1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7 
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 
19 #include <crypto/ctr.h>
20 #include <crypto/internal/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29 
30 #include <linux/soc/ixp4xx/npe.h>
31 #include <linux/soc/ixp4xx/qmgr.h>
32 
33 #define MAX_KEYLEN 32
34 
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38 
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46 
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50 
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57 
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61 
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64 
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72 
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79 
80 #define SEND_QID    29
81 #define RECV_QID    30
82 
83 #define CTL_FLAG_UNUSED		0x0000
84 #define CTL_FLAG_USED		0x1000
85 #define CTL_FLAG_PERFORM_ABLK	0x0001
86 #define CTL_FLAG_GEN_ICV	0x0002
87 #define CTL_FLAG_GEN_REVAES	0x0004
88 #define CTL_FLAG_PERFORM_AEAD	0x0008
89 #define CTL_FLAG_MASK		0x000f
90 
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92 
93 #define MD5_DIGEST_SIZE   16
94 
95 struct buffer_desc {
96 	u32 phys_next;
97 #ifdef __ARMEB__
98 	u16 buf_len;
99 	u16 pkt_len;
100 #else
101 	u16 pkt_len;
102 	u16 buf_len;
103 #endif
104 	dma_addr_t phys_addr;
105 	u32 __reserved[4];
106 	struct buffer_desc *next;
107 	enum dma_data_direction dir;
108 };
109 
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112 	u8 mode;		/* NPE_OP_*  operation mode */
113 	u8 init_len;
114 	u16 reserved;
115 #else
116 	u16 reserved;
117 	u8 init_len;
118 	u8 mode;		/* NPE_OP_*  operation mode */
119 #endif
120 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
121 	dma_addr_t icv_rev_aes;	/* icv or rev aes */
122 	dma_addr_t src_buf;
123 	dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125 	u16 auth_offs;		/* Authentication start offset */
126 	u16 auth_len;		/* Authentication data length */
127 	u16 crypt_offs;		/* Cryption start offset */
128 	u16 crypt_len;		/* Cryption data length */
129 #else
130 	u16 auth_len;		/* Authentication data length */
131 	u16 auth_offs;		/* Authentication start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 	u16 crypt_offs;		/* Cryption start offset */
134 #endif
135 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
136 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
137 
138 	/* Used by Host: 4*4 bytes*/
139 	unsigned ctl_flags;
140 	union {
141 		struct skcipher_request *ablk_req;
142 		struct aead_request *aead_req;
143 		struct crypto_tfm *tfm;
144 	} data;
145 	struct buffer_desc *regist_buf;
146 	u8 *regist_ptr;
147 };
148 
149 struct ablk_ctx {
150 	struct buffer_desc *src;
151 	struct buffer_desc *dst;
152 };
153 
154 struct aead_ctx {
155 	struct buffer_desc *src;
156 	struct buffer_desc *dst;
157 	struct scatterlist ivlist;
158 	/* used when the hmac is not on one sg entry */
159 	u8 *hmac_virt;
160 	int encrypt;
161 };
162 
163 struct ix_hash_algo {
164 	u32 cfgword;
165 	unsigned char *icv;
166 };
167 
168 struct ix_sa_dir {
169 	unsigned char *npe_ctx;
170 	dma_addr_t npe_ctx_phys;
171 	int npe_ctx_idx;
172 	u8 npe_mode;
173 };
174 
175 struct ixp_ctx {
176 	struct ix_sa_dir encrypt;
177 	struct ix_sa_dir decrypt;
178 	int authkey_len;
179 	u8 authkey[MAX_KEYLEN];
180 	int enckey_len;
181 	u8 enckey[MAX_KEYLEN];
182 	u8 salt[MAX_IVLEN];
183 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
184 	unsigned salted;
185 	atomic_t configuring;
186 	struct completion completion;
187 };
188 
189 struct ixp_alg {
190 	struct skcipher_alg crypto;
191 	const struct ix_hash_algo *hash;
192 	u32 cfg_enc;
193 	u32 cfg_dec;
194 
195 	int registered;
196 };
197 
198 struct ixp_aead_alg {
199 	struct aead_alg crypto;
200 	const struct ix_hash_algo *hash;
201 	u32 cfg_enc;
202 	u32 cfg_dec;
203 
204 	int registered;
205 };
206 
207 static const struct ix_hash_algo hash_alg_md5 = {
208 	.cfgword	= 0xAA010004,
209 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
210 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
211 };
212 static const struct ix_hash_algo hash_alg_sha1 = {
213 	.cfgword	= 0x00000005,
214 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
215 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
216 };
217 
218 static struct npe *npe_c;
219 static struct dma_pool *buffer_pool = NULL;
220 static struct dma_pool *ctx_pool = NULL;
221 
222 static struct crypt_ctl *crypt_virt = NULL;
223 static dma_addr_t crypt_phys;
224 
225 static int support_aes = 1;
226 
227 #define DRIVER_NAME "ixp4xx_crypto"
228 
229 static struct platform_device *pdev;
230 
crypt_virt2phys(struct crypt_ctl * virt)231 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
232 {
233 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
234 }
235 
crypt_phys2virt(dma_addr_t phys)236 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
237 {
238 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
239 }
240 
cipher_cfg_enc(struct crypto_tfm * tfm)241 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
242 {
243 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_enc;
244 }
245 
cipher_cfg_dec(struct crypto_tfm * tfm)246 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
247 {
248 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_dec;
249 }
250 
ix_hash(struct crypto_tfm * tfm)251 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
252 {
