1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Marvell Armada 37xx SoC Peripheral clocks
4 *
5 * Copyright (C) 2016 Marvell
6 *
7 * Gregory CLEMENT <gregory.clement@free-electrons.com>
8 *
9 * Most of the peripheral clocks can be modelled like this:
10 * _____ _______ _______
11 * TBG-A-P --| | | | | | ______
12 * TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
13 * TBG-A-S --| | | | | | |______|
14 * TBG-B-S --|_____| |_______| |_______|
15 *
16 * However some clocks may use only one or two block or and use the
17 * xtal clock as parent.
18 */
19
20 #include <linux/clk-provider.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28
29 #define TBG_SEL 0x0
30 #define DIV_SEL0 0x4
31 #define DIV_SEL1 0x8
32 #define DIV_SEL2 0xC
33 #define CLK_SEL 0x10
34 #define CLK_DIS 0x14
35
36 #define ARMADA_37XX_DVFS_LOAD_1 1
37 #define LOAD_LEVEL_NR 4
38
39 #define ARMADA_37XX_NB_L0L1 0x18
40 #define ARMADA_37XX_NB_L2L3 0x1C
41 #define ARMADA_37XX_NB_TBG_DIV_OFF 13
42 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
43 #define ARMADA_37XX_NB_CLK_SEL_OFF 11
44 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
45 #define ARMADA_37XX_NB_TBG_SEL_OFF 9
46 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
47 #define ARMADA_37XX_NB_CONFIG_SHIFT 16
48 #define ARMADA_37XX_NB_DYN_MOD 0x24
49 #define ARMADA_37XX_NB_DFS_EN 31
50 #define ARMADA_37XX_NB_CPU_LOAD 0x30
51 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
52 #define ARMADA_37XX_DVFS_LOAD_0 0
53 #define ARMADA_37XX_DVFS_LOAD_1 1
54 #define ARMADA_37XX_DVFS_LOAD_2 2
55 #define ARMADA_37XX_DVFS_LOAD_3 3
56
57 struct clk_periph_driver_data {
58 struct clk_hw_onecell_data *hw_data;
59 spinlock_t lock;
60 void __iomem *reg;
61
62 /* Storage registers for suspend/resume operations */
63 u32 tbg_sel;
64 u32 div_sel0;
65 u32 div_sel1;
66 u32 div_sel2;
67 u32 clk_sel;
68 u32 clk_dis;
69 };
70
71 struct clk_double_div {
72 struct clk_hw hw;
73 void __iomem *reg1;
74 u8 shift1;
75 void __iomem *reg2;
76 u8 shift2;
77 };
78
79 struct clk_pm_cpu {
80 struct clk_hw hw;
81 void __iomem *reg_mux;
82 u8 shift_mux;
83 u32 mask_mux;
84 void __iomem *reg_div;
85 u8 shift_div;
86 struct regmap *nb_pm_base;
87 };
88
89 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
90 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
91
92 struct clk_periph_data {
93 const char *name;
94 const char * const *parent_names;
95 int num_parents;
96 struct clk_hw *mux_hw;
97 struct clk_hw *rate_hw;
98 struct clk_hw *gate_hw;
99 struct clk_hw *muxrate_hw;
100 bool is_double_div;
101 };
102
103 static const struct clk_div_table clk_table6[] = {
104 { .val = 1, .div = 1, },
105 { .val = 2, .div = 2, },
106 { .val = 3, .div = 3, },
107 { .val = 4, .div = 4, },
108 { .val = 5, .div = 5, },
109 { .val = 6, .div = 6, },
110 { .val = 0, .div = 0, }, /* last entry */
111 };
112
113 static const struct clk_div_table clk_table1[] = {
114 { .val = 0, .div = 1, },
115 { .val = 1, .div = 2, },
116 { .val = 0, .div = 0, }, /* last entry */
117 };
118
119 static const struct clk_div_table clk_table2[] = {
120 { .val = 0, .div = 2, },
121 { .val = 1, .div = 4, },
122 { .val = 0, .div = 0, }, /* last entry */
123 };
124
125 static const struct clk_ops clk_double_div_ops;
126 static const struct clk_ops clk_pm_cpu_ops;
127
128 #define PERIPH_GATE(_name, _bit) \
129 struct clk_gate gate_##_name = { \
130 .reg = (void *)CLK_DIS, \
131 .bit_idx = _bit, \
132 .hw.init = &(struct clk_init_data){ \
133 .ops = &clk_gate_ops, \
134 } \
135 };
136
137 #define PERIPH_MUX(_name, _shift) \
138 struct clk_mux mux_##_name = { \
139 .reg = (void *)TBG_SEL, \
140 .shift = _shift, \
141 .mask = 3, \
142 .hw.init = &(struct clk_init_data){ \
143 .ops = &clk_mux_ro_ops, \
144 } \
145 };
146
147 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
148 struct clk_double_div rate_##_name = { \
149 .reg1 = (void *)_reg1, \
150 .reg2 = (void *)_reg2, \
151 .shift1 = _shift1, \
152 .shift2 = _shift2, \
