1 /*
2  * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3  * onboard audio.  See notes in Documentation/sound/oss/vwsnd .
4  *
5  * Copyright 1999 Silicon Graphics, Inc.  All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #undef VWSND_DEBUG			/* define for debugging */
23 
24 /*
25  * XXX to do -
26  *
27  *	External sync.
28  *	Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29  *	Bug - if select() called before read(), pcm_setup() not called.
30  *	Bug - output doesn't stop soon enough if process killed.
31  */
32 
33 /*
34  * Things to test -
35  *
36  *	Will readv/writev work?  Write a test.
37  *
38  *	insmod/rmmod 100 million times.
39  *
40  *	Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
41  *	rate).
42  *
43  *	Concurrent threads banging on mixer simultaneously, both UP
44  *	and SMP kernels.  Especially, watch for thread A changing
45  *	OUTSRC while thread B changes gain -- both write to the same
46  *	ad1843 register.
47  *
48  *	What happens if a client opens /dev/audio then forks?
49  *	Do two procs have /dev/audio open?  Test.
50  *
51  *	Pump audio through the CD, MIC and line inputs and verify that
52  *	they mix/mute into the output.
53  *
54  *	Apps:
55  *		amp
56  *		mpg123
57  *		x11amp
58  *		mxv
59  *		kmedia
60  *		esound
61  *		need more input apps
62  *
63  *	Run tests while bombarding with signals.  setitimer(2) will do it...  */
64 
65 /*
66  * This driver is organized in nine sections.
67  * The nine sections are:
68  *
69  *	debug stuff
70  * 	low level lithium access
71  *	high level lithium access
72  *	AD1843 access
73  *	PCM I/O
74  *	audio driver
75  *	mixer driver
76  *	probe/attach/unload
77  *	initialization and loadable kernel module interface
78  *
79  * That is roughly the order of increasing abstraction, so forward
80  * dependencies are minimal.
81  */
82 
83 /*
84  * Locking Notes
85  *
86  *	INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87  *	open descriptors to this driver. They store it in vwsnd_use_count.
88  * 	The global device list, vwsnd_dev_list,	is immutable when the IN_USE
89  *	is true.
90  *
91  *	devc->open_lock is a semaphore that is used to enforce the
92  *	single reader/single writer rule for /dev/audio.  The rule is
93  *	that each device may have at most one reader and one writer.
94  *	Open will block until the previous client has closed the
95  *	device, unless O_NONBLOCK is specified.
96  *
97  *	The semaphore devc->io_mutex serializes PCM I/O syscalls.  This
98  *	is unnecessary in Linux 2.2, because the kernel lock
99  *	serializes read, write, and ioctl globally, but it's there,
100  *	ready for the brave, new post-kernel-lock world.
101  *
102  *	Locking between interrupt and baselevel is handled by the
103  *	"lock" spinlock in vwsnd_port (one lock each for read and
104  *	write).  Each half holds the lock just long enough to see what
105  *	area it owns and update its pointers.  See pcm_output() and
106  *	pcm_input() for most of the gory stuff.
107  *
108  *	devc->mix_mutex serializes all mixer ioctls.  This is also
109  *	redundant because of the kernel lock.
110  *
111  *	The lowest level lock is lith->lithium_lock.  It is a
112  *	spinlock which is held during the two-register tango of
113  *	reading/writing an AD1843 register.  See
114  *	li_{read,write}_ad1843_reg().
115  */
116 
117 /*
118  * Sample Format Notes
119  *
120  *	Lithium's DMA engine has two formats: 16-bit 2's complement
121  *	and 8-bit unsigned .  16-bit transfers the data unmodified, 2
122  *	bytes per sample.  8-bit unsigned transfers 1 byte per sample
123  *	and XORs each byte with 0x80.  Lithium can input or output
124  *	either mono or stereo in either format.
125  *
126  *	The AD1843 has four formats: 16-bit 2's complement, 8-bit
127  *	unsigned, 8-bit mu-Law and 8-bit A-Law.
128  *
129  *	This driver supports five formats: AFMT_S8, AFMT_U8,
130  *	AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
131  *
132  *	For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133  *	rely on Lithium's XOR to translate between U8 and S8.
134  *
135  *	For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136  *	the 0x80 bit in software to compensate for Lithium's XOR.
137  *	This happens in pcm_copy_{in,out}().
138  *
139  * Changes:
140  * 11-10-2000	Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141  *		Added some __init/__exit
142  */
143 
144 #include <linux/module.h>
145 #include <linux/init.h>
146 
147 #include <linux/spinlock.h>
148 #include <linux/wait.h>
149 #include <linux/interrupt.h>
150 #include <linux/mutex.h>
151 #include <linux/slab.h>
152 
153 #include <asm/visws/cobalt.h>
154 
155 #include "sound_config.h"
156 
157 /*****************************************************************************/
158 /* debug stuff */
159 
160 #ifdef VWSND_DEBUG
161 
162 static DEFINE_MUTEX(vwsnd_mutex);
163 static int shut_up = 1;
164 
165 /*
166  * dbgassert - called when an assertion fails.
167  */
168 
dbgassert(const char * fcn,int line,const char * expr)169 static void dbgassert(const char *fcn, int line, const char *expr)
170 {
171 	if (in_interrupt())
172 		panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
173 		      __FILE__, fcn, line, expr);
174 	else {
175 		int x;
176 		printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
177 		       __FILE__, fcn, line, expr);
178 		x = * (volatile int *) 0; /* force proc to exit */
179 	}
180 }
181 
182 /*
183  * Bunch of useful debug macros:
184  *
185  *	ASSERT	- print unless e nonzero (panic if in interrupt)
186  *	DBGDO	- include arbitrary code if debugging
187  *	DBGX	- debug print raw (w/o function name)
188  *	DBGP	- debug print w/ function name
189  *	DBGE	- debug print function entry
190  *	DBGC	- debug print function call
191  *	DBGR	- debug print function return
192  *	DBGXV	- debug print raw when verbose
193  *	DBGPV	- debug print when verbose
194  *	DBGEV	- debug print function entry when verbose
195  *	DBGRV	- debug print function return when verbose
196  */
197 
198 #define ASSERT(e)      ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e))
199 #define DBGDO(x)            x
200 #define DBGX(fmt, args...)  (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
201 #define DBGP(fmt, args...)  (DBGX("%s: " fmt, __func__ , ##args))
202 #define DBGE(fmt, args...)  (DBGX("%s" fmt, __func__ , ##args))
203 #define DBGC(rtn)           (DBGP("calling %s\n", rtn))
204 #define DBGR()              (DBGP("returning\n"))
205 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
206 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
207 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
208 #define DBGCV(rtn)          (shut_up ? 0 : DBGC(rtn))
209 #define DBGRV()             (shut_up ? 0 : DBGR())
210 
211 #else /* !VWSND_DEBUG */
212 
213 #define ASSERT(e)           ((void) 0)
214 #define DBGDO(x)            /* don't */
215 #define DBGX(fmt, args...)  ((void) 0)
216 #define DBGP(fmt, args...)  ((void) 0)
217 #define DBGE(fmt, args...)  ((void) 0)
218 #define DBGC(rtn)           ((void) 0)
219 #define DBGR()              ((void) 0)
220 #define DBGPV(fmt, args...) ((void) 0)
221 #define DBGXV(fmt, args...) ((void) 0)
222 #define DBGEV(fmt, args...) ((void) 0)
223 #define DBGCV(rtn)          ((void) 0)
224 #define DBGRV()             ((void) 0)
225 
226 #endif /* !VWSND_DEBUG */
227 
228 /*****************************************************************************/
229 /* low level lithium access */
230 
231 /*
232  * We need to talk to Lithium registers on three pages.  Here are
233  * the pages' offsets from the base address (0xFF001000).
234  */
235 
236 enum {
237 	LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
238 	LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
239 	LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
240 };
241 
242 /* low-level lithium data */
243 
244 typedef struct lithium {
245 	void *		page0;		/* virtual addresses */
246 	void *		page1;
247 	void *		page2;
248 	spinlock_t	lock;		/* protects codec and UST/MSC access */
249 } lithium_t;
250 
251 /*
252  * li_destroy destroys the lithium_t structure and vm mappings.
253  */
254 
li_destroy(lithium_t * lith)255 static void li_destroy(lithium_t *lith)
256 {
257 	if (lith->page0) {
258 		iounmap(lith->page0);
259 		lith->page0 = NULL;
260 	}
261 	if (lith->page1) {
262 		iounmap(lith->page1);
263 		lith->page1 = NULL;
264 	}
265 	if (lith->page2) {
266 		iounmap(lith->page2);
267 		lith->page2 = NULL;
268 	}
269 }
270 
271 /*
272  * li_create initializes the lithium_t structure and sets up vm mappings
273  * to access the registers.
274  * Returns 0 on success, -errno on failure.
275  */
276 
li_create(lithium_t * lith,unsigned long baseaddr)277 static int __init li_create(lithium_t *lith, unsigned long baseaddr)
278 {
279 	spin_lock_init(&lith->lock);
280 	lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
281 	lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
282 	lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
283 	if (!lith->page0 || !lith->page1 || !lith->page2) {
284 		li_destroy(lith);
285 		return -ENOMEM;
286 	}
287 	return 0;
288 }
289 
290 /*
291  * basic register accessors - read/write long/byte
292  */
293 
li_readl(lithium_t * lith,int off)294 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
295 {
296 	return * (volatile unsigned long *) (lith->page0 + off);
297 }
298 
li_readb(lithium_t * lith,int off)299 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
300 {
301 	return * (volatile unsigned char *) (lith->page0 + off);
302 }
303 
li_writel(lithium_t * lith,int off,unsigned long val)304 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
305 {
306 	* (volatile unsigned long *) (lith->page0 + off) = val;
307 }
308 
li_writeb(lithium_t * lith,int off,unsigned char val)309 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
310 {
311 	* (volatile unsigned char *) (lith->page0 + off) = val;
312 }
313 
314 /*****************************************************************************/
315 /* High Level Lithium Access */
316 
317 /*
318  * Lithium DMA Notes
319  *
320  * Lithium has two dedicated DMA channels for audio.  They are known
321  * as comm1 and comm2 (communication areas 1 and 2).  Comm1 is for
322  * input, and comm2 is for output.  Each is controlled by three
323  * registers: BASE (base address), CFG (config) and CCTL
324  * (config/control).