253 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
254 }
255 
setup_crypt_desc(void)256 static int setup_crypt_desc(void)
257 {
258 	struct device *dev = &pdev->dev;
259 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
260 	crypt_virt = dma_alloc_coherent(dev,
261 					NPE_QLEN * sizeof(struct crypt_ctl),
262 					&crypt_phys, GFP_ATOMIC);
263 	if (!crypt_virt)
264 		return -ENOMEM;
265 	return 0;
266 }
267 
268 static spinlock_t desc_lock;
get_crypt_desc(void)269 static struct crypt_ctl *get_crypt_desc(void)
270 {
271 	int i;
272 	static int idx = 0;
273 	unsigned long flags;
274 
275 	spin_lock_irqsave(&desc_lock, flags);
276 
277 	if (unlikely(!crypt_virt))
278 		setup_crypt_desc();
279 	if (unlikely(!crypt_virt)) {
280 		spin_unlock_irqrestore(&desc_lock, flags);
281 		return NULL;
282 	}
283 	i = idx;
284 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
285 		if (++idx >= NPE_QLEN)
286 			idx = 0;
287 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
288 		spin_unlock_irqrestore(&desc_lock, flags);
289 		return crypt_virt +i;
290 	} else {
291 		spin_unlock_irqrestore(&desc_lock, flags);
292 		return NULL;
293 	}
294 }
295 
296 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)297 static struct crypt_ctl *get_crypt_desc_emerg(void)
298 {
299 	int i;
300 	static int idx = NPE_QLEN;
301 	struct crypt_ctl *desc;
302 	unsigned long flags;
303 
304 	desc = get_crypt_desc();
305 	if (desc)
306 		return desc;
307 	if (unlikely(!crypt_virt))
308 		return NULL;
309 
310 	spin_lock_irqsave(&emerg_lock, flags);
311 	i = idx;
312 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
313 		if (++idx >= NPE_QLEN_TOTAL)
314 			idx = NPE_QLEN;
315 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
316 		spin_unlock_irqrestore(&emerg_lock, flags);
317 		return crypt_virt +i;
318 	} else {
319 		spin_unlock_irqrestore(&emerg_lock, flags);
320 		return NULL;
321 	}
322 }
323 
free_buf_chain(struct device * dev,struct buffer_desc * buf,dma_addr_t phys)324 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
325 			   dma_addr_t phys)
326 {
327 	while (buf) {
328 		struct buffer_desc *buf1;
329 		u32 phys1;
330 
331 		buf1 = buf->next;
332 		phys1 = buf->phys_next;
333 		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
334 		dma_pool_free(buffer_pool, buf, phys);
335 		buf = buf1;
336 		phys = phys1;
337 	}
338 }
339 
340 static struct tasklet_struct crypto_done_tasklet;
341 
finish_scattered_hmac(struct crypt_ctl * crypt)342 static void finish_scattered_hmac(struct crypt_ctl *crypt)
343 {
344 	struct aead_request *req = crypt->data.aead_req;
345 	struct aead_ctx *req_ctx = aead_request_ctx(req);
346 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
347 	int authsize = crypto_aead_authsize(tfm);
348 	int decryptlen = req->assoclen + req->cryptlen - authsize;
349 
350 	if (req_ctx->encrypt) {
351 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
352 			req->dst, decryptlen, authsize, 1);
353 	}
354 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
355 }
356 
one_packet(dma_addr_t phys)357 static void one_packet(dma_addr_t phys)
358 {
359 	struct device *dev = &pdev->dev;
360 	struct crypt_ctl *crypt;
361 	struct ixp_ctx *ctx;
362 	int failed;
363 
364 	failed = phys & 0x1 ? -EBADMSG : 0;
365 	phys &= ~0x3;
366 	crypt = crypt_phys2virt(phys);
367 
368 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
369 	case CTL_FLAG_PERFORM_AEAD: {
370 		struct aead_request *req = crypt->data.aead_req;
371 		struct aead_ctx *req_ctx = aead_request_ctx(req);
372 
373 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
375 		if (req_ctx->hmac_virt) {
376 			finish_scattered_hmac(crypt);
377 		}
378 		req->base.complete(&req->base, failed);
379 		break;
380 	}
381 	case CTL_FLAG_PERFORM_ABLK: {
382 		struct skcipher_request *req = crypt->data.ablk_req;
383 		struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
384 
385 		if (req_ctx->dst) {
386 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
387 		}
388 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
389 		req->base.complete(&req->base, failed);
390 		break;
391 	}
392 	case CTL_FLAG_GEN_ICV:
393 		ctx = crypto_tfm_ctx(crypt->data.tfm);
394 		dma_pool_free(ctx_pool, crypt->regist_ptr,
395 				crypt->regist_buf->phys_addr);
396 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
397 		if (atomic_dec_and_test(&ctx->configuring))
398 			complete(&ctx->completion);
399 		break;
400 	case CTL_FLAG_GEN_REVAES:
401 		ctx = crypto_tfm_ctx(crypt->data.tfm);
402 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
403 		if (atomic_dec_and_test(&ctx->configuring))
404 			complete(&ctx->completion);
405 		break;
406 	default:
407 		BUG();
408 	}
409 	crypt->ctl_flags = CTL_FLAG_UNUSED;
410 }
411 
irqhandler(void * _unused)412 static void irqhandler(void *_unused)
413 {
414 	tasklet_schedule(&crypto_done_tasklet);
415 }
416 
crypto_done_action(unsigned long arg)417 static void crypto_done_action(unsigned long arg)
418 {
419 	int i;
420 
421 	for(i=0; i<4; i++) {
422 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
423 		if (!phys)
424 			return;
425 		one_packet(phys);
426 	}
427 	tasklet_schedule(&crypto_done_tasklet);
428 }
429 
init_ixp_crypto(struct device * dev)430 static int init_ixp_crypto(struct device *dev)
431 {
432 	int ret = -ENODEV;
433 	u32 msg[2] = { 0, 0 };
434 
435 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
436 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
437 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
