1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Support for Intel AES-NI instructions. This file contains glue
4 * code, the real AES implementation is in intel-aes_asm.S.
5 *
6 * Copyright (C) 2008, Intel Corp.
7 * Author: Huang Ying <ying.huang@intel.com>
8 *
9 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10 * interface for 64-bit kernels.
11 * Authors: Adrian Hoban <adrian.hoban@intel.com>
12 * Gabriele Paoloni <gabriele.paoloni@intel.com>
13 * Tadeusz Struk (tadeusz.struk@intel.com)
14 * Aidan O'Mahony (aidan.o.mahony@intel.com)
15 * Copyright (c) 2010, Intel Corporation.
16 */
17
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
36 #ifdef CONFIG_X86_64
37 #include <asm/crypto/glue_helper.h>
38 #endif
39
40
41 #define AESNI_ALIGN 16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
44 #define RFC4106_HASH_SUBKEY_SIZE 16
45 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
46 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
47 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
48
49 /* This data is stored at the end of the crypto_tfm struct.
50 * It's a type of per "session" data storage location.
51 * This needs to be 16 byte aligned.
52 */
53 struct aesni_rfc4106_gcm_ctx {
54 u8 hash_subkey[16] AESNI_ALIGN_ATTR;
55 struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
56 u8 nonce[4];
57 };
58
59 struct generic_gcmaes_ctx {
60 u8 hash_subkey[16] AESNI_ALIGN_ATTR;
61 struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
62 };
63
64 struct aesni_xts_ctx {
65 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 };
68
69 #define GCM_BLOCK_LEN 16
70
71 struct gcm_context_data {
72 /* init, update and finalize context data */
73 u8 aad_hash[GCM_BLOCK_LEN];
74 u64 aad_length;
75 u64 in_length;
76 u8 partial_block_enc_key[GCM_BLOCK_LEN];
77 u8 orig_IV[GCM_BLOCK_LEN];
78 u8 current_counter[GCM_BLOCK_LEN];
79 u64 partial_block_len;
80 u64 unused;
81 u8 hash_keys[GCM_BLOCK_LEN * 16];
82 };
83
84 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
85 unsigned int key_len);
86 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
87 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
88 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 const u8 *in, unsigned int len);
90 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 const u8 *in, unsigned int len);
92 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 const u8 *in, unsigned int len, u8 *iv);
96
97 #define AVX_GEN2_OPTSIZE 640
98 #define AVX_GEN4_OPTSIZE 4096
99
100 #ifdef CONFIG_X86_64
101
102 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
103 const u8 *in, unsigned int len, u8 *iv);
104 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
105 const u8 *in, unsigned int len, u8 *iv);
106
107 asmlinkage void aesni_xts_crypt8(const struct crypto_aes_ctx *ctx, u8 *out,
108 const u8 *in, bool enc, le128 *iv);
109
110 /* asmlinkage void aesni_gcm_enc()
111 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
112 * struct gcm_context_data. May be uninitialized.
113 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
114 * const u8 *in, Plaintext input
115 * unsigned long plaintext_len, Length of data in bytes for encryption.
116 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
117 * 16-byte aligned pointer.
118 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
119 * const u8 *aad, Additional Authentication Data (AAD)
120 * unsigned long aad_len, Length of AAD in bytes.
121 * u8 *auth_tag, Authenticated Tag output.
122 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
123 * Valid values are 16 (most likely), 12 or 8.
124 */
125 asmlinkage void aesni_gcm_enc(void *ctx,
126 struct gcm_context_data *gdata, u8 *out,
127 const u8 *in, unsigned long plaintext_len, u8 *iv,
128 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
129 u8 *auth_tag, unsigned long auth_tag_len);
130
131 /* asmlinkage void aesni_gcm_dec()
132 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
133 * struct gcm_context_data. May be uninitialized.
134 * u8 *out, Plaintext output. Decrypt in-place is allowed.
135 * const u8 *in, Ciphertext input
136 * unsigned long ciphertext_len, Length of data in bytes for decryption.
137 * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
138 * 16-byte aligned pointer.
139 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
140 * const u8 *aad, Additional Authentication Data (AAD)
141 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
142 * to be 8 or 12 bytes
143 * u8 *auth_tag, Authenticated Tag output.
144 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
145 * Valid values are 16 (most likely), 12 or 8.
