1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
regs_query_register_offset(const char * name)103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, NULL);
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
ptrace_disable(struct task_struct * child)156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 #ifdef CONFIG_COMPAT
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
181
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
186 }
187 }
188
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
193 }
194 }
195 arm64_force_sig_ptrace_errno_trap(si_errno,
196 (void __user *)bkpt->trigger,
197 desc);
198 }
199 #endif
200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT,
201 (void __user *)(bkpt->trigger),
202 desc);
203 }
204
205 /*
206 * Unregister breakpoints from this task and reset the pointers in
207 * the thread_struct.
208 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)209 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
210 {
211 int i;
212 struct thread_struct *t = &tsk->thread;
213
214 for (i = 0; i < ARM_MAX_BRP; i++) {
215 if (t->debug.hbp_break[i]) {
216 unregister_hw_breakpoint(t->debug.hbp_break[i]);
217 t->debug.hbp_break[i] = NULL;
218 }
219 }
220
221 for (i = 0; i < ARM_MAX_WRP; i++) {
222 if (t->debug.hbp_watch[i]) {
223 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
224 t->debug.hbp_watch[i] = NULL;
225 }
226 }
227 }
228
ptrace_hw_copy_thread(struct task_struct * tsk)229 void ptrace_hw_copy_thread(struct task_struct *tsk)
230 {
231 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
232 }
233
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)234 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
235 struct task_struct *tsk,
236 unsigned long idx)
237 {
238 struct perf_event *bp = ERR_PTR(-EINVAL);
239
240 switch (note_type) {
241 case NT_ARM_HW_BREAK:
242 if (idx >= ARM_MAX_BRP)
243 goto out;
244 idx = array_index_nospec(idx, ARM_MAX_BRP);
245 bp = tsk->thread.debug.hbp_break[idx];
246 break;
247 case NT_ARM_HW_WATCH:
248 if (idx >= ARM_MAX_WRP)
249 goto out;
250 idx = array_index_nospec(idx, ARM_MAX_WRP);
251 bp = tsk->thread.debug.hbp_watch[idx];
252 break;
253 }
254
255 out:
256 return bp;
257 }
258
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)259 static int ptrace_hbp_set_event(unsigned int note_type,
260 struct task_struct *tsk,
261 unsigned long idx,
262 struct perf_event *bp)
263 {
264 int err = -EINVAL;
265
266 switch (note_type) {
267 case NT_ARM_HW_BREAK:
268 if (idx >= ARM_MAX_BRP)
269 goto out;
270 idx = array_index_nospec(idx, ARM_MAX_BRP);
271 tsk->thread.debug.hbp_break[idx] = bp;
272 err = 0;
273 break;
274 case NT_ARM_HW_WATCH:
275 if (idx >= ARM_MAX_WRP)
276 goto out;
277 idx = array_index_nospec(idx, ARM_MAX_WRP);
278 tsk->thread.debug.hbp_watch[idx] = bp;
279 err = 0;
280 break;
281 }
282
283 out:
284 return err;
285 }
286
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)287 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
288 struct task_struct *tsk,
289 unsigned long idx)
290 {
291 struct perf_event *bp;
292 struct perf_event_attr attr;
293 int err, type;
294
295 switch (note_type) {
296 case NT_ARM_HW_BREAK:
297 type = HW_BREAKPOINT_X;
298 break;
299 case NT_ARM_HW_WATCH:
300 type = HW_BREAKPOINT_RW;
301 break;
302 default:
303 return ERR_PTR(-EINVAL);
304 }
305
306 ptrace_breakpoint_init(&attr);
307
308 /*
309 * Initialise fields to sane defaults
310 * (i.e. values that will pass validation).
311 */
312 attr.bp_addr = 0;
313 attr.bp_len = HW_BREAKPOINT_LEN_4;
314 attr.bp_type = type;
315 attr.disabled = 1;
316
317 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
318 if (IS_ERR(bp))
319 return bp;
320
321 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
322 if (err)
323 return ERR_PTR(err);
324
325 return bp;
326 }
327
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)328 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
329 struct arch_hw_breakpoint_ctrl ctrl,
330 struct perf_event_attr *attr)
331 {
332 int err, len, type, offset, disabled = !ctrl.enabled;
333
334 attr->disabled = disabled;
335 if (disabled)
336 return 0;
337
338 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
339 if (err)
340 return err;
341
342 switch (note_type) {
343 case NT_ARM_HW_BREAK:
344 if ((type & HW_BREAKPOINT_X) != type)
345 return -EINVAL;
346 break;
347 case NT_ARM_HW_WATCH:
348 if ((type & HW_BREAKPOINT_RW) != type)
349 return -EINVAL;
350 break;
351 default:
352 return -EINVAL;
353 }
354
355 attr->bp_len = len;
356 attr->bp_type = type;
357 attr->bp_addr += offset;
358
359 return 0;
360 }
361
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)362 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
363 {
364 u8 num;
365 u32 reg = 0;
366
367 switch (note_type) {
368 case NT_ARM_HW_BREAK:
369 num = hw_breakpoint_slots(TYPE_INST);
370 break;
371 case NT_ARM_HW_WATCH:
372 num = hw_breakpoint_slots(TYPE_DATA);
373 break;
374 default:
375 return -EINVAL;
376 }
377
378 reg |= debug_monitors_arch();
379 reg <<= 8;
380 reg |= num;
381
382 *info = reg;
383 return 0;
384 }
385
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)386 static int ptrace_hbp_get_ctrl(unsigned int note_type,
387 struct task_struct *tsk,
388 unsigned long idx,
389 u32 *ctrl)
390 {
391 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
392
393 if (IS_ERR(bp))
394 return PTR_ERR(bp);
395
396 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
397 return 0;
398 }
399
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)400 static int ptrace_hbp_get_addr(unsigned int note_type,
401 struct task_struct *tsk,
402 unsigned long idx,
403 u64 *addr)
404 {
405 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
406
407 if (IS_ERR(bp))
408 return PTR_ERR(bp);
409
410 *addr = bp ? counter_arch_bp(bp)->address : 0;
411 return 0;
412 }
413
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)414 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
415 struct task_struct *tsk,
416 unsigned long idx)
417 {
