1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24
25 #define BHRB_MAX_ENTRIES 32
26 #define BHRB_TARGET 0x0000000000000002
27 #define BHRB_PREDICTION 0x0000000000000001
28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29
30 struct cpu_hw_events {
31 int n_events;
32 int n_percpu;
33 int disabled;
34 int n_added;
35 int n_limited;
36 u8 pmcs_enabled;
37 struct perf_event *event[MAX_HWEVENTS];
38 u64 events[MAX_HWEVENTS];
39 unsigned int flags[MAX_HWEVENTS];
40 struct mmcr_regs mmcr;
41 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
42 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
43 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46
47 unsigned int txn_flags;
48 int n_txn_start;
49
50 /* BHRB bits */
51 u64 bhrb_filter; /* BHRB HW branch filter */
52 unsigned int bhrb_users;
53 void *bhrb_context;
54 struct perf_branch_stack bhrb_stack;
55 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
56 u64 ic_init;
57 };
58
59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60
61 static struct power_pmu *ppmu;
62
63 /*
64 * Normally, to ignore kernel events we set the FCS (freeze counters
65 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
66 * hypervisor bit set in the MSR, or if we are running on a processor
67 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
68 * then we need to use the FCHV bit to ignore kernel events.
69 */
70 static unsigned int freeze_events_kernel = MMCR0_FCS;
71
72 /*
73 * 32-bit doesn't have MMCRA but does have an MMCR2,
74 * and a few other names are different.
75 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
76 * Define them as zero knowing that any code path accessing
77 * these registers (via mtspr/mfspr) are done under ppmu flag
78 * check for PPMU_ARCH_31 and we will not enter that code path
79 * for 32-bit.
80 */
81 #ifdef CONFIG_PPC32
82
83 #define MMCR0_FCHV 0
84 #define MMCR0_PMCjCE MMCR0_PMCnCE
85 #define MMCR0_FC56 0
86 #define MMCR0_PMAO 0
87 #define MMCR0_EBE 0
88 #define MMCR0_BHRBA 0
89 #define MMCR0_PMCC 0
90 #define MMCR0_PMCC_U6 0
91
92 #define SPRN_MMCRA SPRN_MMCR2
93 #define SPRN_MMCR3 0
94 #define SPRN_SIER2 0
95 #define SPRN_SIER3 0
96 #define MMCRA_SAMPLE_ENABLE 0
97 #define MMCRA_BHRB_DISABLE 0
98
perf_ip_adjust(struct pt_regs * regs)99 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
100 {
101 return 0;
102 }
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)103 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)104 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
105 {
106 return 0;
107 }
perf_read_regs(struct pt_regs * regs)108 static inline void perf_read_regs(struct pt_regs *regs)
109 {
110 regs->result = 0;
111 }
perf_intr_is_nmi(struct pt_regs * regs)112 static inline int perf_intr_is_nmi(struct pt_regs *regs)
113 {
114 return 0;
115 }
116
siar_valid(struct pt_regs * regs)117 static inline int siar_valid(struct pt_regs *regs)
118 {
119 return 1;
120 }
121
is_ebb_event(struct perf_event * event)122 static bool is_ebb_event(struct perf_event *event) { return false; }
ebb_event_check(struct perf_event * event)123 static int ebb_event_check(struct perf_event *event) { return 0; }
ebb_event_add(struct perf_event * event)124 static void ebb_event_add(struct perf_event *event) { }
ebb_switch_out(unsigned long mmcr0)125 static void ebb_switch_out(unsigned long mmcr0) { }
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)126 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
127 {
128 return cpuhw->mmcr.mmcr0;
129 }
130
power_pmu_bhrb_enable(struct perf_event * event)131 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
power_pmu_bhrb_disable(struct perf_event * event)132 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)133 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)134 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
pmao_restore_workaround(bool ebb)135 static void pmao_restore_workaround(bool ebb) { }
136 #endif /* CONFIG_PPC32 */
137
is_sier_available(void)138 bool is_sier_available(void)
139 {
140 if (ppmu->flags & PPMU_HAS_SIER)
141 return true;
142
143 return false;
144 }
145
regs_use_siar(struct pt_regs * regs)146 static bool regs_use_siar(struct pt_regs *regs)
147 {
148 /*
149 * When we take a performance monitor exception the regs are setup
150 * using perf_read_regs() which overloads some fields, in particular
151 * regs->result to tell us whether to use SIAR.
152 *
153 * However if the regs are from another exception, eg. a syscall, then
154 * they have not been setup using perf_read_regs() and so regs->result
155 * is something random.
156 */
157 return ((TRAP(regs) == 0xf00) && regs->result);
158 }
159
160 /*
161 * Things that are specific to 64-bit implementations.
162 */
163 #ifdef CONFIG_PPC64
164
perf_ip_adjust(struct pt_regs * regs)165 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
166 {
167 unsigned long mmcra = regs->dsisr;
168
169 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
170 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
171 if (slot > 1)
172 return 4 * (slot - 1);
173 }
174
175 return 0;
176 }
177
178 /*
179 * The user wants a data address recorded.
180 * If we're not doing instruction sampling, give them the SDAR
181 * (sampled data address). If we are doing instruction sampling, then
182 * only give them the SDAR if it corresponds to the instruction
183 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
184 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
185 */
perf_get_data_addr(struct perf_event * event,struct pt_regs * regs,u64 * addrp)186 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
187 {
188 unsigned long mmcra = regs->dsisr;
189 bool sdar_valid;
190
191 if (ppmu->flags & PPMU_HAS_SIER)
192 sdar_valid = regs->dar & SIER_SDAR_VALID;
193 else {
194 unsigned long sdsync;
195
196 if (ppmu->flags & PPMU_SIAR_VALID)
197 sdsync = POWER7P_MMCRA_SDAR_VALID;
198 else if (ppmu->flags & PPMU_ALT_SIPR)
199 sdsync = POWER6_MMCRA_SDSYNC;
200 else if (ppmu->flags & PPMU_NO_SIAR)
201 sdsync = MMCRA_SAMPLE_ENABLE;
202 else
203 sdsync = MMCRA_SDSYNC;
204
205 sdar_valid = mmcra & sdsync;
206 }
207
208 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
209 *addrp = mfspr(SPRN_SDAR);
210
211 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0)
212 *addrp = 0;
213 }
214
regs_sihv(struct pt_regs * regs)215 static bool regs_sihv(struct pt_regs *regs)
216 {
217 unsigned long sihv = MMCRA_SIHV;
218
219 if (ppmu->flags & PPMU_HAS_SIER)
220 return !!(regs->dar & SIER_SIHV);
221
222 if (ppmu->flags & PPMU_ALT_SIPR)
223 sihv = POWER6_MMCRA_SIHV;
224
225 return !!(regs->dsisr & sihv);
226 }
227
regs_sipr(struct pt_regs * regs)228 static bool regs_sipr(struct pt_regs *regs)
229 {
230 unsigned long sipr = MMCRA_SIPR;
231
232 if (ppmu->flags & PPMU_HAS_SIER)
233 return !!(regs->dar & SIER_SIPR);
234
235 if (ppmu->flags & PPMU_ALT_SIPR)
236 sipr = POWER6_MMCRA_SIPR;
237
238 return !!(regs->dsisr & sipr);
239 }
240
perf_flags_from_msr(struct pt_regs * regs)241 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
242 {
243 if (regs->msr & MSR_PR)
244 return PERF_RECORD_MISC_USER;
245 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
246 return PERF_RECORD_MISC_HYPERVISOR;
247 return PERF_RECORD_MISC_KERNEL;
248 }
249
perf_get_misc_flags(struct pt_regs * regs)250 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
251 {
252 bool use_siar = regs_use_siar(regs);
253
254 if (!use_siar)
255 return perf_flags_from_msr(regs);
256
257 /*
258 * If we don't have flags in MMCRA, rather than using
259 * the MSR, we intuit the flags from the address in
260 * SIAR which should give slightly more reliable
261 * results
262 */
263 if (ppmu->flags & PPMU_NO_SIPR) {
264 unsigned long siar = mfspr(SPRN_SIAR);
265 if (is_kernel_addr(siar))
266 return PERF_RECORD_MISC_KERNEL;
267 return PERF_RECORD_MISC_USER;
268 }
269
270 /* PR has priority over HV, so order below is important */
271 if (regs_sipr(regs))
272 return PERF_RECORD_MISC_USER;
273
274 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
275 return PERF_RECORD_MISC_HYPERVISOR;
276
277 return PERF_RECORD_MISC_KERNEL;
278 }
279
280 /*
281 * Overload regs->dsisr to store MMCRA so we only need to read it once
282 * on each interrupt.
283 * Overload regs->dar to store SIER if we have it.
284 * Overload regs->result to specify whether we should use the MSR (result
285 * is zero) or the SIAR (result is non zero).
286 */
perf_read_regs(struct pt_regs * regs)287 static inline void perf_read_regs(struct pt_regs *regs)
288 {
289 unsigned long mmcra = mfspr(SPRN_MMCRA);
290 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
291 int use_siar;
292
293 regs->dsisr = mmcra;
294
295 if (ppmu->flags & PPMU_HAS_SIER)
296 regs->dar = mfspr(SPRN_SIER);
297
298 /*
299 * If this isn't a PMU exception (eg a software event) the SIAR is
300 * not valid. Use pt_regs.
301 *
302 * If it is a marked event use the SIAR.
