1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT)
15 #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT)
16 #define SECTOR_MASK		(PAGE_SECTORS - 1)
17 
18 #define FREE_BATCH		16
19 
20 #define TICKS_PER_SEC		50ULL
21 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
22 
23 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
24 static DECLARE_FAULT_ATTR(null_timeout_attr);
25 static DECLARE_FAULT_ATTR(null_requeue_attr);
26 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
27 #endif
28 
mb_per_tick(int mbps)29 static inline u64 mb_per_tick(int mbps)
30 {
31 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
32 }
33 
34 /*
35  * Status flags for nullb_device.
36  *
37  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
38  * UP:		Device is currently on and visible in userspace.
39  * THROTTLED:	Device is being throttled.
40  * CACHE:	Device is using a write-back cache.
41  */
42 enum nullb_device_flags {
43 	NULLB_DEV_FL_CONFIGURED	= 0,
44 	NULLB_DEV_FL_UP		= 1,
45 	NULLB_DEV_FL_THROTTLED	= 2,
46 	NULLB_DEV_FL_CACHE	= 3,
47 };
48 
49 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
50 /*
51  * nullb_page is a page in memory for nullb devices.
52  *
53  * @page:	The page holding the data.
54  * @bitmap:	The bitmap represents which sector in the page has data.
55  *		Each bit represents one block size. For example, sector 8
56  *		will use the 7th bit
57  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
58  * page is being flushing to storage. FREE means the cache page is freed and
59  * should be skipped from flushing to storage. Please see
60  * null_make_cache_space
61  */
62 struct nullb_page {
63 	struct page *page;
64 	DECLARE_BITMAP(bitmap, MAP_SZ);
65 };
66 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
67 #define NULLB_PAGE_FREE (MAP_SZ - 2)
68 
69 static LIST_HEAD(nullb_list);
70 static struct mutex lock;
71 static int null_major;
72 static DEFINE_IDA(nullb_indexes);
73 static struct blk_mq_tag_set tag_set;
74 
75 enum {
76 	NULL_IRQ_NONE		= 0,
77 	NULL_IRQ_SOFTIRQ	= 1,
78 	NULL_IRQ_TIMER		= 2,
79 };
80 
81 enum {
82 	NULL_Q_BIO		= 0,
83 	NULL_Q_RQ		= 1,
84 	NULL_Q_MQ		= 2,
85 };
86 
87 static int g_no_sched;
88 module_param_named(no_sched, g_no_sched, int, 0444);
89 MODULE_PARM_DESC(no_sched, "No io scheduler");
90 
91 static int g_submit_queues = 1;
92 module_param_named(submit_queues, g_submit_queues, int, 0444);
93 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
94 
95 static int g_home_node = NUMA_NO_NODE;
96 module_param_named(home_node, g_home_node, int, 0444);
97 MODULE_PARM_DESC(home_node, "Home node for the device");
98 
99 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
100 /*
101  * For more details about fault injection, please refer to
102  * Documentation/fault-injection/fault-injection.rst.
103  */
104 static char g_timeout_str[80];
105 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
106 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
107 
108 static char g_requeue_str[80];
109 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
110 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
111 
112 static char g_init_hctx_str[80];
113 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
114 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
115 #endif
116 
117 static int g_queue_mode = NULL_Q_MQ;
118 
null_param_store_val(const char * str,int * val,int min,int max)119 static int null_param_store_val(const char *str, int *val, int min, int max)
120 {
121 	int ret, new_val;
122 
123 	ret = kstrtoint(str, 10, &new_val);
124 	if (ret)
125 		return -EINVAL;
126 
127 	if (new_val < min || new_val > max)
128 		return -EINVAL;
129 
130 	*val = new_val;
131 	return 0;
132 }
133 
null_set_queue_mode(const char * str,const struct kernel_param * kp)134 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
135 {
136 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
137 }
138 
139 static const struct kernel_param_ops null_queue_mode_param_ops = {
140 	.set	= null_set_queue_mode,
141 	.get	= param_get_int,
142 };
143 
144 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
145 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
146 
147 static int g_gb = 250;
148 module_param_named(gb, g_gb, int, 0444);
149 MODULE_PARM_DESC(gb, "Size in GB");
150 
151 static int g_bs = 512;
152 module_param_named(bs, g_bs, int, 0444);
153 MODULE_PARM_DESC(bs, "Block size (in bytes)");
154 
155 static unsigned int nr_devices = 1;
156 module_param(nr_devices, uint, 0444);
157 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
158 
159 static bool g_blocking;
160 module_param_named(blocking, g_blocking, bool, 0444);
161 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
162 
163 static bool shared_tags;
164 module_param(shared_tags, bool, 0444);
165 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
166 
167 static bool g_shared_tag_bitmap;
168 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
169 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
170 
171 static int g_irqmode = NULL_IRQ_SOFTIRQ;
172 
null_set_irqmode(const char * str,const struct kernel_param * kp)173 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
174 {
175 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
176 					NULL_IRQ_TIMER);
177 }
178 
179 static const struct kernel_param_ops null_irqmode_param_ops = {
180 	.set	= null_set_irqmode,
181 	.get	= param_get_int,
182 };
183 
184 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
185 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
186 
187 static unsigned long g_completion_nsec = 10000;
188 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
189 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
190 
191 static int g_hw_queue_depth = 64;
192 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
193 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
194 
195 static bool g_use_per_node_hctx;
196 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
197 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
198 
199 static bool g_zoned;
200 module_param_named(zoned, g_zoned, bool, S_IRUGO);
201 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
202 
203 static unsigned long g_zone_size = 256;
204 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
205 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
206 
207 static unsigned long g_zone_capacity;
208 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
209 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
210 
211 static unsigned int g_zone_nr_conv;
212 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
213 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
214 
215 static unsigned int g_zone_max_open;
216 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
217 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
218 
219 static unsigned int g_zone_max_active;
220 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
221 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
222 
223 static struct nullb_device *null_alloc_dev(void);
224 static void null_free_dev(struct nullb_device *dev);
225 static void null_del_dev(struct nullb *nullb);
226 static int null_add_dev(struct nullb_device *dev);
227 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
228 
to_nullb_device(struct config_item * item)229 static inline struct nullb_device *to_nullb_device(struct config_item *item)
230 {
231 	return item ? container_of(item, struct nullb_device, item) : NULL;
232 }
233 
nullb_device_uint_attr_show(unsigned int val,char * page)234 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
235 {
236 	return snprintf(page, PAGE_SIZE, "%u\n", val);
237 }
238 
nullb_device_ulong_attr_show(unsigned long val,char * page)239 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
240 	char *page)
241 {
242 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
243 }
244 
nullb_device_bool_attr_show(bool val,char * page)245 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
246 {
247 	return snprintf(page, PAGE_SIZE, "%u\n", val);
248 }
249 
nullb_device_uint_attr_store(unsigned int * val,const char * page,size_t count)250 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
251 	const char *page, size_t count)
252 {
253 	unsigned int tmp;
254 	int result;
255 
256 	result = kstrtouint(page, 0, &tmp);
257 	if (result < 0)
258 		return result;
259 
260 	*val = tmp;
261 	return count;
262 }
263 
nullb_device_ulong_attr_store(unsigned long * val,const char * page,size_t count)264 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
265 	const char *page, size_t count)
266 {
267 	int result;
268 	unsigned long tmp;
269 
270 	result = kstrtoul(page, 0, &tmp);
271 	if (result < 0)
272 		return result;
273 
274 	*val = tmp;
275 	return count;
276 }
277 
nullb_device_bool_attr_store(bool * val,const char * page,size_t count)278 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
279 	size_t count)
280 {
281 	bool tmp;
282 	int result;
283 
284 	result = kstrtobool(page,  &tmp);
285 	if (result < 0)
286 		return result;
287 
288 	*val = tmp;
289 	return count;
290 }
291 
292 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
293 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
294 static ssize_t								\
295 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
296 {									\
297 	return nullb_device_##TYPE##_attr_show(				\
298 				to_nullb_device(item)->NAME, page);	\
299 }									\
300 static ssize_t								\
301 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
302 			    size_t count)				\
303 {									\
304 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
305 	struct nullb_device *dev = to_nullb_device(item);		\
306 	TYPE new_value = 0;						\
307 	int ret;							\
308 									\
309 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
310 	if (ret < 0)							\
311 		return ret;						\
312 	if (apply_fn)							\
313 		ret = apply_fn(dev, new_value);				\
314 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
315 		ret = -EBUSY;						\
316 	if (ret < 0)							\
317 		return ret;						\
318 	dev->NAME = new_value;						\
319 	return count;							\
320 }									\
321 CONFIGFS_ATTR(nullb_device_, NAME);
322 
nullb_apply_submit_queues(struct nullb_device * dev,unsigned int submit_queues)323 static int nullb_apply_submit_queues(struct nullb_device *dev,
324 				     unsigned int submit_queues)
325 {
326 	struct nullb *nullb = dev->nullb;
327 	struct blk_mq_tag_set *set;
328 
329 	if (!nullb)
330 		return 0;
331 
332 	/*
333 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
334 	 * the end of that array.