418 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
419
420 if (!bp)
421 bp = ptrace_hbp_create(note_type, tsk, idx);
422
423 return bp;
424 }
425
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)426 static int ptrace_hbp_set_ctrl(unsigned int note_type,
427 struct task_struct *tsk,
428 unsigned long idx,
429 u32 uctrl)
430 {
431 int err;
432 struct perf_event *bp;
433 struct perf_event_attr attr;
434 struct arch_hw_breakpoint_ctrl ctrl;
435
436 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
437 if (IS_ERR(bp)) {
438 err = PTR_ERR(bp);
439 return err;
440 }
441
442 attr = bp->attr;
443 decode_ctrl_reg(uctrl, &ctrl);
444 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
445 if (err)
446 return err;
447
448 return modify_user_hw_breakpoint(bp, &attr);
449 }
450
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)451 static int ptrace_hbp_set_addr(unsigned int note_type,
452 struct task_struct *tsk,
453 unsigned long idx,
454 u64 addr)
455 {
456 int err;
457 struct perf_event *bp;
458 struct perf_event_attr attr;
459
460 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
461 if (IS_ERR(bp)) {
462 err = PTR_ERR(bp);
463 return err;
464 }
465
466 attr = bp->attr;
467 attr.bp_addr = addr;
468 err = modify_user_hw_breakpoint(bp, &attr);
469 return err;
470 }
471
472 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
473 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
474 #define PTRACE_HBP_PAD_SZ sizeof(u32)
475
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)476 static int hw_break_get(struct task_struct *target,
477 const struct user_regset *regset,
478 struct membuf to)
479 {
480 unsigned int note_type = regset->core_note_type;
481 int ret, idx = 0;
482 u32 info, ctrl;
483 u64 addr;
484
485 /* Resource info */
486 ret = ptrace_hbp_get_resource_info(note_type, &info);
487 if (ret)
488 return ret;
489
490 membuf_write(&to, &info, sizeof(info));
491 membuf_zero(&to, sizeof(u32));
492 /* (address, ctrl) registers */
493 while (to.left) {
494 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
495 if (ret)
496 return ret;
497 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
498 if (ret)
499 return ret;
500 membuf_store(&to, addr);
501 membuf_store(&to, ctrl);
502 membuf_zero(&to, sizeof(u32));
503 idx++;
504 }
505 return 0;
506 }
507
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)508 static int hw_break_set(struct task_struct *target,
509 const struct user_regset *regset,
510 unsigned int pos, unsigned int count,
511 const void *kbuf, const void __user *ubuf)
512 {
513 unsigned int note_type = regset->core_note_type;
514 int ret, idx = 0, offset, limit;
515 u32 ctrl;
516 u64 addr;
517
518 /* Resource info and pad */
519 offset = offsetof(struct user_hwdebug_state, dbg_regs);
520 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
521 if (ret)
522 return ret;
523
524 /* (address, ctrl) registers */
525 limit = regset->n * regset->size;
526 while (count && offset < limit) {
527 if (count < PTRACE_HBP_ADDR_SZ)
528 return -EINVAL;
529 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
530 offset, offset + PTRACE_HBP_ADDR_SZ);
531 if (ret)
532 return ret;
533 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
534 if (ret)
535 return ret;
536 offset += PTRACE_HBP_ADDR_SZ;
537
538 if (!count)
539 break;
540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
541 offset, offset + PTRACE_HBP_CTRL_SZ);
542 if (ret)
543 return ret;
544 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
545 if (ret)
546 return ret;
547 offset += PTRACE_HBP_CTRL_SZ;
548
549 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
550 offset,
551 offset + PTRACE_HBP_PAD_SZ);
552 if (ret)
553 return ret;
554 offset += PTRACE_HBP_PAD_SZ;
555 idx++;
556 }
557
558 return 0;
559 }
560 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
561
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)562 static int gpr_get(struct task_struct *target,
563 const struct user_regset *regset,
564 struct membuf to)
565 {
566 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
567 return membuf_write(&to, uregs, sizeof(*uregs));
568 }
569
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)570 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
571 unsigned int pos, unsigned int count,
572 const void *kbuf, const void __user *ubuf)
573 {
574 int ret;
575 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
576
577 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
578 if (ret)
579 return ret;
580
581 if (!valid_user_regs(&newregs, target))
582 return -EINVAL;
583
584 task_pt_regs(target)->user_regs = newregs;
585 return 0;
586 }
587
fpr_active(struct task_struct * target,const struct user_regset * regset)588 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
589 {
590 if (!system_supports_fpsimd())
591 return -ENODEV;
592 return regset->n;
593 }
594
595 /*
596 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
597 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)598 static int __fpr_get(struct task_struct *target,
599 const struct user_regset *regset,
600 struct membuf to)
601 {
602 struct user_fpsimd_state *uregs;
603
604 sve_sync_to_fpsimd(target);
605
606 uregs = &target->thread.uw.fpsimd_state;
607
608 return membuf_write(&to, uregs, sizeof(*uregs));
609 }
610
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)611 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
612 struct membuf to)
613 {
614 if (!system_supports_fpsimd())
615 return -EINVAL;
616
617 if (target == current)
618 fpsimd_preserve_current_state();
619
620 return __fpr_get(target, regset, to);
621 }
622
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)623 static int __fpr_set(struct task_struct *target,
624 const struct user_regset *regset,
625 unsigned int pos, unsigned int count,
626 const void *kbuf, const void __user *ubuf,
627 unsigned int start_pos)
628 {
629 int ret;
630 struct user_fpsimd_state newstate;
631
632 /*
633 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
634 * short copyin can't resurrect stale data.
