 			.base.cra_name		= "cbc(des3_ede)",
1196 			.base.cra_driver_name	= "cbc-des3_ede-ux500",
1197 			.base.cra_priority	= 300,
1198 			.base.cra_flags		= CRYPTO_ALG_ASYNC,
1199 			.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1200 			.base.cra_ctxsize	= sizeof(struct cryp_ctx),
1201 			.base.cra_alignmask	= 3,
1202 			.base.cra_module	= THIS_MODULE,
1203 
1204 			.min_keysize		= DES3_EDE_KEY_SIZE,
1205 			.max_keysize		= DES3_EDE_KEY_SIZE,
1206 			.setkey			= des3_skcipher_setkey,
1207 			.encrypt		= cryp_blk_encrypt,
1208 			.decrypt		= cryp_blk_decrypt,
1209 			.ivsize			= DES3_EDE_BLOCK_SIZE,
1210 			.init			= cryp_init_tfm,
1211 		}
1212 	}
1213 };
1214 
1215 /**
1216  * cryp_algs_register_all -
1217  */
cryp_algs_register_all(void)1218 static int cryp_algs_register_all(void)
1219 {
1220 	int ret;
1221 	int i;
1222 	int count;
1223 
1224 	pr_debug("[%s]", __func__);
1225 
1226 	for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1227 		ret = crypto_register_skcipher(&cryp_algs[i].skcipher);
1228 		if (ret) {
1229 			count = i;
1230 			pr_err("[%s] alg registration failed",
1231 					cryp_algs[i].skcipher.base.cra_driver_name);
1232 			goto unreg;
1233 		}
1234 	}
1235 	return 0;
1236 unreg:
1237 	for (i = 0; i < count; i++)
1238 		crypto_unregister_skcipher(&cryp_algs[i].skcipher);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * cryp_algs_unregister_all -
1244  */
cryp_algs_unregister_all(void)1245 static void cryp_algs_unregister_all(void)
1246 {
1247 	int i;
1248 
1249 	pr_debug(DEV_DBG_NAME " [%s]", __func__);
1250 
1251 	for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1252 		crypto_unregister_skcipher(&cryp_algs[i].skcipher);
1253 }
1254 
ux500_cryp_probe(struct platform_device * pdev)1255 static int ux500_cryp_probe(struct platform_device *pdev)
1256 {
1257 	int ret;
1258 	struct resource *res;
1259 	struct resource *res_irq;
1260 	struct cryp_device_data *device_data;
1261 	struct cryp_protection_config prot = {
1262 		.privilege_access = CRYP_STATE_ENABLE
1263 	};
1264 	struct device *dev = &pdev->dev;
1265 
1266 	dev_dbg(dev, "[%s]", __func__);
1267 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1268 	if (!device_data) {
1269 		ret = -ENOMEM;
1270 		goto out;
1271 	}
1272 
1273 	device_data->dev = dev;
1274 	device_data->current_ctx = NULL;
1275 
1276 	/* Grab the DMA configuration from platform data. */
1277 	mem_to_engine = &((struct cryp_platform_data *)
1278 			 dev->platform_data)->mem_to_engine;
1279 	engine_to_mem = &((struct cryp_platform_data *)
1280 			 dev->platform_data)->engine_to_mem;
1281 
1282 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1283 	if (!res) {
1284 		dev_err(dev, "[%s]: platform_get_resource() failed",
1285 				__func__);
1286 		ret = -ENODEV;
1287 		goto out;
1288 	}
1289 
1290 	device_data->phybase = res->start;
1291 	device_data->base = devm_ioremap_resource(dev, res);
1292 	if (IS_ERR(device_data->base)) {
1293 		dev_err(dev, "[%s]: ioremap failed!", __func__);
1294 		ret = PTR_ERR(device_data->base);
1295 		goto out;
1296 	}
1297 
1298 	spin_lock_init(&device_data->ctx_lock);
1299 	spin_lock_init(&device_data->power_state_spinlock);
1300 
1301 	/* Enable power for CRYP hardware block */
1302 	device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1303 	if (IS_ERR(device_data->pwr_regulator)) {
1304 		dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1305 		ret = PTR_ERR(device_data->pwr_regulator);
1306 		device_data->pwr_regulator = NULL;
1307 		goto out;
1308 	}
1309 
1310 	/* Enable the clk for CRYP hardware block */
1311 	device_data->clk = devm_clk_get(&pdev->dev, NULL);
1312 	if (IS_ERR(device_data->clk)) {
1313 		dev_err(dev, "[%s]: clk_get() failed!", __func__);
1314 		ret = PTR_ERR(device_data->clk);
1315 		goto out_regulator;
1316 	}
1317 
1318 	ret = clk_prepare(device_data->clk);
1319 	if (ret) {
1320 		dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1321 		goto out_regulator;
1322 	}
1323 
1324 	/* Enable device power (and clock) */
1325 	ret = cryp_enable_power(device_data->dev, device_data, false);
1326 	if (ret) {
1327 		dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1328 		goto out_clk_unprepare;
1329 	}
1330 