335 	 */
336 	if (submit_queues > nr_cpu_ids)
337 		return -EINVAL;
338 	set = nullb->tag_set;
339 	blk_mq_update_nr_hw_queues(set, submit_queues);
340 	return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
341 }
342 
343 NULLB_DEVICE_ATTR(size, ulong, NULL);
344 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
345 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
346 NULLB_DEVICE_ATTR(home_node, uint, NULL);
347 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
348 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
349 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
350 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
351 NULLB_DEVICE_ATTR(index, uint, NULL);
352 NULLB_DEVICE_ATTR(blocking, bool, NULL);
353 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
354 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
355 NULLB_DEVICE_ATTR(discard, bool, NULL);
356 NULLB_DEVICE_ATTR(mbps, uint, NULL);
357 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
358 NULLB_DEVICE_ATTR(zoned, bool, NULL);
359 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
360 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
361 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
362 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
363 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
364 
nullb_device_power_show(struct config_item * item,char * page)365 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
366 {
367 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
368 }
369 
nullb_device_power_store(struct config_item * item,const char * page,size_t count)370 static ssize_t nullb_device_power_store(struct config_item *item,
371 				     const char *page, size_t count)
372 {
373 	struct nullb_device *dev = to_nullb_device(item);
374 	bool newp = false;
375 	ssize_t ret;
376 
377 	ret = nullb_device_bool_attr_store(&newp, page, count);
378 	if (ret < 0)
379 		return ret;
380 
381 	if (!dev->power && newp) {
382 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
383 			return count;
384 		if (null_add_dev(dev)) {
385 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
386 			return -ENOMEM;
387 		}
388 
389 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
390 		dev->power = newp;
391 	} else if (dev->power && !newp) {
392 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
393 			mutex_lock(&lock);
394 			dev->power = newp;
395 			null_del_dev(dev->nullb);
396 			mutex_unlock(&lock);
397 		}
398 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
399 	}
400 
401 	return count;
402 }
403 
404 CONFIGFS_ATTR(nullb_device_, power);
405 
nullb_device_badblocks_show(struct config_item * item,char * page)406 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
407 {
408 	struct nullb_device *t_dev = to_nullb_device(item);
409 
410 	return badblocks_show(&t_dev->badblocks, page, 0);
411 }
412 
nullb_device_badblocks_store(struct config_item * item,const char * page,size_t count)413 static ssize_t nullb_device_badblocks_store(struct config_item *item,
414 				     const char *page, size_t count)
415 {
416 	struct nullb_device *t_dev = to_nullb_device(item);
417 	char *orig, *buf, *tmp;
418 	u64 start, end;
419 	int ret;
420 
421 	orig = kstrndup(page, count, GFP_KERNEL);
422 	if (!orig)
423 		return -ENOMEM;
424 
425 	buf = strstrip(orig);
426 
427 	ret = -EINVAL;
428 	if (buf[0] != '+' && buf[0] != '-')
429 		goto out;
430 	tmp = strchr(&buf[1], '-');
431 	if (!tmp)
432 		goto out;
433 	*tmp = '\0';
434 	ret = kstrtoull(buf + 1, 0, &start);
435 	if (ret)
436 		goto out;
437 	ret = kstrtoull(tmp + 1, 0, &end);
438 	if (ret)
439 		goto out;
440 	ret = -EINVAL;
441 	if (start > end)
442 		goto out;
443 	/* enable badblocks */
444 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
445 	if (buf[0] == '+')
446 		ret = badblocks_set(&t_dev->badblocks, start,
447 			end - start + 1, 1);
448 	else
449 		ret = badblocks_clear(&t_dev->badblocks, start,
450 			end - start + 1);
451 	if (ret == 0)
452 		ret = count;
453 out:
454 	kfree(orig);
455 	return ret;
456 }
457 CONFIGFS_ATTR(nullb_device_, badblocks);
458 
459 static struct configfs_attribute *nullb_device_attrs[] = {
460 	&nullb_device_attr_size,
461 	&nullb_device_attr_completion_nsec,
462 	&nullb_device_attr_submit_queues,
463 	&nullb_device_attr_home_node,
464 	&nullb_device_attr_queue_mode,
465 	&nullb_device_attr_blocksize,
466 	&nullb_device_attr_irqmode,
467 	&nullb_device_attr_hw_queue_depth,
468 	&nullb_device_attr_index,
469 	&nullb_device_attr_blocking,
470 	&nullb_device_attr_use_per_node_hctx,
471 	&nullb_device_attr_power,
472 	&nullb_device_attr_memory_backed,
473 	&nullb_device_attr_discard,
474 	&nullb_device_attr_mbps,
475 	&nullb_device_attr_cache_size,
476 	&nullb_device_attr_badblocks,
477 	&nullb_device_attr_zoned,
478 	&nullb_device_attr_zone_size,
479 	&nullb_device_attr_zone_capacity,
480 	&nullb_device_attr_zone_nr_conv,
481 	&nullb_device_attr_zone_max_open,
482 	&nullb_device_attr_zone_max_active,
483 	NULL,
484 };
485 
nullb_device_release(struct config_item * item)486 static void nullb_device_release(struct config_item *item)
487 {
488 	struct nullb_device *dev = to_nullb_device(item);
489 
490 	null_free_device_storage(dev, false);
491 	null_free_dev(dev);
492 }
493 
494 static struct configfs_item_operations nullb_device_ops = {
495 	.release	= nullb_device_release,
496 };
497 
498 static const struct config_item_type nullb_device_type = {
499 	.ct_item_ops	= &nullb_device_ops,
500 	.ct_attrs	= nullb_device_attrs,
501 	.ct_owner	= THIS_MODULE,
502 };
503 
504 static struct
nullb_group_make_item(struct config_group * group,const char * name)505 config_item *nullb_group_make_item(struct config_group *group, const char *name)
506 {
507 	struct nullb_device *dev;
508 
509 	dev = null_alloc_dev();
510 	if (!dev)
511 		return ERR_PTR(-ENOMEM);
512 
513 	config_item_init_type_name(&dev->item, name, &nullb_device_type);
514 
515 	return &dev->item;
516 }
517 
518 static void
nullb_group_drop_item(struct config_group * group,struct config_item * item)519 nullb_group_drop_item(struct config_group *group, struct config_item *item)
520 {
521 	struct nullb_device *dev = to_nullb_device(item);
522 
523 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
524 		mutex_lock(&lock);
525 		dev->power = false;
526 		null_del_dev(dev->nullb);
527 		mutex_unlock(&lock);
528 	}
529 
530 	config_item_put(item);
531 }
532 
memb_group_features_show(struct config_item * item,char * page)533 static ssize_t memb_group_features_show(struct config_item *item, char *page)
534 {
535 	return snprintf(page, PAGE_SIZE,
536 			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active\n");
537 }
538 
539 CONFIGFS_ATTR_RO(memb_group_, features);
540 
541 static struct configfs_attribute *nullb_group_attrs[] = {
542 	&memb_group_attr_features,
543 	NULL,
544 };
545 
546 static struct configfs_group_operations nullb_group_ops = {
547 	.make_item	= nullb_group_make_item,
548 	.drop_item	= nullb_group_drop_item,
549 };
550 
551 static const struct config_item_type nullb_group_type = {
552 	.ct_group_ops	= &nullb_group_ops,
553 	.ct_attrs	= nullb_group_attrs,
554 	.ct_owner	= THIS_MODULE,
555 };
556 
557 static struct configfs_subsystem nullb_subsys = {
558 	.su_group = {