153 .hw.init = &(struct clk_init_data){ \
154 .ops = &clk_double_div_ops, \
155 } \
156 };
157
158 #define PERIPH_DIV(_name, _reg, _shift, _table) \
159 struct clk_divider rate_##_name = { \
160 .reg = (void *)_reg, \
161 .table = _table, \
162 .shift = _shift, \
163 .hw.init = &(struct clk_init_data){ \
164 .ops = &clk_divider_ro_ops, \
165 } \
166 };
167
168 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \
169 struct clk_pm_cpu muxrate_##_name = { \
170 .reg_mux = (void *)TBG_SEL, \
171 .mask_mux = 3, \
172 .shift_mux = _shift1, \
173 .reg_div = (void *)_reg, \
174 .shift_div = _shift2, \
175 .hw.init = &(struct clk_init_data){ \
176 .ops = &clk_pm_cpu_ops, \
177 } \
178 };
179
180 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
181 static PERIPH_GATE(_name, _bit); \
182 static PERIPH_MUX(_name, _shift); \
183 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
184
185 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \
186 static PERIPH_GATE(_name, _bit); \
187 static PERIPH_MUX(_name, _shift); \
188 static PERIPH_DIV(_name, _reg, _shift1, _table);
189
190 #define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \
191 static PERIPH_GATE(_name, _bit); \
192 static PERIPH_DIV(_name, _reg, _shift, _table);
193
194 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
195 static PERIPH_MUX(_name, _shift); \
196 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
197
198 #define REF_CLK_FULL(_name) \
199 { .name = #_name, \
200 .parent_names = (const char *[]){ "TBG-A-P", \
201 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
202 .num_parents = 4, \
203 .mux_hw = &mux_##_name.hw, \
204 .gate_hw = &gate_##_name.hw, \
205 .rate_hw = &rate_##_name.hw, \
206 }
207
208 #define REF_CLK_FULL_DD(_name) \
209 { .name = #_name, \
210 .parent_names = (const char *[]){ "TBG-A-P", \
211 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
212 .num_parents = 4, \
213 .mux_hw = &mux_##_name.hw, \
214 .gate_hw = &gate_##_name.hw, \
215 .rate_hw = &rate_##_name.hw, \
216 .is_double_div = true, \
217 }
218
219 #define REF_CLK_GATE(_name, _parent_name) \
220 { .name = #_name, \
221 .parent_names = (const char *[]){ _parent_name}, \
222 .num_parents = 1, \
223 .gate_hw = &gate_##_name.hw, \
224 }
225
226 #define REF_CLK_GATE_DIV(_name, _parent_name) \
227 { .name = #_name, \
228 .parent_names = (const char *[]){ _parent_name}, \
229 .num_parents = 1, \
230 .gate_hw = &gate_##_name.hw, \
231 .rate_hw = &rate_##_name.hw, \
232 }
233
234 #define REF_CLK_PM_CPU(_name) \
235 { .name = #_name, \
236 .parent_names = (const char *[]){ "TBG-A-P", \
237 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
238 .num_parents = 4, \
239 .muxrate_hw = &muxrate_##_name.hw, \
240 }
241
242 #define REF_CLK_MUX_DD(_name) \
243 { .name = #_name, \
244 .parent_names = (const char *[]){ "TBG-A-P", \
245 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
246 .num_parents = 4, \
247 .mux_hw = &mux_##_name.hw, \
248 .rate_hw = &rate_##_name.hw, \
249 .is_double_div = true, \
250 }
251
252 /* NB periph clocks */
253 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
254 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
255 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
256 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
257 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
258 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
259 static PERIPH_GATE(avs, 11);
260 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
261 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
262 static PERIPH_GATE(i2c_2, 16);
263 static PERIPH_GATE(i2c_1, 17);
264 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
265 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
266 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
267 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
268 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
269 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
270