303 *
304 * If the PMU doesn't update the SIAR for non marked events use
305 * pt_regs.
306 *
307 * If the PMU has HV/PR flags then check to see if they
308 * place the exception in userspace. If so, use pt_regs. In
309 * continuous sampling mode the SIAR and the PMU exception are
310 * not synchronised, so they may be many instructions apart.
311 * This can result in confusing backtraces. We still want
312 * hypervisor samples as well as samples in the kernel with
313 * interrupts off hence the userspace check.
314 */
315 if (TRAP(regs) != 0xf00)
316 use_siar = 0;
317 else if ((ppmu->flags & PPMU_NO_SIAR))
318 use_siar = 0;
319 else if (marked)
320 use_siar = 1;
321 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
322 use_siar = 0;
323 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
324 use_siar = 0;
325 else
326 use_siar = 1;
327
328 regs->result = use_siar;
329 }
330
331 /*
332 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
333 * it as an NMI.
334 */
perf_intr_is_nmi(struct pt_regs * regs)335 static inline int perf_intr_is_nmi(struct pt_regs *regs)
336 {
337 return (regs->softe & IRQS_DISABLED);
338 }
339
340 /*
341 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
342 * must be sampled only if the SIAR-valid bit is set.
343 *
344 * For unmarked instructions and for processors that don't have the SIAR-Valid
345 * bit, assume that SIAR is valid.
346 */
siar_valid(struct pt_regs * regs)347 static inline int siar_valid(struct pt_regs *regs)
348 {
349 unsigned long mmcra = regs->dsisr;
350 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
351
352 if (marked) {
353 if (ppmu->flags & PPMU_HAS_SIER)
354 return regs->dar & SIER_SIAR_VALID;
355
356 if (ppmu->flags & PPMU_SIAR_VALID)
357 return mmcra & POWER7P_MMCRA_SIAR_VALID;
358 }
359
360 return 1;
361 }
362
363
364 /* Reset all possible BHRB entries */
power_pmu_bhrb_reset(void)365 static void power_pmu_bhrb_reset(void)
366 {
367 asm volatile(PPC_CLRBHRB);
368 }
369
power_pmu_bhrb_enable(struct perf_event * event)370 static void power_pmu_bhrb_enable(struct perf_event *event)
371 {
372 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
373
374 if (!ppmu->bhrb_nr)
375 return;
376
377 /* Clear BHRB if we changed task context to avoid data leaks */
378 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
379 power_pmu_bhrb_reset();
380 cpuhw->bhrb_context = event->ctx;
381 }
382 cpuhw->bhrb_users++;
383 perf_sched_cb_inc(event->ctx->pmu);
384 }
385
power_pmu_bhrb_disable(struct perf_event * event)386 static void power_pmu_bhrb_disable(struct perf_event *event)
387 {
388 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
389
390 if (!ppmu->bhrb_nr)
391 return;
392
393 WARN_ON_ONCE(!cpuhw->bhrb_users);
394 cpuhw->bhrb_users--;
395 perf_sched_cb_dec(event->ctx->pmu);
396
397 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
398 /* BHRB cannot be turned off when other
399 * events are active on the PMU.
400 */
401
402 /* avoid stale pointer */
403 cpuhw->bhrb_context = NULL;
404 }
405 }
406
407 /* Called from ctxsw to prevent one process's branch entries to
408 * mingle with the other process's entries during context switch.
409 */
power_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)410 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
411 {
412 if (!ppmu->bhrb_nr)
413 return;
414
415 if (sched_in)
416 power_pmu_bhrb_reset();
417 }
418 /* Calculate the to address for a branch */
power_pmu_bhrb_to(u64 addr)419 static __u64 power_pmu_bhrb_to(u64 addr)
420 {
421 unsigned int instr;
422 __u64 target;
423
424 if (is_kernel_addr(addr)) {
425 if (copy_from_kernel_nofault(&instr, (void *)addr,
426 sizeof(instr)))
427 return 0;
428
429 return branch_target((struct ppc_inst *)&instr);
430 }
431
432 /* Userspace: need copy instruction here then translate it */
433 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
434 sizeof(instr)))
435 return 0;
436
437 target = branch_target((struct ppc_inst *)&instr);
438 if ((!target) || (instr & BRANCH_ABSOLUTE))
439 return target;
440
441 /* Translate relative branch target from kernel to user address */
442 return target - (unsigned long)&instr + addr;
443 }
444
445 /* Processing BHRB entries */
power_pmu_bhrb_read(struct perf_event * event,struct cpu_hw_events * cpuhw)446 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
447 {
448 u64 val;
449 u64 addr;
450 int r_index, u_index, pred;
451
452 r_index = 0;
453 u_index = 0;
454 while (r_index < ppmu->bhrb_nr) {
455 /* Assembly read function */
456 val = read_bhrb(r_index++);
457 if (!val)
458 /* Terminal marker: End of valid BHRB entries */
459 break;
460 else {
461 addr = val & BHRB_EA;
462 pred = val & BHRB_PREDICTION;
463
464 if (!addr)
465 /* invalid entry */
466 continue;
467
468 /*
469 * BHRB rolling buffer could very much contain the kernel
470 * addresses at this point. Check the privileges before
471 * exporting it to userspace (avoid exposure of regions
472 * where we could have speculative execution)
473 * Incase of ISA v3.1, BHRB will capture only user-space
474 * addresses, hence include a check before filtering code
475 */
476 if (!(ppmu->flags & PPMU_ARCH_31) &&
477 is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0)
478 continue;
479
480 /* Branches are read most recent first (ie. mfbhrb 0 is
481 * the most recent branch).
482 * There are two types of valid entries:
483 * 1) a target entry which is the to address of a
484 * computed goto like a blr,bctr,btar. The next
485 * entry read from the bhrb will be branch
486 * corresponding to this target (ie. the actual
487 * blr/bctr/btar instruction).
488 * 2) a from address which is an actual branch. If a
489 * target entry proceeds this, then this is the
490 * matching branch for that target. If this is not
491 * following a target entry, then this is a branch
492 * where the target is given as an immediate field
493 * in the instruction (ie. an i or b form branch).
494 * In this case we need to read the instruction from
495 * memory to determine the target/to address.
496 */
497
498 if (val & BHRB_TARGET) {
499 /* Target branches use two entries
500 * (ie. computed gotos/XL form)
501 */
502 cpuhw->bhrb_entries[u_index].to = addr;
503 cpuhw->bhrb_entries[u_index].mispred = pred;
504 cpuhw->bhrb_entries[u_index].predicted = ~pred;
505
506 /* Get from address in next entry */
507 val = read_bhrb(r_index++);
508 addr = val & BHRB_EA;
509 if (val & BHRB_TARGET) {
510 /* Shouldn't have two targets in a
511 row.. Reset index and try again */
512 r_index--;
513 addr = 0;
514 }
515 cpuhw->bhrb_entries[u_index].from = addr;
516 } else {
517 /* Branches to immediate field
518 (ie I or B form) */
519 cpuhw->bhrb_entries[u_index].from = addr;
520 cpuhw->bhrb_entries[u_index].to =
521 power_pmu_bhrb_to(addr);
522 cpuhw->bhrb_entries[u_index].mispred = pred;
523 cpuhw->bhrb_entries[u_index].predicted = ~pred;
524 }
525 u_index++;
526
527 }
528 }
529 cpuhw->bhrb_stack.nr = u_index;
530 cpuhw->bhrb_stack.hw_idx = -1ULL;
531 return;
532 }
533
is_ebb_event(struct perf_event * event)534 static bool is_ebb_event(struct perf_event *event)
535 {
536 /*
537 * This could be a per-PMU callback, but we'd rather avoid the cost. We
538 * check that the PMU supports EBB, meaning those that don't can still
539 * use bit 63 of the event code for something else if they wish.
540 */
541 return (ppmu->flags & PPMU_ARCH_207S) &&
542 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
543 }
544
ebb_event_check(struct perf_event * event)545 static int ebb_event_check(struct perf_event *event)
546 {
547 struct perf_event *leader = event->group_leader;
548
549 /* Event and group leader must agree on EBB */
550 if (is_ebb_event(leader) != is_ebb_event(event))
551 return -EINVAL;
552
553 if (is_ebb_event(event)) {
554 if (!(event->attach_state & PERF_ATTACH_TASK))
555 return -EINVAL;
556
557 if (!leader->attr.pinned || !leader->attr.exclusive)
558 return -EINVAL;
559
560 if (event->attr.freq ||
561 event->attr.inherit ||
562 event->attr.sample_type ||
563 event->attr.sample_period ||
564 event->attr.enable_on_exec)
565 return -EINVAL;
566 }
567
568 return 0;
569 }
570
ebb_event_add(struct perf_event * event)571 static void ebb_event_add(struct perf_event *event)
572 {
573 if (!is_ebb_event(event) || current->thread.used_ebb)
574 return;
575
576 /*
577 * IFF this is the first time we've added an EBB event, set
578 * PMXE in the user MMCR0 so we can detect when it's cleared by
579 * userspace. We need this so that we can context switch while
580 * userspace is in the EBB handler (where PMXE is 0).