559 		.cg_item = {
560 			.ci_namebuf = "nullb",
561 			.ci_type = &nullb_group_type,
562 		},
563 	},
564 };
565 
null_cache_active(struct nullb * nullb)566 static inline int null_cache_active(struct nullb *nullb)
567 {
568 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
569 }
570 
null_alloc_dev(void)571 static struct nullb_device *null_alloc_dev(void)
572 {
573 	struct nullb_device *dev;
574 
575 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
576 	if (!dev)
577 		return NULL;
578 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
579 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
580 	if (badblocks_init(&dev->badblocks, 0)) {
581 		kfree(dev);
582 		return NULL;
583 	}
584 
585 	dev->size = g_gb * 1024;
586 	dev->completion_nsec = g_completion_nsec;
587 	dev->submit_queues = g_submit_queues;
588 	dev->home_node = g_home_node;
589 	dev->queue_mode = g_queue_mode;
590 	dev->blocksize = g_bs;
591 	dev->irqmode = g_irqmode;
592 	dev->hw_queue_depth = g_hw_queue_depth;
593 	dev->blocking = g_blocking;
594 	dev->use_per_node_hctx = g_use_per_node_hctx;
595 	dev->zoned = g_zoned;
596 	dev->zone_size = g_zone_size;
597 	dev->zone_capacity = g_zone_capacity;
598 	dev->zone_nr_conv = g_zone_nr_conv;
599 	dev->zone_max_open = g_zone_max_open;
600 	dev->zone_max_active = g_zone_max_active;
601 	return dev;
602 }
603 
null_free_dev(struct nullb_device * dev)604 static void null_free_dev(struct nullb_device *dev)
605 {
606 	if (!dev)
607 		return;
608 
609 	null_free_zoned_dev(dev);
610 	badblocks_exit(&dev->badblocks);
611 	kfree(dev);
612 }
613 
put_tag(struct nullb_queue * nq,unsigned int tag)614 static void put_tag(struct nullb_queue *nq, unsigned int tag)
615 {
616 	clear_bit_unlock(tag, nq->tag_map);
617 
618 	if (waitqueue_active(&nq->wait))
619 		wake_up(&nq->wait);
620 }
621 
get_tag(struct nullb_queue * nq)622 static unsigned int get_tag(struct nullb_queue *nq)
623 {
624 	unsigned int tag;
625 
626 	do {
627 		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
628 		if (tag >= nq->queue_depth)
629 			return -1U;
630 	} while (test_and_set_bit_lock(tag, nq->tag_map));
631 
632 	return tag;
633 }
634 
free_cmd(struct nullb_cmd * cmd)635 static void free_cmd(struct nullb_cmd *cmd)
636 {
637 	put_tag(cmd->nq, cmd->tag);
638 }
639 
640 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
641 
__alloc_cmd(struct nullb_queue * nq)642 static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
643 {
644 	struct nullb_cmd *cmd;
645 	unsigned int tag;
646 
647 	tag = get_tag(nq);
648 	if (tag != -1U) {
649 		cmd = &nq->cmds[tag];
650 		cmd->tag = tag;
651 		cmd->error = BLK_STS_OK;
652 		cmd->nq = nq;
653 		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
654 			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
655 				     HRTIMER_MODE_REL);
656 			cmd->timer.function = null_cmd_timer_expired;
657 		}
658 		return cmd;
659 	}
660 
661 	return NULL;
662 }
663 
alloc_cmd(struct nullb_queue * nq,int can_wait)664 static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
665 {
666 	struct nullb_cmd *cmd;
667 	DEFINE_WAIT(wait);
668 
669 	cmd = __alloc_cmd(nq);
670 	if (cmd || !can_wait)
671 		return cmd;
672 
673 	do {
674 		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
675 		cmd = __alloc_cmd(nq);
676 		if (cmd)
677 			break;
678 
679 		io_schedule();
680 	} while (1);
681 
682 	finish_wait(&nq->wait, &wait);
683 	return cmd;
684 }
685 
end_cmd(struct nullb_cmd * cmd)686 static void end_cmd(struct nullb_cmd *cmd)
687 {
688 	int queue_mode = cmd->nq->dev->queue_mode;
689 
690 	switch (queue_mode)  {
691 	case NULL_Q_MQ:
692 		blk_mq_end_request(cmd->rq, cmd->error);
693 		return;
694 	case NULL_Q_BIO:
695 		cmd->bio->bi_status = cmd->error;
696 		bio_endio(cmd->bio);
697 		break;
698 	}
699 
700 	free_cmd(cmd);
701 }
702 
null_cmd_timer_expired(struct hrtimer * timer)703 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
704 {
705 	end_cmd(container_of(timer, struct nullb_cmd, timer));
706 
707 	return HRTIMER_NORESTART;
708 }
709 
null_cmd_end_timer(struct nullb_cmd * cmd)710 static void null_cmd_end_timer(struct nullb_cmd *cmd)
711 {
712 	ktime_t kt = cmd->nq->dev->completion_nsec;
713 
714 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
715 }
716 
null_complete_rq(struct request * rq)717 static void null_complete_rq(struct request *rq)
718 {
719 	end_cmd(blk_mq_rq_to_pdu(rq));
720 }
721 
null_alloc_page(gfp_t gfp_flags)722 static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
723 {
724 	struct nullb_page *t_page;
725 
726 	t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
727 	if (!t_page)
728 		goto out;
729 
730 	t_page->page = alloc_pages(gfp_flags, 0);
731 	if (!t_page->page)
732 		goto out_freepage;
733 
734 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
735 	return t_page;
736 out_freepage:
737 	kfree(t_page);
738 out:
739 	return NULL;
740 }
741 
null_free_page(struct nullb_page * t_page)742 static void null_free_page(struct nullb_page *t_page)
743 {
744 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
745 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
746 		return;
747 	__free_page(t_page->page);
748 	kfree(t_page);
749 }
750 
null_page_empty(struct nullb_page * page)751 static bool null_page_empty(struct nullb_page *page)
752 {
753 	int size = MAP_SZ - 2;
754 
755 	return find_first_bit(page->bitmap, size) == size;
756 }
757 
null_free_sector(struct nullb * nullb,sector_t sector,bool is_cache)758 static void null_free_sector(struct nullb *nullb, sector_t sector,
759 	bool is_cache)
760 {
761 	unsigned int sector_bit;
762 	u64 idx;
763 	struct nullb_page *t_page, *ret;
764 	struct radix_tree_root *root;
765 
766 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
767 	idx = sector >> PAGE_SECTORS_SHIFT;
768 	sector_bit = (sector & SECTOR_MASK);
769 
770 	t_page = radix_tree_lookup(root, idx);
771 	if (t_page) {
772 		__clear_bit(sector_bit, t_page->bitmap);
773 
774 		if (null_page_empty(t_page)) {
775 			ret = radix_tree_delete_item(root, idx, t_page);
776 			WARN_ON(ret != t_page);
777 			null_free_page(ret);
778 			if (is_cache)
779 				nullb->dev->curr_cache -= PAGE_SIZE;
780 		}
781 	}
782 }
783 
null_radix_tree_insert(struct nullb * nullb,u64 idx,struct nullb_page * t_page,bool is_cache)784 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
785 	struct nullb_page *t_page, bool is_cache)
786 {
787 	struct radix_tree_root *root;
788 
789 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
790 
791 	if (radix_tree_insert(root, idx, t_page)) {
792 		null_free_page(t_page);
793 		t_page = radix_tree_lookup(root, idx);
794 		WARN_ON(!t_page || t_page->page->index != idx);
795 	} else if (is_cache)
796 		nullb->dev->curr_cache += PAGE_SIZE;
797 
798 	return t_page;
799 }
800 
null_free_device_storage(struct nullb_device * dev,bool is_cache)801 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
802 {
803 	unsigned long pos = 0;
804 	int nr_pages;
805 	struct nullb_page *ret, *t_pages[FREE_BATCH];
806 	struct radix_tree_root *root;
807 
808 	root = is_cache ? &dev->cache : &dev->data;
809 
810 	do {
811 		int i;
812 
813 		nr_pages = radix_tree_gang_lookup(root,
814 				(void **)t_pages, pos, FREE_BATCH);
815 
816 		for (i = 0; i < nr_pages; i++) {
817 			pos = t_pages[i]->page->index;