438 		return ret;
439 	}
440 	npe_c = npe_request(NPE_ID);
441 	if (!npe_c)
442 		return ret;
443 
444 	if (!npe_running(npe_c)) {
445 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
446 		if (ret)
447 			goto npe_release;
448 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449 			goto npe_error;
450 	} else {
451 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
452 			goto npe_error;
453 
454 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
455 			goto npe_error;
456 	}
457 
458 	switch ((msg[1]>>16) & 0xff) {
459 	case 3:
460 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
461 				npe_name(npe_c));
462 		support_aes = 0;
463 		break;
464 	case 4:
465 	case 5:
466 		support_aes = 1;
467 		break;
468 	default:
469 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
470 			npe_name(npe_c));
471 		ret = -ENODEV;
472 		goto npe_release;
473 	}
474 	/* buffer_pool will also be used to sometimes store the hmac,
475 	 * so assure it is large enough
476 	 */
477 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
478 	buffer_pool = dma_pool_create("buffer", dev,
479 			sizeof(struct buffer_desc), 32, 0);
480 	ret = -ENOMEM;
481 	if (!buffer_pool) {
482 		goto err;
483 	}
484 	ctx_pool = dma_pool_create("context", dev,
485 			NPE_CTX_LEN, 16, 0);
486 	if (!ctx_pool) {
487 		goto err;
488 	}
489 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
490 				 "ixp_crypto:out", NULL);
491 	if (ret)
492 		goto err;
493 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
494 				 "ixp_crypto:in", NULL);
495 	if (ret) {
496 		qmgr_release_queue(SEND_QID);
497 		goto err;
498 	}
499 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
500 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
501 
502 	qmgr_enable_irq(RECV_QID);
503 	return 0;
504 
505 npe_error:
506 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
507 	ret = -EIO;
508 err:
509 	dma_pool_destroy(ctx_pool);
510 	dma_pool_destroy(buffer_pool);
511 npe_release:
512 	npe_release(npe_c);
513 	return ret;
514 }
515 
release_ixp_crypto(struct device * dev)516 static void release_ixp_crypto(struct device *dev)
517 {
518 	qmgr_disable_irq(RECV_QID);
519 	tasklet_kill(&crypto_done_tasklet);
520 
521 	qmgr_release_queue(SEND_QID);
522 	qmgr_release_queue(RECV_QID);
523 
524 	dma_pool_destroy(ctx_pool);
525 	dma_pool_destroy(buffer_pool);
526 
527 	npe_release(npe_c);
528 
529 	if (crypt_virt) {
530 		dma_free_coherent(dev,
531 			NPE_QLEN * sizeof(struct crypt_ctl),
532 			crypt_virt, crypt_phys);
533 	}
534 }
535 
reset_sa_dir(struct ix_sa_dir * dir)536 static void reset_sa_dir(struct ix_sa_dir *dir)
537 {
538 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
539 	dir->npe_ctx_idx = 0;
540 	dir->npe_mode = 0;
541 }
542 
init_sa_dir(struct ix_sa_dir * dir)543 static int init_sa_dir(struct ix_sa_dir *dir)
544 {
545 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
546 	if (!dir->npe_ctx) {
547 		return -ENOMEM;
548 	}
549 	reset_sa_dir(dir);
550 	return 0;
551 }
552 
free_sa_dir(struct ix_sa_dir * dir)553 static void free_sa_dir(struct ix_sa_dir *dir)
554 {
555 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
556 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
557 }
558 
init_tfm(struct crypto_tfm * tfm)559 static int init_tfm(struct crypto_tfm *tfm)
560 {
561 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
562 	int ret;
563 
564 	atomic_set(&ctx->configuring, 0);
565 	ret = init_sa_dir(&ctx->encrypt);
566 	if (ret)
567 		return ret;
568 	ret = init_sa_dir(&ctx->decrypt);
569 	if (ret) {
570 		free_sa_dir(&ctx->encrypt);
571 	}
572 	return ret;
573 }
574 
init_tfm_ablk(struct crypto_skcipher * tfm)575 static int init_tfm_ablk(struct crypto_skcipher *tfm)
576 {
577 	crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx));
578 	return init_tfm(crypto_skcipher_tfm(tfm));
579 }
580 
init_tfm_aead(struct crypto_aead * tfm)581 static int init_tfm_aead(struct crypto_aead *tfm)
582 {
583 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
584 	return init_tfm(crypto_aead_tfm(tfm));
585 }
586 
exit_tfm(struct crypto_tfm * tfm)587 static void exit_tfm(struct crypto_tfm *tfm)
588 {
589 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
590 	free_sa_dir(&ctx->encrypt);
591 	free_sa_dir(&ctx->decrypt);
592 }
593 
exit_tfm_ablk(struct crypto_skcipher * tfm)594 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
595 {
596 	exit_tfm(crypto_skcipher_tfm(tfm));
597 }
598 
exit_tfm_aead(struct crypto_aead * tfm)599 static void exit_tfm_aead(struct crypto_aead *tfm)
600 {
601 	exit_tfm(crypto_aead_tfm(tfm));
602 }
603 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)604 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
605 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
606 {
607 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
608 	struct crypt_ctl *crypt;
609 	struct buffer_desc *buf;
610 	int i;
611 	u8 *pad;
612 	dma_addr_t pad_phys, buf_phys;
613 
614 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
615 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
616 	if (!pad)
617 		return -ENOMEM;
618 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
619 	if (!buf) {
620 		dma_pool_free(ctx_pool, pad, pad_phys);
621 		return -ENOMEM;
622 	}
623 	crypt = get_crypt_desc_emerg();
624 	if (!crypt) {
625 		dma_pool_free(ctx_pool, pad, pad_phys);
626 		dma_pool_free(buffer_pool, buf, buf_phys);
627 		return -EAGAIN;
628 	}
629 
630 	memcpy(pad, key, key_len);