271 static struct clk_periph_data data_nb[] = {
272 REF_CLK_FULL_DD(mmc),
273 REF_CLK_FULL_DD(sata_host),
274 REF_CLK_FULL_DD(sec_at),
275 REF_CLK_FULL_DD(sec_dap),
276 REF_CLK_FULL_DD(tscem),
277 REF_CLK_FULL(tscem_tmx),
278 REF_CLK_GATE(avs, "xtal"),
279 REF_CLK_FULL_DD(sqf),
280 REF_CLK_FULL_DD(pwm),
281 REF_CLK_GATE(i2c_2, "xtal"),
282 REF_CLK_GATE(i2c_1, "xtal"),
283 REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
284 REF_CLK_FULL_DD(ddr_fclk),
285 REF_CLK_FULL(trace),
286 REF_CLK_FULL(counter),
287 REF_CLK_FULL_DD(eip97),
288 REF_CLK_PM_CPU(cpu),
289 { },
290 };
291
292 /* SB periph clocks */
293 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
294 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
295 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
296 static PERIPH_GATE(gbe1_50, 0);
297 static PERIPH_GATE(gbe0_50, 1);
298 static PERIPH_GATE(gbe1_125, 2);
299 static PERIPH_GATE(gbe0_125, 3);
300 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
301 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
302 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
303 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
304 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
305 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
306 static PERIPH_GATE(pcie, 14);
307
308 static struct clk_periph_data data_sb[] = {
309 REF_CLK_MUX_DD(gbe_50),
310 REF_CLK_MUX_DD(gbe_core),
311 REF_CLK_MUX_DD(gbe_125),
312 REF_CLK_GATE(gbe1_50, "gbe_50"),
313 REF_CLK_GATE(gbe0_50, "gbe_50"),
314 REF_CLK_GATE(gbe1_125, "gbe_125"),
315 REF_CLK_GATE(gbe0_125, "gbe_125"),
316 REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
317 REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
318 REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
319 REF_CLK_FULL_DD(sdio),
320 REF_CLK_FULL_DD(usb32_usb2_sys),
321 REF_CLK_FULL_DD(usb32_ss_sys),
322 REF_CLK_GATE(pcie, "gbe_core"),
323 { },
324 };
325
get_div(void __iomem * reg,int shift)326 static unsigned int get_div(void __iomem *reg, int shift)
327 {
328 u32 val;
329
330 val = (readl(reg) >> shift) & 0x7;
331 if (val > 6)
332 return 0;
333 return val;
334 }
335
clk_double_div_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)336 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
337 unsigned long parent_rate)
338 {
339 struct clk_double_div *double_div = to_clk_double_div(hw);
340 unsigned int div;
341
342 div = get_div(double_div->reg1, double_div->shift1);
343 div *= get_div(double_div->reg2, double_div->shift2);
344
345 return DIV_ROUND_UP_ULL((u64)parent_rate, div);
346 }
347
348 static const struct clk_ops clk_double_div_ops = {
349 .recalc_rate = clk_double_div_recalc_rate,
350 };
351
armada_3700_pm_dvfs_update_regs(unsigned int load_level,unsigned int * reg,unsigned int * offset)352 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
353 unsigned int *reg,
354 unsigned int *offset)
355 {
356 if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
357 *reg = ARMADA_37XX_NB_L0L1;
358 else
359 *reg = ARMADA_37XX_NB_L2L3;
360
361 if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
362 load_level == ARMADA_37XX_DVFS_LOAD_2)
363 *offset += ARMADA_37XX_NB_CONFIG_SHIFT;
364 }
365
armada_3700_pm_dvfs_is_enabled(struct regmap * base)366 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
367 {
368 unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
369
370 if (IS_ERR(base))
371 return false;
372
373 regmap_read(base, reg, &val);
374
375 return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
376 }
377
armada_3700_pm_dvfs_get_cpu_div(struct regmap * base)378 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
379 {
380 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
381 unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
382 unsigned int load_level, div;
383
384 /*
385 * This function is always called after the function
386 * armada_3700_pm_dvfs_is_enabled, so no need to check again
387 * if the base is valid.