818 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
819 			WARN_ON(ret != t_pages[i]);
820 			null_free_page(ret);
821 		}
822 
823 		pos++;
824 	} while (nr_pages == FREE_BATCH);
825 
826 	if (is_cache)
827 		dev->curr_cache = 0;
828 }
829 
__null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool is_cache)830 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
831 	sector_t sector, bool for_write, bool is_cache)
832 {
833 	unsigned int sector_bit;
834 	u64 idx;
835 	struct nullb_page *t_page;
836 	struct radix_tree_root *root;
837 
838 	idx = sector >> PAGE_SECTORS_SHIFT;
839 	sector_bit = (sector & SECTOR_MASK);
840 
841 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
842 	t_page = radix_tree_lookup(root, idx);
843 	WARN_ON(t_page && t_page->page->index != idx);
844 
845 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
846 		return t_page;
847 
848 	return NULL;
849 }
850 
null_lookup_page(struct nullb * nullb,sector_t sector,bool for_write,bool ignore_cache)851 static struct nullb_page *null_lookup_page(struct nullb *nullb,
852 	sector_t sector, bool for_write, bool ignore_cache)
853 {
854 	struct nullb_page *page = NULL;
855 
856 	if (!ignore_cache)
857 		page = __null_lookup_page(nullb, sector, for_write, true);
858 	if (page)
859 		return page;
860 	return __null_lookup_page(nullb, sector, for_write, false);
861 }
862 
null_insert_page(struct nullb * nullb,sector_t sector,bool ignore_cache)863 static struct nullb_page *null_insert_page(struct nullb *nullb,
864 					   sector_t sector, bool ignore_cache)
865 	__releases(&nullb->lock)
866 	__acquires(&nullb->lock)
867 {
868 	u64 idx;
869 	struct nullb_page *t_page;
870 
871 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
872 	if (t_page)
873 		return t_page;
874 
875 	spin_unlock_irq(&nullb->lock);
876 
877 	t_page = null_alloc_page(GFP_NOIO);
878 	if (!t_page)
879 		goto out_lock;
880 
881 	if (radix_tree_preload(GFP_NOIO))
882 		goto out_freepage;
883 
884 	spin_lock_irq(&nullb->lock);
885 	idx = sector >> PAGE_SECTORS_SHIFT;
886 	t_page->page->index = idx;
887 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
888 	radix_tree_preload_end();
889 
890 	return t_page;
891 out_freepage:
892 	null_free_page(t_page);
893 out_lock:
894 	spin_lock_irq(&nullb->lock);
895 	return null_lookup_page(nullb, sector, true, ignore_cache);
896 }
897 
null_flush_cache_page(struct nullb * nullb,struct nullb_page * c_page)898 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
899 {
900 	int i;
901 	unsigned int offset;
902 	u64 idx;
903 	struct nullb_page *t_page, *ret;
904 	void *dst, *src;
905 
906 	idx = c_page->page->index;
907 
908 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
909 
910 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
911 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
912 		null_free_page(c_page);
913 		if (t_page && null_page_empty(t_page)) {
914 			ret = radix_tree_delete_item(&nullb->dev->data,
915 				idx, t_page);
916 			null_free_page(t_page);
917 		}
918 		return 0;
919 	}
920 
921 	if (!t_page)
922 		return -ENOMEM;
923 
924 	src = kmap_atomic(c_page->page);
925 	dst = kmap_atomic(t_page->page);
926 
927 	for (i = 0; i < PAGE_SECTORS;
928 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
929 		if (test_bit(i, c_page->bitmap)) {
930 			offset = (i << SECTOR_SHIFT);
931 			memcpy(dst + offset, src + offset,
932 				nullb->dev->blocksize);
933 			__set_bit(i, t_page->bitmap);
934 		}
935 	}
936 
937 	kunmap_atomic(dst);
938 	kunmap_atomic(src);
939 
940 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
941 	null_free_page(ret);
942 	nullb->dev->curr_cache -= PAGE_SIZE;
943 
944 	return 0;
945 }
946 
null_make_cache_space(struct nullb * nullb,unsigned long n)947 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
948 {
949 	int i, err, nr_pages;
950 	struct nullb_page *c_pages[FREE_BATCH];
951 	unsigned long flushed = 0, one_round;
952 
953 again:
954 	if ((nullb->dev->cache_size * 1024 * 1024) >
955 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
956 		return 0;
957 
958 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
959 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
960 	/*
961 	 * nullb_flush_cache_page could unlock before using the c_pages. To
962 	 * avoid race, we don't allow page free
963 	 */
964 	for (i = 0; i < nr_pages; i++) {
965 		nullb->cache_flush_pos = c_pages[i]->page->index;
966 		/*
967 		 * We found the page which is being flushed to disk by other
968 		 * threads
969 		 */
970 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
971 			c_pages[i] = NULL;
972 		else
973 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
974 	}
975 
976 	one_round = 0;
977 	for (i = 0; i < nr_pages; i++) {
978 		if (c_pages[i] == NULL)
979 			continue;
980 		err = null_flush_cache_page(nullb, c_pages[i]);
981 		if (err)
982 			return err;
983 		one_round++;
984 	}
985 	flushed += one_round << PAGE_SHIFT;
986 
987 	if (n > flushed) {
988 		if (nr_pages == 0)
989 			nullb->cache_flush_pos = 0;
990 		if (one_round == 0) {
991 			/* give other threads a chance */
992 			spin_unlock_irq(&nullb->lock);
993 			spin_lock_irq(&nullb->lock);
994 		}
995 		goto again;
996 	}
997 	return 0;
998 }
999 
copy_to_nullb(struct nullb * nullb,struct page * source,unsigned int off,sector_t sector,size_t n,bool is_fua)1000 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1001 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1002 {
1003 	size_t temp, count = 0;
1004 	unsigned int offset;
1005 	struct nullb_page *t_page;
1006 	void *dst, *src;
1007 
1008 	while (count < n) {
1009 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1010 
1011 		if (null_cache_active(nullb) && !is_fua)
1012 			null_make_cache_space(nullb, PAGE_SIZE);
1013 
1014 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1015 		t_page = null_insert_page(nullb, sector,
1016 			!null_cache_active(nullb) || is_fua);
1017 		if (!t_page)
1018 			return -ENOSPC;
1019 
1020 		src = kmap_atomic(source);
1021 		dst = kmap_atomic(t_page->page);
1022 		memcpy(dst + offset, src + off + count, temp);
1023 		kunmap_atomic(dst);
1024 		kunmap_atomic(src);
1025 
1026 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1027 
1028 		if (is_fua)
1029 			null_free_sector(nullb, sector, true);
1030 
1031 		count += temp;
1032 		sector += temp >> SECTOR_SHIFT;
1033 	}
1034 	return 0;
1035 }
1036 
copy_from_nullb(struct nullb * nullb,struct page * dest,unsigned int off,sector_t sector,size_t n)1037 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1038 	unsigned int off, sector_t sector, size_t n)
1039 {
1040 	size_t temp, count = 0;
1041 	unsigned int offset;
1042 	struct nullb_page *t_page;
1043 	void *dst, *src;
1044 
1045 	while (count < n) {
1046 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1047 
1048 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1049 		t_page = null_lookup_page(nullb, sector, false,
1050 			!null_cache_active(nullb));
1051 
1052 		dst = kmap_atomic(dest);
1053 		if (!t_page) {
1054 			memset(dst + off + count, 0, temp);
1055 			goto next;
1056 		}
1057 		src = kmap_atomic(t_page->page);
1058 		memcpy(dst + off + count, src + offset, temp);
1059 		kunmap_atomic(src);
1060 next:
1061 		kunmap_atomic(dst);
