1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5 #include <asm-generic/pgtable-nopmd.h>
6
7 #include <asm/book3s/32/hash.h>
8
9 /* And here we include common definitions */
10
11 #define _PAGE_KERNEL_RO 0
12 #define _PAGE_KERNEL_ROX (_PAGE_EXEC)
13 #define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
14 #define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
15
16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
17
18 #ifndef __ASSEMBLY__
19
pte_user(pte_t pte)20 static inline bool pte_user(pte_t pte)
21 {
22 return pte_val(pte) & _PAGE_USER;
23 }
24 #endif /* __ASSEMBLY__ */
25
26 /*
27 * Location of the PFN in the PTE. Most 32-bit platforms use the same
28 * as _PAGE_SHIFT here (ie, naturally aligned).
29 * Platform who don't just pre-define the value so we don't override it here.
30 */
31 #define PTE_RPN_SHIFT (PAGE_SHIFT)
32
33 /*
34 * The mask covered by the RPN must be a ULL on 32-bit platforms with
35 * 64-bit PTEs.
36 */
37 #ifdef CONFIG_PTE_64BIT
38 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
39 #define MAX_POSSIBLE_PHYSMEM_BITS 36
40 #else
41 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
42 #define MAX_POSSIBLE_PHYSMEM_BITS 32
43 #endif
44
45 /*
46 * _PAGE_CHG_MASK masks of bits that are to be preserved across
47 * pgprot changes.
48 */
49 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
50 _PAGE_ACCESSED | _PAGE_SPECIAL)
51
52 /*
53 * We define 2 sets of base prot bits, one for basic pages (ie,
54 * cacheable kernel and user pages) and one for non cacheable
55 * pages. We always set _PAGE_COHERENT when SMP is enabled or
56 * the processor might need it for DMA coherency.
57 */
58 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
59 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
60
61 /*
62 * Permission masks used to generate the __P and __S table.
63 *
64 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
65 *
66 * Write permissions imply read permissions for now.
67 */
68 #define PAGE_NONE __pgprot(_PAGE_BASE)
69 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
70 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
71 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
72 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
74 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
75
76 /* Permission masks used for kernel mappings */
77 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
78 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
79 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
80 _PAGE_NO_CACHE | _PAGE_GUARDED)
81 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
82 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
83 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
84
85 /*
86 * Protection used for kernel text. We want the debuggers to be able to
87 * set breakpoints anywhere, so don't write protect the kernel text
88 * on platforms where such control is possible.
89 */
90 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
91 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
92 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
93 #else
94 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
95 #endif
96
97 /* Make modules code happy. We don't set RO yet */
98 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
99
100 /* Advertise special mapping type for AGP */
101 #define PAGE_AGP (PAGE_KERNEL_NC)
102 #define HAVE_PAGE_AGP
103
104 #define PTE_INDEX_SIZE PTE_SHIFT
105 #define PMD_INDEX_SIZE 0
106 #define PUD_INDEX_SIZE 0
107 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
108
109 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
110 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
111
112 #ifndef __ASSEMBLY__
113 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
114 #define PMD_TABLE_SIZE 0
115 #define PUD_TABLE_SIZE 0
116 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
117
118 /* Bits to mask out from a PMD to get to the PTE page */
119 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
120 #endif /* __ASSEMBLY__ */
121
122 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
123 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
124
125 /*
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
128 *
129 * For any >32-bit physical address platform, we can use the following
130 * two level page table layout where the pgdir is 8KB and the MS 13 bits
131 * are an index to the second level table. The combined pgdir/pmd first
132 * level has 2048 entries and the second level has 512 64-bit PTE entries.
133 * -Matt
134 */
135 /* PGDIR_SHIFT determines what a top-level page table entry can map */
136 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
137 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
138 #define PGDIR_MASK (~(PGDIR_SIZE-1))
139
140 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
141
142 #ifndef __ASSEMBLY__
143
144 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
145
146 #endif /* !__ASSEMBLY__ */
147
148 /*
149 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
150 * value (for now) on others, from where we can start layout kernel
151 * virtual space that goes below PKMAP and FIXMAP
152 */
153 #include <asm/fixmap.h>
154
155 /*
156 * ioremap_bot starts at that address. Early ioremaps move down from there,
157 * until mem_init() at which point this becomes the top of the vmalloc
158 * and ioremap space
159 */
160 #ifdef CONFIG_HIGHMEM
161 #define IOREMAP_TOP PKMAP_BASE
162 #else
163 #define IOREMAP_TOP FIXADDR_START
164 #endif
165
166 /* PPC32 shares vmalloc area with ioremap */
167 #define IOREMAP_START VMALLOC_START
168 #define IOREMAP_END VMALLOC_END
169
170 /*
171 * Just any arbitrary offset to the start of the vmalloc VM area: the
172 * current 16MB value just means that there will be a 64MB "hole" after the
173 * physical memory until the kernel virtual memory starts. That means that
174 * any out-of-bounds memory accesses will hopefully be caught.