325  *
326  * Each DMA channel points to a physically contiguous ring buffer in
327  * main memory of up to 8 Kbytes.  (This driver always uses 8 Kb.)
328  * There are three pointers into the ring buffer: read, write, and
329  * trigger.  The pointers are 8 bits each.  Each pointer points to
330  * 32-byte "chunks" of data.  The DMA engine moves 32 bytes at a time,
331  * so there is no finer-granularity control.
332  *
333  * In comm1, the hardware updates the write ptr, and software updates
334  * the read ptr.  In comm2, it's the opposite: hardware updates the
335  * read ptr, and software updates the write ptr.  I designate the
336  * hardware-updated ptr as the hwptr, and the software-updated ptr as
337  * the swptr.
338  *
339  * The trigger ptr and trigger mask are used to trigger interrupts.
340  * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
341  *
342  *	Trigger Mask Value
343  *
344  *	A three bit wide field that represents a power of two mask
345  *	that is used whenever the trigger pointer is compared to its
346  *	respective read or write pointer.  A value of zero here
347  *	implies a mask of 0xFF and a value of seven implies a mask
348  *	0x01.  This value can be used to sub-divide the ring buffer
349  *	into pie sections so that interrupts monitor the progress of
350  *	hardware from section to section.
351  *
352  * My interpretation of that is, whenever the hw ptr is updated, it is
353  * compared with the trigger ptr, and the result is masked by the
354  * trigger mask.  (Actually, by the complement of the trigger mask.)
355  * If the result is zero, an interrupt is triggered.  I.e., interrupt
356  * if ((hwptr & ~mask) == (trptr & ~mask)).  The mask is formed from
357  * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
358  *
359  * In yet different words, setting tmreg to 0 causes an interrupt after
360  * every 256 DMA chunks (8192 bytes) or once per traversal of the
361  * ring buffer.  Setting it to 7 caues an interrupt every 2 DMA chunks
362  * (64 bytes) or 128 times per traversal of the ring buffer.
363  */
364 
365 /* Lithium register offsets and bit definitions */
366 
367 #define LI_HOST_CONTROLLER	0x000
368 # define LI_HC_RESET		 0x00008000
369 # define LI_HC_LINK_ENABLE	 0x00004000
370 # define LI_HC_LINK_FAILURE	 0x00000004
371 # define LI_HC_LINK_CODEC	 0x00000002
372 # define LI_HC_LINK_READY	 0x00000001
373 
374 #define LI_INTR_STATUS		0x010
375 #define LI_INTR_MASK		0x014
376 # define LI_INTR_LINK_ERR	 0x00008000
377 # define LI_INTR_COMM2_TRIG	 0x00000008
378 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
379 # define LI_INTR_COMM1_TRIG	 0x00000002
380 # define LI_INTR_COMM1_OVERFLOW  0x00000001
381 
382 #define LI_CODEC_COMMAND	0x018
383 # define LI_CC_BUSY		 0x00008000
384 # define LI_CC_DIR		 0x00000080
385 #  define LI_CC_DIR_RD		  LI_CC_DIR
386 #  define LI_CC_DIR_WR		(!LI_CC_DIR)
387 # define LI_CC_ADDR_MASK	 0x0000007F
388 
389 #define LI_CODEC_DATA		0x01C
390 
391 #define LI_COMM1_BASE		0x100
392 #define LI_COMM1_CTL		0x104
393 # define LI_CCTL_RESET		 0x80000000
394 # define LI_CCTL_SIZE		 0x70000000
395 # define LI_CCTL_DMA_ENABLE	 0x08000000
396 # define LI_CCTL_TMASK		 0x07000000 /* trigger mask */
397 # define LI_CCTL_TPTR		 0x00FF0000 /* trigger pointer */
398 # define LI_CCTL_RPTR		 0x0000FF00
399 # define LI_CCTL_WPTR		 0x000000FF
400 #define LI_COMM1_CFG		0x108
401 # define LI_CCFG_LOCK		 0x00008000
402 # define LI_CCFG_SLOT		 0x00000070
403 # define LI_CCFG_DIRECTION	 0x00000008
404 #  define LI_CCFG_DIR_IN	(!LI_CCFG_DIRECTION)
405 #  define LI_CCFG_DIR_OUT	  LI_CCFG_DIRECTION
406 # define LI_CCFG_MODE		 0x00000004
407 #  define LI_CCFG_MODE_MONO	(!LI_CCFG_MODE)
408 #  define LI_CCFG_MODE_STEREO	  LI_CCFG_MODE
409 # define LI_CCFG_FORMAT		 0x00000003
410 #  define LI_CCFG_FMT_8BIT	  0x00000000
411 #  define LI_CCFG_FMT_16BIT	  0x00000001
412 #define LI_COMM2_BASE		0x10C
413 #define LI_COMM2_CTL		0x110
414  /* bit definitions are the same as LI_COMM1_CTL */
415 #define LI_COMM2_CFG		0x114
416  /* bit definitions are the same as LI_COMM1_CFG */
417 
418 #define LI_UST_LOW		0x200	/* 64-bit Unadjusted System Time is */
419 #define LI_UST_HIGH		0x204	/* microseconds since boot */
420 
421 #define LI_AUDIO1_UST		0x300	/* UST-MSC pairs */
422 #define LI_AUDIO1_MSC		0x304	/* MSC (Media Stream Counter) */
423 #define LI_AUDIO2_UST		0x308	/* counts samples actually */
424 #define LI_AUDIO2_MSC		0x30C	/* processed as of time UST */
425 
426 /*
427  * Lithium's DMA engine operates on chunks of 32 bytes.  We call that
428  * a DMACHUNK.
429  */
430 
431 #define DMACHUNK_SHIFT 5
432 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
433 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
434 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
435 
436 /*
437  * Two convenient macros to shift bitfields into/out of position.
438  *
439  * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
440  * As long as mask is constant, we trust the compiler will change the
441  * multipy and divide into shifts.
442  */
443 
444 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
445 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
446 
447 /*
448  * dma_chan_desc is invariant information about a Lithium
449  * DMA channel.  There are two instances, li_comm1 and li_comm2.
450  *
451  * Note that the CCTL register fields are write ptr and read ptr, but what
452  * we care about are which pointer is updated by software and which by
453  * hardware.
454  */
455 
456 typedef struct dma_chan_desc {
457 	int basereg;
458 	int cfgreg;
459 	int ctlreg;
460 	int hwptrreg;
461 	int swptrreg;
462 	int ustreg;
463 	int mscreg;
464 	unsigned long swptrmask;
465 	int ad1843_slot;
466 	int direction;			/* LI_CCTL_DIR_IN/OUT */
467 } dma_chan_desc_t;
468 
469 static const dma_chan_desc_t li_comm1 = {
470 	LI_COMM1_BASE,			/* base register offset */
471 	LI_COMM1_CFG,			/* config register offset */
472 	LI_COMM1_CTL,			/* control register offset */
473 	LI_COMM1_CTL + 0,		/* hw ptr reg offset (write ptr) */
474 	LI_COMM1_CTL + 1,		/* sw ptr reg offset (read ptr) */
475 	LI_AUDIO1_UST,			/* ust reg offset */
476 	LI_AUDIO1_MSC,			/* msc reg offset */
477 	LI_CCTL_RPTR,			/* sw ptr bitmask in ctlval */
478 	2,				/* ad1843 serial slot */
479 	LI_CCFG_DIR_IN			/* direction */
480 };
481 
482 static const dma_chan_desc_t li_comm2 = {
483 	LI_COMM2_BASE,			/* base register offset */
484 	LI_COMM2_CFG,			/* config register offset */
485 	LI_COMM2_CTL,			/* control register offset */
486 	LI_COMM2_CTL + 1,		/* hw ptr reg offset (read ptr) */
487 	LI_COMM2_CTL + 0,		/* sw ptr reg offset (writr ptr) */
488 	LI_AUDIO2_UST,			/* ust reg offset */
489 	LI_AUDIO2_MSC,			/* msc reg offset */
490 	LI_CCTL_WPTR,			/* sw ptr bitmask in ctlval */
491 	2,				/* ad1843 serial slot */
492 	LI_CCFG_DIR_OUT			/* direction */
493 };
494 
495 /*
496  * dma_chan is variable information about a Lithium DMA channel.
497  *
498  * The desc field points to invariant information.
499  * The lith field points to a lithium_t which is passed
500  * to li_read* and li_write* to access the registers.
501  * The *val fields shadow the lithium registers' contents.
502  */
503 
504 typedef struct dma_chan {
505 	const dma_chan_desc_t *desc;
506 	lithium_t      *lith;
507 	unsigned long   baseval;
508 	unsigned long	cfgval;
509 	unsigned long	ctlval;
510 } dma_chan_t;
511 
512 /*
513  * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
514  * UST is time in microseconds since the system booted, and MSC is a
515  * counter that increments with every audio sample.
516  */
517 
518 typedef struct ustmsc {
519 	unsigned long long ust;
520 	unsigned long msc;
521 } ustmsc_t;
522 
523 /*
524  * li_ad1843_wait waits until lithium says the AD1843 register
525  * exchange is not busy.  Returns 0 on success, -EBUSY on timeout.