1062 
1063 		count += temp;
1064 		sector += temp >> SECTOR_SHIFT;
1065 	}
1066 	return 0;
1067 }
1068 
nullb_fill_pattern(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off)1069 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1070 			       unsigned int len, unsigned int off)
1071 {
1072 	void *dst;
1073 
1074 	dst = kmap_atomic(page);
1075 	memset(dst + off, 0xFF, len);
1076 	kunmap_atomic(dst);
1077 }
1078 
null_handle_discard(struct nullb * nullb,sector_t sector,size_t n)1079 static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1080 {
1081 	size_t temp;
1082 
1083 	spin_lock_irq(&nullb->lock);
1084 	while (n > 0) {
1085 		temp = min_t(size_t, n, nullb->dev->blocksize);
1086 		null_free_sector(nullb, sector, false);
1087 		if (null_cache_active(nullb))
1088 			null_free_sector(nullb, sector, true);
1089 		sector += temp >> SECTOR_SHIFT;
1090 		n -= temp;
1091 	}
1092 	spin_unlock_irq(&nullb->lock);
1093 }
1094 
null_handle_flush(struct nullb * nullb)1095 static int null_handle_flush(struct nullb *nullb)
1096 {
1097 	int err;
1098 
1099 	if (!null_cache_active(nullb))
1100 		return 0;
1101 
1102 	spin_lock_irq(&nullb->lock);
1103 	while (true) {
1104 		err = null_make_cache_space(nullb,
1105 			nullb->dev->cache_size * 1024 * 1024);
1106 		if (err || nullb->dev->curr_cache == 0)
1107 			break;
1108 	}
1109 
1110 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1111 	spin_unlock_irq(&nullb->lock);
1112 	return err;
1113 }
1114 
null_transfer(struct nullb * nullb,struct page * page,unsigned int len,unsigned int off,bool is_write,sector_t sector,bool is_fua)1115 static int null_transfer(struct nullb *nullb, struct page *page,
1116 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1117 	bool is_fua)
1118 {
1119 	struct nullb_device *dev = nullb->dev;
1120 	unsigned int valid_len = len;
1121 	int err = 0;
1122 
1123 	if (!is_write) {
1124 		if (dev->zoned)
1125 			valid_len = null_zone_valid_read_len(nullb,
1126 				sector, len);
1127 
1128 		if (valid_len) {
1129 			err = copy_from_nullb(nullb, page, off,
1130 				sector, valid_len);
1131 			off += valid_len;
1132 			len -= valid_len;
1133 		}
1134 
1135 		if (len)
1136 			nullb_fill_pattern(nullb, page, len, off);
1137 		flush_dcache_page(page);
1138 	} else {
1139 		flush_dcache_page(page);
1140 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1141 	}
1142 
1143 	return err;
1144 }
1145 
null_handle_rq(struct nullb_cmd * cmd)1146 static int null_handle_rq(struct nullb_cmd *cmd)
1147 {
1148 	struct request *rq = cmd->rq;
1149 	struct nullb *nullb = cmd->nq->dev->nullb;
1150 	int err;
1151 	unsigned int len;
1152 	sector_t sector;
1153 	struct req_iterator iter;
1154 	struct bio_vec bvec;
1155 
1156 	sector = blk_rq_pos(rq);
1157 
1158 	if (req_op(rq) == REQ_OP_DISCARD) {
1159 		null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1160 		return 0;
1161 	}
1162 
1163 	spin_lock_irq(&nullb->lock);
1164 	rq_for_each_segment(bvec, rq, iter) {
1165 		len = bvec.bv_len;
1166 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1167 				     op_is_write(req_op(rq)), sector,
1168 				     rq->cmd_flags & REQ_FUA);
1169 		if (err) {
1170 			spin_unlock_irq(&nullb->lock);
1171 			return err;
1172 		}
1173 		sector += len >> SECTOR_SHIFT;
1174 	}
1175 	spin_unlock_irq(&nullb->lock);
1176 
1177 	return 0;
1178 }
1179 
null_handle_bio(struct nullb_cmd * cmd)1180 static int null_handle_bio(struct nullb_cmd *cmd)
1181 {
1182 	struct bio *bio = cmd->bio;
1183 	struct nullb *nullb = cmd->nq->dev->nullb;
1184 	int err;
1185 	unsigned int len;
1186 	sector_t sector;
1187 	struct bio_vec bvec;
1188 	struct bvec_iter iter;
1189 
1190 	sector = bio->bi_iter.bi_sector;
1191 
1192 	if (bio_op(bio) == REQ_OP_DISCARD) {
1193 		null_handle_discard(nullb, sector,
1194 			bio_sectors(bio) << SECTOR_SHIFT);
1195 		return 0;
1196 	}
1197 
1198 	spin_lock_irq(&nullb->lock);
1199 	bio_for_each_segment(bvec, bio, iter) {
1200 		len = bvec.bv_len;
1201 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1202 				     op_is_write(bio_op(bio)), sector,
1203 				     bio->bi_opf & REQ_FUA);
1204 		if (err) {
1205 			spin_unlock_irq(&nullb->lock);
1206 			return err;
1207 		}
1208 		sector += len >> SECTOR_SHIFT;
1209 	}
1210 	spin_unlock_irq(&nullb->lock);
1211 	return 0;
1212 }
1213 
null_stop_queue(struct nullb * nullb)1214 static void null_stop_queue(struct nullb *nullb)
1215 {
1216 	struct request_queue *q = nullb->q;
1217 
1218 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1219 		blk_mq_stop_hw_queues(q);
1220 }
1221 
null_restart_queue_async(struct nullb * nullb)1222 static void null_restart_queue_async(struct nullb *nullb)
1223 {
1224 	struct request_queue *q = nullb->q;
1225 
1226 	if (nullb->dev->queue_mode == NULL_Q_MQ)
1227 		blk_mq_start_stopped_hw_queues(q, true);
1228 }
1229 
null_handle_throttled(struct nullb_cmd * cmd)1230 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1231 {
1232 	struct nullb_device *dev = cmd->nq->dev;
1233 	struct nullb *nullb = dev->nullb;
1234 	blk_status_t sts = BLK_STS_OK;
1235 	struct request *rq = cmd->rq;
1236 
1237 	if (!hrtimer_active(&nullb->bw_timer))
1238 		hrtimer_restart(&nullb->bw_timer);
1239 
1240 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1241 		null_stop_queue(nullb);
1242 		/* race with timer */
1243 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1244 			null_restart_queue_async(nullb);
1245 		/* requeue request */
1246 		sts = BLK_STS_DEV_RESOURCE;
1247 	}
1248 	return sts;
1249 }
1250 
null_handle_badblocks(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors)1251 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1252 						 sector_t sector,
1253 						 sector_t nr_sectors)
1254 {
1255 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1256 	sector_t first_bad;
1257 	int bad_sectors;
1258 
1259 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1260 		return BLK_STS_IOERR;
1261 
1262 	return BLK_STS_OK;
1263 }
1264 
null_handle_memory_backed(struct nullb_cmd * cmd,enum req_opf op)1265 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1266 						     enum req_opf op)
1267 {
1268 	struct nullb_device *dev = cmd->nq->dev;
1269 	int err;
1270 
1271 	if (dev->queue_mode == NULL_Q_BIO)
1272 		err = null_handle_bio(cmd);
1273 	else
1274 		err = null_handle_rq(cmd);
1275 
1276 	return errno_to_blk_status(err);
1277 }
1278 
nullb_zero_read_cmd_buffer(struct nullb_cmd * cmd)1279 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1280 {
1281 	struct nullb_device *dev = cmd->nq->dev;
1282 	struct bio *bio;
1283 
1284 	if (dev->memory_backed)
1285 		return;
1286 
1287 	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1288 		zero_fill_bio(cmd->bio);
1289 	} else if (req_op(cmd->rq) == REQ_OP_READ) {
1290 		__rq_for_each_bio(bio, cmd->rq)
1291 			zero_fill_bio(bio);
1292 	}
1293 }
1294 
nullb_complete_cmd(struct nullb_cmd * cmd)1295 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1296 {
1297 	/*
1298 	 * Since root privileges are required to configure the null_blk
1299 	 * driver, it is fine that this driver does not initialize the
1300 	 * data buffers of read commands. Zero-initialize these buffers
1301 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1302 	 * about null_blk not initializing read data buffers.