631 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
632 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
633 		pad[i] ^= xpad;
634 	}
635 
636 	crypt->data.tfm = tfm;
637 	crypt->regist_ptr = pad;
638 	crypt->regist_buf = buf;
639 
640 	crypt->auth_offs = 0;
641 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
642 	crypt->crypto_ctx = ctx_addr;
643 	crypt->src_buf = buf_phys;
644 	crypt->icv_rev_aes = target;
645 	crypt->mode = NPE_OP_HASH_GEN_ICV;
646 	crypt->init_len = init_len;
647 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
648 
649 	buf->next = 0;
650 	buf->buf_len = HMAC_PAD_BLOCKLEN;
651 	buf->pkt_len = 0;
652 	buf->phys_addr = pad_phys;
653 
654 	atomic_inc(&ctx->configuring);
655 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
656 	BUG_ON(qmgr_stat_overflow(SEND_QID));
657 	return 0;
658 }
659 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)660 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
661 		const u8 *key, int key_len, unsigned digest_len)
662 {
663 	u32 itarget, otarget, npe_ctx_addr;
664 	unsigned char *cinfo;
665 	int init_len, ret = 0;
666 	u32 cfgword;
667 	struct ix_sa_dir *dir;
668 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
669 	const struct ix_hash_algo *algo;
670 
671 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
672 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
673 	algo = ix_hash(tfm);
674 
675 	/* write cfg word to cryptinfo */
676 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
677 #ifndef __ARMEB__
678 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
679 #endif
680 	*(u32*)cinfo = cpu_to_be32(cfgword);
681 	cinfo += sizeof(cfgword);
682 
683 	/* write ICV to cryptinfo */
684 	memcpy(cinfo, algo->icv, digest_len);
685 	cinfo += digest_len;
686 
687 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
688 				+ sizeof(algo->cfgword);
689 	otarget = itarget + digest_len;
690 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
691 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
692 
693 	dir->npe_ctx_idx += init_len;
694 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
695 
696 	if (!encrypt)
697 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
698 
699 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
700 			init_len, npe_ctx_addr, key, key_len);
701 	if (ret)
702 		return ret;
703 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
704 			init_len, npe_ctx_addr, key, key_len);
705 }
706 
gen_rev_aes_key(struct crypto_tfm * tfm)707 static int gen_rev_aes_key(struct crypto_tfm *tfm)
708 {
709 	struct crypt_ctl *crypt;
710 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
711 	struct ix_sa_dir *dir = &ctx->decrypt;
712 
713 	crypt = get_crypt_desc_emerg();
714 	if (!crypt) {
715 		return -EAGAIN;
716 	}
717 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
718 
719 	crypt->data.tfm = tfm;
720 	crypt->crypt_offs = 0;
721 	crypt->crypt_len = AES_BLOCK128;
722 	crypt->src_buf = 0;
723 	crypt->crypto_ctx = dir->npe_ctx_phys;
724 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
725 	crypt->mode = NPE_OP_ENC_GEN_KEY;
726 	crypt->init_len = dir->npe_ctx_idx;
727 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
728 
729 	atomic_inc(&ctx->configuring);
730 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
731 	BUG_ON(qmgr_stat_overflow(SEND_QID));
732 	return 0;
733 }
734 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)735 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
736 		const u8 *key, int key_len)
737 {
738 	u8 *cinfo;
739 	u32 cipher_cfg;
740 	u32 keylen_cfg = 0;
741 	struct ix_sa_dir *dir;
742 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743 	int err;
744 
745 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746 	cinfo = dir->npe_ctx;
747 
748 	if (encrypt) {
749 		cipher_cfg = cipher_cfg_enc(tfm);
750 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
751 	} else {
752 		cipher_cfg = cipher_cfg_dec(tfm);
753 	}
754 	if (cipher_cfg & MOD_AES) {
755 		switch (key_len) {
756 		case 16: keylen_cfg = MOD_AES128; break;
757 		case 24: keylen_cfg = MOD_AES192; break;
758 		case 32: keylen_cfg = MOD_AES256; break;
759 		default:
760 			return -EINVAL;
761 		}
762 		cipher_cfg |= keylen_cfg;
763 	} else {
764 		err = crypto_des_verify_key(tfm, key);
765 		if (err)
766 			return err;
767 	}
768 	/* write cfg word to cryptinfo */
769 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
770 	cinfo += sizeof(cipher_cfg);
771 
772 	/* write cipher key to cryptinfo */
773 	memcpy(cinfo, key, key_len);
774 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
775 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
776 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
777 		key_len = DES3_EDE_KEY_SIZE;
778 	}
779 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
780 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
781 	if ((cipher_cfg & MOD_AES) && !encrypt) {
782 		return gen_rev_aes_key(tfm);
783 	}
784 	return 0;
785 }
786 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)787 static struct buffer_desc *chainup_buffers(struct device *dev,
788 		struct scatterlist *sg,	unsigned nbytes,
789 		struct buffer_desc *buf, gfp_t flags,
790 		enum dma_data_direction dir)
791 {
792 	for (; nbytes > 0; sg = sg_next(sg)) {
793 		unsigned len = min(nbytes, sg->length);
794 		struct buffer_desc *next_buf;
795 		dma_addr_t next_buf_phys;
796 		void *ptr;
797 
798 		nbytes -= len;
799 		ptr = sg_virt(sg);
800 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
