1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10 #define DISABLE_BRANCH_PROFILING
11
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
32
33 #include "mm_internal.h"
34
35 /*
36 * Since SME related variables are set early in the boot process they must
37 * reside in the .data section so as not to be zeroed out when the .bss
38 * section is later cleared.
39 */
40 u64 sme_me_mask __section(".data") = 0;
41 u64 sev_status __section(".data") = 0;
42 u64 sev_check_data __section(".data") = 0;
43 EXPORT_SYMBOL(sme_me_mask);
44 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
45 EXPORT_SYMBOL_GPL(sev_enable_key);
46
47 bool sev_enabled __section(".data");
48
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
51
52 /*
53 * This routine does not change the underlying encryption setting of the
54 * page(s) that map this memory. It assumes that eventually the memory is
55 * meant to be accessed as either encrypted or decrypted but the contents
56 * are currently not in the desired state.
57 *
58 * This routine follows the steps outlined in the AMD64 Architecture
59 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
60 */
__sme_early_enc_dec(resource_size_t paddr,unsigned long size,bool enc)61 static void __init __sme_early_enc_dec(resource_size_t paddr,
62 unsigned long size, bool enc)
63 {
64 void *src, *dst;
65 size_t len;
66
67 if (!sme_me_mask)
68 return;
69
70 wbinvd();
71
72 /*
73 * There are limited number of early mapping slots, so map (at most)
74 * one page at time.
75 */
76 while (size) {
77 len = min_t(size_t, sizeof(sme_early_buffer), size);
78
79 /*
80 * Create mappings for the current and desired format of
81 * the memory. Use a write-protected mapping for the source.
82 */
83 src = enc ? early_memremap_decrypted_wp(paddr, len) :
84 early_memremap_encrypted_wp(paddr, len);
85
86 dst = enc ? early_memremap_encrypted(paddr, len) :
87 early_memremap_decrypted(paddr, len);
88
89 /*
90 * If a mapping can't be obtained to perform the operation,
91 * then eventual access of that area in the desired mode
92 * will cause a crash.
93 */
94 BUG_ON(!src || !dst);
95
96 /*
97 * Use a temporary buffer, of cache-line multiple size, to
98 * avoid data corruption as documented in the APM.
99 */
100 memcpy(sme_early_buffer, src, len);
101 memcpy(dst, sme_early_buffer, len);
102
103 early_memunmap(dst, len);
104 early_memunmap(src, len);
105
106 paddr += len;
107 size -= len;
108 }
109 }
110
sme_early_encrypt(resource_size_t paddr,unsigned long size)111 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
112 {
113 __sme_early_enc_dec(paddr, size, true);
114 }
115
sme_early_decrypt(resource_size_t paddr,unsigned long size)116 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
117 {
118 __sme_early_enc_dec(paddr, size, false);
119 }
120
__sme_early_map_unmap_mem(void * vaddr,unsigned long size,bool map)121 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
122 bool map)
123 {
124 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
125 pmdval_t pmd_flags, pmd;
126
127 /* Use early_pmd_flags but remove the encryption mask */
128 pmd_flags = __sme_clr(early_pmd_flags);
129
130 do {
131 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
132 __early_make_pgtable((unsigned long)vaddr, pmd);
133
134 vaddr += PMD_SIZE;
135 paddr += PMD_SIZE;
136 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
137 } while (size);
138
139 flush_tlb_local();
140 }
141
sme_unmap_bootdata(char * real_mode_data)142 void __init sme_unmap_bootdata(char *real_mode_data)
143 {
144 struct boot_params *boot_data;
145 unsigned long cmdline_paddr;
146
147 if (!sme_active())
148 return;
149
150 /* Get the command line address before unmapping the real_mode_data */
151 boot_data = (struct boot_params *)real_mode_data;
152 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
153
154 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
155
156 if (!cmdline_paddr)
157 return;
158
159 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
160 }
161
sme_map_bootdata(char * real_mode_data)162 void __init sme_map_bootdata(char *real_mode_data)
163 {
164 struct boot_params *boot_data;