581 */
582 current->thread.used_ebb = 1;
583 current->thread.mmcr0 |= MMCR0_PMXE;
584 }
585
ebb_switch_out(unsigned long mmcr0)586 static void ebb_switch_out(unsigned long mmcr0)
587 {
588 if (!(mmcr0 & MMCR0_EBE))
589 return;
590
591 current->thread.siar = mfspr(SPRN_SIAR);
592 current->thread.sier = mfspr(SPRN_SIER);
593 current->thread.sdar = mfspr(SPRN_SDAR);
594 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
595 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
596 if (ppmu->flags & PPMU_ARCH_31) {
597 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
598 current->thread.sier2 = mfspr(SPRN_SIER2);
599 current->thread.sier3 = mfspr(SPRN_SIER3);
600 }
601 }
602
ebb_switch_in(bool ebb,struct cpu_hw_events * cpuhw)603 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
604 {
605 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
606
607 if (!ebb)
608 goto out;
609
610 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
611 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
612
613 /*
614 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
615 * with pmao_restore_workaround() because we may add PMAO but we never
616 * clear it here.
617 */
618 mmcr0 |= current->thread.mmcr0;
619
620 /*
621 * Be careful not to set PMXE if userspace had it cleared. This is also
622 * compatible with pmao_restore_workaround() because it has already
623 * cleared PMXE and we leave PMAO alone.
624 */
625 if (!(current->thread.mmcr0 & MMCR0_PMXE))
626 mmcr0 &= ~MMCR0_PMXE;
627
628 mtspr(SPRN_SIAR, current->thread.siar);
629 mtspr(SPRN_SIER, current->thread.sier);
630 mtspr(SPRN_SDAR, current->thread.sdar);
631
632 /*
633 * Merge the kernel & user values of MMCR2. The semantics we implement
634 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
635 * but not clear bits. If a task wants to be able to clear bits, ie.
636 * unfreeze counters, it should not set exclude_xxx in its events and
637 * instead manage the MMCR2 entirely by itself.
638 */
639 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
640
641 if (ppmu->flags & PPMU_ARCH_31) {
642 mtspr(SPRN_MMCR3, current->thread.mmcr3);
643 mtspr(SPRN_SIER2, current->thread.sier2);
644 mtspr(SPRN_SIER3, current->thread.sier3);
645 }
646 out:
647 return mmcr0;
648 }
649
pmao_restore_workaround(bool ebb)650 static void pmao_restore_workaround(bool ebb)
651 {
652 unsigned pmcs[6];
653
654 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
655 return;
656
657 /*
658 * On POWER8E there is a hardware defect which affects the PMU context
659 * switch logic, ie. power_pmu_disable/enable().
660 *
661 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
662 * by the hardware. Sometime later the actual PMU exception is
663 * delivered.
664 *
665 * If we context switch, or simply disable/enable, the PMU prior to the
666 * exception arriving, the exception will be lost when we clear PMAO.
667 *
668 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
669 * set, and this _should_ generate an exception. However because of the
670 * defect no exception is generated when we write PMAO, and we get
671 * stuck with no counters counting but no exception delivered.
672 *
673 * The workaround is to detect this case and tweak the hardware to
674 * create another pending PMU exception.
675 *
676 * We do that by setting up PMC6 (cycles) for an imminent overflow and
677 * enabling the PMU. That causes a new exception to be generated in the
678 * chip, but we don't take it yet because we have interrupts hard
679 * disabled. We then write back the PMU state as we want it to be seen
680 * by the exception handler. When we reenable interrupts the exception
681 * handler will be called and see the correct state.
682 *
683 * The logic is the same for EBB, except that the exception is gated by
684 * us having interrupts hard disabled as well as the fact that we are
685 * not in userspace. The exception is finally delivered when we return
686 * to userspace.
687 */
688
689 /* Only if PMAO is set and PMAO_SYNC is clear */
690 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
691 return;
692
693 /* If we're doing EBB, only if BESCR[GE] is set */
694 if (ebb && !(current->thread.bescr & BESCR_GE))
695 return;
696
697 /*
698 * We are already soft-disabled in power_pmu_enable(). We need to hard
699 * disable to actually prevent the PMU exception from firing.
700 */
701 hard_irq_disable();
702
703 /*
704 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
705 * Using read/write_pmc() in a for loop adds 12 function calls and
706 * almost doubles our code size.
707 */
708 pmcs[0] = mfspr(SPRN_PMC1);
709 pmcs[1] = mfspr(SPRN_PMC2);
710 pmcs[2] = mfspr(SPRN_PMC3);
711 pmcs[3] = mfspr(SPRN_PMC4);
712 pmcs[4] = mfspr(SPRN_PMC5);
713 pmcs[5] = mfspr(SPRN_PMC6);
714
715 /* Ensure all freeze bits are unset */
716 mtspr(SPRN_MMCR2, 0);
717
718 /* Set up PMC6 to overflow in one cycle */
719 mtspr(SPRN_PMC6, 0x7FFFFFFE);
720
721 /* Enable exceptions and unfreeze PMC6 */
722 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
723
724 /* Now we need to refreeze and restore the PMCs */
725 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
726
727 mtspr(SPRN_PMC1, pmcs[0]);
728 mtspr(SPRN_PMC2, pmcs[1]);
729 mtspr(SPRN_PMC3, pmcs[2]);
730 mtspr(SPRN_PMC4, pmcs[3]);
731 mtspr(SPRN_PMC5, pmcs[4]);
732 mtspr(SPRN_PMC6, pmcs[5]);
733 }
734
735 #endif /* CONFIG_PPC64 */
736
737 static void perf_event_interrupt(struct pt_regs *regs);
738
739 /*
740 * Read one performance monitor counter (PMC).
741 */
read_pmc(int idx)742 static unsigned long read_pmc(int idx)
743 {
744 unsigned long val;
745
746 switch (idx) {
747 case 1:
748 val = mfspr(SPRN_PMC1);
749 break;
750 case 2:
751 val = mfspr(SPRN_PMC2);
752 break;
753 case 3:
754 val = mfspr(SPRN_PMC3);
755 break;
756 case 4:
757 val = mfspr(SPRN_PMC4);
758 break;
759 case 5:
760 val = mfspr(SPRN_PMC5);
761 break;
762 case 6:
763 val = mfspr(SPRN_PMC6);
764 break;
765 #ifdef CONFIG_PPC64
766 case 7:
767 val = mfspr(SPRN_PMC7);
768 break;
769 case 8:
770 val = mfspr(SPRN_PMC8);
771 break;
772 #endif /* CONFIG_PPC64 */
773 default:
774 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
775 val = 0;
776 }
777 return val;
778 }
779
780 /*
781 * Write one PMC.
782 */
write_pmc(int idx,unsigned long val)783 static void write_pmc(int idx, unsigned long val)
784 {
785 switch (idx) {
786 case 1:
787 mtspr(SPRN_PMC1, val);
788 break;
789 case 2:
790 mtspr(SPRN_PMC2, val);
791 break;
792 case 3:
793 mtspr(SPRN_PMC3, val);
794 break;
795 case 4:
796 mtspr(SPRN_PMC4, val);
797 break;
798 case 5:
799 mtspr(SPRN_PMC5, val);
800 break;
801 case 6:
802 mtspr(SPRN_PMC6, val);
803 break;
804 #ifdef CONFIG_PPC64
805 case 7:
806 mtspr(SPRN_PMC7, val);
807 break;
808 case 8:
809 mtspr(SPRN_PMC8, val);
810 break;
811 #endif /* CONFIG_PPC64 */
812 default:
813 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
814 }
815 }
816
817 /* Called from sysrq_handle_showregs() */
perf_event_print_debug(void)818 void perf_event_print_debug(void)
819 {
820 unsigned long sdar, sier, flags;
821 u32 pmcs[MAX_HWEVENTS];
822 int i;
823
824 if (!ppmu) {
825 pr_info("Performance monitor hardware not registered.\n");
826 return;
827 }
828
829 if (!ppmu->n_counter)
830 return;
831
832 local_irq_save(flags);
833
834 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
835 smp_processor_id(), ppmu->name, ppmu->n_counter);
836
837 for (i = 0; i < ppmu->n_counter; i++)
838 pmcs[i] = read_pmc(i + 1);
839
840 for (; i < MAX_HWEVENTS; i++)
841 pmcs[i] = 0xdeadbeef;
842
843 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
844 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
845
846 if (ppmu->n_counter > 4)
847 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
848 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
849
850 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
851 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
852
853 sdar = sier = 0;
854 #ifdef CONFIG_PPC64
855 sdar = mfspr(SPRN_SDAR);
856
857 if (ppmu->flags & PPMU_HAS_SIER)
858 sier = mfspr(SPRN_SIER);
859
860 if (ppmu->flags & PPMU_ARCH_207S) {
861 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
862 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
863 pr_info("EBBRR: %016lx BESCR: %016lx\n",
864 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
865 }
866
867 if (ppmu->flags & PPMU_ARCH_31) {
868 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
869 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
870 }
871 #endif
872 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
873 mfspr(SPRN_SIAR), sdar, sier);
874
875 local_irq_restore(flags);
876 }
877
878 /*
879 * Check if a set of events can all go on the PMU at once.
880 * If they can't, this will look at alternative codes for the events
881 * and see if any combination of alternative codes is feasible.
882 * The feasible set is returned in event_id[].