526  *
527  * Locking: must be called with lithium_lock held.
528  */
529 
li_ad1843_wait(lithium_t * lith)530 static int li_ad1843_wait(lithium_t *lith)
531 {
532 	unsigned long later = jiffies + 2;
533 	while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
534 		if (time_after_eq(jiffies, later))
535 			return -EBUSY;
536 	return 0;
537 }
538 
539 /*
540  * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
541  *
542  * Returns unsigned register value on success, -errno on failure.
543  */
544 
li_read_ad1843_reg(lithium_t * lith,int reg)545 static int li_read_ad1843_reg(lithium_t *lith, int reg)
546 {
547 	int val;
548 
549 	ASSERT(!in_interrupt());
550 	spin_lock(&lith->lock);
551 	{
552 		val = li_ad1843_wait(lith);
553 		if (val == 0) {
554 			li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
555 			val = li_ad1843_wait(lith);
556 		}
557 		if (val == 0)
558 			val = li_readl(lith, LI_CODEC_DATA);
559 	}
560 	spin_unlock(&lith->lock);
561 
562 	DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
563 	      lith, reg, val);
564 
565 	return val;
566 }
567 
568 /*
569  * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
570  */
571 
li_write_ad1843_reg(lithium_t * lith,int reg,int newval)572 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
573 {
574 	spin_lock(&lith->lock);
575 	{
576 		if (li_ad1843_wait(lith) == 0) {
577 			li_writel(lith, LI_CODEC_DATA, newval);
578 			li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
579 		}
580 	}
581 	spin_unlock(&lith->lock);
582 }
583 
584 /*
585  * li_setup_dma calculates all the register settings for DMA in a particular
586  * mode.  It takes too many arguments.
587  */
588 
li_setup_dma(dma_chan_t * chan,const dma_chan_desc_t * desc,lithium_t * lith,unsigned long buffer_paddr,int bufshift,int fragshift,int channels,int sampsize)589 static void li_setup_dma(dma_chan_t *chan,
590 			 const dma_chan_desc_t *desc,
591 			 lithium_t *lith,
592 			 unsigned long buffer_paddr,
593 			 int bufshift,
594 			 int fragshift,
595 			 int channels,
596 			 int sampsize)
597 {
598 	unsigned long mode, format;
599 	unsigned long size, tmask;
600 
601 	DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
602 	     "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
603 	     chan, desc, lith, buffer_paddr,
604 	     bufshift, fragshift, channels, sampsize);
605 
606 	/* Reset the channel first. */
607 
608 	li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
609 
610 	ASSERT(channels == 1 || channels == 2);
611 	if (channels == 2)
612 		mode = LI_CCFG_MODE_STEREO;
613 	else
614 		mode = LI_CCFG_MODE_MONO;
615 	ASSERT(sampsize == 1 || sampsize == 2);
616 	if (sampsize == 2)
617 		format = LI_CCFG_FMT_16BIT;
618 	else
619 		format = LI_CCFG_FMT_8BIT;
620 	chan->desc = desc;
621 	chan->lith = lith;
622 
623 	/*
624 	 * Lithium DMA address register takes a 40-bit physical
625 	 * address, right-shifted by 8 so it fits in 32 bits.  Bit 37
626 	 * must be set -- it enables cache coherence.
627 	 */
628 
629 	ASSERT(!(buffer_paddr & 0xFF));
630 	chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
631 
632 	chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) |
633 			SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
634 			desc->direction |
635 			mode |
636 			format);
637 
638 	size = bufshift - 6;
639 	tmask = 13 - fragshift;		/* See Lithium DMA Notes above. */
640 	ASSERT(size >= 2 && size <= 7);
641 	ASSERT(tmask >= 1 && tmask <= 7);
642 	chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) |
643 			SHIFT_FIELD(size, LI_CCTL_SIZE) |
644 			(chan->ctlval & ~LI_CCTL_DMA_ENABLE) |
645 			SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
646 			SHIFT_FIELD(0, LI_CCTL_TPTR));
647 
648 	DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
649 	DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
650 	DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
651 
652 	li_writel(lith, desc->basereg, chan->baseval);
653 	li_writel(lith, desc->cfgreg, chan->cfgval);
654 	li_writel(lith, desc->ctlreg, chan->ctlval);
655 
656 	DBGRV();
657 }
658 
li_shutdown_dma(dma_chan_t * chan)659 static void li_shutdown_dma(dma_chan_t *chan)
660 {
661 	lithium_t *lith = chan->lith;
662 	void * lith1 = lith->page1;
663 
664 	DBGEV("(chan=0x%p)\n", chan);
665 
666 	chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
667 	DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
668 	li_writel(lith, chan->desc->ctlreg, chan->ctlval);
669 
670 	/*
671 	 * Offset 0x500 on Lithium page 1 is an undocumented,
672 	 * unsupported register that holds the zero sample value.
673 	 * Lithium is supposed to output zero samples when DMA is
674 	 * inactive, and repeat the last sample when DMA underflows.
675 	 * But it has a bug, where, after underflow occurs, the zero
676 	 * sample is not reset.
677 	 *
678 	 * I expect this to break in a future rev of Lithium.
679 	 */
680 
681 	if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
682 		* (volatile unsigned long *) (lith1 + 0x500) = 0;
683 }
684 
685 /*
686  * li_activate_dma always starts dma at the beginning of the buffer.
687  *
688  * N.B., these may be called from interrupt.
689  */
690 
li_activate_dma(dma_chan_t * chan)691 static __inline__ void li_activate_dma(dma_chan_t *chan)
692 {
693 	chan->ctlval |= LI_CCTL_DMA_ENABLE;
694 	DBGPV("ctlval = 0x%lx\n", chan->ctlval);
695 	li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
696 }
697 
li_deactivate_dma(dma_chan_t * chan)698 static void li_deactivate_dma(dma_chan_t *chan)
699 {
700 	lithium_t *lith = chan->lith;
701 	void * lith2 = lith->page2;
702 
703 	chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
704 	DBGPV("ctlval = 0x%lx\n", chan->ctlval);
705 	DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
706 	li_writel(lith, chan->desc->ctlreg, chan->ctlval);
707 
708 	/*
709 	 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
710 	 * unsupported registers that are internal copies of the DMA
711 	 * read and write pointers.  Because of a Lithium bug, these
712 	 * registers aren't zeroed correctly when DMA is shut off.  So
713 	 * we whack them directly.
714 	 *
715 	 * I expect this to break in a future rev of Lithium.
716 	 */
717 
718 	if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
719 		* (volatile unsigned long *) (lith2 + 0x98) = 0;
720 		* (volatile unsigned long *) (lith2 + 0x9C) = 0;
721 	}
722 }
723 
724 /*
725  * read/write the ring buffer pointers.  These routines' arguments and results
726  * are byte offsets from the beginning of the ring buffer.
727  */
728 
li_read_swptr(dma_chan_t * chan)729 static __inline__ int li_read_swptr(dma_chan_t *chan)
730 {
731 	const unsigned long mask = chan->desc->swptrmask;
732 
733 	return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
734 }
735 
li_read_hwptr(dma_chan_t * chan)736 static __inline__ int li_read_hwptr(dma_chan_t *chan)
737 {
738 	return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
739 }
740 
li_write_swptr(dma_chan_t * chan,int val)741 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
742 {
743 	const unsigned long mask = chan->desc->swptrmask;
744 
745 	ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
746 	val = BYTES_TO_CHUNKS(val);
747 	chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
748 	li_writeb(chan->lith, chan->desc->swptrreg, val);
749 }
750 
751 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
752 
li_read_USTMSC(dma_chan_t * chan,ustmsc_t * ustmsc)753 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
754 {
755 	lithium_t *lith = chan->lith;
756 	const dma_chan_desc_t *desc = chan->desc;
757 	unsigned long now_low, now_high0, now_high1, chan_ust;
758 
759 	spin_lock(&lith->lock);
760 	{
761 		/*
762 		 * retry until we do all five reads without the
763 		 * high word changing.  (High word increments
764 		 * every 2^32 microseconds, i.e., not often)
765 		 */
766 		do {
767 			now_high0 = li_readl(lith, LI_UST_HIGH);
768 			now_low = li_readl(lith, LI_UST_LOW);
769 
770 			/*
771 			 * Lithium guarantees these two reads will be
772 			 * atomic -- ust will not increment after msc
773 			 * is read.
774 			 */
775 
776 			ustmsc->msc = li_readl(lith, desc->mscreg);
777 			chan_ust = li_readl(lith, desc->ustreg);
778 
779 			now_high1 = li_readl(lith, LI_UST_HIGH);
780 		} while (now_high0 != now_high1);
781 	}
782 	spin_unlock(&lith->lock);
783 	ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
784 }
785 
li_enable_interrupts(lithium_t * lith,unsigned int mask)786 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
787 {
788 	DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
789 
790 	/* clear any already-pending interrupts. */
791 
792 	li_writel(lith, LI_INTR_STATUS, mask);
793 
794 	/* enable the interrupts. */
795 
796 	mask |= li_readl(lith, LI_INTR_MASK);
797 	li_writel(lith, LI_INTR_MASK, mask);
798 }
799 
li_disable_interrupts(lithium_t * lith,unsigned int mask)800 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
801 {
802 	unsigned int keepmask;
803 
804 	DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
805 
806 	/* disable the interrupts */
807 
808 	keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
809 	li_writel(lith, LI_INTR_MASK, keepmask);
810 
811 	/* clear any pending interrupts. */
812 
813 	li_writel(lith, LI_INTR_STATUS, mask);
814 }
815 
816 /* Get the interrupt status and clear all pending interrupts. */
817 
li_get_clear_intr_status(lithium_t * lith)818 static unsigned int li_get_clear_intr_status(lithium_t *lith)
819 {
820 	unsigned int status;
821 
822 	status = li_readl(lith, LI_INTR_STATUS);
823 	li_writel(lith, LI_INTR_STATUS, ~0);
824 	return status & li_readl(lith, LI_INTR_MASK);
825 }
826 
li_init(lithium_t * lith)827 static int li_init(lithium_t *lith)
828 {
829 	/* 1. System power supplies stabilize. */
830 
831 	/* 2. Assert the ~RESET signal. */
832 
833 	li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
834 	udelay(1);
835 
836 	/* 3. Deassert the ~RESET signal and enter a wait period to allow
837 	   the AD1843 internal clocks and the external crystal oscillator
838 	   to stabilize. */
839 
840 	li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
841 	udelay(1);
842 
843 	return 0;
844 }
845 
846 /*****************************************************************************/
847 /* AD1843 access */
848 
849 /*
850  * AD1843 bitfield definitions.  All are named as in the AD1843 data
851  * sheet, with ad1843_ prepended and individual bit numbers removed.