635 */
636 sve_sync_to_fpsimd(target);
637
638 newstate = target->thread.uw.fpsimd_state;
639
640 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
641 start_pos, start_pos + sizeof(newstate));
642 if (ret)
643 return ret;
644
645 target->thread.uw.fpsimd_state = newstate;
646
647 return ret;
648 }
649
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)650 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
651 unsigned int pos, unsigned int count,
652 const void *kbuf, const void __user *ubuf)
653 {
654 int ret;
655
656 if (!system_supports_fpsimd())
657 return -EINVAL;
658
659 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
660 if (ret)
661 return ret;
662
663 sve_sync_from_fpsimd_zeropad(target);
664 fpsimd_flush_task_state(target);
665
666 return ret;
667 }
668
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)669 static int tls_get(struct task_struct *target, const struct user_regset *regset,
670 struct membuf to)
671 {
672 if (target == current)
673 tls_preserve_current_state();
674
675 return membuf_store(&to, target->thread.uw.tp_value);
676 }
677
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 unsigned int pos, unsigned int count,
680 const void *kbuf, const void __user *ubuf)
681 {
682 int ret;
683 unsigned long tls = target->thread.uw.tp_value;
684
685 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
686 if (ret)
687 return ret;
688
689 target->thread.uw.tp_value = tls;
690 return ret;
691 }
692
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)693 static int system_call_get(struct task_struct *target,
694 const struct user_regset *regset,
695 struct membuf to)
696 {
697 return membuf_store(&to, task_pt_regs(target)->syscallno);
698 }
699
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)700 static int system_call_set(struct task_struct *target,
701 const struct user_regset *regset,
702 unsigned int pos, unsigned int count,
703 const void *kbuf, const void __user *ubuf)
704 {
705 int syscallno = task_pt_regs(target)->syscallno;
706 int ret;
707
708 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
709 if (ret)
710 return ret;
711
712 task_pt_regs(target)->syscallno = syscallno;
713 return ret;
714 }
715
716 #ifdef CONFIG_ARM64_SVE
717
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target)718 static void sve_init_header_from_task(struct user_sve_header *header,
719 struct task_struct *target)
720 {
721 unsigned int vq;
722
723 memset(header, 0, sizeof(*header));
724
725 header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
726 SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
727 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
728 header->flags |= SVE_PT_VL_INHERIT;
729
730 header->vl = target->thread.sve_vl;
731 vq = sve_vq_from_vl(header->vl);
732
733 header->max_vl = sve_max_vl;
734 header->size = SVE_PT_SIZE(vq, header->flags);
735 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
736 SVE_PT_REGS_SVE);
737 }
738
sve_size_from_header(struct user_sve_header const * header)739 static unsigned int sve_size_from_header(struct user_sve_header const *header)
740 {
741 return ALIGN(header->size, SVE_VQ_BYTES);
742 }
743
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)744 static int sve_get(struct task_struct *target,
745 const struct user_regset *regset,
746 struct membuf to)
747 {
748 struct user_sve_header header;
749 unsigned int vq;
750 unsigned long start, end;
751
752 if (!system_supports_sve())
753 return -EINVAL;
754
755 /* Header */
756 sve_init_header_from_task(&header, target);
757 vq = sve_vq_from_vl(header.vl);
758
759 membuf_write(&to, &header, sizeof(header));
760
761 if (target == current)
762 fpsimd_preserve_current_state();
763
764 /* Registers: FPSIMD-only case */
765
766 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
767 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
768 return __fpr_get(target, regset, to);
769
770 /* Otherwise: full SVE case */
771
772 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
773 start = SVE_PT_SVE_OFFSET;
774 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
775 membuf_write(&to, target->thread.sve_state, end - start);
776
777 start = end;
778 end = SVE_PT_SVE_FPSR_OFFSET(vq);
779 membuf_zero(&to, end - start);
780
781 /*
782 * Copy fpsr, and fpcr which must follow contiguously in
783 * struct fpsimd_state:
784 */
785 start = end;
786 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
787 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
788
789 start = end;
790 end = sve_size_from_header(&header);
791 return membuf_zero(&to, end - start);
792 }
793
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)794 static int sve_set(struct task_struct *target,
795 const struct user_regset *regset,
796 unsigned int pos, unsigned int count,
797 const void *kbuf, const void __user *ubuf)
798 {
799 int ret;
800 struct user_sve_header header;
801 unsigned int vq;
802 unsigned long start, end;
803
804 if (!system_supports_sve())
805 return -EINVAL;
806
807 /* Header */
808 if (count < sizeof(header))
809 return -EINVAL;
810 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
811 0, sizeof(header));
812 if (ret)
813 goto out;
814
815 /*
816 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
817 * sve_set_vector_length(), which will also validate them for us:
818 */
819 ret = sve_set_vector_length(target, header.vl,
820 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
821 if (ret)
822 goto out;
823
824 /* Actual VL set may be less than the user asked for: */
825 vq = sve_vq_from_vl(target->thread.sve_vl);
826
827 /* Registers: FPSIMD-only case */
828
829 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
830 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
831 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
832 SVE_PT_FPSIMD_OFFSET);
833 clear_tsk_thread_flag(target, TIF_SVE);
834 goto out;
835 }
836
837 /* Otherwise: full SVE case */
838
839 /*
840 * If setting a different VL from the requested VL and there is
841 * register data, the data layout will be wrong: don't even
842 * try to set the registers in this case.
843 */
844 if (count && vq != sve_vq_from_vl(header.vl)) {
845 ret = -EIO;
846 goto out;
847 }
848
849 sve_alloc(target);
850
851 /*
852 * Ensure target->thread.sve_state is up to date with target's
853 * FPSIMD regs, so that a short copyin leaves trailing registers
854 * unmodified.
855 */
856 fpsimd_sync_to_sve(target);
857 set_tsk_thread_flag(target, TIF_SVE);
858
859 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
860 start = SVE_PT_SVE_OFFSET;
861 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
862 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
863 target->thread.sve_state,
864 start, end);
865 if (ret)
866 goto out;
867
868 start = end;
869 end = SVE_PT_SVE_FPSR_OFFSET(vq);
870 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
871 start, end);
872 if (ret)
873 goto out;
874
875 /*
876 * Copy fpsr, and fpcr which must follow contiguously in
877 * struct fpsimd_state:
878 */
879 start = end;
880 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
881 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
882 &target->thread.uw.fpsimd_state.fpsr,
883 start, end);
884
885 out:
886 fpsimd_flush_task_state(target);
887 return ret;
888 }
889
890 #endif /* CONFIG_ARM64_SVE */
891
892 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)893 static int pac_mask_get(struct task_struct *target,
894 const struct user_regset *regset,
895 struct membuf to)
896 {
897 /*
898 * The PAC bits can differ across data and instruction pointers
899 * depending on TCR_EL1.TBID*, which we may make use of in future, so
900 * we expose separate masks.