883 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)884 static int power_check_constraints(struct cpu_hw_events *cpuhw,
885 u64 event_id[], unsigned int cflags[],
886 int n_ev)
887 {
888 unsigned long mask, value, nv;
889 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
890 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
891 int i, j;
892 unsigned long addf = ppmu->add_fields;
893 unsigned long tadd = ppmu->test_adder;
894 unsigned long grp_mask = ppmu->group_constraint_mask;
895 unsigned long grp_val = ppmu->group_constraint_val;
896
897 if (n_ev > ppmu->n_counter)
898 return -1;
899
900 /* First see if the events will go on as-is */
901 for (i = 0; i < n_ev; ++i) {
902 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
903 && !ppmu->limited_pmc_event(event_id[i])) {
904 ppmu->get_alternatives(event_id[i], cflags[i],
905 cpuhw->alternatives[i]);
906 event_id[i] = cpuhw->alternatives[i][0];
907 }
908 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
909 &cpuhw->avalues[i][0]))
910 return -1;
911 }
912 value = mask = 0;
913 for (i = 0; i < n_ev; ++i) {
914 nv = (value | cpuhw->avalues[i][0]) +
915 (value & cpuhw->avalues[i][0] & addf);
916
917 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
918 break;
919
920 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
921 & (~grp_mask)) != 0)
922 break;
923
924 value = nv;
925 mask |= cpuhw->amasks[i][0];
926 }
927 if (i == n_ev) {
928 if ((value & mask & grp_mask) != (mask & grp_val))
929 return -1;
930 else
931 return 0; /* all OK */
932 }
933
934 /* doesn't work, gather alternatives... */
935 if (!ppmu->get_alternatives)
936 return -1;
937 for (i = 0; i < n_ev; ++i) {
938 choice[i] = 0;
939 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
940 cpuhw->alternatives[i]);
941 for (j = 1; j < n_alt[i]; ++j)
942 ppmu->get_constraint(cpuhw->alternatives[i][j],
943 &cpuhw->amasks[i][j],
944 &cpuhw->avalues[i][j]);
945 }
946
947 /* enumerate all possibilities and see if any will work */
948 i = 0;
949 j = -1;
950 value = mask = nv = 0;
951 while (i < n_ev) {
952 if (j >= 0) {
953 /* we're backtracking, restore context */
954 value = svalues[i];
955 mask = smasks[i];
956 j = choice[i];
957 }
958 /*
959 * See if any alternative k for event_id i,
960 * where k > j, will satisfy the constraints.
961 */
962 while (++j < n_alt[i]) {
963 nv = (value | cpuhw->avalues[i][j]) +
964 (value & cpuhw->avalues[i][j] & addf);
965 if ((((nv + tadd) ^ value) & mask) == 0 &&
966 (((nv + tadd) ^ cpuhw->avalues[i][j])
967 & cpuhw->amasks[i][j]) == 0)
968 break;
969 }
970 if (j >= n_alt[i]) {
971 /*
972 * No feasible alternative, backtrack
973 * to event_id i-1 and continue enumerating its
974 * alternatives from where we got up to.
975 */
976 if (--i < 0)
977 return -1;
978 } else {
979 /*
980 * Found a feasible alternative for event_id i,
981 * remember where we got up to with this event_id,
982 * go on to the next event_id, and start with
983 * the first alternative for it.
984 */
985 choice[i] = j;
986 svalues[i] = value;
987 smasks[i] = mask;
988 value = nv;
989 mask |= cpuhw->amasks[i][j];
990 ++i;
991 j = -1;
992 }
993 }
994
995 /* OK, we have a feasible combination, tell the caller the solution */
996 for (i = 0; i < n_ev; ++i)
997 event_id[i] = cpuhw->alternatives[i][choice[i]];
998 return 0;
999 }
1000
1001 /*
1002 * Check if newly-added events have consistent settings for
1003 * exclude_{user,kernel,hv} with each other and any previously
1004 * added events.
1005 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)1006 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1007 int n_prev, int n_new)
1008 {
1009 int eu = 0, ek = 0, eh = 0;
1010 int i, n, first;
1011 struct perf_event *event;
1012
1013 /*
1014 * If the PMU we're on supports per event exclude settings then we
1015 * don't need to do any of this logic. NB. This assumes no PMU has both
1016 * per event exclude and limited PMCs.
1017 */
1018 if (ppmu->flags & PPMU_ARCH_207S)
1019 return 0;
1020
1021 n = n_prev + n_new;
1022 if (n <= 1)
1023 return 0;
1024
1025 first = 1;
1026 for (i = 0; i < n; ++i) {
1027 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1028 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1029 continue;
1030 }
1031 event = ctrs[i];
1032 if (first) {
1033 eu = event->attr.exclude_user;
1034 ek = event->attr.exclude_kernel;
1035 eh = event->attr.exclude_hv;
1036 first = 0;
1037 } else if (event->attr.exclude_user != eu ||
1038 event->attr.exclude_kernel != ek ||
1039 event->attr.exclude_hv != eh) {
1040 return -EAGAIN;
1041 }
1042 }
1043
1044 if (eu || ek || eh)
1045 for (i = 0; i < n; ++i)
1046 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1047 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1048
1049 return 0;
1050 }
1051
check_and_compute_delta(u64 prev,u64 val)1052 static u64 check_and_compute_delta(u64 prev, u64 val)
1053 {
1054 u64 delta = (val - prev) & 0xfffffffful;
1055
1056 /*
1057 * POWER7 can roll back counter values, if the new value is smaller
1058 * than the previous value it will cause the delta and the counter to
1059 * have bogus values unless we rolled a counter over. If a coutner is
1060 * rolled back, it will be smaller, but within 256, which is the maximum
1061 * number of events to rollback at once. If we detect a rollback
1062 * return 0. This can lead to a small lack of precision in the
1063 * counters.
1064 */
1065 if (prev > val && (prev - val) < 256)
1066 delta = 0;
1067
1068 return delta;
1069 }
1070
power_pmu_read(struct perf_event * event)1071 static void power_pmu_read(struct perf_event *event)
1072 {
1073 s64 val, delta, prev;
1074
1075 if (event->hw.state & PERF_HES_STOPPED)
1076 return;
1077
1078 if (!event->hw.idx)
1079 return;
1080
1081 if (is_ebb_event(event)) {
1082 val = read_pmc(event->hw.idx);
1083 local64_set(&event->hw.prev_count, val);
1084 return;
1085 }
1086
1087 /*
1088 * Performance monitor interrupts come even when interrupts
1089 * are soft-disabled, as long as interrupts are hard-enabled.
1090 * Therefore we treat them like NMIs.
1091 */
1092 do {
1093 prev = local64_read(&event->hw.prev_count);
1094 barrier();
1095 val = read_pmc(event->hw.idx);
1096 delta = check_and_compute_delta(prev, val);
1097 if (!delta)
1098 return;
1099 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1100
1101 local64_add(delta, &event->count);
1102
1103 /*
1104 * A number of places program the PMC with (0x80000000 - period_left).
1105 * We never want period_left to be less than 1 because we will program
1106 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1107 * roll around to 0 before taking an exception. We have seen this
1108 * on POWER8.
1109 *
1110 * To fix this, clamp the minimum value of period_left to 1.
1111 */
1112 do {
1113 prev = local64_read(&event->hw.period_left);
1114 val = prev - delta;
1115 if (val < 1)
1116 val = 1;
1117 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1118 }
1119
1120 /*
1121 * On some machines, PMC5 and PMC6 can't be written, don't respect
1122 * the freeze conditions, and don't generate interrupts. This tells
1123 * us if `event' is using such a PMC.
1124 */
is_limited_pmc(int pmcnum)1125 static int is_limited_pmc(int pmcnum)
1126 {
1127 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1128 && (pmcnum == 5 || pmcnum == 6);
1129 }
1130
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1131 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1132 unsigned long pmc5, unsigned long pmc6)
1133 {
1134 struct perf_event *event;
1135 u64 val, prev, delta;
1136 int i;
1137
1138 for (i = 0; i < cpuhw->n_limited; ++i) {
1139 event = cpuhw->limited_counter[i];
1140 if (!event->hw.idx)
1141 continue;
1142 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1143 prev = local64_read(&event->hw.prev_count);
1144 event->hw.idx = 0;
1145 delta = check_and_compute_delta(prev, val);
1146 if (delta)
1147 local64_add(delta, &event->count);
1148 }
1149 }
1150
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)1151 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1152 unsigned long pmc5, unsigned long pmc6)
1153 {
1154 struct perf_event *event;
1155 u64 val, prev;
1156 int i;
1157
1158 for (i = 0; i < cpuhw->n_limited; ++i) {
1159 event = cpuhw->limited_counter[i];
1160 event->hw.idx = cpuhw->limited_hwidx[i];
1161 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1162 prev = local64_read(&event->hw.prev_count);
1163 if (check_and_compute_delta(prev, val))
1164 local64_set(&event->hw.prev_count, val);
1165 perf_event_update_userpage(event);
1166 }
1167 }
1168
1169 /*
1170 * Since limited events don't respect the freeze conditions, we
1171 * have to read them immediately after freezing or unfreezing the
1172 * other events. We try to keep the values from the limited
1173 * events as consistent as possible by keeping the delay (in
1174 * cycles and instructions) between freezing/unfreezing and reading
1175 * the limited events as small and consistent as possible.
1176 * Therefore, if any limited events are in use, we read them
1177 * both, and always in the same order, to minimize variability,
1178 * and do it inside the same asm that writes MMCR0.
1179 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)1180 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1181 {
1182 unsigned long pmc5, pmc6;
1183
1184 if (!cpuhw->n_limited) {
1185 mtspr(SPRN_MMCR0, mmcr0);
1186 return;
1187 }
1188
1189 /*
1190 * Write MMCR0, then read PMC5 and PMC6 immediately.