852  *
853  * E.g., bits LSS0 through LSS2 become ad1843_LSS.
854  *
855  * Only the bitfields we need are defined.
856  */
857 
858 typedef struct ad1843_bitfield {
859 	char reg;
860 	char lo_bit;
861 	char nbits;
862 } ad1843_bitfield_t;
863 
864 static const ad1843_bitfield_t
865 	ad1843_PDNO   = {  0, 14,  1 },	/* Converter Power-Down Flag */
866 	ad1843_INIT   = {  0, 15,  1 },	/* Clock Initialization Flag */
867 	ad1843_RIG    = {  2,  0,  4 },	/* Right ADC Input Gain */
868 	ad1843_RMGE   = {  2,  4,  1 },	/* Right ADC Mic Gain Enable */
869 	ad1843_RSS    = {  2,  5,  3 },	/* Right ADC Source Select */
870 	ad1843_LIG    = {  2,  8,  4 },	/* Left ADC Input Gain */
871 	ad1843_LMGE   = {  2, 12,  1 },	/* Left ADC Mic Gain Enable */
872 	ad1843_LSS    = {  2, 13,  3 },	/* Left ADC Source Select */
873 	ad1843_RX1M   = {  4,  0,  5 },	/* Right Aux 1 Mix Gain/Atten */
874 	ad1843_RX1MM  = {  4,  7,  1 },	/* Right Aux 1 Mix Mute */
875 	ad1843_LX1M   = {  4,  8,  5 },	/* Left Aux 1 Mix Gain/Atten */
876 	ad1843_LX1MM  = {  4, 15,  1 },	/* Left Aux 1 Mix Mute */
877 	ad1843_RX2M   = {  5,  0,  5 },	/* Right Aux 2 Mix Gain/Atten */
878 	ad1843_RX2MM  = {  5,  7,  1 },	/* Right Aux 2 Mix Mute */
879 	ad1843_LX2M   = {  5,  8,  5 },	/* Left Aux 2 Mix Gain/Atten */
880 	ad1843_LX2MM  = {  5, 15,  1 },	/* Left Aux 2 Mix Mute */
881 	ad1843_RMCM   = {  7,  0,  5 },	/* Right Mic Mix Gain/Atten */
882 	ad1843_RMCMM  = {  7,  7,  1 },	/* Right Mic Mix Mute */
883 	ad1843_LMCM   = {  7,  8,  5 },	/* Left Mic Mix Gain/Atten */
884 	ad1843_LMCMM  = {  7, 15,  1 },	/* Left Mic Mix Mute */
885 	ad1843_HPOS   = {  8,  4,  1 },	/* Headphone Output Voltage Swing */
886 	ad1843_HPOM   = {  8,  5,  1 },	/* Headphone Output Mute */
887 	ad1843_RDA1G  = {  9,  0,  6 },	/* Right DAC1 Analog/Digital Gain */
888 	ad1843_RDA1GM = {  9,  7,  1 },	/* Right DAC1 Analog Mute */
889 	ad1843_LDA1G  = {  9,  8,  6 },	/* Left DAC1 Analog/Digital Gain */
890 	ad1843_LDA1GM = {  9, 15,  1 },	/* Left DAC1 Analog Mute */
891 	ad1843_RDA1AM = { 11,  7,  1 },	/* Right DAC1 Digital Mute */
892 	ad1843_LDA1AM = { 11, 15,  1 },	/* Left DAC1 Digital Mute */
893 	ad1843_ADLC   = { 15,  0,  2 },	/* ADC Left Sample Rate Source */
894 	ad1843_ADRC   = { 15,  2,  2 },	/* ADC Right Sample Rate Source */
895 	ad1843_DA1C   = { 15,  8,  2 },	/* DAC1 Sample Rate Source */
896 	ad1843_C1C    = { 17,  0, 16 },	/* Clock 1 Sample Rate Select */
897 	ad1843_C2C    = { 20,  0, 16 },	/* Clock 1 Sample Rate Select */
898 	ad1843_DAADL  = { 25,  4,  2 },	/* Digital ADC Left Source Select */
899 	ad1843_DAADR  = { 25,  6,  2 },	/* Digital ADC Right Source Select */
900 	ad1843_DRSFLT = { 25, 15,  1 },	/* Digital Reampler Filter Mode */
901 	ad1843_ADLF   = { 26,  0,  2 }, /* ADC Left Channel Data Format */
902 	ad1843_ADRF   = { 26,  2,  2 }, /* ADC Right Channel Data Format */
903 	ad1843_ADTLK  = { 26,  4,  1 },	/* ADC Transmit Lock Mode Select */
904 	ad1843_SCF    = { 26,  7,  1 },	/* SCLK Frequency Select */
905 	ad1843_DA1F   = { 26,  8,  2 },	/* DAC1 Data Format Select */
906 	ad1843_DA1SM  = { 26, 14,  1 },	/* DAC1 Stereo/Mono Mode Select */
907 	ad1843_ADLEN  = { 27,  0,  1 },	/* ADC Left Channel Enable */
908 	ad1843_ADREN  = { 27,  1,  1 },	/* ADC Right Channel Enable */
909 	ad1843_AAMEN  = { 27,  4,  1 },	/* Analog to Analog Mix Enable */
910 	ad1843_ANAEN  = { 27,  7,  1 },	/* Analog Channel Enable */
911 	ad1843_DA1EN  = { 27,  8,  1 },	/* DAC1 Enable */
912 	ad1843_DA2EN  = { 27,  9,  1 },	/* DAC2 Enable */
913 	ad1843_C1EN   = { 28, 11,  1 },	/* Clock Generator 1 Enable */
914 	ad1843_C2EN   = { 28, 12,  1 },	/* Clock Generator 2 Enable */
915 	ad1843_PDNI   = { 28, 15,  1 };	/* Converter Power Down */
916 
917 /*
918  * The various registers of the AD1843 use three different formats for
919  * specifying gain.  The ad1843_gain structure parameterizes the
920  * formats.
921  */
922 
923 typedef struct ad1843_gain {
924 
925 	int	negative;		/* nonzero if gain is negative. */
926 	const ad1843_bitfield_t *lfield;
927 	const ad1843_bitfield_t *rfield;
928 
929 } ad1843_gain_t;
930 
931 static const ad1843_gain_t ad1843_gain_RECLEV
932 				= { 0, &ad1843_LIG,   &ad1843_RIG };
933 static const ad1843_gain_t ad1843_gain_LINE
934 				= { 1, &ad1843_LX1M,  &ad1843_RX1M };
935 static const ad1843_gain_t ad1843_gain_CD
936 				= { 1, &ad1843_LX2M,  &ad1843_RX2M };
937 static const ad1843_gain_t ad1843_gain_MIC
938 				= { 1, &ad1843_LMCM,  &ad1843_RMCM };
939 static const ad1843_gain_t ad1843_gain_PCM
940 				= { 1, &ad1843_LDA1G, &ad1843_RDA1G };
941 
942 /* read the current value of an AD1843 bitfield. */
943 
ad1843_read_bits(lithium_t * lith,const ad1843_bitfield_t * field)944 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
945 {
946 	int w = li_read_ad1843_reg(lith, field->reg);
947 	int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
948 
949 	DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
950 	      lith, field->reg, field->lo_bit, field->nbits, val);
951 
952 	return val;
953 }
954 
955 /*
956  * write a new value to an AD1843 bitfield and return the old value.
957  */
958 
ad1843_write_bits(lithium_t * lith,const ad1843_bitfield_t * field,int newval)959 static int ad1843_write_bits(lithium_t *lith,
960 			     const ad1843_bitfield_t *field,
961 			     int newval)
962 {
963 	int w = li_read_ad1843_reg(lith, field->reg);
964 	int mask = ((1 << field->nbits) - 1) << field->lo_bit;
965 	int oldval = (w & mask) >> field->lo_bit;
966 	int newbits = (newval << field->lo_bit) & mask;
967 	w = (w & ~mask) | newbits;
968 	(void) li_write_ad1843_reg(lith, field->reg, w);
969 
970 	DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
971 	      "returns 0x%x\n",
972 	      lith, field->reg, field->lo_bit, field->nbits, newval,
973 	      oldval);
974 
975 	return oldval;
976 }
977 
978 /*
979  * ad1843_read_multi reads multiple bitfields from the same AD1843
980  * register.  It uses a single read cycle to do it.  (Reading the
981  * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
982  * microseconds.)
983  *
984  * Called ike this.