1331 	if (cryp_check(device_data)) {
1332 		dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1333 		ret = -EINVAL;
1334 		goto out_power;
1335 	}
1336 
1337 	if (cryp_configure_protection(device_data, &prot)) {
1338 		dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1339 			__func__);
1340 		ret = -EINVAL;
1341 		goto out_power;
1342 	}
1343 
1344 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1345 	if (!res_irq) {
1346 		dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1347 			__func__);
1348 		ret = -ENODEV;
1349 		goto out_power;
1350 	}
1351 
1352 	ret = devm_request_irq(&pdev->dev, res_irq->start,
1353 			       cryp_interrupt_handler, 0, "cryp1", device_data);
1354 	if (ret) {
1355 		dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1356 		goto out_power;
1357 	}
1358 
1359 	if (cryp_mode == CRYP_MODE_DMA)
1360 		cryp_dma_setup_channel(device_data, dev);
1361 
1362 	platform_set_drvdata(pdev, device_data);
1363 
1364 	/* Put the new device into the device list... */
1365 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1366 
1367 	/* ... and signal that a new device is available. */
1368 	up(&driver_data.device_allocation);
1369 
1370 	atomic_set(&session_id, 1);
1371 
1372 	ret = cryp_algs_register_all();
1373 	if (ret) {
1374 		dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1375 			__func__);
1376 		goto out_power;
1377 	}
1378 
1379 	dev_info(dev, "successfully registered\n");
1380 
1381 	return 0;
1382 
1383 out_power:
1384 	cryp_disable_power(device_data->dev, device_data, false);
1385 
1386 out_clk_unprepare:
1387 	clk_unprepare(device_data->clk);
1388 
1389 out_regulator:
1390 	regulator_put(device_data->pwr_regulator);
1391 
1392 out:
1393 	return ret;
1394 }
1395 
ux500_cryp_remove(struct platform_device * pdev)1396 static int ux500_cryp_remove(struct platform_device *pdev)
1397 {
1398 	struct cryp_device_data *device_data;
1399 
1400 	dev_dbg(&pdev->dev, "[%s]", __func__);
1401 	device_data = platform_get_drvdata(pdev);
1402 	if (!device_data) {
1403 		dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1404 			__func__);
1405 		return -ENOMEM;
1406 	}
1407 
1408 	/* Try to decrease the number of available devices. */
1409 	if (down_trylock(&driver_data.device_allocation))
1410 		return -EBUSY;
1411 
1412 	/* Check that the device is free */
1413 	spin_lock(&device_data->ctx_lock);
1414 	/* current_ctx allocates a device, NULL = unallocated */
1415 	if (device_data->current_ctx) {
1416 		/* The device is busy */
1417 		spin_unlock(&device_data->ctx_lock);
1418 		/* Return the device to the pool. */
1419 		up(&driver_data.device_allocation);
1420 		return -EBUSY;
1421 	}
1422 
1423 	spin_unlock(&device_data->ctx_lock);
1424 
1425 	/* Remove the device from the list */
1426 	if (klist_node_attached(&device_data->list_node))
1427 		klist_remove(&device_data->list_node);
1428 
1429 	/* If this was the last device, remove the services */
1430 	if (list_empty(&driver_data.device_list.k_list))
1431 		cryp_algs_unregister_all();
1432 
1433 	if (cryp_disable_power(&pdev->dev, device_data, false))
1434 		dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1435 			__func__);
1436 
1437 	clk_unprepare(device_data->clk);
1438 	regulator_put(device_data->pwr_regulator);
1439 
1440 	return 0;
1441 }
1442 
ux500_cryp_shutdown(struct platform_device * pdev)1443 static void ux500_cryp_shutdown(struct platform_device *pdev)
1444 {
1445 	struct cryp_device_data *device_data;
1446 
1447 	dev_dbg(&pdev->dev, "[%s]", __func__);
1448 
1449 	device_data = platform_get_drvdata(pdev);
1450 	if (!device_data) {
1451 		dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1452 			__func__);
1453 		return;
1454 	}
1455 
1456 	/* Check that the device is free */
1457 	spin_lock(&device_data->ctx_lock);
1458 	/* current_ctx allocates a device, NULL = unallocated */
1459 	if (!device_data->current_ctx) {
1460 		if (down_trylock(&driver_data.device_allocation))
1461 			dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1462 				"Shutting down anyway...", __func__);
1463 		/**
1464 		 * (Allocate the device)
1465 		 * Need to set this to non-null (dummy) value,
1466 		 * to avoid usage if context switching.