175 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
176 * area for the same reason. ;)
177 *
178 * We no longer map larger than phys RAM with the BATs so we don't have
179 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
180 * about clashes between our early calls to ioremap() that start growing down
181 * from ioremap_base being run into the VM area allocations (growing upwards
182 * from VMALLOC_START). For this reason we have ioremap_bot to check when
183 * we actually run into our mappings setup in the early boot with the VM
184 * system. This really does become a problem for machines with good amounts
185 * of RAM. -- Cort
186 */
187 #define VMALLOC_OFFSET (0x1000000) /* 16M */
188
189 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
190
191 #ifdef CONFIG_KASAN_VMALLOC
192 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
193 #else
194 #define VMALLOC_END ioremap_bot
195 #endif
196
197 #ifdef CONFIG_STRICT_KERNEL_RWX
198 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
199 #define MODULES_VADDR (MODULES_END - SZ_256M)
200 #endif
201
202 #ifndef __ASSEMBLY__
203 #include <linux/sched.h>
204 #include <linux/threads.h>
205
206 /* Bits to mask out from a PGD to get to the PUD page */
207 #define PGD_MASKED_BITS 0
208
209 #define pte_ERROR(e) \
210 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
211 (unsigned long long)pte_val(e))
212 #define pgd_ERROR(e) \
213 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
214 /*
215 * Bits in a linux-style PTE. These match the bits in the
216 * (hardware-defined) PowerPC PTE as closely as possible.
217 */
218
219 #define pte_clear(mm, addr, ptep) \
220 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
221
222 #define pmd_none(pmd) (!pmd_val(pmd))
223 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
224 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)225 static inline void pmd_clear(pmd_t *pmdp)
226 {
227 *pmdp = __pmd(0);
228 }
229
230
231 /*
232 * When flushing the tlb entry for a page, we also need to flush the hash
233 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
234 */
235 extern int flush_hash_pages(unsigned context, unsigned long va,
236 unsigned long pmdval, int count);
237
238 /* Add an HPTE to the hash table */
239 extern void add_hash_page(unsigned context, unsigned long va,
240 unsigned long pmdval);
241
242 /* Flush an entry from the TLB/hash table */
243 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
244 unsigned long address);
245
246 /*
247 * PTE updates. This function is called whenever an existing
248 * valid PTE is updated. This does -not- include set_pte_at()
249 * which nowadays only sets a new PTE.
250 *
251 * Depending on the type of MMU, we may need to use atomic updates
252 * and the PTE may be either 32 or 64 bit wide. In the later case,
253 * when using atomic updates, only the low part of the PTE is
254 * accessed atomically.
255 */
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)256 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
257 unsigned long clr, unsigned long set, int huge)
258 {
259 pte_basic_t old;
260 unsigned long tmp;
261
262 __asm__ __volatile__(
263 #ifndef CONFIG_PTE_64BIT
264 "1: lwarx %0, 0, %3\n"
265 " andc %1, %0, %4\n"
266 #else
267 "1: lwarx %L0, 0, %3\n"
268 " lwz %0, -4(%3)\n"
269 " andc %1, %L0, %4\n"
270 #endif
271 " or %1, %1, %5\n"
272 " stwcx. %1, 0, %3\n"
273 " bne- 1b"
274 : "=&r" (old), "=&r" (tmp), "=m" (*p)
275 #ifndef CONFIG_PTE_64BIT
276 : "r" (p),
277 #else
278 : "b" ((unsigned long)(p) + 4),
279 #endif
280 "r" (clr), "r" (set), "m" (*p)
281 : "cc" );
282
283 return old;
284 }
285
286 /*
287 * 2.6 calls this without flushing the TLB entry; this is wrong
288 * for our hash-based implementation, we fix that up here.