388 */
389 regmap_read(base, reg, &load_level);
390
391 /*
392 * The register and the offset inside this register accessed to
393 * read the current divider depend on the load level
394 */
395 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
396 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset);
397
398 regmap_read(base, reg, &div);
399
400 return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
401 }
402
armada_3700_pm_dvfs_get_cpu_parent(struct regmap * base)403 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
404 {
405 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
406 unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
407 unsigned int load_level, sel;
408
409 /*
410 * This function is always called after the function
411 * armada_3700_pm_dvfs_is_enabled, so no need to check again
412 * if the base is valid
413 */
414 regmap_read(base, reg, &load_level);
415
416 /*
417 * The register and the offset inside this register accessed to
418 * read the current divider depend on the load level
419 */
420 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
421 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset);
422
423 regmap_read(base, reg, &sel);
424
425 return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
426 }
427
clk_pm_cpu_get_parent(struct clk_hw * hw)428 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
429 {
430 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
431 u32 val;
432
433 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
434 val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
435 } else {
436 val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
437 val &= pm_cpu->mask_mux;
438 }
439
440 return val;
441 }
442
clk_pm_cpu_set_parent(struct clk_hw * hw,u8 index)443 static int clk_pm_cpu_set_parent(struct clk_hw *hw, u8 index)
444 {
445 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
446 struct regmap *base = pm_cpu->nb_pm_base;
447 int load_level;
448
449 /*
450 * We set the clock parent only if the DVFS is available but
451 * not enabled.
452 */
453 if (IS_ERR(base) || armada_3700_pm_dvfs_is_enabled(base))
454 return -EINVAL;
455
456 /* Set the parent clock for all the load level */
457 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
458 unsigned int reg, mask, val,
459 offset = ARMADA_37XX_NB_TBG_SEL_OFF;
460
461 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset);
462
463 val = index << offset;
464 mask = ARMADA_37XX_NB_TBG_SEL_MASK << offset;
465 regmap_update_bits(base, reg, mask, val);
466 }
467 return 0;
468 }
469
clk_pm_cpu_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)470 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
471 unsigned long parent_rate)
472 {
473 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
474 unsigned int div;
475
476 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
477 div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
478 else
479 div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
480 return DIV_ROUND_UP_ULL((u64)parent_rate, div);
481 }
482
clk_pm_cpu_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)483 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
484 unsigned long *parent_rate)
485 {
486 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
487 struct regmap *base = pm_cpu->nb_pm_base;
488 unsigned int div = *parent_rate / rate;
489 unsigned int load_level;
490 /* only available when DVFS is enabled */
491 if (!armada_3700_pm_dvfs_is_enabled(base))
492 return -EINVAL;
493
494 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
495 unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
496
497 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset);
498
499 regmap_read(base, reg, &val);
500
501 val >>= offset;
502 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
503 if (val == div)
504 /*
505 * We found a load level matching the target
506 * divider, switch to this load level and
507 * return.
508 */
509 return *parent_rate / div;
510 }
511
512 /* We didn't find any valid divider */
513 return -EINVAL;
514 }
515
516 /*
517 * Switching the CPU from the L2 or L3 frequencies (300 and 200 Mhz
518 * respectively) to L0 frequency (1.2 Ghz) requires a significant
519 * amount of time to let VDD stabilize to the appropriate
520 * voltage. This amount of time is large enough that it cannot be
521 * covered by the hardware countdown register. Due to this, the CPU
522 * might start operating at L0 before the voltage is stabilized,
523 * leading to CPU stalls.
524 *
525 * To work around this problem, we prevent switching directly from the
526 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
527 * frequency in-between. The sequence therefore becomes:
528 * 1. First switch from L2/L3(200/300MHz) to L1(600MHZ)
529 * 2. Sleep 20ms for stabling VDD voltage
530 * 3. Then switch from L1(600MHZ) to L0(1200Mhz).