801 		if (!next_buf) {
802 			buf = NULL;
803 			break;
804 		}
805 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
806 		buf->next = next_buf;
807 		buf->phys_next = next_buf_phys;
808 		buf = next_buf;
809 
810 		buf->phys_addr = sg_dma_address(sg);
811 		buf->buf_len = len;
812 		buf->dir = dir;
813 	}
814 	buf->next = NULL;
815 	buf->phys_next = 0;
816 	return buf;
817 }
818 
ablk_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)819 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
820 			unsigned int key_len)
821 {
822 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
823 	int ret;
824 
825 	init_completion(&ctx->completion);
826 	atomic_inc(&ctx->configuring);
827 
828 	reset_sa_dir(&ctx->encrypt);
829 	reset_sa_dir(&ctx->decrypt);
830 
831 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
832 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
833 
834 	ret = setup_cipher(&tfm->base, 0, key, key_len);
835 	if (ret)
836 		goto out;
837 	ret = setup_cipher(&tfm->base, 1, key, key_len);
838 out:
839 	if (!atomic_dec_and_test(&ctx->configuring))
840 		wait_for_completion(&ctx->completion);
841 	return ret;
842 }
843 
ablk_des3_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)844 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
845 			    unsigned int key_len)
846 {
847 	return verify_skcipher_des3_key(tfm, key) ?:
848 	       ablk_setkey(tfm, key, key_len);
849 }
850 
ablk_rfc3686_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int key_len)851 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
852 		unsigned int key_len)
853 {
854 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
855 
856 	/* the nonce is stored in bytes at end of key */
857 	if (key_len < CTR_RFC3686_NONCE_SIZE)
858 		return -EINVAL;
859 
860 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
861 			CTR_RFC3686_NONCE_SIZE);
862 
863 	key_len -= CTR_RFC3686_NONCE_SIZE;
864 	return ablk_setkey(tfm, key, key_len);
865 }
866 
ablk_perform(struct skcipher_request * req,int encrypt)867 static int ablk_perform(struct skcipher_request *req, int encrypt)
868 {
869 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
870 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
871 	unsigned ivsize = crypto_skcipher_ivsize(tfm);
872 	struct ix_sa_dir *dir;
873 	struct crypt_ctl *crypt;
874 	unsigned int nbytes = req->cryptlen;
875 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
876 	struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
877 	struct buffer_desc src_hook;
878 	struct device *dev = &pdev->dev;
879 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
880 				GFP_KERNEL : GFP_ATOMIC;
881 
882 	if (qmgr_stat_full(SEND_QID))
883 		return -EAGAIN;
884 	if (atomic_read(&ctx->configuring))
885 		return -EAGAIN;
886 
887 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
888 
889 	crypt = get_crypt_desc();
890 	if (!crypt)
891 		return -ENOMEM;
892 
893 	crypt->data.ablk_req = req;
894 	crypt->crypto_ctx = dir->npe_ctx_phys;
895 	crypt->mode = dir->npe_mode;
896 	crypt->init_len = dir->npe_ctx_idx;
897 
898 	crypt->crypt_offs = 0;
899 	crypt->crypt_len = nbytes;
900 
901 	BUG_ON(ivsize && !req->iv);
902 	memcpy(crypt->iv, req->iv, ivsize);
903 	if (req->src != req->dst) {
904 		struct buffer_desc dst_hook;
905 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
906 		/* This was never tested by Intel
907 		 * for more than one dst buffer, I think. */
908 		req_ctx->dst = NULL;
909 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
910 					flags, DMA_FROM_DEVICE))
911 			goto free_buf_dest;
912 		src_direction = DMA_TO_DEVICE;
913 		req_ctx->dst = dst_hook.next;
914 		crypt->dst_buf = dst_hook.phys_next;
915 	} else {
916 		req_ctx->dst = NULL;
917 	}
918 	req_ctx->src = NULL;
919 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
920 				flags, src_direction))
921 		goto free_buf_src;
922 
923 	req_ctx->src = src_hook.next;
924 	crypt->src_buf = src_hook.phys_next;
925 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
926 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
927 	BUG_ON(qmgr_stat_overflow(SEND_QID));
928 	return -EINPROGRESS;
929 
930 free_buf_src:
931 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
932 free_buf_dest:
933 	if (req->src != req->dst) {
934 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
935 	}
936 	crypt->ctl_flags = CTL_FLAG_UNUSED;
937 	return -ENOMEM;
938 }
939 
ablk_encrypt(struct skcipher_request * req)940 static int ablk_encrypt(struct skcipher_request *req)
941 {
942 	return ablk_perform(req, 1);
943 }
944 
ablk_decrypt(struct skcipher_request * req)945 static int ablk_decrypt(struct skcipher_request *req)
946 {
947 	return ablk_perform(req, 0);
948 }
949 
ablk_rfc3686_crypt(struct skcipher_request * req)950 static int ablk_rfc3686_crypt(struct skcipher_request *req)
951 {
952 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
953 	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
954 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
955 	u8 *info = req->iv;
956 	int ret;
957 
958 	/* set up counter block */
959         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
960 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
961 
962 	/* initialize counter portion of counter block */
963 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
964 		cpu_to_be32(1);
965 
966 	req->iv = iv;
967 	ret = ablk_perform(req, 1);
968 	req->iv = info;
969 	return ret;
970 }