985  *
986  *  ad1843_read_multi(lith, nfields,
987  *		      &ad1843_FIELD1, &val1,
988  *		      &ad1843_FIELD2, &val2, ...);
989  */
990 
ad1843_read_multi(lithium_t * lith,int argcount,...)991 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
992 {
993 	va_list ap;
994 	const ad1843_bitfield_t *fp;
995 	int w = 0, mask, *value, reg = -1;
996 
997 	va_start(ap, argcount);
998 	while (--argcount >= 0) {
999 		fp = va_arg(ap, const ad1843_bitfield_t *);
1000 		value = va_arg(ap, int *);
1001 		if (reg == -1) {
1002 			reg = fp->reg;
1003 			w = li_read_ad1843_reg(lith, reg);
1004 		}
1005 		ASSERT(reg == fp->reg);
1006 		mask = (1 << fp->nbits) - 1;
1007 		*value = w >> fp->lo_bit & mask;
1008 	}
1009 	va_end(ap);
1010 }
1011 
1012 /*
1013  * ad1843_write_multi stores multiple bitfields into the same AD1843
1014  * register.  It uses one read and one write cycle to do it.
1015  *
1016  * Called like this.
1017  *
1018  *  ad1843_write_multi(lith, nfields,
1019  *		       &ad1843_FIELD1, val1,
1020  *		       &ad1843_FIELF2, val2, ...);
1021  */
1022 
ad1843_write_multi(lithium_t * lith,int argcount,...)1023 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1024 {
1025 	va_list ap;
1026 	int reg;
1027 	const ad1843_bitfield_t *fp;
1028 	int value;
1029 	int w, m, mask, bits;
1030 
1031 	mask = 0;
1032 	bits = 0;
1033 	reg = -1;
1034 
1035 	va_start(ap, argcount);
1036 	while (--argcount >= 0) {
1037 		fp = va_arg(ap, const ad1843_bitfield_t *);
1038 		value = va_arg(ap, int);
1039 		if (reg == -1)
1040 			reg = fp->reg;
1041 		ASSERT(fp->reg == reg);
1042 		m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1043 		mask |= m;
1044 		bits |= (value << fp->lo_bit) & m;
1045 	}
1046 	va_end(ap);
1047 	ASSERT(!(bits & ~mask));
1048 	if (~mask & 0xFFFF)
1049 		w = li_read_ad1843_reg(lith, reg);
1050 	else
1051 		w = 0;
1052 	w = (w & ~mask) | bits;
1053 	(void) li_write_ad1843_reg(lith, reg, w);
1054 }
1055 
1056 /*
1057  * ad1843_get_gain reads the specified register and extracts the gain value
1058  * using the supplied gain type.  It returns the gain in OSS format.
1059  */
1060 
ad1843_get_gain(lithium_t * lith,const ad1843_gain_t * gp)1061 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1062 {
1063 	int lg, rg;
1064 	unsigned short mask = (1 << gp->lfield->nbits) - 1;
1065 
1066 	ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1067 	if (gp->negative) {
1068 		lg = mask - lg;
1069 		rg = mask - rg;
1070 	}
1071 	lg = (lg * 100 + (mask >> 1)) / mask;
1072 	rg = (rg * 100 + (mask >> 1)) / mask;
1073 	return lg << 0 | rg << 8;
1074 }
1075 
1076 /*
1077  * Set an audio channel's gain. Converts from OSS format to AD1843's
1078  * format.
1079  *
1080  * Returns the new gain, which may be lower than the old gain.
1081  */
1082 
ad1843_set_gain(lithium_t * lith,const ad1843_gain_t * gp,int newval)1083 static int ad1843_set_gain(lithium_t *lith,
1084 			   const ad1843_gain_t *gp,
1085 			   int newval)
1086 {
1087 	unsigned short mask = (1 << gp->lfield->nbits) - 1;
1088 
1089 	int lg = newval >> 0 & 0xFF;
1090 	int rg = newval >> 8;
1091 	if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1092 		return -EINVAL;
1093 	lg = (lg * mask + (mask >> 1)) / 100;
1094 	rg = (rg * mask + (mask >> 1)) / 100;
1095 	if (gp->negative) {
1096 		lg = mask - lg;
1097 		rg = mask - rg;
1098 	}
1099 	ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1100 	return ad1843_get_gain(lith, gp);
1101 }
1102 
1103 /* Returns the current recording source, in OSS format. */
1104 
ad1843_get_recsrc(lithium_t * lith)1105 static int ad1843_get_recsrc(lithium_t *lith)
1106 {
1107 	int ls = ad1843_read_bits(lith, &ad1843_LSS);
1108 
1109 	switch (ls) {
1110 	case 1:
1111 		return SOUND_MASK_MIC;
1112 	case 2:
1113 		return SOUND_MASK_LINE;
1114 	case 3:
1115 		return SOUND_MASK_CD;
1116 	case 6:
1117 		return SOUND_MASK_PCM;
1118 	default:
1119 		ASSERT(0);
1120 		return -1;
1121 	}
1122 }
1123 
1124 /*
1125  * Enable/disable digital resample mode in the AD1843.
1126  *
1127  * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1128  * while switching modes.  So we save DA1's state (DA2's state is not
1129  * interesting), power them down, switch into/out of resample mode,
1130  * power them up, and restore state.
1131  *
1132  * This will cause audible glitches if D/A or A/D is going on, so the
1133  * driver disallows that (in mixer_write_ioctl()).
1134  *
1135  * The open question is, is this worth doing?  I'm leaving it in,
1136  * because it's written, but...
1137  */
1138 
ad1843_set_resample_mode(lithium_t * lith,int onoff)1139 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1140 {
1141 	/* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1142 	int save_da1 = li_read_ad1843_reg(lith, 9);
1143 
1144 	/* Power down A/D and D/A. */
1145 	ad1843_write_multi(lith, 4,
1146 			   &ad1843_DA1EN, 0,
1147 			   &ad1843_DA2EN, 0,
1148 			   &ad1843_ADLEN, 0,
1149 			   &ad1843_ADREN, 0);
1150 
1151 	/* Switch mode */
1152 	ASSERT(onoff == 0 || onoff == 1);
1153 	ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1154 
1155  	/* Power up A/D and D/A. */
1156 	ad1843_write_multi(lith, 3,
1157 			   &ad1843_DA1EN, 1,
1158 			   &ad1843_ADLEN, 1,
1159 			   &ad1843_ADREN, 1);
1160 
1161 	/* Restore DA1 mute and gain. */
1162 	li_write_ad1843_reg(lith, 9, save_da1);
1163 }
1164 
1165 /*
1166  * Set recording source.  Arg newsrc specifies an OSS channel mask.
1167  *
1168  * The complication is that when we switch into/out of loopback mode
1169  * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1170  * digital resampling mode.
1171  *
1172  * Returns newsrc on success, -errno on failure.
1173  */
1174 
ad1843_set_recsrc(lithium_t * lith,int newsrc)1175 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1176 {
1177 	int bits;
1178 	int oldbits;
1179 
1180 	switch (newsrc) {
1181 	case SOUND_MASK_PCM:
1182 		bits = 6;
1183 		break;
1184 
1185 	case SOUND_MASK_MIC:
1186 		bits = 1;
1187 		break;
1188 
1189 	case SOUND_MASK_LINE:
1190 		bits = 2;
1191 		break;
1192 
1193 	case SOUND_MASK_CD:
1194 		bits = 3;
1195 		break;
1196 
1197 	default:
1198 		return -EINVAL;
1199 	}
1200 	oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1201 	if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1202 		DBGP("enabling digital resample mode\n");
1203 		ad1843_set_resample_mode(lith, 1);
1204 		ad1843_write_multi(lith, 2,
1205 				   &ad1843_DAADL, 2,
1206 				   &ad1843_DAADR, 2);
1207 	} else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1208 		DBGP("disabling digital resample mode\n");
1209 		ad1843_set_resample_mode(lith, 0);
1210 		ad1843_write_multi(lith, 2,
1211 				   &ad1843_DAADL, 0,
1212 				   &ad1843_DAADR, 0);
1213 	}
1214 	ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1215 	return newsrc;
1216 }
1217 
1218 /*
1219  * Return current output sources, in OSS format.
1220  */
1221 
ad1843_get_outsrc(lithium_t * lith)1222 static int ad1843_get_outsrc(lithium_t *lith)
1223 {
1224 	int pcm, line, mic, cd;
1225 
1226 	pcm  = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1227 	line = ad1843_read_bits(lith, &ad1843_LX1MM)  ? 0 : SOUND_MASK_LINE;
1228 	cd   = ad1843_read_bits(lith, &ad1843_LX2MM)  ? 0 : SOUND_MASK_CD;
1229 	mic  = ad1843_read_bits(lith, &ad1843_LMCMM)  ? 0 : SOUND_MASK_MIC;
1230 
1231 	return pcm | line | cd | mic;
1232 }
1233 
1234 /*
1235  * Set output sources.  Arg is a mask of active sources in OSS format.
1236  *
1237  * Returns source mask on success, -errno on failure.