1191 * To ensure we don't get a performance monitor interrupt
1192 * between writing MMCR0 and freezing/thawing the limited
1193 * events, we first write MMCR0 with the event overflow
1194 * interrupt enable bits turned off.
1195 */
1196 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1197 : "=&r" (pmc5), "=&r" (pmc6)
1198 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1199 "i" (SPRN_MMCR0),
1200 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1201
1202 if (mmcr0 & MMCR0_FC)
1203 freeze_limited_counters(cpuhw, pmc5, pmc6);
1204 else
1205 thaw_limited_counters(cpuhw, pmc5, pmc6);
1206
1207 /*
1208 * Write the full MMCR0 including the event overflow interrupt
1209 * enable bits, if necessary.
1210 */
1211 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1212 mtspr(SPRN_MMCR0, mmcr0);
1213 }
1214
1215 /*
1216 * Disable all events to prevent PMU interrupts and to allow
1217 * events to be added or removed.
1218 */
power_pmu_disable(struct pmu * pmu)1219 static void power_pmu_disable(struct pmu *pmu)
1220 {
1221 struct cpu_hw_events *cpuhw;
1222 unsigned long flags, mmcr0, val, mmcra;
1223
1224 if (!ppmu)
1225 return;
1226 local_irq_save(flags);
1227 cpuhw = this_cpu_ptr(&cpu_hw_events);
1228
1229 if (!cpuhw->disabled) {
1230 /*
1231 * Check if we ever enabled the PMU on this cpu.
1232 */
1233 if (!cpuhw->pmcs_enabled) {
1234 ppc_enable_pmcs();
1235 cpuhw->pmcs_enabled = 1;
1236 }
1237
1238 /*
1239 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1240 */
1241 val = mmcr0 = mfspr(SPRN_MMCR0);
1242 val |= MMCR0_FC;
1243 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1244 MMCR0_FC56);
1245
1246 /*
1247 * The barrier is to make sure the mtspr has been
1248 * executed and the PMU has frozen the events etc.
1249 * before we return.
1250 */
1251 write_mmcr0(cpuhw, val);
1252 mb();
1253 isync();
1254
1255 val = mmcra = cpuhw->mmcr.mmcra;
1256
1257 /*
1258 * Disable instruction sampling if it was enabled
1259 */
1260 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1261 val &= ~MMCRA_SAMPLE_ENABLE;
1262
1263 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1264 if (ppmu->flags & PPMU_ARCH_31)
1265 val |= MMCRA_BHRB_DISABLE;
1266
1267 /*
1268 * Write SPRN_MMCRA if mmcra has either disabled
1269 * instruction sampling or BHRB.
1270 */
1271 if (val != mmcra) {
1272 mtspr(SPRN_MMCRA, mmcra);
1273 mb();
1274 isync();
1275 }
1276
1277 cpuhw->disabled = 1;
1278 cpuhw->n_added = 0;
1279
1280 ebb_switch_out(mmcr0);
1281
1282 #ifdef CONFIG_PPC64
1283 /*
1284 * These are readable by userspace, may contain kernel
1285 * addresses and are not switched by context switch, so clear
1286 * them now to avoid leaking anything to userspace in general
1287 * including to another process.
1288 */
1289 if (ppmu->flags & PPMU_ARCH_207S) {
1290 mtspr(SPRN_SDAR, 0);
1291 mtspr(SPRN_SIAR, 0);
1292 }
1293 #endif
1294 }
1295
1296 local_irq_restore(flags);
1297 }
1298
1299 /*
1300 * Re-enable all events if disable == 0.
1301 * If we were previously disabled and events were added, then
1302 * put the new config on the PMU.
1303 */
power_pmu_enable(struct pmu * pmu)1304 static void power_pmu_enable(struct pmu *pmu)
1305 {
1306 struct perf_event *event;
1307 struct cpu_hw_events *cpuhw;
1308 unsigned long flags;
1309 long i;
1310 unsigned long val, mmcr0;
1311 s64 left;
1312 unsigned int hwc_index[MAX_HWEVENTS];
1313 int n_lim;
1314 int idx;
1315 bool ebb;
1316
1317 if (!ppmu)
1318 return;
1319 local_irq_save(flags);
1320
1321 cpuhw = this_cpu_ptr(&cpu_hw_events);
1322 if (!cpuhw->disabled)
1323 goto out;
1324
1325 if (cpuhw->n_events == 0) {
1326 ppc_set_pmu_inuse(0);
1327 goto out;
1328 }
1329
1330 cpuhw->disabled = 0;
1331
1332 /*
1333 * EBB requires an exclusive group and all events must have the EBB
1334 * flag set, or not set, so we can just check a single event. Also we
1335 * know we have at least one event.
1336 */
1337 ebb = is_ebb_event(cpuhw->event[0]);
1338
1339 /*
1340 * If we didn't change anything, or only removed events,
1341 * no need to recalculate MMCR* settings and reset the PMCs.
1342 * Just reenable the PMU with the current MMCR* settings
1343 * (possibly updated for removal of events).
1344 */
1345 if (!cpuhw->n_added) {
1346 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1347 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1348 if (ppmu->flags & PPMU_ARCH_31)
1349 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1350 goto out_enable;
1351 }
1352
1353 /*
1354 * Clear all MMCR settings and recompute them for the new set of events.
1355 */
1356 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1357
1358 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1359 &cpuhw->mmcr, cpuhw->event)) {
1360 /* shouldn't ever get here */
1361 printk(KERN_ERR "oops compute_mmcr failed\n");
1362 goto out;
1363 }
1364
1365 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1366 /*
1367 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1368 * bits for the first event. We have already checked that all
1369 * events have the same value for these bits as the first event.
1370 */
1371 event = cpuhw->event[0];
1372 if (event->attr.exclude_user)
1373 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1374 if (event->attr.exclude_kernel)
1375 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1376 if (event->attr.exclude_hv)
1377 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1378 }
1379
1380 /*
1381 * Write the new configuration to MMCR* with the freeze
1382 * bit set and set the hardware events to their initial values.
1383 * Then unfreeze the events.
1384 */
1385 ppc_set_pmu_inuse(1);
1386 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1387 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1388 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1389 | MMCR0_FC);
1390 if (ppmu->flags & PPMU_ARCH_207S)
1391 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1392
1393 if (ppmu->flags & PPMU_ARCH_31)
1394 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1395
1396 /*
1397 * Read off any pre-existing events that need to move
1398 * to another PMC.
1399 */
1400 for (i = 0; i < cpuhw->n_events; ++i) {
1401 event = cpuhw->event[i];
1402 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1403 power_pmu_read(event);
1404 write_pmc(event->hw.idx, 0);
1405 event->hw.idx = 0;
1406 }
1407 }
1408
1409 /*
1410 * Initialize the PMCs for all the new and moved events.
1411 */
1412 cpuhw->n_limited = n_lim = 0;
1413 for (i = 0; i < cpuhw->n_events; ++i) {
1414 event = cpuhw->event[i];
1415 if (event->hw.idx)
1416 continue;
1417 idx = hwc_index[i] + 1;
1418 if (is_limited_pmc(idx)) {
1419 cpuhw->limited_counter[n_lim] = event;
1420 cpuhw->limited_hwidx[n_lim] = idx;
1421 ++n_lim;
1422 continue;
1423 }
1424
1425 if (ebb)
1426 val = local64_read(&event->hw.prev_count);
1427 else {
1428 val = 0;
1429 if (event->hw.sample_period) {
1430 left = local64_read(&event->hw.period_left);
1431 if (left < 0x80000000L)
1432 val = 0x80000000L - left;
1433 }
1434 local64_set(&event->hw.prev_count, val);
1435 }
1436
1437 event->hw.idx = idx;
1438 if (event->hw.state & PERF_HES_STOPPED)
1439 val = 0;
1440 write_pmc(idx, val);
1441
1442 perf_event_update_userpage(event);
1443 }
1444 cpuhw->n_limited = n_lim;
1445 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1446
1447 out_enable:
1448 pmao_restore_workaround(ebb);
1449
1450 mmcr0 = ebb_switch_in(ebb, cpuhw);
1451
1452 mb();
1453 if (cpuhw->bhrb_users)
1454 ppmu->config_bhrb(cpuhw->bhrb_filter);
1455
1456 write_mmcr0(cpuhw, mmcr0);
1457
1458 /*
1459 * Enable instruction sampling if necessary
1460 */
1461 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1462 mb();
1463 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1464 }
1465
1466 out:
1467
1468 local_irq_restore(flags);
1469 }
1470
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)1471 static int collect_events(struct perf_event *group, int max_count,
1472 struct perf_event *ctrs[], u64 *events,
1473 unsigned int *flags)
1474 {
1475 int n = 0;
1476 struct perf_event *event;
1477
1478 if (group->pmu->task_ctx_nr == perf_hw_context) {
1479 if (n >= max_count)
1480 return -1;
1481 ctrs[n] = group;
1482 flags[n] = group->hw.event_base;
1483 events[n++] = group->hw.config;
1484 }
1485 for_each_sibling_event(event, group) {
1486 if (event->pmu->task_ctx_nr == perf_hw_context &&
1487 event->state != PERF_EVENT_STATE_OFF) {
1488 if (n >= max_count)
1489 return -1;
1490 ctrs[n] = event;
1491 flags[n] = event->hw.event_base;
1492 events[n++] = event->hw.config;
1493 }
1494 }
1495 return n;
1496 }
1497
1498 /*
1499 * Add an event to the PMU.