971 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)972 static int aead_perform(struct aead_request *req, int encrypt,
973 		int cryptoffset, int eff_cryptlen, u8 *iv)
974 {
975 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
976 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
977 	unsigned ivsize = crypto_aead_ivsize(tfm);
978 	unsigned authsize = crypto_aead_authsize(tfm);
979 	struct ix_sa_dir *dir;
980 	struct crypt_ctl *crypt;
981 	unsigned int cryptlen;
982 	struct buffer_desc *buf, src_hook;
983 	struct aead_ctx *req_ctx = aead_request_ctx(req);
984 	struct device *dev = &pdev->dev;
985 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
986 				GFP_KERNEL : GFP_ATOMIC;
987 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
988 	unsigned int lastlen;
989 
990 	if (qmgr_stat_full(SEND_QID))
991 		return -EAGAIN;
992 	if (atomic_read(&ctx->configuring))
993 		return -EAGAIN;
994 
995 	if (encrypt) {
996 		dir = &ctx->encrypt;
997 		cryptlen = req->cryptlen;
998 	} else {
999 		dir = &ctx->decrypt;
1000 		/* req->cryptlen includes the authsize when decrypting */
1001 		cryptlen = req->cryptlen -authsize;
1002 		eff_cryptlen -= authsize;
1003 	}
1004 	crypt = get_crypt_desc();
1005 	if (!crypt)
1006 		return -ENOMEM;
1007 
1008 	crypt->data.aead_req = req;
1009 	crypt->crypto_ctx = dir->npe_ctx_phys;
1010 	crypt->mode = dir->npe_mode;
1011 	crypt->init_len = dir->npe_ctx_idx;
1012 
1013 	crypt->crypt_offs = cryptoffset;
1014 	crypt->crypt_len = eff_cryptlen;
1015 
1016 	crypt->auth_offs = 0;
1017 	crypt->auth_len = req->assoclen + cryptlen;
1018 	BUG_ON(ivsize && !req->iv);
1019 	memcpy(crypt->iv, req->iv, ivsize);
1020 
1021 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1022 			      &src_hook, flags, src_direction);
1023 	req_ctx->src = src_hook.next;
1024 	crypt->src_buf = src_hook.phys_next;
1025 	if (!buf)
1026 		goto free_buf_src;
1027 
1028 	lastlen = buf->buf_len;
1029 	if (lastlen >= authsize)
1030 		crypt->icv_rev_aes = buf->phys_addr +
1031 				     buf->buf_len - authsize;
1032 
1033 	req_ctx->dst = NULL;
1034 
1035 	if (req->src != req->dst) {
1036 		struct buffer_desc dst_hook;
1037 
1038 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1039 		src_direction = DMA_TO_DEVICE;
1040 
1041 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1042 				      &dst_hook, flags, DMA_FROM_DEVICE);
1043 		req_ctx->dst = dst_hook.next;
1044 		crypt->dst_buf = dst_hook.phys_next;
1045 
1046 		if (!buf)
1047 			goto free_buf_dst;
1048 
1049 		if (encrypt) {
1050 			lastlen = buf->buf_len;
1051 			if (lastlen >= authsize)
1052 				crypt->icv_rev_aes = buf->phys_addr +
1053 						     buf->buf_len - authsize;
1054 		}
1055 	}
1056 
1057 	if (unlikely(lastlen < authsize)) {
1058 		/* The 12 hmac bytes are scattered,
1059 		 * we need to copy them into a safe buffer */
1060 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1061 				&crypt->icv_rev_aes);
1062 		if (unlikely(!req_ctx->hmac_virt))
1063 			goto free_buf_dst;
1064 		if (!encrypt) {
1065 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1066 				req->src, cryptlen, authsize, 0);
1067 		}
1068 		req_ctx->encrypt = encrypt;
1069 	} else {
1070 		req_ctx->hmac_virt = NULL;
1071 	}
1072 
1073 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1074 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1075 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1076 	return -EINPROGRESS;
1077 
1078 free_buf_dst:
1079 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1080 free_buf_src:
1081 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1082 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1083 	return -ENOMEM;
1084 }
1085 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1086 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1087 {
1088 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1089 	unsigned digest_len = crypto_aead_maxauthsize(tfm);
1090 	int ret;
1091 
1092 	if (!ctx->enckey_len && !ctx->authkey_len)
1093 		return 0;
1094 	init_completion(&ctx->completion);
1095 	atomic_inc(&ctx->configuring);
1096 
1097 	reset_sa_dir(&ctx->encrypt);
1098 	reset_sa_dir(&ctx->decrypt);
1099 
1100 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1101 	if (ret)
1102 		goto out;
1103 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1104 	if (ret)
1105 		goto out;
1106 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1107 			ctx->authkey_len, digest_len);
1108 	if (ret)
1109 		goto out;
1110 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1111 			ctx->authkey_len, digest_len);
1112 out:
1113 	if (!atomic_dec_and_test(&ctx->configuring))
1114 		wait_for_completion(&ctx->completion);
1115 	return ret;
1116 }
1117 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1118 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1119 {
1120 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1121 
1122 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1123 		return -EINVAL;
1124 	return aead_setup(tfm, authsize);
1125 }
1126 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1127 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1128 			unsigned int keylen)
1129 {
1130 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1131 	struct crypto_authenc_keys keys;
1132 
1133 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1134 		goto badkey;
1135 
1136 	if (keys.authkeylen > sizeof(ctx->authkey))
1137 		goto badkey;
1138 
1139 	if (keys.enckeylen > sizeof(ctx->enckey))
1140 		goto badkey;
1141 