1238  */
1239 
ad1843_set_outsrc(lithium_t * lith,int mask)1240 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1241 {
1242 	int pcm, line, mic, cd;
1243 
1244 	if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1245 		     SOUND_MASK_CD | SOUND_MASK_MIC))
1246 		return -EINVAL;
1247 	pcm  = (mask & SOUND_MASK_PCM)  ? 0 : 1;
1248 	line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1249 	mic  = (mask & SOUND_MASK_MIC)  ? 0 : 1;
1250 	cd   = (mask & SOUND_MASK_CD)   ? 0 : 1;
1251 
1252 	ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1253 	ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1254 	ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd,   &ad1843_RX2MM, cd);
1255 	ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic,  &ad1843_RMCMM, mic);
1256 
1257 	return mask;
1258 }
1259 
1260 /* Setup ad1843 for D/A conversion. */
1261 
ad1843_setup_dac(lithium_t * lith,int framerate,int fmt,int channels)1262 static void ad1843_setup_dac(lithium_t *lith,
1263 			     int framerate,
1264 			     int fmt,
1265 			     int channels)
1266 {
1267 	int ad_fmt = 0, ad_mode = 0;
1268 
1269 	DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1270 	      lith, framerate, fmt, channels);
1271 
1272 	switch (fmt) {
1273 	case AFMT_S8:		ad_fmt = 1; break;
1274 	case AFMT_U8:		ad_fmt = 1; break;
1275 	case AFMT_S16_LE:	ad_fmt = 1; break;
1276 	case AFMT_MU_LAW:	ad_fmt = 2; break;
1277 	case AFMT_A_LAW:	ad_fmt = 3; break;
1278 	default:		ASSERT(0);
1279 	}
1280 
1281 	switch (channels) {
1282 	case 2:			ad_mode = 0; break;
1283 	case 1:			ad_mode = 1; break;
1284 	default:		ASSERT(0);
1285 	}
1286 
1287 	DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1288 	ASSERT(framerate >= 4000 && framerate <= 49000);
1289 	ad1843_write_bits(lith, &ad1843_C1C, framerate);
1290 	ad1843_write_multi(lith, 2,
1291 			   &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1292 }
1293 
ad1843_shutdown_dac(lithium_t * lith)1294 static void ad1843_shutdown_dac(lithium_t *lith)
1295 {
1296 	ad1843_write_bits(lith, &ad1843_DA1F, 1);
1297 }
1298 
ad1843_setup_adc(lithium_t * lith,int framerate,int fmt,int channels)1299 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1300 {
1301 	int da_fmt = 0;
1302 
1303 	DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1304 	      lith, framerate, fmt, channels);
1305 
1306 	switch (fmt) {
1307 	case AFMT_S8:		da_fmt = 1; break;
1308 	case AFMT_U8:		da_fmt = 1; break;
1309 	case AFMT_S16_LE:	da_fmt = 1; break;
1310 	case AFMT_MU_LAW:	da_fmt = 2; break;
1311 	case AFMT_A_LAW:	da_fmt = 3; break;
1312 	default:		ASSERT(0);
1313 	}
1314 
1315 	DBGPV("da_fmt = %d\n", da_fmt);
1316 	ASSERT(framerate >= 4000 && framerate <= 49000);
1317 	ad1843_write_bits(lith, &ad1843_C2C, framerate);
1318 	ad1843_write_multi(lith, 2,
1319 			   &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1320 }
1321 
ad1843_shutdown_adc(lithium_t * lith)1322 static void ad1843_shutdown_adc(lithium_t *lith)
1323 {
1324 	/* nothing to do */
1325 }
1326 
1327 /*
1328  * Fully initialize the ad1843.  As described in the AD1843 data
1329  * sheet, section "START-UP SEQUENCE".  The numbered comments are
1330  * subsection headings from the data sheet.  See the data sheet, pages
1331  * 52-54, for more info.
1332  *
1333  * return 0 on success, -errno on failure.  */
1334 
ad1843_init(lithium_t * lith)1335 static int __init ad1843_init(lithium_t *lith)
1336 {
1337 	unsigned long later;
1338 	int err;
1339 
1340 	err = li_init(lith);
1341 	if (err)
1342 		return err;
1343 
1344 	if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1345 		printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1346 		return -EIO;
1347 	}
1348 
1349 	ad1843_write_bits(lith, &ad1843_SCF, 1);
1350 
1351 	/* 4. Put the conversion resources into standby. */
1352 
1353 	ad1843_write_bits(lith, &ad1843_PDNI, 0);
1354 	later = jiffies + HZ / 2;	/* roughly half a second */
1355 	DBGDO(shut_up++);
1356 	while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1357 		if (time_after(jiffies, later)) {
1358 			printk(KERN_ERR
1359 			       "vwsnd audio: AD1843 won't power up\n");
1360 			return -EIO;
1361 		}
1362 		schedule();
1363 	}
1364 	DBGDO(shut_up--);
1365 
1366 	/* 5. Power up the clock generators and enable clock output pins. */
1367 
1368 	ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1369 
1370 	/* 6. Configure conversion resources while they are in standby. */
1371 
1372  	/* DAC1 uses clock 1 as source, ADC uses clock 2.  Always. */
1373 
1374 	ad1843_write_multi(lith, 3,
1375 			   &ad1843_DA1C, 1,
1376 			   &ad1843_ADLC, 2,
1377 			   &ad1843_ADRC, 2);
1378 
1379 	/* 7. Enable conversion resources. */
1380 
1381 	ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1382 	ad1843_write_multi(lith, 5,
1383 			   &ad1843_ANAEN, 1,
1384 			   &ad1843_AAMEN, 1,
1385 			   &ad1843_DA1EN, 1,
1386 			   &ad1843_ADLEN, 1,
1387 			   &ad1843_ADREN, 1);
1388 
1389 	/* 8. Configure conversion resources while they are enabled. */
1390 
1391 	ad1843_write_bits(lith, &ad1843_DA1C, 1);
1392 
1393 	/* Unmute all channels. */
1394 
1395 	ad1843_set_outsrc(lith,
1396 			  (SOUND_MASK_PCM | SOUND_MASK_LINE |
1397 			   SOUND_MASK_MIC | SOUND_MASK_CD));
1398 	ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1399 
1400 	/* Set default recording source to Line In and set
1401 	 * mic gain to +20 dB.
1402 	 */
1403 
1404 	ad1843_set_recsrc(lith, SOUND_MASK_LINE);
1405 	ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1406 
1407 	/* Set Speaker Out level to +/- 4V and unmute it. */
1408 
1409 	ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1410 
1411 	return 0;
1412 }
1413 
1414 /*****************************************************************************/
1415 /* PCM I/O */
1416 
1417 #define READ_INTR_MASK  (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1418 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1419 
1420 typedef enum vwsnd_port_swstate {	/* software state */
1421 	SW_OFF,
1422 	SW_INITIAL,
1423 	SW_RUN,
1424 	SW_DRAIN,
1425 } vwsnd_port_swstate_t;
1426 
1427 typedef enum vwsnd_port_hwstate {	/* hardware state */
1428 	HW_STOPPED,
1429 	HW_RUNNING,
1430 } vwsnd_port_hwstate_t;
1431 
1432 /*
1433  * These flags are read by ISR, but only written at baseline.
1434  */
1435 
1436 typedef enum vwsnd_port_flags {
1437 	DISABLED = 1 << 0,
1438 	ERFLOWN  = 1 << 1,		/* overflown or underflown */
1439 	HW_BUSY  = 1 << 2,
1440 } vwsnd_port_flags_t;
1441 
1442 /*
1443  * vwsnd_port is the per-port data structure.  Each device has two
1444  * ports, one for input and one for output.
1445  *
1446  * Locking:
1447  *
1448  *	port->lock protects: hwstate, flags, swb_[iu]_avail.
1449  *
1450  *	devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
1451  *
1452  *	everything else is only written by open/release or
1453  *	pcm_{setup,shutdown}(), which are serialized by a
1454  *	combination of devc->open_mutex and devc->io_mutex.
1455  */
1456 
1457 typedef struct vwsnd_port {
1458 
1459 	spinlock_t	lock;
1460 	wait_queue_head_t queue;
1461 	vwsnd_port_swstate_t swstate;
1462 	vwsnd_port_hwstate_t hwstate;
1463 	vwsnd_port_flags_t flags;
1464 
1465 	int		sw_channels;
1466 	int		sw_samplefmt;
1467 	int		sw_framerate;
1468 	int		sample_size;
1469 	int		frame_size;
1470 	unsigned int	zero_word;	/* zero for the sample format */
1471 
1472 	int		sw_fragshift;
1473 	int		sw_fragcount;
1474 	int		sw_subdivshift;
1475 
1476 	unsigned int	hw_fragshift;
1477 	unsigned int	hw_fragsize;
1478 	unsigned int	hw_fragcount;
1479 
1480 	int		hwbuf_size;
1481 	unsigned long	hwbuf_paddr;
1482 	unsigned long	hwbuf_vaddr;
1483 	void *		hwbuf;		/* hwbuf == hwbuf_vaddr */
1484 	int		hwbuf_max;	/* max bytes to preload */
1485 
1486 	void *		swbuf;
1487 	unsigned int	swbuf_size;	/* size in bytes */
1488 	unsigned int	swb_u_idx;	/* index of next user byte */
1489 	unsigned int	swb_i_idx;	/* index of next intr byte */
1490 	unsigned int	swb_u_avail;	/* # bytes avail to user */
1491 	unsigned int	swb_i_avail;	/* # bytes avail to intr */
1492 
1493 	dma_chan_t	chan;
1494 
1495 	/* Accounting */
1496 
1497 	int		byte_count;
1498 	int		frag_count;
1499 	int		MSC_offset;
1500 
1501 } vwsnd_port_t;
1502 
1503 /* vwsnd_dev is the per-device data structure. */
1504 
1505 typedef struct vwsnd_dev {
1506 	struct vwsnd_dev *next_dev;
1507 	int		audio_minor;	/* minor number of audio device */
1508 	int		mixer_minor;	/* minor number of mixer device */
1509 
1510 	struct mutex open_mutex;
1511 	struct mutex io_mutex;
1512 	struct mutex mix_mutex;
1513 	fmode_t		open_mode;
1514 	wait_queue_head_t open_wait;
1515 
1516 	lithium_t	lith;
1517 
1518 	vwsnd_port_t	rport;
1519 	vwsnd_port_t	wport;
1520 } vwsnd_dev_t;
1521 
1522 static vwsnd_dev_t *vwsnd_dev_list;	/* linked list of all devices */
1523 
1524 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1525 
1526 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1527 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1528 # define IN_USE        (atomic_read(&vwsnd_use_count) != 0)
1529 
1530 /*
1531  * Lithium can only DMA multiples of 32 bytes.  Its DMA buffer may
1532  * be up to 8 Kb.  This driver always uses 8 Kb.