1303 	 */
1304 	if (IS_ENABLED(CONFIG_KMSAN))
1305 		nullb_zero_read_cmd_buffer(cmd);
1306 
1307 	/* Complete IO by inline, softirq or timer */
1308 	switch (cmd->nq->dev->irqmode) {
1309 	case NULL_IRQ_SOFTIRQ:
1310 		switch (cmd->nq->dev->queue_mode) {
1311 		case NULL_Q_MQ:
1312 			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
1313 				blk_mq_complete_request(cmd->rq);
1314 			break;
1315 		case NULL_Q_BIO:
1316 			/*
1317 			 * XXX: no proper submitting cpu information available.
1318 			 */
1319 			end_cmd(cmd);
1320 			break;
1321 		}
1322 		break;
1323 	case NULL_IRQ_NONE:
1324 		end_cmd(cmd);
1325 		break;
1326 	case NULL_IRQ_TIMER:
1327 		null_cmd_end_timer(cmd);
1328 		break;
1329 	}
1330 }
1331 
null_process_cmd(struct nullb_cmd * cmd,enum req_opf op,sector_t sector,unsigned int nr_sectors)1332 blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1333 			      enum req_opf op, sector_t sector,
1334 			      unsigned int nr_sectors)
1335 {
1336 	struct nullb_device *dev = cmd->nq->dev;
1337 	blk_status_t ret;
1338 
1339 	if (dev->badblocks.shift != -1) {
1340 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1341 		if (ret != BLK_STS_OK)
1342 			return ret;
1343 	}
1344 
1345 	if (dev->memory_backed)
1346 		return null_handle_memory_backed(cmd, op);
1347 
1348 	return BLK_STS_OK;
1349 }
1350 
null_handle_cmd(struct nullb_cmd * cmd,sector_t sector,sector_t nr_sectors,enum req_opf op)1351 static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1352 				    sector_t nr_sectors, enum req_opf op)
1353 {
1354 	struct nullb_device *dev = cmd->nq->dev;
1355 	struct nullb *nullb = dev->nullb;
1356 	blk_status_t sts;
1357 
1358 	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1359 		sts = null_handle_throttled(cmd);
1360 		if (sts != BLK_STS_OK)
1361 			return sts;
1362 	}
1363 
1364 	if (op == REQ_OP_FLUSH) {
1365 		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1366 		goto out;
1367 	}
1368 
1369 	if (dev->zoned)
1370 		cmd->error = null_process_zoned_cmd(cmd, op,
1371 						    sector, nr_sectors);
1372 	else
1373 		cmd->error = null_process_cmd(cmd, op, sector, nr_sectors);
1374 
1375 out:
1376 	nullb_complete_cmd(cmd);
1377 	return BLK_STS_OK;
1378 }
1379 
nullb_bwtimer_fn(struct hrtimer * timer)1380 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1381 {
1382 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1383 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1384 	unsigned int mbps = nullb->dev->mbps;
1385 
1386 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1387 		return HRTIMER_NORESTART;
1388 
1389 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1390 	null_restart_queue_async(nullb);
1391 
1392 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1393 
1394 	return HRTIMER_RESTART;
1395 }
1396 
nullb_setup_bwtimer(struct nullb * nullb)1397 static void nullb_setup_bwtimer(struct nullb *nullb)
1398 {
1399 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1400 
1401 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1402 	nullb->bw_timer.function = nullb_bwtimer_fn;
1403 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1404 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1405 }
1406 
nullb_to_queue(struct nullb * nullb)1407 static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1408 {
1409 	int index = 0;
1410 
1411 	if (nullb->nr_queues != 1)
1412 		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1413 
1414 	return &nullb->queues[index];
1415 }
1416 
null_submit_bio(struct bio * bio)1417 static blk_qc_t null_submit_bio(struct bio *bio)
1418 {
1419 	sector_t sector = bio->bi_iter.bi_sector;
1420 	sector_t nr_sectors = bio_sectors(bio);
1421 	struct nullb *nullb = bio->bi_disk->private_data;
1422 	struct nullb_queue *nq = nullb_to_queue(nullb);
1423 	struct nullb_cmd *cmd;
1424 
1425 	cmd = alloc_cmd(nq, 1);
1426 	cmd->bio = bio;
1427 
1428 	null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1429 	return BLK_QC_T_NONE;
1430 }
1431 
should_timeout_request(struct request * rq)1432 static bool should_timeout_request(struct request *rq)
1433 {
1434 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1435 	if (g_timeout_str[0])
1436 		return should_fail(&null_timeout_attr, 1);
1437 #endif
1438 	return false;
1439 }
1440 
should_requeue_request(struct request * rq)1441 static bool should_requeue_request(struct request *rq)
1442 {
1443 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1444 	if (g_requeue_str[0])
1445 		return should_fail(&null_requeue_attr, 1);
1446 #endif
1447 	return false;
1448 }
1449 
null_timeout_rq(struct request * rq,bool res)1450 static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1451 {
1452 	pr_info("rq %p timed out\n", rq);
1453 	blk_mq_complete_request(rq);
1454 	return BLK_EH_DONE;
1455 }
1456 
null_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1457 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1458 			 const struct blk_mq_queue_data *bd)
1459 {
1460 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1461 	struct nullb_queue *nq = hctx->driver_data;
1462 	sector_t nr_sectors = blk_rq_sectors(bd->rq);
1463 	sector_t sector = blk_rq_pos(bd->rq);
1464 
1465 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1466 
1467 	if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1468 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1469 		cmd->timer.function = null_cmd_timer_expired;
1470 	}
1471 	cmd->rq = bd->rq;
1472 	cmd->error = BLK_STS_OK;
1473 	cmd->nq = nq;
1474 
1475 	blk_mq_start_request(bd->rq);
1476 
1477 	if (should_requeue_request(bd->rq)) {
1478 		/*
1479 		 * Alternate between hitting the core BUSY path, and the
1480 		 * driver driven requeue path
1481 		 */
1482 		nq->requeue_selection++;
1483 		if (nq->requeue_selection & 1)
1484 			return BLK_STS_RESOURCE;
1485 		else {
1486 			blk_mq_requeue_request(bd->rq, true);
1487 			return BLK_STS_OK;
1488 		}
1489 	}
1490 	if (should_timeout_request(bd->rq))
1491 		return BLK_STS_OK;
1492 
1493 	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1494 }
1495 
cleanup_queue(struct nullb_queue * nq)1496 static void cleanup_queue(struct nullb_queue *nq)
1497 {
1498 	kfree(nq->tag_map);
1499 	kfree(nq->cmds);
1500 }
1501 
cleanup_queues(struct nullb * nullb)1502 static void cleanup_queues(struct nullb *nullb)
1503 {
1504 	int i;
1505 
1506 	for (i = 0; i < nullb->nr_queues; i++)
1507 		cleanup_queue(&nullb->queues[i]);
1508 
1509 	kfree(nullb->queues);
1510 }
1511 
null_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)1512 static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1513 {
1514 	struct nullb_queue *nq = hctx->driver_data;
1515 	struct nullb *nullb = nq->dev->nullb;
1516 
1517 	nullb->nr_queues--;
1518 }
1519 
null_init_queue(struct nullb * nullb,struct nullb_queue * nq)1520 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1521 {
1522 	init_waitqueue_head(&nq->wait);
1523 	nq->queue_depth = nullb->queue_depth;