165 unsigned long cmdline_paddr;
166
167 if (!sme_active())
168 return;
169
170 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
171
172 /* Get the command line address after mapping the real_mode_data */
173 boot_data = (struct boot_params *)real_mode_data;
174 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
175
176 if (!cmdline_paddr)
177 return;
178
179 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
180 }
181
sme_early_init(void)182 void __init sme_early_init(void)
183 {
184 unsigned int i;
185
186 if (!sme_me_mask)
187 return;
188
189 early_pmd_flags = __sme_set(early_pmd_flags);
190
191 __supported_pte_mask = __sme_set(__supported_pte_mask);
192
193 /* Update the protection map with memory encryption mask */
194 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
195 protection_map[i] = pgprot_encrypted(protection_map[i]);
196
197 if (sev_active())
198 swiotlb_force = SWIOTLB_FORCE;
199 }
200
__set_clr_pte_enc(pte_t * kpte,int level,bool enc)201 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
202 {
203 pgprot_t old_prot, new_prot;
204 unsigned long pfn, pa, size;
205 pte_t new_pte;
206
207 switch (level) {
208 case PG_LEVEL_4K:
209 pfn = pte_pfn(*kpte);
210 old_prot = pte_pgprot(*kpte);
211 break;
212 case PG_LEVEL_2M:
213 pfn = pmd_pfn(*(pmd_t *)kpte);
214 old_prot = pmd_pgprot(*(pmd_t *)kpte);
215 break;
216 case PG_LEVEL_1G:
217 pfn = pud_pfn(*(pud_t *)kpte);
218 old_prot = pud_pgprot(*(pud_t *)kpte);
219 break;
220 default:
221 return;
222 }
223
224 new_prot = old_prot;
225 if (enc)
226 pgprot_val(new_prot) |= _PAGE_ENC;
227 else
228 pgprot_val(new_prot) &= ~_PAGE_ENC;
229
230 /* If prot is same then do nothing. */
231 if (pgprot_val(old_prot) == pgprot_val(new_prot))
232 return;
233
234 pa = pfn << page_level_shift(level);
235 size = page_level_size(level);
236
237 /*
238 * We are going to perform in-place en-/decryption and change the
239 * physical page attribute from C=1 to C=0 or vice versa. Flush the
240 * caches to ensure that data gets accessed with the correct C-bit.
241 */
242 clflush_cache_range(__va(pa), size);
243
244 /* Encrypt/decrypt the contents in-place */
245 if (enc)
246 sme_early_encrypt(pa, size);
247 else
248 sme_early_decrypt(pa, size);
249
250 /* Change the page encryption mask. */
251 new_pte = pfn_pte(pfn, new_prot);
252 set_pte_atomic(kpte, new_pte);
253 }
254
early_set_memory_enc_dec(unsigned long vaddr,unsigned long size,bool enc)255 static int __init early_set_memory_enc_dec(unsigned long vaddr,
256 unsigned long size, bool enc)
257 {
258 unsigned long vaddr_end, vaddr_next;
259 unsigned long psize, pmask;
260 int split_page_size_mask;
261 int level, ret;
262 pte_t *kpte;
263
264 vaddr_next = vaddr;
265 vaddr_end = vaddr + size;
266
267 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
268 kpte = lookup_address(vaddr, &level);
269 if (!kpte || pte_none(*kpte)) {
270 ret = 1;
271 goto out;
272 }
273
274 if (level == PG_LEVEL_4K) {
275 __set_clr_pte_enc(kpte, level, enc);
276 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
277 continue;
278 }
279
280 psize = page_level_size(level);
281 pmask = page_level_mask(level);
282
283 /*
284 * Check whether we can change the large page in one go.
285 * We request a split when the address is not aligned and
286 * the number of pages to set/clear encryption bit is smaller
287 * than the number of pages in the large page.
288 */
289 if (vaddr == (vaddr & pmask) &&
290 ((vaddr_end - vaddr) >= psize)) {
291 __set_clr_pte_enc(kpte, level, enc);
292 vaddr_next = (vaddr & pmask) + psize;
293 continue;
294 }
295
296 /*
297 * The virtual address is part of a larger page, create the next
298 * level page table mapping (4K or 2M). If it is part of a 2M
299 * page then we request a split of the large page into 4K
300 * chunks. A 1GB large page is split into 2M pages, resp.
301 */
302 if (level == PG_LEVEL_2M)
303 split_page_size_mask = 0;
304 else
305 split_page_size_mask = 1 << PG_LEVEL_2M;
306
307 /*
308 * kernel_physical_mapping_change() does not flush the TLBs, so
309 * a TLB flush is required after we exit from the for loop.