901 */
902 unsigned long mask = ptrauth_user_pac_mask();
903 struct user_pac_mask uregs = {
904 .data_mask = mask,
905 .insn_mask = mask,
906 };
907
908 if (!system_supports_address_auth())
909 return -EINVAL;
910
911 return membuf_write(&to, &uregs, sizeof(uregs));
912 }
913
914 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)915 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
916 {
917 return (__uint128_t)key->hi << 64 | key->lo;
918 }
919
pac_key_from_user(__uint128_t ukey)920 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
921 {
922 struct ptrauth_key key = {
923 .lo = (unsigned long)ukey,
924 .hi = (unsigned long)(ukey >> 64),
925 };
926
927 return key;
928 }
929
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)930 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
931 const struct ptrauth_keys_user *keys)
932 {
933 ukeys->apiakey = pac_key_to_user(&keys->apia);
934 ukeys->apibkey = pac_key_to_user(&keys->apib);
935 ukeys->apdakey = pac_key_to_user(&keys->apda);
936 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
937 }
938
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)939 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
940 const struct user_pac_address_keys *ukeys)
941 {
942 keys->apia = pac_key_from_user(ukeys->apiakey);
943 keys->apib = pac_key_from_user(ukeys->apibkey);
944 keys->apda = pac_key_from_user(ukeys->apdakey);
945 keys->apdb = pac_key_from_user(ukeys->apdbkey);
946 }
947
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)948 static int pac_address_keys_get(struct task_struct *target,
949 const struct user_regset *regset,
950 struct membuf to)
951 {
952 struct ptrauth_keys_user *keys = &target->thread.keys_user;
953 struct user_pac_address_keys user_keys;
954
955 if (!system_supports_address_auth())
956 return -EINVAL;
957
958 pac_address_keys_to_user(&user_keys, keys);
959
960 return membuf_write(&to, &user_keys, sizeof(user_keys));
961 }
962
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)963 static int pac_address_keys_set(struct task_struct *target,
964 const struct user_regset *regset,
965 unsigned int pos, unsigned int count,
966 const void *kbuf, const void __user *ubuf)
967 {
968 struct ptrauth_keys_user *keys = &target->thread.keys_user;
969 struct user_pac_address_keys user_keys;
970 int ret;
971
972 if (!system_supports_address_auth())
973 return -EINVAL;
974
975 pac_address_keys_to_user(&user_keys, keys);
976 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
977 &user_keys, 0, -1);
978 if (ret)
979 return ret;
980 pac_address_keys_from_user(keys, &user_keys);
981
982 return 0;
983 }
984
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)985 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
986 const struct ptrauth_keys_user *keys)
987 {
988 ukeys->apgakey = pac_key_to_user(&keys->apga);
989 }
990
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)991 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
992 const struct user_pac_generic_keys *ukeys)
993 {
994 keys->apga = pac_key_from_user(ukeys->apgakey);
995 }
996
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)997 static int pac_generic_keys_get(struct task_struct *target,
998 const struct user_regset *regset,
999 struct membuf to)
1000 {
1001 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1002 struct user_pac_generic_keys user_keys;
1003
1004 if (!system_supports_generic_auth())
1005 return -EINVAL;
1006
1007 pac_generic_keys_to_user(&user_keys, keys);
1008
1009 return membuf_write(&to, &user_keys, sizeof(user_keys));
1010 }
1011
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1012 static int pac_generic_keys_set(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 const void *kbuf, const void __user *ubuf)
1016 {
1017 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1018 struct user_pac_generic_keys user_keys;
1019 int ret;
1020
1021 if (!system_supports_generic_auth())
1022 return -EINVAL;
1023
1024 pac_generic_keys_to_user(&user_keys, keys);
1025 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1026 &user_keys, 0, -1);
1027 if (ret)
1028 return ret;
1029 pac_generic_keys_from_user(keys, &user_keys);
1030
1031 return 0;
1032 }
1033 #endif /* CONFIG_CHECKPOINT_RESTORE */
1034 #endif /* CONFIG_ARM64_PTR_AUTH */
1035
1036 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1037 static int tagged_addr_ctrl_get(struct task_struct *target,
1038 const struct user_regset *regset,
1039 struct membuf to)
1040 {
1041 long ctrl = get_tagged_addr_ctrl(target);
1042
1043 if (IS_ERR_VALUE(ctrl))
1044 return ctrl;
1045
1046 return membuf_write(&to, &ctrl, sizeof(ctrl));
1047 }
1048
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1049 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1050 user_regset *regset, unsigned int pos,
1051 unsigned int count, const void *kbuf, const
1052 void __user *ubuf)
1053 {
1054 int ret;
1055 long ctrl;
1056
1057 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1058 if (ret)
1059 return ret;
1060
1061 return set_tagged_addr_ctrl(target, ctrl);
1062 }
1063 #endif
1064
1065 enum aarch64_regset {
1066 REGSET_GPR,
1067 REGSET_FPR,
1068 REGSET_TLS,
1069 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1070 REGSET_HW_BREAK,
1071 REGSET_HW_WATCH,
1072 #endif
1073 REGSET_SYSTEM_CALL,
1074 #ifdef CONFIG_ARM64_SVE
1075 REGSET_SVE,
1076 #endif
1077 #ifdef CONFIG_ARM64_PTR_AUTH
1078 REGSET_PAC_MASK,
1079 #ifdef CONFIG_CHECKPOINT_RESTORE
1080 REGSET_PACA_KEYS,
1081 REGSET_PACG_KEYS,
1082 #endif
1083 #endif
1084 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1085 REGSET_TAGGED_ADDR_CTRL,
1086 #endif
1087 };
1088
1089 static const struct user_regset aarch64_regsets[] = {
1090 [REGSET_GPR] = {
1091 .core_note_type = NT_PRSTATUS,
1092 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1093 .size = sizeof(u64),
1094 .align = sizeof(u64),
1095 .regset_get = gpr_get,
1096 .set = gpr_set
1097 },
1098 [REGSET_FPR] = {
1099 .core_note_type = NT_PRFPREG,
1100 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1101 /*
1102 * We pretend we have 32-bit registers because the fpsr and
1103 * fpcr are 32-bits wide.