146 */
147 asmlinkage void aesni_gcm_dec(void *ctx,
148 struct gcm_context_data *gdata, u8 *out,
149 const u8 *in, unsigned long ciphertext_len, u8 *iv,
150 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
151 u8 *auth_tag, unsigned long auth_tag_len);
152
153 /* Scatter / Gather routines, with args similar to above */
154 asmlinkage void aesni_gcm_init(void *ctx,
155 struct gcm_context_data *gdata,
156 u8 *iv,
157 u8 *hash_subkey, const u8 *aad,
158 unsigned long aad_len);
159 asmlinkage void aesni_gcm_enc_update(void *ctx,
160 struct gcm_context_data *gdata, u8 *out,
161 const u8 *in, unsigned long plaintext_len);
162 asmlinkage void aesni_gcm_dec_update(void *ctx,
163 struct gcm_context_data *gdata, u8 *out,
164 const u8 *in,
165 unsigned long ciphertext_len);
166 asmlinkage void aesni_gcm_finalize(void *ctx,
167 struct gcm_context_data *gdata,
168 u8 *auth_tag, unsigned long auth_tag_len);
169
170 static const struct aesni_gcm_tfm_s {
171 void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
172 u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
173 void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
174 const u8 *in, unsigned long plaintext_len);
175 void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
176 const u8 *in, unsigned long ciphertext_len);
177 void (*finalize)(void *ctx, struct gcm_context_data *gdata,
178 u8 *auth_tag, unsigned long auth_tag_len);
179 } *aesni_gcm_tfm;
180
181 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
182 .init = &aesni_gcm_init,
183 .enc_update = &aesni_gcm_enc_update,
184 .dec_update = &aesni_gcm_dec_update,
185 .finalize = &aesni_gcm_finalize,
186 };
187
188 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
189 void *keys, u8 *out, unsigned int num_bytes);
190 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
191 void *keys, u8 *out, unsigned int num_bytes);
192 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
193 void *keys, u8 *out, unsigned int num_bytes);
194 /*
195 * asmlinkage void aesni_gcm_init_avx_gen2()
196 * gcm_data *my_ctx_data, context data
197 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
198 */
199 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
200 struct gcm_context_data *gdata,
201 u8 *iv,
202 u8 *hash_subkey,
203 const u8 *aad,
204 unsigned long aad_len);
205
206 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
207 struct gcm_context_data *gdata, u8 *out,
208 const u8 *in, unsigned long plaintext_len);
209 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
210 struct gcm_context_data *gdata, u8 *out,
211 const u8 *in,
212 unsigned long ciphertext_len);
213 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
214 struct gcm_context_data *gdata,
215 u8 *auth_tag, unsigned long auth_tag_len);
216
217 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
218 struct gcm_context_data *gdata, u8 *out,
219 const u8 *in, unsigned long plaintext_len, u8 *iv,
220 const u8 *aad, unsigned long aad_len,
221 u8 *auth_tag, unsigned long auth_tag_len);
222
223 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
224 struct gcm_context_data *gdata, u8 *out,
225 const u8 *in, unsigned long ciphertext_len, u8 *iv,
226 const u8 *aad, unsigned long aad_len,
227 u8 *auth_tag, unsigned long auth_tag_len);
228
229 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
230 .init = &aesni_gcm_init_avx_gen2,
231 .enc_update = &aesni_gcm_enc_update_avx_gen2,
232 .dec_update = &aesni_gcm_dec_update_avx_gen2,
233 .finalize = &aesni_gcm_finalize_avx_gen2,
234 };
235
236 /*
237 * asmlinkage void aesni_gcm_init_avx_gen4()
238 * gcm_data *my_ctx_data, context data
239 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
240 */
241 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
242 struct gcm_context_data *gdata,
243 u8 *iv,
244 u8 *hash_subkey,
245 const u8 *aad,
246 unsigned long aad_len);
247
248 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
249 struct gcm_context_data *gdata, u8 *out,
250 const u8 *in, unsigned long plaintext_len);
251 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
252 struct gcm_context_data *gdata, u8 *out,
253 const u8 *in,
254 unsigned long ciphertext_len);
255 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
256 struct gcm_context_data *gdata,
257 u8 *auth_tag, unsigned long auth_tag_len);
258
259 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
260 struct gcm_context_data *gdata, u8 *out,