1533  *
1534  * Memory bug workaround -- I'm not sure what's going on here, but
1535  * somehow pcm_copy_out() was triggering segv's going on to the next
1536  * page of the hw buffer.  So, I make the hw buffer one size bigger
1537  * than we actually use.  That way, the following page is allocated
1538  * and mapped, and no error.  I suspect that something is broken
1539  * in Cobalt, but haven't really investigated.  HBO is the actual
1540  * size of the buffer, and HWBUF_ORDER is what we allocate.
1541  */
1542 
1543 #define HWBUF_SHIFT 13
1544 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1545 # define HBO         (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1546 # define HWBUF_ORDER (HBO + 1)		/* next size bigger */
1547 #define MIN_SPEED 4000
1548 #define MAX_SPEED 49000
1549 
1550 #define MIN_FRAGSHIFT			(DMACHUNK_SHIFT + 1)
1551 #define MAX_FRAGSHIFT			(PAGE_SHIFT)
1552 #define MIN_FRAGSIZE			(1 << MIN_FRAGSHIFT)
1553 #define MAX_FRAGSIZE			(1 << MAX_FRAGSHIFT)
1554 #define MIN_FRAGCOUNT(fragsize)		3
1555 #define MAX_FRAGCOUNT(fragsize)		(32 * PAGE_SIZE / (fragsize))
1556 #define DEFAULT_FRAGSHIFT		12
1557 #define DEFAULT_FRAGCOUNT		16
1558 #define DEFAULT_SUBDIVSHIFT		0
1559 
1560 /*
1561  * The software buffer (swbuf) is a ring buffer shared between user
1562  * level and interrupt level.  Each level owns some of the bytes in
1563  * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1564  * User level calls _u for user, and interrupt level calls _i for
1565  * interrupt.
1566  *
1567  * port->swb_{u,i}_avail is the number of bytes available to that level.
1568  *
1569  * port->swb_{u,i}_idx is the index of the first available byte in the
1570  * buffer.
1571  *
1572  * Each level calls swb_inc_{u,i}() to atomically increment its index,
1573  * recalculate the number of bytes available for both sides, and
1574  * return the number of bytes available.  Since each side can only
1575  * give away bytes, the other side can only increase the number of
1576  * bytes available to this side.  Each side updates its own index
1577  * variable, swb_{u,i}_idx, so no lock is needed to read it.
1578  *
1579  * To query the number of bytes available, call swb_inc_{u,i} with an
1580  * increment of zero.
1581  */
1582 
__swb_inc_u(vwsnd_port_t * port,int inc)1583 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1584 {
1585 	if (inc) {
1586 		port->swb_u_idx += inc;
1587 		port->swb_u_idx %= port->swbuf_size;
1588 		port->swb_u_avail -= inc;
1589 		port->swb_i_avail += inc;
1590 	}
1591 	return port->swb_u_avail;
1592 }
1593 
swb_inc_u(vwsnd_port_t * port,int inc)1594 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1595 {
1596 	unsigned long flags;
1597 	unsigned int ret;
1598 
1599 	spin_lock_irqsave(&port->lock, flags);
1600 	{
1601 		ret = __swb_inc_u(port, inc);
1602 	}
1603 	spin_unlock_irqrestore(&port->lock, flags);
1604 	return ret;
1605 }
1606 
__swb_inc_i(vwsnd_port_t * port,int inc)1607 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1608 {
1609 	if (inc) {
1610 		port->swb_i_idx += inc;
1611 		port->swb_i_idx %= port->swbuf_size;
1612 		port->swb_i_avail -= inc;
1613 		port->swb_u_avail += inc;
1614 	}
1615 	return port->swb_i_avail;
1616 }
1617 
swb_inc_i(vwsnd_port_t * port,int inc)1618 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1619 {
1620 	unsigned long flags;
1621 	unsigned int ret;
1622 
1623 	spin_lock_irqsave(&port->lock, flags);
1624 	{
1625 		ret = __swb_inc_i(port, inc);
1626 	}
1627 	spin_unlock_irqrestore(&port->lock, flags);
1628 	return ret;
1629 }
1630 
1631 /*
1632  * pcm_setup - this routine initializes all port state after
1633  * mode-setting ioctls have been done, but before the first I/O is
1634  * done.
1635  *
1636  * Locking: called with devc->io_mutex held.
1637  *
1638  * Returns 0 on success, -errno on failure.
1639  */
1640 
pcm_setup(vwsnd_dev_t * devc,vwsnd_port_t * rport,vwsnd_port_t * wport)1641 static int pcm_setup(vwsnd_dev_t *devc,
1642 		     vwsnd_port_t *rport,
1643 		     vwsnd_port_t *wport)
1644 {
1645 	vwsnd_port_t *aport = rport ? rport : wport;
1646 	int sample_size;
1647 	unsigned int zero_word;
1648 
1649 	DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1650 
1651 	ASSERT(aport != NULL);
1652 	if (aport->swbuf != NULL)
1653 		return 0;
1654 	switch (aport->sw_samplefmt) {
1655 	case AFMT_MU_LAW:
1656 		sample_size = 1;
1657 		zero_word = 0xFFFFFFFF ^ 0x80808080;
1658 		break;
1659 
1660 	case AFMT_A_LAW:
1661 		sample_size = 1;
1662 		zero_word = 0xD5D5D5D5 ^ 0x80808080;
1663 		break;
1664 
1665 	case AFMT_U8:
1666 		sample_size = 1;
1667 		zero_word = 0x80808080;
1668 		break;
1669 
1670 	case AFMT_S8:
1671 		sample_size = 1;
1672 		zero_word = 0x00000000;
1673 		break;
1674 
1675 	case AFMT_S16_LE:
1676 		sample_size = 2;
1677 		zero_word = 0x00000000;
1678 		break;
1679 
1680 	default:
1681 		sample_size = 0;	/* prevent compiler warning */
1682 		zero_word = 0;
1683 		ASSERT(0);
1684 	}
1685 	aport->sample_size  = sample_size;
1686 	aport->zero_word    = zero_word;
1687 	aport->frame_size   = aport->sw_channels * aport->sample_size;
1688 	aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1689 	aport->hw_fragsize  = 1 << aport->hw_fragshift;
1690 	aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1691 	ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1692 	ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1693 	ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1694 	ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1695 	if (rport) {
1696 		int hwfrags, swfrags;
1697 		rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1698 		hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1699 		swfrags = aport->hw_fragcount - hwfrags;
1700 		if (swfrags < 2)
1701 			swfrags = 2;
1702 		rport->swbuf_size = swfrags * aport->hw_fragsize;
1703 		DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1704 		DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1705 		     rport->hwbuf_max, rport->swbuf_size);
1706 	}
1707 	if (wport) {
1708 		int hwfrags, swfrags;
1709 		int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1710 		wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1711 		if (wport->hwbuf_max > total_bytes)
1712 			wport->hwbuf_max = total_bytes;
1713 		hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1714 		DBGPV("hwfrags = %d\n", hwfrags);
1715 		swfrags = aport->hw_fragcount - hwfrags;
1716 		if (swfrags < 2)
1717 			swfrags = 2;
1718 		wport->swbuf_size = swfrags * aport->hw_fragsize;
1719 		DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1720 		DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1721 		     wport->hwbuf_max, wport->swbuf_size);
1722 	}
1723 
1724 	aport->swb_u_idx    = 0;
1725 	aport->swb_i_idx    = 0;
1726 	aport->byte_count   = 0;
1727 
1728 	/*
1729 	 * Is this a Cobalt bug?  We need to make this buffer extend
1730 	 * one page further than we actually use -- somehow memcpy
1731 	 * causes an exceptoin otherwise.  I suspect there's a bug in
1732 	 * Cobalt (or somewhere) where it's generating a fault on a
1733 	 * speculative load or something.  Obviously, I haven't taken
1734 	 * the time to track it down.
1735 	 */
1736 
1737 	aport->swbuf        = vmalloc(aport->swbuf_size + PAGE_SIZE);
1738 	if (!aport->swbuf)
1739 		return -ENOMEM;
1740 	if (rport && wport) {
1741 		ASSERT(aport == rport);
1742 		ASSERT(wport->swbuf == NULL);
1743 		/* One extra page - see comment above. */
1744 		wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1745 		if (!wport->swbuf) {
1746 			vfree(aport->swbuf);
1747 			aport->swbuf = NULL;
1748 			return -ENOMEM;
1749 		}
1750 		wport->sample_size  = rport->sample_size;
1751 		wport->zero_word    = rport->zero_word;
1752 		wport->frame_size   = rport->frame_size;
1753 		wport->hw_fragshift = rport->hw_fragshift;
1754 		wport->hw_fragsize  = rport->hw_fragsize;
1755 		wport->hw_fragcount = rport->hw_fragcount;
1756 		wport->swbuf_size   = rport->swbuf_size;
1757 		wport->hwbuf_max    = rport->hwbuf_max;
1758 		wport->swb_u_idx    = rport->swb_u_idx;
1759 		wport->swb_i_idx    = rport->swb_i_idx;
1760 		wport->byte_count   = rport->byte_count;
1761 	}
1762 	if (rport) {
1763 		rport->swb_u_avail = 0;
1764 		rport->swb_i_avail = rport->swbuf_size;
1765 		rport->swstate = SW_RUN;
1766 		li_setup_dma(&rport->chan,
1767 			     &li_comm1,
1768 			     &devc->lith,
1769 			     rport->hwbuf_paddr,
1770 			     HWBUF_SHIFT,
1771 			     rport->hw_fragshift,
1772 			     rport->sw_channels,
1773 			     rport->sample_size);
1774 		ad1843_setup_adc(&devc->lith,
1775 				 rport->sw_framerate,
1776 				 rport->sw_samplefmt,
1777 				 rport->sw_channels);
1778 		li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1779 		if (!(rport->flags & DISABLED)) {
1780 			ustmsc_t ustmsc;
1781 			rport->hwstate = HW_RUNNING;
1782 			li_activate_dma(&rport->chan);
1783 			li_read_USTMSC(&rport->chan, &ustmsc);
1784 			rport->MSC_offset = ustmsc.msc;
1785 		}
1786 	}
1787 	if (wport) {
1788 		if (wport->hwbuf_max > wport->swbuf_size)
1789 			wport->hwbuf_max = wport->swbuf_size;
1790 		wport->flags &= ~ERFLOWN;
1791 		wport->swb_u_avail = wport->swbuf_size;
1792 		wport->swb_i_avail = 0;
1793 		wport->swstate = SW_RUN;
1794 		li_setup_dma(&wport->chan,
1795 			     &li_comm2,
1796 			     &devc->lith,
1797 			     wport->hwbuf_paddr,
1798 			     HWBUF_SHIFT,
1799 			     wport->hw_fragshift,
1800 			     wport->sw_channels,
1801 			     wport->sample_size);
1802 		ad1843_setup_dac(&devc->lith,
1803 				 wport->sw_framerate,
1804 				 wport->sw_samplefmt,
1805 				 wport->sw_channels);
1806 		li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1807 	}
1808 	DBGRV();
1809 	return 0;
1810 }
1811 
1812 /*
1813  * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1814  * Only called from pcm_shutdown.