1104 */
1105 .size = sizeof(u32),
1106 .align = sizeof(u32),
1107 .active = fpr_active,
1108 .regset_get = fpr_get,
1109 .set = fpr_set
1110 },
1111 [REGSET_TLS] = {
1112 .core_note_type = NT_ARM_TLS,
1113 .n = 1,
1114 .size = sizeof(void *),
1115 .align = sizeof(void *),
1116 .regset_get = tls_get,
1117 .set = tls_set,
1118 },
1119 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1120 [REGSET_HW_BREAK] = {
1121 .core_note_type = NT_ARM_HW_BREAK,
1122 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1123 .size = sizeof(u32),
1124 .align = sizeof(u32),
1125 .regset_get = hw_break_get,
1126 .set = hw_break_set,
1127 },
1128 [REGSET_HW_WATCH] = {
1129 .core_note_type = NT_ARM_HW_WATCH,
1130 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1131 .size = sizeof(u32),
1132 .align = sizeof(u32),
1133 .regset_get = hw_break_get,
1134 .set = hw_break_set,
1135 },
1136 #endif
1137 [REGSET_SYSTEM_CALL] = {
1138 .core_note_type = NT_ARM_SYSTEM_CALL,
1139 .n = 1,
1140 .size = sizeof(int),
1141 .align = sizeof(int),
1142 .regset_get = system_call_get,
1143 .set = system_call_set,
1144 },
1145 #ifdef CONFIG_ARM64_SVE
1146 [REGSET_SVE] = { /* Scalable Vector Extension */
1147 .core_note_type = NT_ARM_SVE,
1148 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1149 SVE_VQ_BYTES),
1150 .size = SVE_VQ_BYTES,
1151 .align = SVE_VQ_BYTES,
1152 .regset_get = sve_get,
1153 .set = sve_set,
1154 },
1155 #endif
1156 #ifdef CONFIG_ARM64_PTR_AUTH
1157 [REGSET_PAC_MASK] = {
1158 .core_note_type = NT_ARM_PAC_MASK,
1159 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1160 .size = sizeof(u64),
1161 .align = sizeof(u64),
1162 .regset_get = pac_mask_get,
1163 /* this cannot be set dynamically */
1164 },
1165 #ifdef CONFIG_CHECKPOINT_RESTORE
1166 [REGSET_PACA_KEYS] = {
1167 .core_note_type = NT_ARM_PACA_KEYS,
1168 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1169 .size = sizeof(__uint128_t),
1170 .align = sizeof(__uint128_t),
1171 .regset_get = pac_address_keys_get,
1172 .set = pac_address_keys_set,
1173 },
1174 [REGSET_PACG_KEYS] = {
1175 .core_note_type = NT_ARM_PACG_KEYS,
1176 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1177 .size = sizeof(__uint128_t),
1178 .align = sizeof(__uint128_t),
1179 .regset_get = pac_generic_keys_get,
1180 .set = pac_generic_keys_set,
1181 },
1182 #endif
1183 #endif
1184 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1185 [REGSET_TAGGED_ADDR_CTRL] = {
1186 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1187 .n = 1,
1188 .size = sizeof(long),
1189 .align = sizeof(long),
1190 .regset_get = tagged_addr_ctrl_get,
1191 .set = tagged_addr_ctrl_set,
1192 },
1193 #endif
1194 };
1195
1196 static const struct user_regset_view user_aarch64_view = {
1197 .name = "aarch64", .e_machine = EM_AARCH64,
1198 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1199 };
1200
1201 #ifdef CONFIG_COMPAT
1202 enum compat_regset {
1203 REGSET_COMPAT_GPR,
1204 REGSET_COMPAT_VFP,
1205 };
1206
compat_get_user_reg(struct task_struct * task,int idx)1207 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1208 {
1209 struct pt_regs *regs = task_pt_regs(task);
1210
1211 switch (idx) {
1212 case 15:
1213 return regs->pc;
1214 case 16:
1215 return pstate_to_compat_psr(regs->pstate);
1216 case 17:
1217 return regs->orig_x0;
1218 default:
1219 return regs->regs[idx];
1220 }
1221 }
1222
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1223 static int compat_gpr_get(struct task_struct *target,
1224 const struct user_regset *regset,
1225 struct membuf to)
1226 {
1227 int i = 0;
1228
1229 while (to.left)
1230 membuf_store(&to, compat_get_user_reg(target, i++));
1231 return 0;
1232 }
1233
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1234 static int compat_gpr_set(struct task_struct *target,
1235 const struct user_regset *regset,
1236 unsigned int pos, unsigned int count,
1237 const void *kbuf, const void __user *ubuf)
1238 {
1239 struct pt_regs newregs;
1240 int ret = 0;
1241 unsigned int i, start, num_regs;
1242
1243 /* Calculate the number of AArch32 registers contained in count */
1244 num_regs = count / regset->size;
1245
1246 /* Convert pos into an register number */
1247 start = pos / regset->size;
1248
1249 if (start + num_regs > regset->n)
1250 return -EIO;
1251
1252 newregs = *task_pt_regs(target);
1253
1254 for (i = 0; i < num_regs; ++i) {
1255 unsigned int idx = start + i;
1256 compat_ulong_t reg;
1257
1258 if (kbuf) {
1259 memcpy(®, kbuf, sizeof(reg));
1260 kbuf += sizeof(reg);
1261 } else {
1262 ret = copy_from_user(®, ubuf, sizeof(reg));
1263 if (ret) {
1264 ret = -EFAULT;
1265 break;
1266 }
1267
1268 ubuf += sizeof(reg);
1269 }
1270
1271 switch (idx) {
1272 case 15:
1273 newregs.pc = reg;
1274 break;
1275 case 16:
1276 reg = compat_psr_to_pstate(reg);
1277 newregs.pstate = reg;
1278 break;
1279 case 17:
1280 newregs.orig_x0 = reg;
1281 break;
1282 default:
1283 newregs.regs[idx] = reg;
1284 }
1285
1286 }
1287
1288 if (valid_user_regs(&newregs.user_regs, target))
1289 *task_pt_regs(target) = newregs;
1290 else
1291 ret = -EINVAL;
1292
1293 return ret;
1294 }
1295
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1296 static int compat_vfp_get(struct task_struct *target,
1297 const struct user_regset *regset,
1298 struct membuf to)
1299 {
1300 struct user_fpsimd_state *uregs;
1301 compat_ulong_t fpscr;
1302
1303 if (!system_supports_fpsimd())
1304 return -EINVAL;
1305
1306 uregs = &target->thread.uw.fpsimd_state;
1307
1308 if (target == current)
1309 fpsimd_preserve_current_state();
1310
1311 /*
1312 * The VFP registers are packed into the fpsimd_state, so they all sit
1313 * nicely together for us. We just need to create the fpscr separately.