261 const u8 *in, unsigned long plaintext_len, u8 *iv,
262 const u8 *aad, unsigned long aad_len,
263 u8 *auth_tag, unsigned long auth_tag_len);
264
265 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
266 struct gcm_context_data *gdata, u8 *out,
267 const u8 *in, unsigned long ciphertext_len, u8 *iv,
268 const u8 *aad, unsigned long aad_len,
269 u8 *auth_tag, unsigned long auth_tag_len);
270
271 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
272 .init = &aesni_gcm_init_avx_gen4,
273 .enc_update = &aesni_gcm_enc_update_avx_gen4,
274 .dec_update = &aesni_gcm_dec_update_avx_gen4,
275 .finalize = &aesni_gcm_finalize_avx_gen4,
276 };
277
278 static inline struct
aesni_rfc4106_gcm_ctx_get(struct crypto_aead * tfm)279 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
280 {
281 unsigned long align = AESNI_ALIGN;
282
283 if (align <= crypto_tfm_ctx_alignment())
284 align = 1;
285 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
286 }
287
288 static inline struct
generic_gcmaes_ctx_get(struct crypto_aead * tfm)289 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
290 {
291 unsigned long align = AESNI_ALIGN;
292
293 if (align <= crypto_tfm_ctx_alignment())
294 align = 1;
295 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
296 }
297 #endif
298
aes_ctx(void * raw_ctx)299 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
300 {
301 unsigned long addr = (unsigned long)raw_ctx;
302 unsigned long align = AESNI_ALIGN;
303
304 if (align <= crypto_tfm_ctx_alignment())
305 align = 1;
306 return (struct crypto_aes_ctx *)ALIGN(addr, align);
307 }
308
aes_set_key_common(struct crypto_tfm * tfm,void * raw_ctx,const u8 * in_key,unsigned int key_len)309 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
310 const u8 *in_key, unsigned int key_len)
311 {
312 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
313 int err;
314
315 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
316 key_len != AES_KEYSIZE_256)
317 return -EINVAL;
318
319 if (!crypto_simd_usable())
320 err = aes_expandkey(ctx, in_key, key_len);
321 else {
322 kernel_fpu_begin();
323 err = aesni_set_key(ctx, in_key, key_len);
324 kernel_fpu_end();
325 }
326
327 return err;
328 }
329
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)330 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
331 unsigned int key_len)
332 {
333 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
334 }
335
aesni_encrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)336 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
337 {
338 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
339
340 if (!crypto_simd_usable()) {
341 aes_encrypt(ctx, dst, src);
342 } else {
343 kernel_fpu_begin();
344 aesni_enc(ctx, dst, src);
345 kernel_fpu_end();
346 }
347 }
348
aesni_decrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)349 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
350 {
351 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
352
353 if (!crypto_simd_usable()) {
354 aes_decrypt(ctx, dst, src);
355 } else {
356 kernel_fpu_begin();
357 aesni_dec(ctx, dst, src);
358 kernel_fpu_end();
359 }
360 }
361
aesni_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)362 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
363 unsigned int len)
364 {
365 return aes_set_key_common(crypto_skcipher_tfm(tfm),
366 crypto_skcipher_ctx(tfm), key, len);
367 }
368
ecb_encrypt(struct skcipher_request * req)369 static int ecb_encrypt(struct skcipher_request *req)
370 {
371 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
373 struct skcipher_walk walk;
374 unsigned int nbytes;
375 int err;
376
377 err = skcipher_walk_virt(&walk, req, true);
378
379 kernel_fpu_begin();
380 while ((nbytes = walk.nbytes)) {
381 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
382 nbytes & AES_BLOCK_MASK);
383 nbytes &= AES_BLOCK_SIZE - 1;
384 err = skcipher_walk_done(&walk, nbytes);
385 }
386 kernel_fpu_end();
387
388 return err;
389 }
390
ecb_decrypt(struct skcipher_request * req)391 static int ecb_decrypt(struct skcipher_request *req)
392 {
393 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
394 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
395 struct skcipher_walk walk;
396 unsigned int nbytes;
397 int err;
398
399 err = skcipher_walk_virt(&walk, req, true);
400
401 kernel_fpu_begin();
402 while ((nbytes = walk.nbytes)) {
403 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