1500 * If all events are not already frozen, then we disable and
1501 * re-enable the PMU in order to get hw_perf_enable to do the
1502 * actual work of reconfiguring the PMU.
1503 */
power_pmu_add(struct perf_event * event,int ef_flags)1504 static int power_pmu_add(struct perf_event *event, int ef_flags)
1505 {
1506 struct cpu_hw_events *cpuhw;
1507 unsigned long flags;
1508 int n0;
1509 int ret = -EAGAIN;
1510
1511 local_irq_save(flags);
1512 perf_pmu_disable(event->pmu);
1513
1514 /*
1515 * Add the event to the list (if there is room)
1516 * and check whether the total set is still feasible.
1517 */
1518 cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 n0 = cpuhw->n_events;
1520 if (n0 >= ppmu->n_counter)
1521 goto out;
1522 cpuhw->event[n0] = event;
1523 cpuhw->events[n0] = event->hw.config;
1524 cpuhw->flags[n0] = event->hw.event_base;
1525
1526 /*
1527 * This event may have been disabled/stopped in record_and_restart()
1528 * because we exceeded the ->event_limit. If re-starting the event,
1529 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1530 * notification is re-enabled.
1531 */
1532 if (!(ef_flags & PERF_EF_START))
1533 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1534 else
1535 event->hw.state = 0;
1536
1537 /*
1538 * If group events scheduling transaction was started,
1539 * skip the schedulability test here, it will be performed
1540 * at commit time(->commit_txn) as a whole
1541 */
1542 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1543 goto nocheck;
1544
1545 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1546 goto out;
1547 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1548 goto out;
1549 event->hw.config = cpuhw->events[n0];
1550
1551 nocheck:
1552 ebb_event_add(event);
1553
1554 ++cpuhw->n_events;
1555 ++cpuhw->n_added;
1556
1557 ret = 0;
1558 out:
1559 if (has_branch_stack(event)) {
1560 u64 bhrb_filter = -1;
1561
1562 if (ppmu->bhrb_filter_map)
1563 bhrb_filter = ppmu->bhrb_filter_map(
1564 event->attr.branch_sample_type);
1565
1566 if (bhrb_filter != -1) {
1567 cpuhw->bhrb_filter = bhrb_filter;
1568 power_pmu_bhrb_enable(event);
1569 }
1570 }
1571
1572 perf_pmu_enable(event->pmu);
1573 local_irq_restore(flags);
1574 return ret;
1575 }
1576
1577 /*
1578 * Remove an event from the PMU.
1579 */
power_pmu_del(struct perf_event * event,int ef_flags)1580 static void power_pmu_del(struct perf_event *event, int ef_flags)
1581 {
1582 struct cpu_hw_events *cpuhw;
1583 long i;
1584 unsigned long flags;
1585
1586 local_irq_save(flags);
1587 perf_pmu_disable(event->pmu);
1588
1589 power_pmu_read(event);
1590
1591 cpuhw = this_cpu_ptr(&cpu_hw_events);
1592 for (i = 0; i < cpuhw->n_events; ++i) {
1593 if (event == cpuhw->event[i]) {
1594 while (++i < cpuhw->n_events) {
1595 cpuhw->event[i-1] = cpuhw->event[i];
1596 cpuhw->events[i-1] = cpuhw->events[i];
1597 cpuhw->flags[i-1] = cpuhw->flags[i];
1598 }
1599 --cpuhw->n_events;
1600 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1601 if (event->hw.idx) {
1602 write_pmc(event->hw.idx, 0);
1603 event->hw.idx = 0;
1604 }
1605 perf_event_update_userpage(event);
1606 break;
1607 }
1608 }
1609 for (i = 0; i < cpuhw->n_limited; ++i)
1610 if (event == cpuhw->limited_counter[i])
1611 break;
1612 if (i < cpuhw->n_limited) {
1613 while (++i < cpuhw->n_limited) {
1614 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1615 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1616 }
1617 --cpuhw->n_limited;
1618 }
1619 if (cpuhw->n_events == 0) {
1620 /* disable exceptions if no events are running */
1621 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1622 }
1623
1624 if (has_branch_stack(event))
1625 power_pmu_bhrb_disable(event);
1626
1627 perf_pmu_enable(event->pmu);
1628 local_irq_restore(flags);
1629 }
1630
1631 /*
1632 * POWER-PMU does not support disabling individual counters, hence
1633 * program their cycle counter to their max value and ignore the interrupts.
1634 */
1635
power_pmu_start(struct perf_event * event,int ef_flags)1636 static void power_pmu_start(struct perf_event *event, int ef_flags)
1637 {
1638 unsigned long flags;
1639 s64 left;
1640 unsigned long val;
1641
1642 if (!event->hw.idx || !event->hw.sample_period)
1643 return;
1644
1645 if (!(event->hw.state & PERF_HES_STOPPED))
1646 return;
1647
1648 if (ef_flags & PERF_EF_RELOAD)
1649 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1650
1651 local_irq_save(flags);
1652 perf_pmu_disable(event->pmu);
1653
1654 event->hw.state = 0;
1655 left = local64_read(&event->hw.period_left);
1656
1657 val = 0;
1658 if (left < 0x80000000L)
1659 val = 0x80000000L - left;
1660
1661 write_pmc(event->hw.idx, val);
1662
1663 perf_event_update_userpage(event);
1664 perf_pmu_enable(event->pmu);
1665 local_irq_restore(flags);
1666 }
1667
power_pmu_stop(struct perf_event * event,int ef_flags)1668 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1669 {
1670 unsigned long flags;
1671
1672 if (!event->hw.idx || !event->hw.sample_period)
1673 return;
1674
1675 if (event->hw.state & PERF_HES_STOPPED)
1676 return;
1677
1678 local_irq_save(flags);
1679 perf_pmu_disable(event->pmu);
1680
1681 power_pmu_read(event);
1682 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1683 write_pmc(event->hw.idx, 0);
1684
1685 perf_event_update_userpage(event);
1686 perf_pmu_enable(event->pmu);
1687 local_irq_restore(flags);
1688 }
1689
1690 /*
1691 * Start group events scheduling transaction
1692 * Set the flag to make pmu::enable() not perform the
1693 * schedulability test, it will be performed at commit time
1694 *
1695 * We only support PERF_PMU_TXN_ADD transactions. Save the
1696 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1697 * transactions.
1698 */
power_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1699 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1700 {
1701 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1702
1703 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1704
1705 cpuhw->txn_flags = txn_flags;
1706 if (txn_flags & ~PERF_PMU_TXN_ADD)
1707 return;
1708
1709 perf_pmu_disable(pmu);
1710 cpuhw->n_txn_start = cpuhw->n_events;
1711 }
1712
1713 /*
1714 * Stop group events scheduling transaction
1715 * Clear the flag and pmu::enable() will perform the
1716 * schedulability test.
1717 */
power_pmu_cancel_txn(struct pmu * pmu)1718 static void power_pmu_cancel_txn(struct pmu *pmu)
1719 {
1720 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1721 unsigned int txn_flags;
1722
1723 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1724
1725 txn_flags = cpuhw->txn_flags;
1726 cpuhw->txn_flags = 0;
1727 if (txn_flags & ~PERF_PMU_TXN_ADD)
1728 return;
1729
1730 perf_pmu_enable(pmu);
1731 }
1732
1733 /*
1734 * Commit group events scheduling transaction
1735 * Perform the group schedulability test as a whole
1736 * Return 0 if success
1737 */
power_pmu_commit_txn(struct pmu * pmu)1738 static int power_pmu_commit_txn(struct pmu *pmu)
1739 {
1740 struct cpu_hw_events *cpuhw;
1741 long i, n;
1742
1743 if (!ppmu)
1744 return -EAGAIN;
1745
1746 cpuhw = this_cpu_ptr(&cpu_hw_events);
1747 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1748
1749 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1750 cpuhw->txn_flags = 0;
1751 return 0;
1752 }
1753
1754 n = cpuhw->n_events;
1755 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1756 return -EAGAIN;
1757 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1758 if (i < 0)
1759 return -EAGAIN;
1760
1761 for (i = cpuhw->n_txn_start; i < n; ++i)
1762 cpuhw->event[i]->hw.config = cpuhw->events[i];
1763
1764 cpuhw->txn_flags = 0;
1765 perf_pmu_enable(pmu);
1766 return 0;
1767 }
1768
1769 /*
1770 * Return 1 if we might be able to put event on a limited PMC,
1771 * or 0 if not.
1772 * An event can only go on a limited PMC if it counts something
1773 * that a limited PMC can count, doesn't require interrupts, and
1774 * doesn't exclude any processor mode.
1775 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1776 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1777 unsigned int flags)
1778 {
1779 int n;
1780 u64 alt[MAX_EVENT_ALTERNATIVES];
1781
1782 if (event->attr.exclude_user
1783 || event->attr.exclude_kernel
1784 || event->attr.exclude_hv
1785 || event->attr.sample_period)
1786 return 0;
1787
1788 if (ppmu->limited_pmc_event(ev))
1789 return 1;
1790
1791 /*
1792 * The requested event_id isn't on a limited PMC already;
1793 * see if any alternative code goes on a limited PMC.