1314 */
1315 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1316 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1317 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1318 return membuf_store(&to, fpscr);
1319 }
1320
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1321 static int compat_vfp_set(struct task_struct *target,
1322 const struct user_regset *regset,
1323 unsigned int pos, unsigned int count,
1324 const void *kbuf, const void __user *ubuf)
1325 {
1326 struct user_fpsimd_state *uregs;
1327 compat_ulong_t fpscr;
1328 int ret, vregs_end_pos;
1329
1330 if (!system_supports_fpsimd())
1331 return -EINVAL;
1332
1333 uregs = &target->thread.uw.fpsimd_state;
1334
1335 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1336 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1337 vregs_end_pos);
1338
1339 if (count && !ret) {
1340 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1341 vregs_end_pos, VFP_STATE_SIZE);
1342 if (!ret) {
1343 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1344 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1345 }
1346 }
1347
1348 fpsimd_flush_task_state(target);
1349 return ret;
1350 }
1351
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1352 static int compat_tls_get(struct task_struct *target,
1353 const struct user_regset *regset,
1354 struct membuf to)
1355 {
1356 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1357 }
1358
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1359 static int compat_tls_set(struct task_struct *target,
1360 const struct user_regset *regset, unsigned int pos,
1361 unsigned int count, const void *kbuf,
1362 const void __user *ubuf)
1363 {
1364 int ret;
1365 compat_ulong_t tls = target->thread.uw.tp_value;
1366
1367 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1368 if (ret)
1369 return ret;
1370
1371 target->thread.uw.tp_value = tls;
1372 return ret;
1373 }
1374
1375 static const struct user_regset aarch32_regsets[] = {
1376 [REGSET_COMPAT_GPR] = {
1377 .core_note_type = NT_PRSTATUS,
1378 .n = COMPAT_ELF_NGREG,
1379 .size = sizeof(compat_elf_greg_t),
1380 .align = sizeof(compat_elf_greg_t),
1381 .regset_get = compat_gpr_get,
1382 .set = compat_gpr_set
1383 },
1384 [REGSET_COMPAT_VFP] = {
1385 .core_note_type = NT_ARM_VFP,
1386 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1387 .size = sizeof(compat_ulong_t),
1388 .align = sizeof(compat_ulong_t),
1389 .active = fpr_active,
1390 .regset_get = compat_vfp_get,
1391 .set = compat_vfp_set
1392 },
1393 };
1394
1395 static const struct user_regset_view user_aarch32_view = {
1396 .name = "aarch32", .e_machine = EM_ARM,
1397 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1398 };
1399
1400 static const struct user_regset aarch32_ptrace_regsets[] = {
1401 [REGSET_GPR] = {
1402 .core_note_type = NT_PRSTATUS,
1403 .n = COMPAT_ELF_NGREG,
1404 .size = sizeof(compat_elf_greg_t),
1405 .align = sizeof(compat_elf_greg_t),
1406 .regset_get = compat_gpr_get,
1407 .set = compat_gpr_set
1408 },
1409 [REGSET_FPR] = {
1410 .core_note_type = NT_ARM_VFP,
1411 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1412 .size = sizeof(compat_ulong_t),
1413 .align = sizeof(compat_ulong_t),
1414 .regset_get = compat_vfp_get,
1415 .set = compat_vfp_set
1416 },
1417 [REGSET_TLS] = {
1418 .core_note_type = NT_ARM_TLS,
1419 .n = 1,
1420 .size = sizeof(compat_ulong_t),
1421 .align = sizeof(compat_ulong_t),
1422 .regset_get = compat_tls_get,
1423 .set = compat_tls_set,
1424 },
1425 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1426 [REGSET_HW_BREAK] = {
1427 .core_note_type = NT_ARM_HW_BREAK,
1428 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1429 .size = sizeof(u32),
1430 .align = sizeof(u32),
1431 .regset_get = hw_break_get,
1432 .set = hw_break_set,
1433 },
1434 [REGSET_HW_WATCH] = {
1435 .core_note_type = NT_ARM_HW_WATCH,
1436 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1437 .size = sizeof(u32),
1438 .align = sizeof(u32),
1439 .regset_get = hw_break_get,
1440 .set = hw_break_set,
1441 },
1442 #endif
1443 [REGSET_SYSTEM_CALL] = {
1444 .core_note_type = NT_ARM_SYSTEM_CALL,
1445 .n = 1,
1446 .size = sizeof(int),
1447 .align = sizeof(int),
1448 .regset_get = system_call_get,
1449 .set = system_call_set,
1450 },
1451 };
1452
1453 static const struct user_regset_view user_aarch32_ptrace_view = {
1454 .name = "aarch32", .e_machine = EM_ARM,
1455 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1456 };
1457
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1458 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1459 compat_ulong_t __user *ret)
1460 {
1461 compat_ulong_t tmp;
1462
1463 if (off & 3)
1464 return -EIO;
1465
1466 if (off == COMPAT_PT_TEXT_ADDR)
1467 tmp = tsk->mm->start_code;
1468 else if (off == COMPAT_PT_DATA_ADDR)
1469 tmp = tsk->mm->start_data;
1470 else if (off == COMPAT_PT_TEXT_END_ADDR)
1471 tmp = tsk->mm->end_code;
1472 else if (off < sizeof(compat_elf_gregset_t))
1473 tmp = compat_get_user_reg(tsk, off >> 2);
1474 else if (off >= COMPAT_USER_SZ)
1475 return -EIO;
1476 else
1477 tmp = 0;
1478
1479 return put_user(tmp, ret);
1480 }
1481
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1482 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1483 compat_ulong_t val)
1484 {
1485 struct pt_regs newregs = *task_pt_regs(tsk);
1486 unsigned int idx = off / 4;
1487
1488 if (off & 3 || off >= COMPAT_USER_SZ)
1489 return -EIO;
1490
1491 if (off >= sizeof(compat_elf_gregset_t))
1492 return 0;
1493
1494 switch (idx) {
1495 case 15:
1496 newregs.pc = val;
1497 break;
1498 case 16:
1499 newregs.pstate = compat_psr_to_pstate(val);
1500 break;
1501 case 17:
1502 newregs.orig_x0 = val;
1503 break;
1504 default:
1505 newregs.regs[idx] = val;
1506 }
1507
1508 if (!valid_user_regs(&newregs.user_regs, tsk))
1509 return -EINVAL;
1510
1511 *task_pt_regs(tsk) = newregs;
1512 return 0;
1513 }
1514
1515 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1516
1517 /*
1518 * Convert a virtual register number into an index for a thread_info
1519 * breakpoint array. Breakpoints are identified using positive numbers
1520 * whilst watchpoints are negative. The registers are laid out as pairs
1521 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1522 * Register 0 is reserved for describing resource information.