404 nbytes & AES_BLOCK_MASK);
405 nbytes &= AES_BLOCK_SIZE - 1;
406 err = skcipher_walk_done(&walk, nbytes);
407 }
408 kernel_fpu_end();
409
410 return err;
411 }
412
cbc_encrypt(struct skcipher_request * req)413 static int cbc_encrypt(struct skcipher_request *req)
414 {
415 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
416 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
417 struct skcipher_walk walk;
418 unsigned int nbytes;
419 int err;
420
421 err = skcipher_walk_virt(&walk, req, true);
422
423 kernel_fpu_begin();
424 while ((nbytes = walk.nbytes)) {
425 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
426 nbytes & AES_BLOCK_MASK, walk.iv);
427 nbytes &= AES_BLOCK_SIZE - 1;
428 err = skcipher_walk_done(&walk, nbytes);
429 }
430 kernel_fpu_end();
431
432 return err;
433 }
434
cbc_decrypt(struct skcipher_request * req)435 static int cbc_decrypt(struct skcipher_request *req)
436 {
437 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
439 struct skcipher_walk walk;
440 unsigned int nbytes;
441 int err;
442
443 err = skcipher_walk_virt(&walk, req, true);
444
445 kernel_fpu_begin();
446 while ((nbytes = walk.nbytes)) {
447 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
448 nbytes & AES_BLOCK_MASK, walk.iv);
449 nbytes &= AES_BLOCK_SIZE - 1;
450 err = skcipher_walk_done(&walk, nbytes);
451 }
452 kernel_fpu_end();
453
454 return err;
455 }
456
457 #ifdef CONFIG_X86_64
ctr_crypt_final(struct crypto_aes_ctx * ctx,struct skcipher_walk * walk)458 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
459 struct skcipher_walk *walk)
460 {
461 u8 *ctrblk = walk->iv;
462 u8 keystream[AES_BLOCK_SIZE];
463 u8 *src = walk->src.virt.addr;
464 u8 *dst = walk->dst.virt.addr;
465 unsigned int nbytes = walk->nbytes;
466
467 aesni_enc(ctx, keystream, ctrblk);
468 crypto_xor_cpy(dst, keystream, src, nbytes);
469
470 crypto_inc(ctrblk, AES_BLOCK_SIZE);
471 }
472
aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx * ctx,u8 * out,const u8 * in,unsigned int len,u8 * iv)473 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
474 const u8 *in, unsigned int len, u8 *iv)
475 {
476 /*
477 * based on key length, override with the by8 version
478 * of ctr mode encryption/decryption for improved performance
479 * aes_set_key_common() ensures that key length is one of
480 * {128,192,256}
481 */
482 if (ctx->key_length == AES_KEYSIZE_128)
483 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
484 else if (ctx->key_length == AES_KEYSIZE_192)
485 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
486 else
487 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
488 }
489
ctr_crypt(struct skcipher_request * req)490 static int ctr_crypt(struct skcipher_request *req)
491 {
492 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
493 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
494 struct skcipher_walk walk;
495 unsigned int nbytes;
496 int err;
497
498 err = skcipher_walk_virt(&walk, req, true);
499
500 kernel_fpu_begin();
501 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
502 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
503 nbytes & AES_BLOCK_MASK, walk.iv);
504 nbytes &= AES_BLOCK_SIZE - 1;
505 err = skcipher_walk_done(&walk, nbytes);
506 }
507 if (walk.nbytes) {
508 ctr_crypt_final(ctx, &walk);
509 err = skcipher_walk_done(&walk, 0);
510 }
511 kernel_fpu_end();
512
513 return err;
514 }
515
xts_aesni_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)516 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
517 unsigned int keylen)
518 {
519 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
520 int err;
521
522 err = xts_verify_key(tfm, key, keylen);
523 if (err)
524 return err;
525
526 keylen /= 2;
527
528 /* first half of xts-key is for crypt */
529 err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
530 key, keylen);
531 if (err)
532 return err;
533
534 /* second half of xts-key is for tweak */
535 return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
536 key + keylen, keylen);
537 }
538
539
aesni_xts_enc(const void * ctx,u8 * dst,const u8 * src,le128 * iv)540 static void aesni_xts_enc(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
541 {
542 glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_enc);
543 }
544
aesni_xts_dec(const void * ctx,u8 * dst,const u8 * src,le128 * iv)545 static void aesni_xts_dec(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
546 {