1794 */
1795 if (!ppmu->get_alternatives)
1796 return 0;
1797
1798 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1799 n = ppmu->get_alternatives(ev, flags, alt);
1800
1801 return n > 0;
1802 }
1803
1804 /*
1805 * Find an alternative event_id that goes on a normal PMC, if possible,
1806 * and return the event_id code, or 0 if there is no such alternative.
1807 * (Note: event_id code 0 is "don't count" on all machines.)
1808 */
normal_pmc_alternative(u64 ev,unsigned long flags)1809 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1810 {
1811 u64 alt[MAX_EVENT_ALTERNATIVES];
1812 int n;
1813
1814 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1815 n = ppmu->get_alternatives(ev, flags, alt);
1816 if (!n)
1817 return 0;
1818 return alt[0];
1819 }
1820
1821 /* Number of perf_events counting hardware events */
1822 static atomic_t num_events;
1823 /* Used to avoid races in calling reserve/release_pmc_hardware */
1824 static DEFINE_MUTEX(pmc_reserve_mutex);
1825
1826 /*
1827 * Release the PMU if this is the last perf_event.
1828 */
hw_perf_event_destroy(struct perf_event * event)1829 static void hw_perf_event_destroy(struct perf_event *event)
1830 {
1831 if (!atomic_add_unless(&num_events, -1, 1)) {
1832 mutex_lock(&pmc_reserve_mutex);
1833 if (atomic_dec_return(&num_events) == 0)
1834 release_pmc_hardware();
1835 mutex_unlock(&pmc_reserve_mutex);
1836 }
1837 }
1838
1839 /*
1840 * Translate a generic cache event_id config to a raw event_id code.
1841 */
hw_perf_cache_event(u64 config,u64 * eventp)1842 static int hw_perf_cache_event(u64 config, u64 *eventp)
1843 {
1844 unsigned long type, op, result;
1845 u64 ev;
1846
1847 if (!ppmu->cache_events)
1848 return -EINVAL;
1849
1850 /* unpack config */
1851 type = config & 0xff;
1852 op = (config >> 8) & 0xff;
1853 result = (config >> 16) & 0xff;
1854
1855 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1856 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1857 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1858 return -EINVAL;
1859
1860 ev = (*ppmu->cache_events)[type][op][result];
1861 if (ev == 0)
1862 return -EOPNOTSUPP;
1863 if (ev == -1)
1864 return -EINVAL;
1865 *eventp = ev;
1866 return 0;
1867 }
1868
is_event_blacklisted(u64 ev)1869 static bool is_event_blacklisted(u64 ev)
1870 {
1871 int i;
1872
1873 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1874 if (ppmu->blacklist_ev[i] == ev)
1875 return true;
1876 }
1877
1878 return false;
1879 }
1880
power_pmu_event_init(struct perf_event * event)1881 static int power_pmu_event_init(struct perf_event *event)
1882 {
1883 u64 ev;
1884 unsigned long flags;
1885 struct perf_event *ctrs[MAX_HWEVENTS];
1886 u64 events[MAX_HWEVENTS];
1887 unsigned int cflags[MAX_HWEVENTS];
1888 int n;
1889 int err;
1890 struct cpu_hw_events *cpuhw;
1891
1892 if (!ppmu)
1893 return -ENOENT;
1894
1895 if (has_branch_stack(event)) {
1896 /* PMU has BHRB enabled */
1897 if (!(ppmu->flags & PPMU_ARCH_207S))
1898 return -EOPNOTSUPP;
1899 }
1900
1901 switch (event->attr.type) {
1902 case PERF_TYPE_HARDWARE:
1903 ev = event->attr.config;
1904 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1905 return -EOPNOTSUPP;
1906
1907 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1908 return -EINVAL;
1909 ev = ppmu->generic_events[ev];
1910 break;
1911 case PERF_TYPE_HW_CACHE:
1912 err = hw_perf_cache_event(event->attr.config, &ev);
1913 if (err)
1914 return err;
1915
1916 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1917 return -EINVAL;
1918 break;
1919 case PERF_TYPE_RAW:
1920 ev = event->attr.config;
1921
1922 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1923 return -EINVAL;
1924 break;
1925 default:
1926 return -ENOENT;
1927 }
1928
1929 event->hw.config_base = ev;
1930 event->hw.idx = 0;
1931
1932 /*
1933 * If we are not running on a hypervisor, force the
1934 * exclude_hv bit to 0 so that we don't care what
1935 * the user set it to.
1936 */
1937 if (!firmware_has_feature(FW_FEATURE_LPAR))
1938 event->attr.exclude_hv = 0;
1939
1940 /*
1941 * If this is a per-task event, then we can use
1942 * PM_RUN_* events interchangeably with their non RUN_*
1943 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1944 * XXX we should check if the task is an idle task.
1945 */
1946 flags = 0;
1947 if (event->attach_state & PERF_ATTACH_TASK)
1948 flags |= PPMU_ONLY_COUNT_RUN;
1949
1950 /*
1951 * If this machine has limited events, check whether this
1952 * event_id could go on a limited event.
1953 */
1954 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1955 if (can_go_on_limited_pmc(event, ev, flags)) {
1956 flags |= PPMU_LIMITED_PMC_OK;
1957 } else if (ppmu->limited_pmc_event(ev)) {
1958 /*
1959 * The requested event_id is on a limited PMC,
1960 * but we can't use a limited PMC; see if any
1961 * alternative goes on a normal PMC.
1962 */
1963 ev = normal_pmc_alternative(ev, flags);
1964 if (!ev)
1965 return -EINVAL;
1966 }
1967 }
1968
1969 /* Extra checks for EBB */
1970 err = ebb_event_check(event);
1971 if (err)
1972 return err;
1973
1974 /*
1975 * If this is in a group, check if it can go on with all the
1976 * other hardware events in the group. We assume the event
1977 * hasn't been linked into its leader's sibling list at this point.
1978 */
1979 n = 0;
1980 if (event->group_leader != event) {
1981 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1982 ctrs, events, cflags);
1983 if (n < 0)
1984 return -EINVAL;
1985 }
1986 events[n] = ev;
1987 ctrs[n] = event;
1988 cflags[n] = flags;
1989 if (check_excludes(ctrs, cflags, n, 1))
1990 return -EINVAL;
1991
1992 cpuhw = &get_cpu_var(cpu_hw_events);
1993 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1994
1995 if (has_branch_stack(event)) {
1996 u64 bhrb_filter = -1;
1997
1998 if (ppmu->bhrb_filter_map)
1999 bhrb_filter = ppmu->bhrb_filter_map(
2000 event->attr.branch_sample_type);
2001
2002 if (bhrb_filter == -1) {
2003 put_cpu_var(cpu_hw_events);
2004 return -EOPNOTSUPP;
2005 }
2006 cpuhw->bhrb_filter = bhrb_filter;
2007 }
2008
2009 put_cpu_var(cpu_hw_events);
2010 if (err)
2011 return -EINVAL;
2012
2013 event->hw.config = events[n];
2014 event->hw.event_base = cflags[n];
2015 event->hw.last_period = event->hw.sample_period;
2016 local64_set(&event->hw.period_left, event->hw.last_period);
2017
2018 /*
2019 * For EBB events we just context switch the PMC value, we don't do any
2020 * of the sample_period logic. We use hw.prev_count for this.
2021 */
2022 if (is_ebb_event(event))
2023 local64_set(&event->hw.prev_count, 0);
2024
2025 /*
2026 * See if we need to reserve the PMU.
2027 * If no events are currently in use, then we have to take a
2028 * mutex to ensure that we don't race with another task doing
2029 * reserve_pmc_hardware or release_pmc_hardware.
2030 */
2031 err = 0;
2032 if (!atomic_inc_not_zero(&num_events)) {
2033 mutex_lock(&pmc_reserve_mutex);
2034 if (atomic_read(&num_events) == 0 &&
2035 reserve_pmc_hardware(perf_event_interrupt))
2036 err = -EBUSY;
2037 else
2038 atomic_inc(&num_events);
2039 mutex_unlock(&pmc_reserve_mutex);
2040 }
2041 event->destroy = hw_perf_event_destroy;
2042
2043 return err;
2044 }
2045
power_pmu_event_idx(struct perf_event * event)2046 static int power_pmu_event_idx(struct perf_event *event)
2047 {
2048 return event->hw.idx;
2049 }
2050
power_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)2051 ssize_t power_events_sysfs_show(struct device *dev,
2052 struct device_attribute *attr, char *page)
2053 {
2054 struct perf_pmu_events_attr *pmu_attr;
2055
2056 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2057
2058 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2059 }
2060
2061 static struct pmu power_pmu = {
2062 .pmu_enable = power_pmu_enable,
2063 .pmu_disable = power_pmu_disable,
2064 .event_init = power_pmu_event_init,
2065 .add = power_pmu_add,
2066 .del = power_pmu_del,
2067 .start = power_pmu_start,
2068 .stop = power_pmu_stop,
2069 .read = power_pmu_read,
2070 .start_txn = power_pmu_start_txn,
2071 .cancel_txn = power_pmu_cancel_txn,
2072 .commit_txn = power_pmu_commit_txn,
2073 .event_idx = power_pmu_event_idx,
2074 .sched_task = power_pmu_sched_task,
2075 };
2076
2077 /*
2078 * A counter has overflowed; update its count and record
2079 * things if requested. Note that interrupts are hard-disabled
2080 * here so there is no possibility of being interrupted.