1523 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1524 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1525 {
1526 return (abs(num) - 1) >> 1;
1527 }
1528
compat_ptrace_hbp_get_resource_info(u32 * kdata)1529 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1530 {
1531 u8 num_brps, num_wrps, debug_arch, wp_len;
1532 u32 reg = 0;
1533
1534 num_brps = hw_breakpoint_slots(TYPE_INST);
1535 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1536
1537 debug_arch = debug_monitors_arch();
1538 wp_len = 8;
1539 reg |= debug_arch;
1540 reg <<= 8;
1541 reg |= wp_len;
1542 reg <<= 8;
1543 reg |= num_wrps;
1544 reg <<= 8;
1545 reg |= num_brps;
1546
1547 *kdata = reg;
1548 return 0;
1549 }
1550
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1551 static int compat_ptrace_hbp_get(unsigned int note_type,
1552 struct task_struct *tsk,
1553 compat_long_t num,
1554 u32 *kdata)
1555 {
1556 u64 addr = 0;
1557 u32 ctrl = 0;
1558
1559 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1560
1561 if (num & 1) {
1562 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1563 *kdata = (u32)addr;
1564 } else {
1565 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1566 *kdata = ctrl;
1567 }
1568
1569 return err;
1570 }
1571
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1572 static int compat_ptrace_hbp_set(unsigned int note_type,
1573 struct task_struct *tsk,
1574 compat_long_t num,
1575 u32 *kdata)
1576 {
1577 u64 addr;
1578 u32 ctrl;
1579
1580 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1581
1582 if (num & 1) {
1583 addr = *kdata;
1584 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1585 } else {
1586 ctrl = *kdata;
1587 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1588 }
1589
1590 return err;
1591 }
1592
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1593 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1594 compat_ulong_t __user *data)
1595 {
1596 int ret;
1597 u32 kdata;
1598
1599 /* Watchpoint */
1600 if (num < 0) {
1601 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1602 /* Resource info */
1603 } else if (num == 0) {
1604 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1605 /* Breakpoint */
1606 } else {
1607 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1608 }
1609
1610 if (!ret)
1611 ret = put_user(kdata, data);
1612
1613 return ret;
1614 }
1615
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1616 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1617 compat_ulong_t __user *data)
1618 {
1619 int ret;
1620 u32 kdata = 0;
1621
1622 if (num == 0)
1623 return 0;
1624
1625 ret = get_user(kdata, data);
1626 if (ret)
1627 return ret;
1628
1629 if (num < 0)
1630 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1631 else
1632 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1633
1634 return ret;
1635 }
1636 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1637
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)1638 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1639 compat_ulong_t caddr, compat_ulong_t cdata)
1640 {
1641 unsigned long addr = caddr;
1642 unsigned long data = cdata;
1643 void __user *datap = compat_ptr(data);
1644 int ret;
1645
1646 switch (request) {
1647 case PTRACE_PEEKUSR:
1648 ret = compat_ptrace_read_user(child, addr, datap);
1649 break;
1650
1651 case PTRACE_POKEUSR:
1652 ret = compat_ptrace_write_user(child, addr, data);
1653 break;
1654
1655 case COMPAT_PTRACE_GETREGS:
1656 ret = copy_regset_to_user(child,
1657 &user_aarch32_view,
1658 REGSET_COMPAT_GPR,
1659 0, sizeof(compat_elf_gregset_t),
1660 datap);
1661 break;
1662
1663 case COMPAT_PTRACE_SETREGS:
1664 ret = copy_regset_from_user(child,
1665 &user_aarch32_view,
1666 REGSET_COMPAT_GPR,
1667 0, sizeof(compat_elf_gregset_t),
1668 datap);
1669 break;
1670
1671 case COMPAT_PTRACE_GET_THREAD_AREA:
1672 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1673 (compat_ulong_t __user *)datap);
1674 break;
1675
1676 case COMPAT_PTRACE_SET_SYSCALL:
1677 task_pt_regs(child)->syscallno = data;
1678 ret = 0;
1679 break;
1680
1681 case COMPAT_PTRACE_GETVFPREGS:
1682 ret = copy_regset_to_user(child,
1683 &user_aarch32_view,
1684 REGSET_COMPAT_VFP,
1685 0, VFP_STATE_SIZE,
1686 datap);
1687 break;
1688
1689 case COMPAT_PTRACE_SETVFPREGS:
1690 ret = copy_regset_from_user(child,
1691 &user_aarch32_view,
1692 REGSET_COMPAT_VFP,
1693 0, VFP_STATE_SIZE,
1694 datap);
1695 break;
1696
1697 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1698 case COMPAT_PTRACE_GETHBPREGS:
1699 ret = compat_ptrace_gethbpregs(child, addr, datap);
1700 break;
1701
1702 case COMPAT_PTRACE_SETHBPREGS:
1703 ret = compat_ptrace_sethbpregs(child, addr, datap);
1704 break;
1705 #endif
1706
1707 default:
1708 ret = compat_ptrace_request(child, request, addr,
1709 data);
1710 break;
1711 }
1712
1713 return ret;
1714 }
1715 #endif /* CONFIG_COMPAT */
1716
task_user_regset_view(struct task_struct * task)1717 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1718 {
1719 #ifdef CONFIG_COMPAT
1720 /*
1721 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1722 * user_aarch32_view compatible with arm32. Native ptrace requests on
1723 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1724 * access to the TLS register.