547 glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_dec);
548 }
549
aesni_xts_enc8(const void * ctx,u8 * dst,const u8 * src,le128 * iv)550 static void aesni_xts_enc8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
551 {
552 aesni_xts_crypt8(ctx, dst, src, true, iv);
553 }
554
aesni_xts_dec8(const void * ctx,u8 * dst,const u8 * src,le128 * iv)555 static void aesni_xts_dec8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
556 {
557 aesni_xts_crypt8(ctx, dst, src, false, iv);
558 }
559
560 static const struct common_glue_ctx aesni_enc_xts = {
561 .num_funcs = 2,
562 .fpu_blocks_limit = 1,
563
564 .funcs = { {
565 .num_blocks = 8,
566 .fn_u = { .xts = aesni_xts_enc8 }
567 }, {
568 .num_blocks = 1,
569 .fn_u = { .xts = aesni_xts_enc }
570 } }
571 };
572
573 static const struct common_glue_ctx aesni_dec_xts = {
574 .num_funcs = 2,
575 .fpu_blocks_limit = 1,
576
577 .funcs = { {
578 .num_blocks = 8,
579 .fn_u = { .xts = aesni_xts_dec8 }
580 }, {
581 .num_blocks = 1,
582 .fn_u = { .xts = aesni_xts_dec }
583 } }
584 };
585
xts_encrypt(struct skcipher_request * req)586 static int xts_encrypt(struct skcipher_request *req)
587 {
588 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
589 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
590
591 return glue_xts_req_128bit(&aesni_enc_xts, req, aesni_enc,
592 aes_ctx(ctx->raw_tweak_ctx),
593 aes_ctx(ctx->raw_crypt_ctx),
594 false);
595 }
596
xts_decrypt(struct skcipher_request * req)597 static int xts_decrypt(struct skcipher_request *req)
598 {
599 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
600 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
601
602 return glue_xts_req_128bit(&aesni_dec_xts, req, aesni_enc,
603 aes_ctx(ctx->raw_tweak_ctx),
604 aes_ctx(ctx->raw_crypt_ctx),
605 true);
606 }
607
608 static int
rfc4106_set_hash_subkey(u8 * hash_subkey,const u8 * key,unsigned int key_len)609 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
610 {
611 struct crypto_aes_ctx ctx;
612 int ret;
613
614 ret = aes_expandkey(&ctx, key, key_len);
615 if (ret)
616 return ret;
617
618 /* Clear the data in the hash sub key container to zero.*/
619 /* We want to cipher all zeros to create the hash sub key. */
620 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
621
622 aes_encrypt(&ctx, hash_subkey, hash_subkey);
623
624 memzero_explicit(&ctx, sizeof(ctx));
625 return 0;
626 }
627
common_rfc4106_set_key(struct crypto_aead * aead,const u8 * key,unsigned int key_len)628 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
629 unsigned int key_len)
630 {
631 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
632
633 if (key_len < 4)
634 return -EINVAL;
635
636 /*Account for 4 byte nonce at the end.*/
637 key_len -= 4;
638
639 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
640
641 return aes_set_key_common(crypto_aead_tfm(aead),
642 &ctx->aes_key_expanded, key, key_len) ?:
643 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
644 }
645
646 /* This is the Integrity Check Value (aka the authentication tag) length and can
647 * be 8, 12 or 16 bytes long. */
common_rfc4106_set_authsize(struct crypto_aead * aead,unsigned int authsize)648 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
649 unsigned int authsize)
650 {
651 switch (authsize) {
652 case 8:
653 case 12:
654 case 16:
655 break;
656 default:
657 return -EINVAL;
658 }
659
660 return 0;
661 }
662
generic_gcmaes_set_authsize(struct crypto_aead * tfm,unsigned int authsize)663 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
664 unsigned int authsize)
665 {
666 switch (authsize) {
667 case 4:
668 case 8:
669 case 12:
670 case 13:
671 case 14:
672 case 15:
673 case 16:
674 break;
675 default:
676 return -EINVAL;
677 }
678
679 return 0;
680 }
681
gcmaes_crypt_by_sg(bool enc,struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)682 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
683 unsigned int assoclen, u8 *hash_subkey,
684 u8 *iv, void *aes_ctx)
685 {
686 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
687 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
688 const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
689 struct gcm_context_data data AESNI_ALIGN_ATTR;
690 struct scatter_walk dst_sg_walk = {};
691 unsigned long left = req->cryptlen;
692 unsigned long len, srclen, dstlen;
693 struct scatter_walk assoc_sg_walk;
694 struct scatter_walk src_sg_walk;
695 struct scatterlist src_start[2];