1142 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1143 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1144 	ctx->authkey_len = keys.authkeylen;
1145 	ctx->enckey_len = keys.enckeylen;
1146 
1147 	memzero_explicit(&keys, sizeof(keys));
1148 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1149 badkey:
1150 	memzero_explicit(&keys, sizeof(keys));
1151 	return -EINVAL;
1152 }
1153 
des3_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1154 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1155 			    unsigned int keylen)
1156 {
1157 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1158 	struct crypto_authenc_keys keys;
1159 	int err;
1160 
1161 	err = crypto_authenc_extractkeys(&keys, key, keylen);
1162 	if (unlikely(err))
1163 		goto badkey;
1164 
1165 	err = -EINVAL;
1166 	if (keys.authkeylen > sizeof(ctx->authkey))
1167 		goto badkey;
1168 
1169 	err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1170 	if (err)
1171 		goto badkey;
1172 
1173 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1174 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1175 	ctx->authkey_len = keys.authkeylen;
1176 	ctx->enckey_len = keys.enckeylen;
1177 
1178 	memzero_explicit(&keys, sizeof(keys));
1179 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1180 badkey:
1181 	memzero_explicit(&keys, sizeof(keys));
1182 	return err;
1183 }
1184 
aead_encrypt(struct aead_request * req)1185 static int aead_encrypt(struct aead_request *req)
1186 {
1187 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1188 }
1189 
aead_decrypt(struct aead_request * req)1190 static int aead_decrypt(struct aead_request *req)
1191 {
1192 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1193 }
1194 
1195 static struct ixp_alg ixp4xx_algos[] = {
1196 {
1197 	.crypto	= {
1198 		.base.cra_name		= "cbc(des)",
1199 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1200 
1201 		.min_keysize		= DES_KEY_SIZE,
1202 		.max_keysize		= DES_KEY_SIZE,
1203 		.ivsize			= DES_BLOCK_SIZE,
1204 	},
1205 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1206 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1207 
1208 }, {
1209 	.crypto	= {
1210 		.base.cra_name		= "ecb(des)",
1211 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1212 		.min_keysize		= DES_KEY_SIZE,
1213 		.max_keysize		= DES_KEY_SIZE,
1214 	},
1215 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1217 }, {
1218 	.crypto	= {
1219 		.base.cra_name		= "cbc(des3_ede)",
1220 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1221 
1222 		.min_keysize		= DES3_EDE_KEY_SIZE,
1223 		.max_keysize		= DES3_EDE_KEY_SIZE,
1224 		.ivsize			= DES3_EDE_BLOCK_SIZE,
1225 		.setkey			= ablk_des3_setkey,
1226 	},
1227 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1228 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1229 }, {
1230 	.crypto	= {
1231 		.base.cra_name		= "ecb(des3_ede)",
1232 		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1233 
1234 		.min_keysize		= DES3_EDE_KEY_SIZE,
1235 		.max_keysize		= DES3_EDE_KEY_SIZE,
1236 		.setkey			= ablk_des3_setkey,
1237 	},
1238 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1239 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1240 }, {
1241 	.crypto	= {
1242 		.base.cra_name		= "cbc(aes)",
1243 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1244 
1245 		.min_keysize		= AES_MIN_KEY_SIZE,
1246 		.max_keysize		= AES_MAX_KEY_SIZE,
1247 		.ivsize			= AES_BLOCK_SIZE,
1248 	},
1249 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1250 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1251 }, {
1252 	.crypto	= {
1253 		.base.cra_name		= "ecb(aes)",
1254 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1255 
1256 		.min_keysize		= AES_MIN_KEY_SIZE,
1257 		.max_keysize		= AES_MAX_KEY_SIZE,
1258 	},
1259 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1260 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1261 }, {
1262 	.crypto	= {
1263 		.base.cra_name		= "ctr(aes)",
1264 		.base.cra_blocksize	= 1,
1265 
1266 		.min_keysize		= AES_MIN_KEY_SIZE,
1267 		.max_keysize		= AES_MAX_KEY_SIZE,
1268 		.ivsize			= AES_BLOCK_SIZE,
1269 	},
1270 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1271 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1272 }, {
1273 	.crypto	= {
1274 		.base.cra_name		= "rfc3686(ctr(aes))",
1275 		.base.cra_blocksize	= 1,
1276 
1277 		.min_keysize		= AES_MIN_KEY_SIZE,
1278 		.max_keysize		= AES_MAX_KEY_SIZE,
1279 		.ivsize			= AES_BLOCK_SIZE,
1280 		.setkey			= ablk_rfc3686_setkey,
1281 		.encrypt		= ablk_rfc3686_crypt,
1282 		.decrypt		= ablk_rfc3686_crypt,
1283 	},
1284 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1285 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1286 } };
1287 
1288 static struct ixp_aead_alg ixp4xx_aeads[] = {
1289 {
1290 	.crypto	= {
1291 		.base = {
1292 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1293 			.cra_blocksize	= DES_BLOCK_SIZE,
1294 		},
1295 		.ivsize		= DES_BLOCK_SIZE,
1296 		.maxauthsize	= MD5_DIGEST_SIZE,
1297 	},
1298 	.hash = &hash_alg_md5,
1299 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1300 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1301 }, {
1302 	.crypto	= {
1303 		.base = {
1304 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1305 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1306 		},
1307 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1308 		.maxauthsize	= MD5_DIGEST_SIZE,
1309 		.setkey		= des3_aead_setkey,
1310 	},
1311 	.hash = &hash_alg_md5,