1467 		 */
1468 		device_data->current_ctx++;
1469 	}
1470 	spin_unlock(&device_data->ctx_lock);
1471 
1472 	/* Remove the device from the list */
1473 	if (klist_node_attached(&device_data->list_node))
1474 		klist_remove(&device_data->list_node);
1475 
1476 	/* If this was the last device, remove the services */
1477 	if (list_empty(&driver_data.device_list.k_list))
1478 		cryp_algs_unregister_all();
1479 
1480 	if (cryp_disable_power(&pdev->dev, device_data, false))
1481 		dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1482 			__func__);
1483 
1484 }
1485 
1486 #ifdef CONFIG_PM_SLEEP
ux500_cryp_suspend(struct device * dev)1487 static int ux500_cryp_suspend(struct device *dev)
1488 {
1489 	int ret;
1490 	struct platform_device *pdev = to_platform_device(dev);
1491 	struct cryp_device_data *device_data;
1492 	struct resource *res_irq;
1493 	struct cryp_ctx *temp_ctx = NULL;
1494 
1495 	dev_dbg(dev, "[%s]", __func__);
1496 
1497 	/* Handle state? */
1498 	device_data = platform_get_drvdata(pdev);
1499 	if (!device_data) {
1500 		dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1501 		return -ENOMEM;
1502 	}
1503 
1504 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1505 	if (!res_irq)
1506 		dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1507 	else
1508 		disable_irq(res_irq->start);
1509 
1510 	spin_lock(&device_data->ctx_lock);
1511 	if (!device_data->current_ctx)
1512 		device_data->current_ctx++;
1513 	spin_unlock(&device_data->ctx_lock);
1514 
1515 	if (device_data->current_ctx == ++temp_ctx) {
1516 		if (down_interruptible(&driver_data.device_allocation))
1517 			dev_dbg(dev, "[%s]: down_interruptible() failed",
1518 				__func__);
1519 		ret = cryp_disable_power(dev, device_data, false);
1520 
1521 	} else
1522 		ret = cryp_disable_power(dev, device_data, true);
1523 
1524 	if (ret)
1525 		dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1526 
1527 	return ret;
1528 }
1529 
ux500_cryp_resume(struct device * dev)1530 static int ux500_cryp_resume(struct device *dev)
1531 {
1532 	int ret = 0;
1533 	struct platform_device *pdev = to_platform_device(dev);
1534 	struct cryp_device_data *device_data;
1535 	struct resource *res_irq;
1536 	struct cryp_ctx *temp_ctx = NULL;
1537 
1538 	dev_dbg(dev, "[%s]", __func__);
1539 
1540 	device_data = platform_get_drvdata(pdev);
1541 	if (!device_data) {
1542 		dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1543 		return -ENOMEM;
1544 	}
1545 
1546 	spin_lock(&device_data->ctx_lock);
1547 	if (device_data->current_ctx == ++temp_ctx)
1548 		device_data->current_ctx = NULL;
1549 	spin_unlock(&device_data->ctx_lock);
1550 
1551 
1552 	if (!device_data->current_ctx)
1553 		up(&driver_data.device_allocation);
1554 	else
1555 		ret = cryp_enable_power(dev, device_data, true);
1556 
1557 	if (ret)
1558 		dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1559 	else {
1560 		res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1561 		if (res_irq)
1562 			enable_irq(res_irq->start);
1563 	}
1564 
1565 	return ret;
1566 }
1567 #endif
1568 
1569 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1570 
1571 static const struct of_device_id ux500_cryp_match[] = {
1572 	{ .compatible = "stericsson,ux500-cryp" },
1573 	{ },
1574 };
1575 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1576 
1577 static struct platform_driver cryp_driver = {
1578 	.probe  = ux500_cryp_probe,
1579 	.remove = ux500_cryp_remove,
1580 	.shutdown = ux500_cryp_shutdown,
1581 	.driver = {
1582 		.name  = "cryp1",
1583 		.of_match_table = ux500_cryp_match,
1584 		.pm    = &ux500_cryp_pm,
1585 	}
1586 };
1587 
ux500_cryp_mod_init(void)1588 static int __init ux500_cryp_mod_init(void)
1589 {
1590 	pr_debug("[%s] is called!", __func__);
1591 	klist_init(&driver_data.device_list, NULL, NULL);
1592 	/* Initialize the semaphore to 0 devices (locked state) */
1593 	sema_init(&driver_data.device_allocation, 0);
1594 	return platform_driver_register(&cryp_driver);
1595 }
1596 
ux500_cryp_mod_fini(void)1597 static void __exit ux500_cryp_mod_fini(void)
1598 {
1599 	pr_debug("[%s] is called!", __func__);
1600 	platform_driver_unregister(&cryp_driver);
1601 }
1602 
1603 module_init(ux500_cryp_mod_init);
1604 module_exit(ux500_cryp_mod_fini);
1605 
1606 module_param(cryp_mode, int, 0);
1607 
1608 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1609 MODULE_ALIAS_CRYPTO("aes-all");
1610 MODULE_ALIAS_CRYPTO("des-all");
1611 
1612 MODULE_LICENSE("GPL");
1613