310 */
311 kernel_physical_mapping_change(__pa(vaddr & pmask),
312 __pa((vaddr_end & pmask) + psize),
313 split_page_size_mask);
314 }
315
316 ret = 0;
317
318 out:
319 __flush_tlb_all();
320 return ret;
321 }
322
early_set_memory_decrypted(unsigned long vaddr,unsigned long size)323 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
324 {
325 return early_set_memory_enc_dec(vaddr, size, false);
326 }
327
early_set_memory_encrypted(unsigned long vaddr,unsigned long size)328 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
329 {
330 return early_set_memory_enc_dec(vaddr, size, true);
331 }
332
333 /*
334 * SME and SEV are very similar but they are not the same, so there are
335 * times that the kernel will need to distinguish between SME and SEV. The
336 * sme_active() and sev_active() functions are used for this. When a
337 * distinction isn't needed, the mem_encrypt_active() function can be used.
338 *
339 * The trampoline code is a good example for this requirement. Before
340 * paging is activated, SME will access all memory as decrypted, but SEV
341 * will access all memory as encrypted. So, when APs are being brought
342 * up under SME the trampoline area cannot be encrypted, whereas under SEV
343 * the trampoline area must be encrypted.
344 */
sme_active(void)345 bool sme_active(void)
346 {
347 return sme_me_mask && !sev_enabled;
348 }
349
sev_active(void)350 bool sev_active(void)
351 {
352 return sev_status & MSR_AMD64_SEV_ENABLED;
353 }
354
355 /* Needs to be called from non-instrumentable code */
sev_es_active(void)356 bool noinstr sev_es_active(void)
357 {
358 return sev_status & MSR_AMD64_SEV_ES_ENABLED;
359 }
360
361 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
force_dma_unencrypted(struct device * dev)362 bool force_dma_unencrypted(struct device *dev)
363 {
364 /*
365 * For SEV, all DMA must be to unencrypted addresses.
366 */
367 if (sev_active())
368 return true;
369
370 /*
371 * For SME, all DMA must be to unencrypted addresses if the
372 * device does not support DMA to addresses that include the
373 * encryption mask.
374 */
375 if (sme_active()) {
376 u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
377 u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
378 dev->bus_dma_limit);
379
380 if (dma_dev_mask <= dma_enc_mask)
381 return true;
382 }
383
384 return false;
385 }
386
mem_encrypt_free_decrypted_mem(void)387 void __init mem_encrypt_free_decrypted_mem(void)
388 {
389 unsigned long vaddr, vaddr_end, npages;
390 int r;
391
392 vaddr = (unsigned long)__start_bss_decrypted_unused;
393 vaddr_end = (unsigned long)__end_bss_decrypted;
394 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
395
396 /*
397 * The unused memory range was mapped decrypted, change the encryption
398 * attribute from decrypted to encrypted before freeing it.
399 */
400 if (mem_encrypt_active()) {
401 r = set_memory_encrypted(vaddr, npages);
402 if (r) {
403 pr_warn("failed to free unused decrypted pages\n");
404 return;
405 }
406 }
407
408 free_init_pages("unused decrypted", vaddr, vaddr_end);
409 }
410
print_mem_encrypt_feature_info(void)411 static void print_mem_encrypt_feature_info(void)
412 {
413 pr_info("AMD Memory Encryption Features active:");
414
415 /* Secure Memory Encryption */
416 if (sme_active()) {
417 /*
418 * SME is mutually exclusive with any of the SEV
419 * features below.
420 */
421 pr_cont(" SME\n");
422 return;
423 }
424
425 /* Secure Encrypted Virtualization */
426 if (sev_active())
427 pr_cont(" SEV");
428
429 /* Encrypted Register State */
430 if (sev_es_active())
431 pr_cont(" SEV-ES");
432
433 pr_cont("\n");
434 }
435
436 /* Architecture __weak replacement functions */
mem_encrypt_init(void)437 void __init mem_encrypt_init(void)
438 {
439 if (!sme_me_mask)
440 return;
441
442 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
443 swiotlb_update_mem_attributes();
444
445 /*
446 * With SEV, we need to unroll the rep string I/O instructions.
447 */
448 if (sev_active())
449 static_branch_enable(&sev_enable_key);
450
451 print_mem_encrypt_feature_info();
452 }
453
454