289 */
290 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)291 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
292 unsigned long addr, pte_t *ptep)
293 {
294 unsigned long old;
295 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
296 if (old & _PAGE_HASHPTE) {
297 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
298 flush_hash_pages(mm->context.id, addr, ptephys, 1);
299 }
300 return (old & _PAGE_ACCESSED) != 0;
301 }
302 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
303 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
304
305 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)306 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
307 pte_t *ptep)
308 {
309 return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
310 }
311
312 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)313 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
314 pte_t *ptep)
315 {
316 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
317 }
318
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)319 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
320 pte_t *ptep, pte_t entry,
321 unsigned long address,
322 int psize)
323 {
324 unsigned long set = pte_val(entry) &
325 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
326
327 pte_update(vma->vm_mm, address, ptep, 0, set, 0);
328
329 flush_tlb_page(vma, address);
330 }
331
332 #define __HAVE_ARCH_PTE_SAME
333 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
334
335 #define pmd_page(pmd) \
336 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
337
338 /*
339 * Encode and decode a swap entry.
340 * Note that the bits we use in a PTE for representing a swap entry
341 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
342 * -- paulus
343 */
344 #define __swp_type(entry) ((entry).val & 0x1f)
345 #define __swp_offset(entry) ((entry).val >> 5)
346 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
347 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
348 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
349
350 /* Generic accessors to PTE bits */
pte_write(pte_t pte)351 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
pte_read(pte_t pte)352 static inline int pte_read(pte_t pte) { return 1; }
pte_dirty(pte_t pte)353 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
pte_young(pte_t pte)354 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
pte_special(pte_t pte)355 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
pte_none(pte_t pte)356 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
pte_exec(pte_t pte)357 static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
358
pte_present(pte_t pte)359 static inline int pte_present(pte_t pte)
360 {
361 return pte_val(pte) & _PAGE_PRESENT;
362 }
363
pte_hw_valid(pte_t pte)364 static inline bool pte_hw_valid(pte_t pte)
365 {
366 return pte_val(pte) & _PAGE_PRESENT;
367 }
368
pte_hashpte(pte_t pte)369 static inline bool pte_hashpte(pte_t pte)
370 {
371 return !!(pte_val(pte) & _PAGE_HASHPTE);
372 }
373
pte_ci(pte_t pte)374 static inline bool pte_ci(pte_t pte)
375 {
376 return !!(pte_val(pte) & _PAGE_NO_CACHE);
377 }
378
379 /*
380 * We only find page table entry in the last level
381 * Hence no need for other accessors
382 */
383 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)384 static inline bool pte_access_permitted(pte_t pte, bool write)
385 {
386 /*
387 * A read-only access is controlled by _PAGE_USER bit.
388 * We have _PAGE_READ set for WRITE and EXECUTE
389 */
390 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
391 return false;
392
393 if (write && !pte_write(pte))
394 return false;
395
396 return true;
397 }
398
399 /* Conversion functions: convert a page and protection to a page entry,
400 * and a page entry and page directory to the page they refer to.
401 *
402 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
403 * long for now.
404 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)405 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
406 {
407 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
408 pgprot_val(pgprot));
409 }
410
pte_pfn(pte_t pte)411 static inline unsigned long pte_pfn(pte_t pte)
412 {
413 return pte_val(pte) >> PTE_RPN_SHIFT;
414 }
415
416 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)417 static inline pte_t pte_wrprotect(pte_t pte)
418 {
419 return __pte(pte_val(pte) & ~_PAGE_RW);
420 }
421
pte_exprotect(pte_t pte)422 static inline pte_t pte_exprotect(pte_t pte)
423 {
424 return __pte(pte_val(pte) & ~_PAGE_EXEC);
425 }
426
pte_mkclean(pte_t pte)427 static inline pte_t pte_mkclean(pte_t pte)
428 {
429 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
430 }
431
pte_mkold(pte_t pte)432 static inline pte_t pte_mkold(pte_t pte)
433 {
434 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
435 }
436
pte_mkexec(pte_t pte)437 static inline pte_t pte_mkexec(pte_t pte)
438 {
439 return __pte(pte_val(pte) | _PAGE_EXEC);
440 }
441