696 struct scatterlist dst_start[2];
697 struct scatterlist *src_sg;
698 struct scatterlist *dst_sg;
699 u8 *src, *dst, *assoc;
700 u8 *assocmem = NULL;
701 u8 authTag[16];
702
703 if (!enc)
704 left -= auth_tag_len;
705
706 if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
707 gcm_tfm = &aesni_gcm_tfm_avx_gen2;
708 if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
709 gcm_tfm = &aesni_gcm_tfm_sse;
710
711 /* Linearize assoc, if not already linear */
712 if (req->src->length >= assoclen && req->src->length &&
713 (!PageHighMem(sg_page(req->src)) ||
714 req->src->offset + req->src->length <= PAGE_SIZE)) {
715 scatterwalk_start(&assoc_sg_walk, req->src);
716 assoc = scatterwalk_map(&assoc_sg_walk);
717 } else {
718 /* assoc can be any length, so must be on heap */
719 assocmem = kmalloc(assoclen, GFP_ATOMIC);
720 if (unlikely(!assocmem))
721 return -ENOMEM;
722 assoc = assocmem;
723
724 scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
725 }
726
727 if (left) {
728 src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
729 scatterwalk_start(&src_sg_walk, src_sg);
730 if (req->src != req->dst) {
731 dst_sg = scatterwalk_ffwd(dst_start, req->dst,
732 req->assoclen);
733 scatterwalk_start(&dst_sg_walk, dst_sg);
734 }
735 }
736
737 kernel_fpu_begin();
738 gcm_tfm->init(aes_ctx, &data, iv,
739 hash_subkey, assoc, assoclen);
740 if (req->src != req->dst) {
741 while (left) {
742 src = scatterwalk_map(&src_sg_walk);
743 dst = scatterwalk_map(&dst_sg_walk);
744 srclen = scatterwalk_clamp(&src_sg_walk, left);
745 dstlen = scatterwalk_clamp(&dst_sg_walk, left);
746 len = min(srclen, dstlen);
747 if (len) {
748 if (enc)
749 gcm_tfm->enc_update(aes_ctx, &data,
750 dst, src, len);
751 else
752 gcm_tfm->dec_update(aes_ctx, &data,
753 dst, src, len);
754 }
755 left -= len;
756
757 scatterwalk_unmap(src);
758 scatterwalk_unmap(dst);
759 scatterwalk_advance(&src_sg_walk, len);
760 scatterwalk_advance(&dst_sg_walk, len);
761 scatterwalk_done(&src_sg_walk, 0, left);
762 scatterwalk_done(&dst_sg_walk, 1, left);
763 }
764 } else {
765 while (left) {
766 dst = src = scatterwalk_map(&src_sg_walk);
767 len = scatterwalk_clamp(&src_sg_walk, left);
768 if (len) {
769 if (enc)
770 gcm_tfm->enc_update(aes_ctx, &data,
771 src, src, len);
772 else
773 gcm_tfm->dec_update(aes_ctx, &data,
774 src, src, len);
775 }
776 left -= len;
777 scatterwalk_unmap(src);
778 scatterwalk_advance(&src_sg_walk, len);
779 scatterwalk_done(&src_sg_walk, 1, left);
780 }
781 }
782 gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
783 kernel_fpu_end();
784
785 if (!assocmem)
786 scatterwalk_unmap(assoc);
787 else
788 kfree(assocmem);
789
790 if (!enc) {
791 u8 authTagMsg[16];
792
793 /* Copy out original authTag */
794 scatterwalk_map_and_copy(authTagMsg, req->src,
795 req->assoclen + req->cryptlen -
796 auth_tag_len,
797 auth_tag_len, 0);
798
799 /* Compare generated tag with passed in tag. */
800 return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
801 -EBADMSG : 0;
802 }
803
804 /* Copy in the authTag */
805 scatterwalk_map_and_copy(authTag, req->dst,
806 req->assoclen + req->cryptlen,
807 auth_tag_len, 1);
808
809 return 0;
810 }
811
gcmaes_encrypt(struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)812 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
813 u8 *hash_subkey, u8 *iv, void *aes_ctx)
814 {
815 return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
816 aes_ctx);
817 }
818
gcmaes_decrypt(struct aead_request * req,unsigned int assoclen,u8 * hash_subkey,u8 * iv,void * aes_ctx)819 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
820 u8 *hash_subkey, u8 *iv, void *aes_ctx)
821 {
822 return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
823 aes_ctx);
824 }
825
helper_rfc4106_encrypt(struct aead_request * req)826 static int helper_rfc4106_encrypt(struct aead_request *req)
827 {
828 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
829 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
830 void *aes_ctx = &(ctx->aes_key_expanded);
831 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
832 unsigned int i;
833 __be32 counter = cpu_to_be32(1);
834
835 /* Assuming we are supporting rfc4106 64-bit extended */
836 /* sequence numbers We need to have the AAD length equal */
837 /* to 16 or 20 bytes */
838 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
839 return -EINVAL;
840
841 /* IV below built */