1524 	nq->dev = nullb->dev;
1525 }
1526 
null_init_hctx(struct blk_mq_hw_ctx * hctx,void * driver_data,unsigned int hctx_idx)1527 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1528 			  unsigned int hctx_idx)
1529 {
1530 	struct nullb *nullb = hctx->queue->queuedata;
1531 	struct nullb_queue *nq;
1532 
1533 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1534 	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1535 		return -EFAULT;
1536 #endif
1537 
1538 	nq = &nullb->queues[hctx_idx];
1539 	hctx->driver_data = nq;
1540 	null_init_queue(nullb, nq);
1541 	nullb->nr_queues++;
1542 
1543 	return 0;
1544 }
1545 
1546 static const struct blk_mq_ops null_mq_ops = {
1547 	.queue_rq       = null_queue_rq,
1548 	.complete	= null_complete_rq,
1549 	.timeout	= null_timeout_rq,
1550 	.init_hctx	= null_init_hctx,
1551 	.exit_hctx	= null_exit_hctx,
1552 };
1553 
null_del_dev(struct nullb * nullb)1554 static void null_del_dev(struct nullb *nullb)
1555 {
1556 	struct nullb_device *dev;
1557 
1558 	if (!nullb)
1559 		return;
1560 
1561 	dev = nullb->dev;
1562 
1563 	ida_simple_remove(&nullb_indexes, nullb->index);
1564 
1565 	list_del_init(&nullb->list);
1566 
1567 	del_gendisk(nullb->disk);
1568 
1569 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1570 		hrtimer_cancel(&nullb->bw_timer);
1571 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1572 		null_restart_queue_async(nullb);
1573 	}
1574 
1575 	blk_cleanup_queue(nullb->q);
1576 	if (dev->queue_mode == NULL_Q_MQ &&
1577 	    nullb->tag_set == &nullb->__tag_set)
1578 		blk_mq_free_tag_set(nullb->tag_set);
1579 	put_disk(nullb->disk);
1580 	cleanup_queues(nullb);
1581 	if (null_cache_active(nullb))
1582 		null_free_device_storage(nullb->dev, true);
1583 	kfree(nullb);
1584 	dev->nullb = NULL;
1585 }
1586 
null_config_discard(struct nullb * nullb)1587 static void null_config_discard(struct nullb *nullb)
1588 {
1589 	if (nullb->dev->discard == false)
1590 		return;
1591 
1592 	if (nullb->dev->zoned) {
1593 		nullb->dev->discard = false;
1594 		pr_info("discard option is ignored in zoned mode\n");
1595 		return;
1596 	}
1597 
1598 	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1599 	nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1600 	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1601 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1602 }
1603 
1604 static const struct block_device_operations null_bio_ops = {
1605 	.owner		= THIS_MODULE,
1606 	.submit_bio	= null_submit_bio,
1607 	.report_zones	= null_report_zones,
1608 };
1609 
1610 static const struct block_device_operations null_rq_ops = {
1611 	.owner		= THIS_MODULE,
1612 	.report_zones	= null_report_zones,
1613 };
1614 
setup_commands(struct nullb_queue * nq)1615 static int setup_commands(struct nullb_queue *nq)
1616 {
1617 	struct nullb_cmd *cmd;
1618 	int i, tag_size;
1619 
1620 	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1621 	if (!nq->cmds)
1622 		return -ENOMEM;
1623 
1624 	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1625 	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1626 	if (!nq->tag_map) {
1627 		kfree(nq->cmds);
1628 		return -ENOMEM;
1629 	}
1630 
1631 	for (i = 0; i < nq->queue_depth; i++) {
1632 		cmd = &nq->cmds[i];
1633 		cmd->tag = -1U;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
setup_queues(struct nullb * nullb)1639 static int setup_queues(struct nullb *nullb)
1640 {
1641 	nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1642 				GFP_KERNEL);
1643 	if (!nullb->queues)
1644 		return -ENOMEM;
1645 
1646 	nullb->queue_depth = nullb->dev->hw_queue_depth;
1647 
1648 	return 0;
1649 }
1650 
init_driver_queues(struct nullb * nullb)1651 static int init_driver_queues(struct nullb *nullb)
1652 {
1653 	struct nullb_queue *nq;
1654 	int i, ret = 0;
1655 
1656 	for (i = 0; i < nullb->dev->submit_queues; i++) {
1657 		nq = &nullb->queues[i];
1658 
1659 		null_init_queue(nullb, nq);
1660 
1661 		ret = setup_commands(nq);
1662 		if (ret)
1663 			return ret;
1664 		nullb->nr_queues++;
1665 	}
1666 	return 0;
1667 }
1668 
null_gendisk_register(struct nullb * nullb)1669 static int null_gendisk_register(struct nullb *nullb)
1670 {
1671 	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1672 	struct gendisk *disk;
1673 
1674 	disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1675 	if (!disk)
1676 		return -ENOMEM;
1677 	set_capacity(disk, size);
1678 
1679 	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1680 	disk->major		= null_major;
1681 	disk->first_minor	= nullb->index;
1682 	if (queue_is_mq(nullb->q))
1683 		disk->fops		= &null_rq_ops;
1684 	else
1685 		disk->fops		= &null_bio_ops;
1686 	disk->private_data	= nullb;
1687 	disk->queue		= nullb->q;
1688 	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1689 
1690 	if (nullb->dev->zoned) {
1691 		int ret = null_register_zoned_dev(nullb);
1692 
1693 		if (ret)
1694 			return ret;
1695 	}
1696 
1697 	add_disk(disk);
1698 	return 0;
1699 }
1700 
null_init_tag_set(struct nullb * nullb,struct blk_mq_tag_set * set)1701 static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1702 {
1703 	set->ops = &null_mq_ops;
1704 	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1705 						g_submit_queues;
1706 	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1707 						g_hw_queue_depth;
1708 	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1709 	set->cmd_size	= sizeof(struct nullb_cmd);
1710 	set->flags = BLK_MQ_F_SHOULD_MERGE;
1711 	if (g_no_sched)
1712 		set->flags |= BLK_MQ_F_NO_SCHED;
1713 	if (g_shared_tag_bitmap)
1714 		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1715 	set->driver_data = NULL;
1716 
1717 	if ((nullb && nullb->dev->blocking) || g_blocking)
1718 		set->flags |= BLK_MQ_F_BLOCKING;
1719 
1720 	return blk_mq_alloc_tag_set(set);
1721 }
1722 
null_validate_conf(struct nullb_device * dev)1723 static int null_validate_conf(struct nullb_device *dev)
1724 {
1725 	dev->blocksize = round_down(dev->blocksize, 512);
1726 	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1727 
1728 	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1729 		if (dev->submit_queues != nr_online_nodes)
1730 			dev->submit_queues = nr_online_nodes;
1731 	} else if (dev->submit_queues > nr_cpu_ids)
1732 		dev->submit_queues = nr_cpu_ids;
1733 	else if (dev->submit_queues == 0)
1734 		dev->submit_queues = 1;
1735 
1736 	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1737 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1738 
1739 	/* Do memory allocation, so set blocking */
1740 	if (dev->memory_backed)
1741 		dev->blocking = true;
1742 	else /* cache is meaningless */
1743 		dev->cache_size = 0;
1744 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1745 						dev->cache_size);
1746 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1747 	/* can not stop a queue */
1748 	if (dev->queue_mode == NULL_Q_BIO)
1749 		dev->mbps = 0;
1750 
1751 	if (dev->zoned &&