2081 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)2082 static void record_and_restart(struct perf_event *event, unsigned long val,
2083 struct pt_regs *regs)
2084 {
2085 u64 period = event->hw.sample_period;
2086 s64 prev, delta, left;
2087 int record = 0;
2088
2089 if (event->hw.state & PERF_HES_STOPPED) {
2090 write_pmc(event->hw.idx, 0);
2091 return;
2092 }
2093
2094 /* we don't have to worry about interrupts here */
2095 prev = local64_read(&event->hw.prev_count);
2096 delta = check_and_compute_delta(prev, val);
2097 local64_add(delta, &event->count);
2098
2099 /*
2100 * See if the total period for this event has expired,
2101 * and update for the next period.
2102 */
2103 val = 0;
2104 left = local64_read(&event->hw.period_left) - delta;
2105 if (delta == 0)
2106 left++;
2107 if (period) {
2108 if (left <= 0) {
2109 left += period;
2110 if (left <= 0)
2111 left = period;
2112 record = siar_valid(regs);
2113 event->hw.last_period = event->hw.sample_period;
2114 }
2115 if (left < 0x80000000LL)
2116 val = 0x80000000LL - left;
2117 }
2118
2119 write_pmc(event->hw.idx, val);
2120 local64_set(&event->hw.prev_count, val);
2121 local64_set(&event->hw.period_left, left);
2122 perf_event_update_userpage(event);
2123
2124 /*
2125 * Finally record data if requested.
2126 */
2127 if (record) {
2128 struct perf_sample_data data;
2129
2130 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2131
2132 if (event->attr.sample_type &
2133 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2134 perf_get_data_addr(event, regs, &data.addr);
2135
2136 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2137 struct cpu_hw_events *cpuhw;
2138 cpuhw = this_cpu_ptr(&cpu_hw_events);
2139 power_pmu_bhrb_read(event, cpuhw);
2140 data.br_stack = &cpuhw->bhrb_stack;
2141 }
2142
2143 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2144 ppmu->get_mem_data_src)
2145 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2146
2147 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2148 ppmu->get_mem_weight)
2149 ppmu->get_mem_weight(&data.weight);
2150
2151 if (perf_event_overflow(event, &data, regs))
2152 power_pmu_stop(event, 0);
2153 } else if (period) {
2154 /* Account for interrupt in case of invalid SIAR */
2155 if (perf_event_account_interrupt(event))
2156 power_pmu_stop(event, 0);
2157 }
2158 }
2159
2160 /*
2161 * Called from generic code to get the misc flags (i.e. processor mode)
2162 * for an event_id.
2163 */
perf_misc_flags(struct pt_regs * regs)2164 unsigned long perf_misc_flags(struct pt_regs *regs)
2165 {
2166 u32 flags = perf_get_misc_flags(regs);
2167
2168 if (flags)
2169 return flags;
2170 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2171 PERF_RECORD_MISC_KERNEL;
2172 }
2173
2174 /*
2175 * Called from generic code to get the instruction pointer
2176 * for an event_id.
2177 */
perf_instruction_pointer(struct pt_regs * regs)2178 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2179 {
2180 bool use_siar = regs_use_siar(regs);
2181
2182 if (use_siar && siar_valid(regs))
2183 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2184 else if (use_siar)
2185 return 0; // no valid instruction pointer
2186 else
2187 return regs->nip;
2188 }
2189
pmc_overflow_power7(unsigned long val)2190 static bool pmc_overflow_power7(unsigned long val)
2191 {
2192 /*
2193 * Events on POWER7 can roll back if a speculative event doesn't
2194 * eventually complete. Unfortunately in some rare cases they will
2195 * raise a performance monitor exception. We need to catch this to
2196 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2197 * cycles from overflow.
2198 *
2199 * We only do this if the first pass fails to find any overflowing
2200 * PMCs because a user might set a period of less than 256 and we
2201 * don't want to mistakenly reset them.
2202 */
2203 if ((0x80000000 - val) <= 256)
2204 return true;
2205
2206 return false;
2207 }
2208
pmc_overflow(unsigned long val)2209 static bool pmc_overflow(unsigned long val)
2210 {
2211 if ((int)val < 0)
2212 return true;
2213
2214 return false;
2215 }
2216
2217 /*
2218 * Performance monitor interrupt stuff
2219 */
__perf_event_interrupt(struct pt_regs * regs)2220 static void __perf_event_interrupt(struct pt_regs *regs)
2221 {
2222 int i, j;
2223 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2224 struct perf_event *event;
2225 unsigned long val[8];
2226 int found, active;
2227 int nmi;
2228
2229 if (cpuhw->n_limited)
2230 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2231 mfspr(SPRN_PMC6));
2232
2233 perf_read_regs(regs);
2234
2235 /*
2236 * If perf interrupts hit in a local_irq_disable (soft-masked) region,
2237 * we consider them as NMIs. This is required to prevent hash faults on
2238 * user addresses when reading callchains. See the NMI test in
2239 * do_hash_page.
2240 */
2241 nmi = perf_intr_is_nmi(regs);
2242 if (nmi)
2243 nmi_enter();
2244 else
2245 irq_enter();
2246
2247 /* Read all the PMCs since we'll need them a bunch of times */
2248 for (i = 0; i < ppmu->n_counter; ++i)
2249 val[i] = read_pmc(i + 1);
2250
2251 /* Try to find what caused the IRQ */
2252 found = 0;
2253 for (i = 0; i < ppmu->n_counter; ++i) {
2254 if (!pmc_overflow(val[i]))
2255 continue;
2256 if (is_limited_pmc(i + 1))
2257 continue; /* these won't generate IRQs */
2258 /*
2259 * We've found one that's overflowed. For active
2260 * counters we need to log this. For inactive
2261 * counters, we need to reset it anyway
2262 */
2263 found = 1;
2264 active = 0;
2265 for (j = 0; j < cpuhw->n_events; ++j) {
2266 event = cpuhw->event[j];
2267 if (event->hw.idx == (i + 1)) {
2268 active = 1;
2269 record_and_restart(event, val[i], regs);
2270 break;
2271 }
2272 }
2273 if (!active)
2274 /* reset non active counters that have overflowed */
2275 write_pmc(i + 1, 0);
2276 }
2277 if (!found && pvr_version_is(PVR_POWER7)) {
2278 /* check active counters for special buggy p7 overflow */
2279 for (i = 0; i < cpuhw->n_events; ++i) {
2280 event = cpuhw->event[i];
2281 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2282 continue;
2283 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2284 /* event has overflowed in a buggy way*/
2285 found = 1;
2286 record_and_restart(event,
2287 val[event->hw.idx - 1],
2288 regs);
2289 }
2290 }
2291 }
2292 if (!found && !nmi && printk_ratelimit())
2293 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2294
2295 /*
2296 * Reset MMCR0 to its normal value. This will set PMXE and
2297 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2298 * and thus allow interrupts to occur again.
2299 * XXX might want to use MSR.PM to keep the events frozen until
2300 * we get back out of this interrupt.
2301 */
2302 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2303
2304 if (nmi)
2305 nmi_exit();
2306 else
2307 irq_exit();
2308 }
2309
perf_event_interrupt(struct pt_regs * regs)2310 static void perf_event_interrupt(struct pt_regs *regs)
2311 {
2312 u64 start_clock = sched_clock();
2313
2314 __perf_event_interrupt(regs);
2315 perf_sample_event_took(sched_clock() - start_clock);
2316 }
2317
power_pmu_prepare_cpu(unsigned int cpu)2318 static int power_pmu_prepare_cpu(unsigned int cpu)
2319 {
2320 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2321
2322 if (ppmu) {
2323 memset(cpuhw, 0, sizeof(*cpuhw));
2324 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2325 }
2326 return 0;
2327 }
2328
register_power_pmu(struct power_pmu * pmu)2329 int register_power_pmu(struct power_pmu *pmu)
2330 {
2331 if (ppmu)
2332 return -EBUSY; /* something's already registered */
2333
2334 ppmu = pmu;
2335 pr_info("%s performance monitor hardware support registered\n",
2336 pmu->name);
2337
2338 power_pmu.attr_groups = ppmu->attr_groups;
2339 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2340
2341 #ifdef MSR_HV
2342 /*
2343 * Use FCHV to ignore kernel events if MSR.HV is set.
2344 */
2345 if (mfmsr() & MSR_HV)
2346 freeze_events_kernel = MMCR0_FCHV;
2347 #endif /* CONFIG_PPC64 */
2348
2349 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2350 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2351 power_pmu_prepare_cpu, NULL);
2352 return 0;
2353 }
2354
2355 #ifdef CONFIG_PPC64
init_ppc64_pmu(void)2356 static int __init init_ppc64_pmu(void)
2357 {
2358 /* run through all the pmu drivers one at a time */
2359 if (!init_power5_pmu())
2360 return 0;
2361 else if (!init_power5p_pmu())
2362 return 0;
2363 else if (!init_power6_pmu())
2364 return 0;
2365 else if (!init_power7_pmu())
2366 return 0;
2367 else if (!init_power8_pmu())
2368 return 0;
2369 else if (!init_power9_pmu())
2370 return 0;
2371 else if (!init_power10_pmu())
2372 return 0;
2373 else if (!init_ppc970_pmu())
2374 return 0;
2375 else
2376 return init_generic_compat_pmu();
2377 }
2378 early_initcall(init_ppc64_pmu);
2379 #endif
2380