1725 */
1726 if (is_compat_task())
1727 return &user_aarch32_view;
1728 else if (is_compat_thread(task_thread_info(task)))
1729 return &user_aarch32_ptrace_view;
1730 #endif
1731 return &user_aarch64_view;
1732 }
1733
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1734 long arch_ptrace(struct task_struct *child, long request,
1735 unsigned long addr, unsigned long data)
1736 {
1737 switch (request) {
1738 case PTRACE_PEEKMTETAGS:
1739 case PTRACE_POKEMTETAGS:
1740 return mte_ptrace_copy_tags(child, request, addr, data);
1741 }
1742
1743 return ptrace_request(child, request, addr, data);
1744 }
1745
1746 enum ptrace_syscall_dir {
1747 PTRACE_SYSCALL_ENTER = 0,
1748 PTRACE_SYSCALL_EXIT,
1749 };
1750
tracehook_report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)1751 static void tracehook_report_syscall(struct pt_regs *regs,
1752 enum ptrace_syscall_dir dir)
1753 {
1754 int regno;
1755 unsigned long saved_reg;
1756
1757 /*
1758 * We have some ABI weirdness here in the way that we handle syscall
1759 * exit stops because we indicate whether or not the stop has been
1760 * signalled from syscall entry or syscall exit by clobbering a general
1761 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1762 * and restoring its old value after the stop. This means that:
1763 *
1764 * - Any writes by the tracer to this register during the stop are
1765 * ignored/discarded.
1766 *
1767 * - The actual value of the register is not available during the stop,
1768 * so the tracer cannot save it and restore it later.
1769 *
1770 * - Syscall stops behave differently to seccomp and pseudo-step traps
1771 * (the latter do not nobble any registers).
1772 */
1773 regno = (is_compat_task() ? 12 : 7);
1774 saved_reg = regs->regs[regno];
1775 regs->regs[regno] = dir;
1776
1777 if (dir == PTRACE_SYSCALL_ENTER) {
1778 if (tracehook_report_syscall_entry(regs))
1779 forget_syscall(regs);
1780 regs->regs[regno] = saved_reg;
1781 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
1782 tracehook_report_syscall_exit(regs, 0);
1783 regs->regs[regno] = saved_reg;
1784 } else {
1785 regs->regs[regno] = saved_reg;
1786
1787 /*
1788 * Signal a pseudo-step exception since we are stepping but
1789 * tracer modifications to the registers may have rewound the
1790 * state machine.
1791 */
1792 tracehook_report_syscall_exit(regs, 1);
1793 }
1794 }
1795
syscall_trace_enter(struct pt_regs * regs)1796 int syscall_trace_enter(struct pt_regs *regs)
1797 {
1798 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1799
1800 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1801 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1802 if (!in_syscall(regs) || (flags & _TIF_SYSCALL_EMU))
1803 return NO_SYSCALL;
1804 }
1805
1806 /* Do the secure computing after ptrace; failures should be fast. */
1807 if (secure_computing() == -1)
1808 return NO_SYSCALL;
1809
1810 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1811 trace_sys_enter(regs, regs->syscallno);
1812
1813 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1814 regs->regs[2], regs->regs[3]);
1815
1816 return regs->syscallno;
1817 }
1818
syscall_trace_exit(struct pt_regs * regs)1819 void syscall_trace_exit(struct pt_regs *regs)
1820 {
1821 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1822
1823 audit_syscall_exit(regs);
1824
1825 if (flags & _TIF_SYSCALL_TRACEPOINT)
1826 trace_sys_exit(regs, regs_return_value(regs));
1827
1828 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1829 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1830
1831 rseq_syscall(regs);
1832 }
1833
1834 /*
1835 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1836 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1837 * not described in ARM DDI 0487D.a.
1838 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1839 * be allocated an EL0 meaning in future.
1840 * Userspace cannot use these until they have an architectural meaning.
1841 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1842 * We also reserve IL for the kernel; SS is handled dynamically.
1843 */
1844 #define SPSR_EL1_AARCH64_RES0_BITS \
1845 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1846 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1847 #define SPSR_EL1_AARCH32_RES0_BITS \
1848 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1849
valid_compat_regs(struct user_pt_regs * regs)1850 static int valid_compat_regs(struct user_pt_regs *regs)
1851 {
1852 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1853
1854 if (!system_supports_mixed_endian_el0()) {
1855 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1856 regs->pstate |= PSR_AA32_E_BIT;
1857 else
1858 regs->pstate &= ~PSR_AA32_E_BIT;
1859 }
1860
1861 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1862 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1863 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1864 (regs->pstate & PSR_AA32_F_BIT) == 0) {
1865 return 1;
1866 }
1867
1868 /*
1869 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1870 * arch/arm.
1871 */
1872 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1873 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1874 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1875 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1876 PSR_AA32_T_BIT;
1877 regs->pstate |= PSR_MODE32_BIT;
1878
1879 return 0;
1880 }
1881
valid_native_regs(struct user_pt_regs * regs)1882 static int valid_native_regs(struct user_pt_regs *regs)
1883 {
1884 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1885
1886 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1887 (regs->pstate & PSR_D_BIT) == 0 &&
1888 (regs->pstate & PSR_A_BIT) == 0 &&
1889 (regs->pstate & PSR_I_BIT) == 0 &&
1890 (regs->pstate & PSR_F_BIT) == 0) {
1891 return 1;
1892 }
1893
1894 /* Force PSR to a valid 64-bit EL0t */
1895 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1896
1897 return 0;
1898 }
1899
1900 /*
1901 * Are the current registers suitable for user mode? (used to maintain
1902 * security in signal handlers)
1903 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)1904 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1905 {
1906 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1907 user_regs_reset_single_step(regs, task);
1908
1909 if (is_compat_thread(task_thread_info(task)))
1910 return valid_compat_regs(regs);
1911 else
1912 return valid_native_regs(regs);
1913 }
1914