842 for (i = 0; i < 4; i++)
843 *(iv+i) = ctx->nonce[i];
844 for (i = 0; i < 8; i++)
845 *(iv+4+i) = req->iv[i];
846 *((__be32 *)(iv+12)) = counter;
847
848 return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
849 aes_ctx);
850 }
851
helper_rfc4106_decrypt(struct aead_request * req)852 static int helper_rfc4106_decrypt(struct aead_request *req)
853 {
854 __be32 counter = cpu_to_be32(1);
855 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
856 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
857 void *aes_ctx = &(ctx->aes_key_expanded);
858 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
859 unsigned int i;
860
861 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
862 return -EINVAL;
863
864 /* Assuming we are supporting rfc4106 64-bit extended */
865 /* sequence numbers We need to have the AAD length */
866 /* equal to 16 or 20 bytes */
867
868 /* IV below built */
869 for (i = 0; i < 4; i++)
870 *(iv+i) = ctx->nonce[i];
871 for (i = 0; i < 8; i++)
872 *(iv+4+i) = req->iv[i];
873 *((__be32 *)(iv+12)) = counter;
874
875 return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
876 aes_ctx);
877 }
878 #endif
879
880 static struct crypto_alg aesni_cipher_alg = {
881 .cra_name = "aes",
882 .cra_driver_name = "aes-aesni",
883 .cra_priority = 300,
884 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
885 .cra_blocksize = AES_BLOCK_SIZE,
886 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
887 .cra_module = THIS_MODULE,
888 .cra_u = {
889 .cipher = {
890 .cia_min_keysize = AES_MIN_KEY_SIZE,
891 .cia_max_keysize = AES_MAX_KEY_SIZE,
892 .cia_setkey = aes_set_key,
893 .cia_encrypt = aesni_encrypt,
894 .cia_decrypt = aesni_decrypt
895 }
896 }
897 };
898
899 static struct skcipher_alg aesni_skciphers[] = {
900 {
901 .base = {
902 .cra_name = "__ecb(aes)",
903 .cra_driver_name = "__ecb-aes-aesni",
904 .cra_priority = 400,
905 .cra_flags = CRYPTO_ALG_INTERNAL,
906 .cra_blocksize = AES_BLOCK_SIZE,
907 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
908 .cra_module = THIS_MODULE,
909 },
910 .min_keysize = AES_MIN_KEY_SIZE,
911 .max_keysize = AES_MAX_KEY_SIZE,
912 .setkey = aesni_skcipher_setkey,
913 .encrypt = ecb_encrypt,
914 .decrypt = ecb_decrypt,
915 }, {
916 .base = {
917 .cra_name = "__cbc(aes)",
918 .cra_driver_name = "__cbc-aes-aesni",
919 .cra_priority = 400,
920 .cra_flags = CRYPTO_ALG_INTERNAL,
921 .cra_blocksize = AES_BLOCK_SIZE,
922 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
923 .cra_module = THIS_MODULE,
924 },
925 .min_keysize = AES_MIN_KEY_SIZE,
926 .max_keysize = AES_MAX_KEY_SIZE,
927 .ivsize = AES_BLOCK_SIZE,
928 .setkey = aesni_skcipher_setkey,
929 .encrypt = cbc_encrypt,
930 .decrypt = cbc_decrypt,
931 #ifdef CONFIG_X86_64
932 }, {
933 .base = {
934 .cra_name = "__ctr(aes)",
935 .cra_driver_name = "__ctr-aes-aesni",
936 .cra_priority = 400,
937 .cra_flags = CRYPTO_ALG_INTERNAL,
938 .cra_blocksize = 1,
939 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
940 .cra_module = THIS_MODULE,
941 },
942 .min_keysize = AES_MIN_KEY_SIZE,
943 .max_keysize = AES_MAX_KEY_SIZE,
944 .ivsize = AES_BLOCK_SIZE,
945 .chunksize = AES_BLOCK_SIZE,
946 .setkey = aesni_skcipher_setkey,
947 .encrypt = ctr_crypt,
948 .decrypt = ctr_crypt,
949 }, {
950 .base = {
951 .cra_name = "__xts(aes)",
952 .cra_driver_name = "__xts-aes-aesni",
953 .cra_priority = 401,
954 .cra_flags = CRYPTO_ALG_INTERNAL,
955 .cra_blocksize = AES_BLOCK_SIZE,
956 .cra_ctxsize = XTS_AES_CTX_SIZE,
957 .cra_module = THIS_MODULE,
958 },
959 .min_keysize = 2 * AES_MIN_KEY_SIZE,
960 .max_keysize = 2 * AES_MAX_KEY_SIZE,
961 .ivsize = AES_BLOCK_SIZE,
962 .setkey = xts_aesni_setkey,
963 .encrypt = xts_encrypt,
964 .decrypt = xts_decrypt,
965 #endif
966 }
967 };
968
969 static
970 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
971
972 #ifdef CONFIG_X86_64
generic_gcmaes_set_key(struct crypto_aead * aead,const u8 * key,unsigned int key_len)973 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
974 unsigned int key_len)
975 {
976 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
977
978 return aes_set_key_common(crypto_aead_tfm(aead),
979 &ctx->aes_key_expanded, key, key_len) ?:
980 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
981 }
982
generic_gcmaes_encrypt(struct aead_request * req)983 static int generic_gcmaes_encrypt(struct aead_request *req)
984 {
985 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