1752 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1753 		pr_err("zone_size must be power-of-two\n");
1754 		return -EINVAL;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
__null_setup_fault(struct fault_attr * attr,char * str)1761 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1762 {
1763 	if (!str[0])
1764 		return true;
1765 
1766 	if (!setup_fault_attr(attr, str))
1767 		return false;
1768 
1769 	attr->verbose = 0;
1770 	return true;
1771 }
1772 #endif
1773 
null_setup_fault(void)1774 static bool null_setup_fault(void)
1775 {
1776 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1777 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1778 		return false;
1779 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1780 		return false;
1781 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1782 		return false;
1783 #endif
1784 	return true;
1785 }
1786 
null_add_dev(struct nullb_device * dev)1787 static int null_add_dev(struct nullb_device *dev)
1788 {
1789 	struct nullb *nullb;
1790 	int rv;
1791 
1792 	rv = null_validate_conf(dev);
1793 	if (rv)
1794 		return rv;
1795 
1796 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1797 	if (!nullb) {
1798 		rv = -ENOMEM;
1799 		goto out;
1800 	}
1801 	nullb->dev = dev;
1802 	dev->nullb = nullb;
1803 
1804 	spin_lock_init(&nullb->lock);
1805 
1806 	rv = setup_queues(nullb);
1807 	if (rv)
1808 		goto out_free_nullb;
1809 
1810 	if (dev->queue_mode == NULL_Q_MQ) {
1811 		if (shared_tags) {
1812 			nullb->tag_set = &tag_set;
1813 			rv = 0;
1814 		} else {
1815 			nullb->tag_set = &nullb->__tag_set;
1816 			rv = null_init_tag_set(nullb, nullb->tag_set);
1817 		}
1818 
1819 		if (rv)
1820 			goto out_cleanup_queues;
1821 
1822 		if (!null_setup_fault())
1823 			goto out_cleanup_queues;
1824 
1825 		nullb->tag_set->timeout = 5 * HZ;
1826 		nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1827 		if (IS_ERR(nullb->q)) {
1828 			rv = -ENOMEM;
1829 			goto out_cleanup_tags;
1830 		}
1831 	} else if (dev->queue_mode == NULL_Q_BIO) {
1832 		nullb->q = blk_alloc_queue(dev->home_node);
1833 		if (!nullb->q) {
1834 			rv = -ENOMEM;
1835 			goto out_cleanup_queues;
1836 		}
1837 		rv = init_driver_queues(nullb);
1838 		if (rv)
1839 			goto out_cleanup_blk_queue;
1840 	}
1841 
1842 	if (dev->mbps) {
1843 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1844 		nullb_setup_bwtimer(nullb);
1845 	}
1846 
1847 	if (dev->cache_size > 0) {
1848 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1849 		blk_queue_write_cache(nullb->q, true, true);
1850 	}
1851 
1852 	if (dev->zoned) {
1853 		rv = null_init_zoned_dev(dev, nullb->q);
1854 		if (rv)
1855 			goto out_cleanup_blk_queue;
1856 	}
1857 
1858 	nullb->q->queuedata = nullb;
1859 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1860 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1861 
1862 	mutex_lock(&lock);
1863 	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1864 	dev->index = nullb->index;
1865 	mutex_unlock(&lock);
1866 
1867 	blk_queue_logical_block_size(nullb->q, dev->blocksize);
1868 	blk_queue_physical_block_size(nullb->q, dev->blocksize);
1869 
1870 	null_config_discard(nullb);
1871 
1872 	sprintf(nullb->disk_name, "nullb%d", nullb->index);
1873 
1874 	rv = null_gendisk_register(nullb);
1875 	if (rv)
1876 		goto out_cleanup_zone;
1877 
1878 	mutex_lock(&lock);
1879 	list_add_tail(&nullb->list, &nullb_list);
1880 	mutex_unlock(&lock);
1881 
1882 	return 0;
1883 out_cleanup_zone:
1884 	null_free_zoned_dev(dev);
1885 out_cleanup_blk_queue:
1886 	blk_cleanup_queue(nullb->q);
1887 out_cleanup_tags:
1888 	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1889 		blk_mq_free_tag_set(nullb->tag_set);
1890 out_cleanup_queues:
1891 	cleanup_queues(nullb);
1892 out_free_nullb:
1893 	kfree(nullb);
1894 	dev->nullb = NULL;
1895 out:
1896 	return rv;
1897 }
1898 
null_init(void)1899 static int __init null_init(void)
1900 {
1901 	int ret = 0;
1902 	unsigned int i;
1903 	struct nullb *nullb;
1904 	struct nullb_device *dev;
1905 
1906 	if (g_bs > PAGE_SIZE) {
1907 		pr_warn("invalid block size\n");
1908 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1909 		g_bs = PAGE_SIZE;
1910 	}
1911 
1912 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1913 		pr_err("invalid home_node value\n");
1914 		g_home_node = NUMA_NO_NODE;
1915 	}
1916 
1917 	if (g_queue_mode == NULL_Q_RQ) {
1918 		pr_err("legacy IO path no longer available\n");
1919 		return -EINVAL;
1920 	}
1921 	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1922 		if (g_submit_queues != nr_online_nodes) {
1923 			pr_warn("submit_queues param is set to %u.\n",
1924 							nr_online_nodes);
1925 			g_submit_queues = nr_online_nodes;
1926 		}
1927 	} else if (g_submit_queues > nr_cpu_ids)
1928 		g_submit_queues = nr_cpu_ids;
1929 	else if (g_submit_queues <= 0)
1930 		g_submit_queues = 1;
1931 
1932 	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1933 		ret = null_init_tag_set(NULL, &tag_set);
1934 		if (ret)
1935 			return ret;
1936 	}
1937 
1938 	config_group_init(&nullb_subsys.su_group);
1939 	mutex_init(&nullb_subsys.su_mutex);
1940 
1941 	ret = configfs_register_subsystem(&nullb_subsys);
1942 	if (ret)
1943 		goto err_tagset;
1944 
1945 	mutex_init(&lock);
1946 
1947 	null_major = register_blkdev(0, "nullb");
1948 	if (null_major < 0) {
1949 		ret = null_major;
1950 		goto err_conf;
1951 	}
1952 
1953 	for (i = 0; i < nr_devices; i++) {
1954 		dev = null_alloc_dev();
1955 		if (!dev) {
1956 			ret = -ENOMEM;
1957 			goto err_dev;
1958 		}
1959 		ret = null_add_dev(dev);
1960 		if (ret) {
1961 			null_free_dev(dev);
1962 			goto err_dev;
1963 		}
1964 	}
1965 
1966 	pr_info("module loaded\n");
1967 	return 0;
1968 
1969 err_dev:
1970 	while (!list_empty(&nullb_list)) {
1971 		nullb = list_entry(nullb_list.next, struct nullb, list);
1972 		dev = nullb->dev;
1973 		null_del_dev(nullb);
1974 		null_free_dev(dev);
1975 	}
1976 	unregister_blkdev(null_major, "nullb");
1977 err_conf:
1978 	configfs_unregister_subsystem(&nullb_subsys);
1979 err_tagset:
1980 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
1981 		blk_mq_free_tag_set(&tag_set);
1982 	return ret;
1983 }
1984 
null_exit(void)1985 static void __exit null_exit(void)
1986 {
1987 	struct nullb *nullb;
1988 
1989 	configfs_unregister_subsystem(&nullb_subsys);
1990 
1991 	unregister_blkdev(null_major, "nullb");
1992 
1993 	mutex_lock(&lock);
1994 	while (!list_empty(&nullb_list)) {
1995 		struct nullb_device *dev;
1996 
1997 		nullb = list_entry(nullb_list.next, struct nullb, list);
1998 		dev = nullb->dev;
1999 		null_del_dev(nullb);
2000 		null_free_dev(dev);
2001 	}
2002 	mutex_unlock(&lock);
2003 
2004 	if (g_queue_mode == NULL_Q_MQ && shared_tags)
2005 		blk_mq_free_tag_set(&tag_set);
2006 }
2007 
2008 module_init(null_init);
2009 module_exit(null_exit);
2010 
2011 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2012 MODULE_LICENSE("GPL");
2013