pte_mkpte(pte_t pte)442 static inline pte_t pte_mkpte(pte_t pte)
443 {
444 return pte;
445 }
446
pte_mkwrite(pte_t pte)447 static inline pte_t pte_mkwrite(pte_t pte)
448 {
449 return __pte(pte_val(pte) | _PAGE_RW);
450 }
451
pte_mkdirty(pte_t pte)452 static inline pte_t pte_mkdirty(pte_t pte)
453 {
454 return __pte(pte_val(pte) | _PAGE_DIRTY);
455 }
456
pte_mkyoung(pte_t pte)457 static inline pte_t pte_mkyoung(pte_t pte)
458 {
459 return __pte(pte_val(pte) | _PAGE_ACCESSED);
460 }
461
pte_mkspecial(pte_t pte)462 static inline pte_t pte_mkspecial(pte_t pte)
463 {
464 return __pte(pte_val(pte) | _PAGE_SPECIAL);
465 }
466
pte_mkhuge(pte_t pte)467 static inline pte_t pte_mkhuge(pte_t pte)
468 {
469 return pte;
470 }
471
pte_mkprivileged(pte_t pte)472 static inline pte_t pte_mkprivileged(pte_t pte)
473 {
474 return __pte(pte_val(pte) & ~_PAGE_USER);
475 }
476
pte_mkuser(pte_t pte)477 static inline pte_t pte_mkuser(pte_t pte)
478 {
479 return __pte(pte_val(pte) | _PAGE_USER);
480 }
481
pte_modify(pte_t pte,pgprot_t newprot)482 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
483 {
484 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
485 }
486
487
488
489 /* This low level function performs the actual PTE insertion
490 * Setting the PTE depends on the MMU type and other factors. It's
491 * an horrible mess that I'm not going to try to clean up now but
492 * I'm keeping it in one place rather than spread around
493 */
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)494 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
495 pte_t *ptep, pte_t pte, int percpu)
496 {
497 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
498 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
499 * helper pte_update() which does an atomic update. We need to do that
500 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
501 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
502 * the hash bits instead (ie, same as the non-SMP case)
503 */
504 if (percpu)
505 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
506 | (pte_val(pte) & ~_PAGE_HASHPTE));
507 else
508 pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
509
510 #elif defined(CONFIG_PTE_64BIT)
511 /* Second case is 32-bit with 64-bit PTE. In this case, we
512 * can just store as long as we do the two halves in the right order
513 * with a barrier in between. This is possible because we take care,
514 * in the hash code, to pre-invalidate if the PTE was already hashed,
515 * which synchronizes us with any concurrent invalidation.
516 * In the percpu case, we also fallback to the simple update preserving
517 * the hash bits
518 */
519 if (percpu) {
520 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
521 | (pte_val(pte) & ~_PAGE_HASHPTE));
522 return;
523 }
524 if (pte_val(*ptep) & _PAGE_HASHPTE)
525 flush_hash_entry(mm, ptep, addr);
526 __asm__ __volatile__("\
527 stw%U0%X0 %2,%0\n\
528 eieio\n\
529 stw%U0%X0 %L2,%1"
530 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
531 : "r" (pte) : "memory");
532
533 #else
534 /* Third case is 32-bit hash table in UP mode, we need to preserve
535 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
536 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
537 * and see we need to keep track that this PTE needs invalidating
538 */
539 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
540 | (pte_val(pte) & ~_PAGE_HASHPTE));
541 #endif
542 }
543
544 /*
545 * Macro to mark a page protection value as "uncacheable".
546 */
547
548 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
549 _PAGE_WRITETHRU)
550
551 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)552 static inline pgprot_t pgprot_noncached(pgprot_t prot)
553 {
554 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
555 _PAGE_NO_CACHE | _PAGE_GUARDED);
556 }
557
558 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)559 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
560 {
561 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
562 _PAGE_NO_CACHE);
563 }
564
565 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)566 static inline pgprot_t pgprot_cached(pgprot_t prot)
567 {
568 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
569 _PAGE_COHERENT);
570 }
571
572 #define pgprot_cached_wthru pgprot_cached_wthru
pgprot_cached_wthru(pgprot_t prot)573 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
574 {
575 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
576 _PAGE_COHERENT | _PAGE_WRITETHRU);
577 }
578
579 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
pgprot_cached_noncoherent(pgprot_t prot)580 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
581 {
582 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
583 }
584
585 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)586 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
587 {
588 return pgprot_noncached_wc(prot);
589 }
590
591 #endif /* !__ASSEMBLY__ */
592
593 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
594