986 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
987 void *aes_ctx = &(ctx->aes_key_expanded);
988 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
989 __be32 counter = cpu_to_be32(1);
990
991 memcpy(iv, req->iv, 12);
992 *((__be32 *)(iv+12)) = counter;
993
994 return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
995 aes_ctx);
996 }
997
generic_gcmaes_decrypt(struct aead_request * req)998 static int generic_gcmaes_decrypt(struct aead_request *req)
999 {
1000 __be32 counter = cpu_to_be32(1);
1001 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1002 struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1003 void *aes_ctx = &(ctx->aes_key_expanded);
1004 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1005
1006 memcpy(iv, req->iv, 12);
1007 *((__be32 *)(iv+12)) = counter;
1008
1009 return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1010 aes_ctx);
1011 }
1012
1013 static struct aead_alg aesni_aeads[] = { {
1014 .setkey = common_rfc4106_set_key,
1015 .setauthsize = common_rfc4106_set_authsize,
1016 .encrypt = helper_rfc4106_encrypt,
1017 .decrypt = helper_rfc4106_decrypt,
1018 .ivsize = GCM_RFC4106_IV_SIZE,
1019 .maxauthsize = 16,
1020 .base = {
1021 .cra_name = "__rfc4106(gcm(aes))",
1022 .cra_driver_name = "__rfc4106-gcm-aesni",
1023 .cra_priority = 400,
1024 .cra_flags = CRYPTO_ALG_INTERNAL,
1025 .cra_blocksize = 1,
1026 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1027 .cra_alignmask = AESNI_ALIGN - 1,
1028 .cra_module = THIS_MODULE,
1029 },
1030 }, {
1031 .setkey = generic_gcmaes_set_key,
1032 .setauthsize = generic_gcmaes_set_authsize,
1033 .encrypt = generic_gcmaes_encrypt,
1034 .decrypt = generic_gcmaes_decrypt,
1035 .ivsize = GCM_AES_IV_SIZE,
1036 .maxauthsize = 16,
1037 .base = {
1038 .cra_name = "__gcm(aes)",
1039 .cra_driver_name = "__generic-gcm-aesni",
1040 .cra_priority = 400,
1041 .cra_flags = CRYPTO_ALG_INTERNAL,
1042 .cra_blocksize = 1,
1043 .cra_ctxsize = sizeof(struct generic_gcmaes_ctx),
1044 .cra_alignmask = AESNI_ALIGN - 1,
1045 .cra_module = THIS_MODULE,
1046 },
1047 } };
1048 #else
1049 static struct aead_alg aesni_aeads[0];
1050 #endif
1051
1052 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1053
1054 static const struct x86_cpu_id aesni_cpu_id[] = {
1055 X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1056 {}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1059
aesni_init(void)1060 static int __init aesni_init(void)
1061 {
1062 int err;
1063
1064 if (!x86_match_cpu(aesni_cpu_id))
1065 return -ENODEV;
1066 #ifdef CONFIG_X86_64
1067 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1068 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1069 aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1070 } else
1071 if (boot_cpu_has(X86_FEATURE_AVX)) {
1072 pr_info("AVX version of gcm_enc/dec engaged.\n");
1073 aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1074 } else {
1075 pr_info("SSE version of gcm_enc/dec engaged.\n");
1076 aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1077 }
1078 aesni_ctr_enc_tfm = aesni_ctr_enc;
1079 if (boot_cpu_has(X86_FEATURE_AVX)) {
1080 /* optimize performance of ctr mode encryption transform */
1081 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1082 pr_info("AES CTR mode by8 optimization enabled\n");
1083 }
1084 #endif
1085
1086 err = crypto_register_alg(&aesni_cipher_alg);
1087 if (err)
1088 return err;
1089
1090 err = simd_register_skciphers_compat(aesni_skciphers,
1091 ARRAY_SIZE(aesni_skciphers),
1092 aesni_simd_skciphers);
1093 if (err)
1094 goto unregister_cipher;
1095
1096 err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1097 aesni_simd_aeads);
1098 if (err)
1099 goto unregister_skciphers;
1100
1101 return 0;
1102
1103 unregister_skciphers:
1104 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1105 aesni_simd_skciphers);
1106 unregister_cipher:
1107 crypto_unregister_alg(&aesni_cipher_alg);
1108 return err;
1109 }
1110
aesni_exit(void)1111 static void __exit aesni_exit(void)
1112 {
1113 simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1114 aesni_simd_aeads);
1115 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1116 aesni_simd_skciphers);
1117 crypto_unregister_alg(&aesni_cipher_alg);
1118 }
1119
1120 late_initcall(aesni_init);
1121 module_exit(aesni_exit);
1122
1123 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1124 MODULE_LICENSE("GPL");
1125 MODULE_ALIAS_CRYPTO("aes");
1126