1312 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1313 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1314 }, {
1315 	.crypto	= {
1316 		.base = {
1317 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1318 			.cra_blocksize	= DES_BLOCK_SIZE,
1319 		},
1320 			.ivsize		= DES_BLOCK_SIZE,
1321 			.maxauthsize	= SHA1_DIGEST_SIZE,
1322 	},
1323 	.hash = &hash_alg_sha1,
1324 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1325 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1326 }, {
1327 	.crypto	= {
1328 		.base = {
1329 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1330 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1331 		},
1332 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1333 		.maxauthsize	= SHA1_DIGEST_SIZE,
1334 		.setkey		= des3_aead_setkey,
1335 	},
1336 	.hash = &hash_alg_sha1,
1337 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1338 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1339 }, {
1340 	.crypto	= {
1341 		.base = {
1342 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1343 			.cra_blocksize	= AES_BLOCK_SIZE,
1344 		},
1345 		.ivsize		= AES_BLOCK_SIZE,
1346 		.maxauthsize	= MD5_DIGEST_SIZE,
1347 	},
1348 	.hash = &hash_alg_md5,
1349 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1350 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1351 }, {
1352 	.crypto	= {
1353 		.base = {
1354 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1355 			.cra_blocksize	= AES_BLOCK_SIZE,
1356 		},
1357 		.ivsize		= AES_BLOCK_SIZE,
1358 		.maxauthsize	= SHA1_DIGEST_SIZE,
1359 	},
1360 	.hash = &hash_alg_sha1,
1361 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1362 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1363 } };
1364 
1365 #define IXP_POSTFIX "-ixp4xx"
1366 
1367 static const struct platform_device_info ixp_dev_info __initdata = {
1368 	.name		= DRIVER_NAME,
1369 	.id		= 0,
1370 	.dma_mask	= DMA_BIT_MASK(32),
1371 };
1372 
ixp_module_init(void)1373 static int __init ixp_module_init(void)
1374 {
1375 	int num = ARRAY_SIZE(ixp4xx_algos);
1376 	int i, err;
1377 
1378 	pdev = platform_device_register_full(&ixp_dev_info);
1379 	if (IS_ERR(pdev))
1380 		return PTR_ERR(pdev);
1381 
1382 	spin_lock_init(&desc_lock);
1383 	spin_lock_init(&emerg_lock);
1384 
1385 	err = init_ixp_crypto(&pdev->dev);
1386 	if (err) {
1387 		platform_device_unregister(pdev);
1388 		return err;
1389 	}
1390 	for (i=0; i< num; i++) {
1391 		struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1392 
1393 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1394 			"%s"IXP_POSTFIX, cra->base.cra_name) >=
1395 			CRYPTO_MAX_ALG_NAME)
1396 		{
1397 			continue;
1398 		}
1399 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1400 			continue;
1401 		}
1402 
1403 		/* block ciphers */
1404 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1405 				      CRYPTO_ALG_ASYNC |
1406 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1407 		if (!cra->setkey)
1408 			cra->setkey = ablk_setkey;
1409 		if (!cra->encrypt)
1410 			cra->encrypt = ablk_encrypt;
1411 		if (!cra->decrypt)
1412 			cra->decrypt = ablk_decrypt;
1413 		cra->init = init_tfm_ablk;
1414 		cra->exit = exit_tfm_ablk;
1415 
1416 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1417 		cra->base.cra_module = THIS_MODULE;
1418 		cra->base.cra_alignmask = 3;
1419 		cra->base.cra_priority = 300;
1420 		if (crypto_register_skcipher(cra))
1421 			printk(KERN_ERR "Failed to register '%s'\n",
1422 				cra->base.cra_name);
1423 		else
1424 			ixp4xx_algos[i].registered = 1;
1425 	}
1426 
1427 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1428 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1429 
1430 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1431 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1432 		    CRYPTO_MAX_ALG_NAME)
1433 			continue;
1434 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1435 			continue;
1436 
1437 		/* authenc */
1438 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1439 				      CRYPTO_ALG_ASYNC |
1440 				      CRYPTO_ALG_ALLOCATES_MEMORY;
1441 		cra->setkey = cra->setkey ?: aead_setkey;
1442 		cra->setauthsize = aead_setauthsize;
1443 		cra->encrypt = aead_encrypt;
1444 		cra->decrypt = aead_decrypt;
1445 		cra->init = init_tfm_aead;
1446 		cra->exit = exit_tfm_aead;
1447 
1448 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1449 		cra->base.cra_module = THIS_MODULE;
1450 		cra->base.cra_alignmask = 3;
1451 		cra->base.cra_priority = 300;
1452 
1453 		if (crypto_register_aead(cra))
1454 			printk(KERN_ERR "Failed to register '%s'\n",
1455 				cra->base.cra_driver_name);
1456 		else
1457 			ixp4xx_aeads[i].registered = 1;
1458 	}
1459 	return 0;
1460 }
1461 
ixp_module_exit(void)1462 static void __exit ixp_module_exit(void)
1463 {
1464 	int num = ARRAY_SIZE(ixp4xx_algos);
1465 	int i;
1466 
1467 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1468 		if (ixp4xx_aeads[i].registered)
1469 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1470 	}
1471 
1472 	for (i=0; i< num; i++) {
1473 		if (ixp4xx_algos[i].registered)
1474 			crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1475 	}
1476 	release_ixp_crypto(&pdev->dev);
1477 	platform_device_unregister(pdev);
1478 }
1479 
1480 module_init(ixp_module_init);
1481 module_exit(ixp_module_exit);
1482 
1483 MODULE_LICENSE("GPL");
1484 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1485 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1486 
1487