531 */
clk_pm_cpu_set_rate_wa(unsigned long rate,struct regmap * base)532 static void clk_pm_cpu_set_rate_wa(unsigned long rate, struct regmap *base)
533 {
534 unsigned int cur_level;
535
536 if (rate != 1200 * 1000 * 1000)
537 return;
538
539 regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
540 cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
541 if (cur_level <= ARMADA_37XX_DVFS_LOAD_1)
542 return;
543
544 regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
545 ARMADA_37XX_NB_CPU_LOAD_MASK,
546 ARMADA_37XX_DVFS_LOAD_1);
547 msleep(20);
548 }
549
clk_pm_cpu_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)550 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
551 unsigned long parent_rate)
552 {
553 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
554 struct regmap *base = pm_cpu->nb_pm_base;
555 unsigned int div = parent_rate / rate;
556 unsigned int load_level;
557
558 /* only available when DVFS is enabled */
559 if (!armada_3700_pm_dvfs_is_enabled(base))
560 return -EINVAL;
561
562 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
563 unsigned int reg, mask, val,
564 offset = ARMADA_37XX_NB_TBG_DIV_OFF;
565
566 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset);
567
568 regmap_read(base, reg, &val);
569 val >>= offset;
570 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
571
572 if (val == div) {
573 /*
574 * We found a load level matching the target
575 * divider, switch to this load level and
576 * return.
577 */
578 reg = ARMADA_37XX_NB_CPU_LOAD;
579 mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
580
581 clk_pm_cpu_set_rate_wa(rate, base);
582
583 regmap_update_bits(base, reg, mask, load_level);
584
585 return rate;
586 }
587 }
588
589 /* We didn't find any valid divider */
590 return -EINVAL;
591 }
592
593 static const struct clk_ops clk_pm_cpu_ops = {
594 .get_parent = clk_pm_cpu_get_parent,
595 .set_parent = clk_pm_cpu_set_parent,
596 .round_rate = clk_pm_cpu_round_rate,
597 .set_rate = clk_pm_cpu_set_rate,
598 .recalc_rate = clk_pm_cpu_recalc_rate,
599 };
600
601 static const struct of_device_id armada_3700_periph_clock_of_match[] = {
602 { .compatible = "marvell,armada-3700-periph-clock-nb",
603 .data = data_nb, },
604 { .compatible = "marvell,armada-3700-periph-clock-sb",
605 .data = data_sb, },
606 { }
607 };
608
armada_3700_add_composite_clk(const struct clk_periph_data * data,void __iomem * reg,spinlock_t * lock,struct device * dev,struct clk_hw ** hw)609 static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
610 void __iomem *reg, spinlock_t *lock,
611 struct device *dev, struct clk_hw **hw)
612 {
613 const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
614 *rate_ops = NULL;
615 struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
616
617 if (data->mux_hw) {
618 struct clk_mux *mux;
619
620 mux_hw = data->mux_hw;
621 mux = to_clk_mux(mux_hw);
622 mux->lock = lock;
623 mux_ops = mux_hw->init->ops;
624 mux->reg = reg + (u64)mux->reg;
625 }
626
627 if (data->gate_hw) {
628 struct clk_gate *gate;
629
630 gate_hw = data->gate_hw;
631 gate = to_clk_gate(gate_hw);
632 gate->lock = lock;
633 gate_ops = gate_hw->init->ops;
634 gate->reg = reg + (u64)gate->reg;
635 gate->flags = CLK_GATE_SET_TO_DISABLE;
636 }
637
638 if (data->rate_hw) {
639 rate_hw = data->rate_hw;
640 rate_ops = rate_hw->init->ops;
641 if (data->is_double_div) {
642 struct clk_double_div *rate;
643
644 rate = to_clk_double_div(rate_hw);
645 rate->reg1 = reg + (u64)rate->reg1;
646 rate->reg2 = reg + (u64)rate->reg2;
647 } else {
648 struct clk_divider *rate = to_clk_divider(rate_hw);
649 const struct clk_div_table *clkt;
650 int table_size = 0;
651
652 rate->reg = reg + (u64)rate->reg;
653 for (clkt = rate->table; clkt->div; clkt++)
654 table_size++;
655 rate->width = order_base_2(table_size);
656 rate->lock = lock;
657 }
658 }
659
660 if (data->muxrate_hw) {
661 struct clk_pm_cpu *pmcpu_clk;
662 struct clk_hw *muxrate_hw = data->muxrate_hw;
663 struct regmap *map;
664
665 pmcpu_clk = to_clk_pm_cpu(muxrate_hw);
666 pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
667 pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
668
669 mux_hw = muxrate_hw;
670 rate_hw = muxrate_hw;
671 mux_ops = muxrate_hw->init->ops;
672 rate_ops = muxrate_hw->init->ops;
673
674 map = syscon_regmap_lookup_by_compatible(
675 "marvell,armada-3700-nb-pm");
676 pmcpu_clk->nb_pm_base = map;
677 }
678
679 *hw = clk_hw_register_composite(dev, data->name, data->parent_names,
680 data->num_parents, mux_hw,
681 mux_ops, rate_hw, rate_ops,
682 gate_hw, gate_ops, CLK_IGNORE_UNUSED);
683
684 return PTR_ERR_OR_ZERO(*hw);
685 }
686
armada_3700_periph_clock_suspend(struct device * dev)687 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev)
688 {
689 struct clk_periph_driver_data *data = dev_get_drvdata(dev);
690
691 data->tbg_sel = readl(data->reg + TBG_SEL);
692 data->div_sel0 = readl(data->reg + DIV_SEL0);
693 data->div_sel1 = readl(data->reg + DIV_SEL1);
694 data->div_sel2 = readl(data->reg + DIV_SEL2);
695 data->clk_sel = readl(data->reg + CLK_SEL);
696 data->clk_dis = readl(data->reg + CLK_DIS);
697
698 return 0;
699 }
700
armada_3700_periph_clock_resume(struct device * dev)701 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev)
702 {
703 struct clk_periph_driver_data *data = dev_get_drvdata(dev);
704
705 /* Follow the same order than what the Cortex-M3 does (ATF code) */
706 writel(data->clk_dis, data->reg + CLK_DIS);
707 writel(data->div_sel0, data->reg + DIV_SEL0);
708 writel(data->div_sel1, data->reg + DIV_SEL1);
709 writel(data->div_sel2, data->reg + DIV_SEL2);
710 writel(data->tbg_sel, data->reg + TBG_SEL);
711 writel(data->clk_sel, data->reg + CLK_SEL);
712
713 return 0;
714 }
715
716 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = {
717 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend,
718 armada_3700_periph_clock_resume)
719 };
720
armada_3700_periph_clock_probe(struct platform_device * pdev)721 static int armada_3700_periph_clock_probe(struct platform_device *pdev)
722 {
723 struct clk_periph_driver_data *driver_data;
724 struct device_node *np = pdev->dev.of_node;
725 const struct clk_periph_data *data;
726 struct device *dev = &pdev->dev;
727 int num_periph = 0, i, ret;
728 struct resource *res;
729
730 data = of_device_get_match_data(dev);
731 if (!data)
732 return -ENODEV;
733
734 while (data[num_periph].name)
735 num_periph++;
736
737 driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
738 if (!driver_data)
739 return -ENOMEM;
740
741 driver_data->hw_data = devm_kzalloc(dev,
742 struct_size(driver_data->hw_data,
743 hws, num_periph),
744 GFP_KERNEL);
745 if (!driver_data->hw_data)
746 return -ENOMEM;
747 driver_data->hw_data->num = num_periph;
748
749 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
750 driver_data->reg = devm_ioremap_resource(dev, res);
751 if (IS_ERR(driver_data->reg))
752 return PTR_ERR(driver_data->reg);
753
754 spin_lock_init(&driver_data->lock);
755
756 for (i = 0; i < num_periph; i++) {
757 struct clk_hw **hw = &driver_data->hw_data->hws[i];
758 if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
759 &driver_data->lock, dev, hw))
760 dev_err(dev, "Can't register periph clock %s\n",
761 data[i].name);
762 }
763
764 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
765 driver_data->hw_data);
766 if (ret) {
767 for (i = 0; i < num_periph; i++)
768 clk_hw_unregister(driver_data->hw_data->hws[i]);
769 return ret;
770 }
771
772 platform_set_drvdata(pdev, driver_data);
773 return 0;
774 }
775
armada_3700_periph_clock_remove(struct platform_device * pdev)776 static int armada_3700_periph_clock_remove(struct platform_device *pdev)
777 {
778 struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
779 struct clk_hw_onecell_data *hw_data = data->hw_data;
780 int i;
781
782 of_clk_del_provider(pdev->dev.of_node);
783
784 for (i = 0; i < hw_data->num; i++)
785 clk_hw_unregister(hw_data->hws[i]);
786
787 return 0;
788 }
789
790 static struct platform_driver armada_3700_periph_clock_driver = {
791 .probe = armada_3700_periph_clock_probe,
792 .remove = armada_3700_periph_clock_remove,
793 .driver = {
794 .name = "marvell-armada-3700-periph-clock",
795 .of_match_table = armada_3700_periph_clock_of_match,
796 .pm = &armada_3700_periph_clock_pm_ops,
797 },
798 };
799
800 builtin_platform_driver(armada_3700_periph_clock_driver);
801