1815  */
1816 
pcm_shutdown_port(vwsnd_dev_t * devc,vwsnd_port_t * aport,unsigned int mask)1817 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1818 			      vwsnd_port_t *aport,
1819 			      unsigned int mask)
1820 {
1821 	unsigned long flags;
1822 	vwsnd_port_hwstate_t hwstate;
1823 	DECLARE_WAITQUEUE(wait, current);
1824 
1825 	aport->swstate = SW_INITIAL;
1826 	add_wait_queue(&aport->queue, &wait);
1827 	while (1) {
1828 		set_current_state(TASK_UNINTERRUPTIBLE);
1829 		spin_lock_irqsave(&aport->lock, flags);
1830 		{
1831 			hwstate = aport->hwstate;
1832 		}
1833 		spin_unlock_irqrestore(&aport->lock, flags);
1834 		if (hwstate == HW_STOPPED)
1835 			break;
1836 		schedule();
1837 	}
1838 	current->state = TASK_RUNNING;
1839 	remove_wait_queue(&aport->queue, &wait);
1840 	li_disable_interrupts(&devc->lith, mask);
1841 	if (aport == &devc->rport)
1842 		ad1843_shutdown_adc(&devc->lith);
1843 	else /* aport == &devc->wport) */
1844 		ad1843_shutdown_dac(&devc->lith);
1845 	li_shutdown_dma(&aport->chan);
1846 	vfree(aport->swbuf);
1847 	aport->swbuf = NULL;
1848 	aport->byte_count = 0;
1849 }
1850 
1851 /*
1852  * pcm_shutdown undoes what pcm_setup did.
1853  * Also sets the ports' swstate to newstate.
1854  */
1855 
pcm_shutdown(vwsnd_dev_t * devc,vwsnd_port_t * rport,vwsnd_port_t * wport)1856 static void pcm_shutdown(vwsnd_dev_t *devc,
1857 			 vwsnd_port_t *rport,
1858 			 vwsnd_port_t *wport)
1859 {
1860 	DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1861 
1862 	if (rport && rport->swbuf) {
1863 		DBGPV("shutting down rport\n");
1864 		pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1865 	}
1866 	if (wport && wport->swbuf) {
1867 		DBGPV("shutting down wport\n");
1868 		pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1869 	}
1870 	DBGRV();
1871 }
1872 
pcm_copy_in(vwsnd_port_t * rport,int swidx,int hwidx,int nb)1873 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1874 {
1875 	char *src = rport->hwbuf + hwidx;
1876 	char *dst = rport->swbuf + swidx;
1877 	int fmt = rport->sw_samplefmt;
1878 
1879 	DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1880 	ASSERT(rport->hwbuf != NULL);
1881 	ASSERT(rport->swbuf != NULL);
1882 	ASSERT(nb > 0 && (nb % 32) == 0);
1883 	ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1884 	ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1885 	ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1886 
1887 	if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1888 
1889 		/* See Sample Format Notes above. */
1890 
1891 		char *end = src + nb;
1892 		while (src < end)
1893 			*dst++ = *src++ ^ 0x80;
1894 	} else
1895 		memcpy(dst, src, nb);
1896 }
1897 
pcm_copy_out(vwsnd_port_t * wport,int swidx,int hwidx,int nb)1898 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1899 {
1900 	char *src = wport->swbuf + swidx;
1901 	char *dst = wport->hwbuf + hwidx;
1902 	int fmt = wport->sw_samplefmt;
1903 
1904 	ASSERT(nb > 0 && (nb % 32) == 0);
1905 	ASSERT(wport->hwbuf != NULL);
1906 	ASSERT(wport->swbuf != NULL);
1907 	ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1908 	ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1909 	ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1910 	if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1911 
1912 		/* See Sample Format Notes above. */
1913 
1914 		char *end = src + nb;
1915 		while (src < end)
1916 			*dst++ = *src++ ^ 0x80;
1917 	} else
1918 		memcpy(dst, src, nb);
1919 }
1920 
1921 /*
1922  * pcm_output() is called both from baselevel and from interrupt level.
1923  * This is where audio frames are copied into the hardware-accessible
1924  * ring buffer.
1925  *
1926  * Locking note: The part of this routine that figures out what to do
1927  * holds wport->lock.  The longer part releases wport->lock, but sets
1928  * wport->flags & HW_BUSY.  Afterward, it reacquires wport->lock, and
1929  * checks for more work to do.
1930  *
1931  * If another thread calls pcm_output() while HW_BUSY is set, it
1932  * returns immediately, knowing that the thread that set HW_BUSY will
1933  * look for more work to do before returning.
1934  *
1935  * This has the advantage that port->lock is held for several short
1936  * periods instead of one long period.  Also, when pcm_output is
1937  * called from base level, it reenables interrupts.
1938  */
1939 
pcm_output(vwsnd_dev_t * devc,int erflown,int nb)1940 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1941 {
1942 	vwsnd_port_t *wport = &devc->wport;
1943 	const int hwmax  = wport->hwbuf_max;
1944 	const int hwsize = wport->hwbuf_size;
1945 	const int swsize = wport->swbuf_size;
1946 	const int fragsize = wport->hw_fragsize;
1947 	unsigned long iflags;
1948 
1949 	DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1950 	spin_lock_irqsave(&wport->lock, iflags);
1951 	if (erflown)
1952 		wport->flags |= ERFLOWN;
1953 	(void) __swb_inc_u(wport, nb);
1954 	if (wport->flags & HW_BUSY) {
1955 		spin_unlock_irqrestore(&wport->lock, iflags);
1956 		DBGPV("returning: HW BUSY\n");
1957 		return;
1958 	}
1959 	if (wport->flags & DISABLED) {
1960 		spin_unlock_irqrestore(&wport->lock, iflags);
1961 		DBGPV("returning: DISABLED\n");
1962 		return;
1963 	}
1964 	wport->flags |= HW_BUSY;
1965 	while (1) {
1966 		int swptr, hwptr, hw_avail, sw_avail, swidx;
1967 		vwsnd_port_hwstate_t hwstate = wport->hwstate;
1968 		vwsnd_port_swstate_t swstate = wport->swstate;
1969 		int hw_unavail;
1970 		ustmsc_t ustmsc;
1971 
1972 		hwptr = li_read_hwptr(&wport->chan);
1973 		swptr = li_read_swptr(&wport->chan);
1974 		hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1975 		hw_avail = (hwmax - hw_unavail) & -fragsize;
1976 		sw_avail = wport->swb_i_avail & -fragsize;
1977 		if (sw_avail && swstate == SW_RUN) {
1978 			if (wport->flags & ERFLOWN) {
1979 				wport->flags &= ~ERFLOWN;
1980 			}
1981 		} else if (swstate == SW_INITIAL ||
1982 			 swstate == SW_OFF ||
1983 			 (swstate == SW_DRAIN &&
1984 			  !sw_avail &&
1985 			  (wport->flags & ERFLOWN))) {
1986 			DBGP("stopping.  hwstate = %d\n", hwstate);
1987 			if (hwstate != HW_STOPPED) {
1988 				li_deactivate_dma(&wport->chan);
1989 				wport->hwstate = HW_STOPPED;
1990 			}
1991 			wake_up(&wport->queue);
1992 			break;
1993 		}
1994 		if (!sw_avail || !hw_avail)
1995 			break;
1996 		spin_unlock_irqrestore(&wport->lock, iflags);
1997 
1998 		/*
1999 		 * We gave up the port lock, but we have the HW_BUSY flag.
2000 		 * Proceed without accessing any nonlocal state.
2001 		 * Do not exit the loop -- must check for more work.
2002 		 */
2003 
2004 		swidx = wport->swb_i_idx;
2005 		nb = hw_avail;
2006 		if (nb > sw_avail)
2007 			nb = sw_avail;
2008 		if (nb > hwsize - swptr)
2009 			nb = hwsize - swptr; /* don't overflow hwbuf */
2010 		if (nb > swsize - swidx)
2011 			nb = swsize - swidx; /* don't overflow swbuf */
2012 		ASSERT(nb > 0);
2013 		if (nb % fragsize) {
2014 			DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2015 			DBGP("hw_avail = %d\n", hw_avail);
2016 			DBGP("sw_avail = %d\n", sw_avail);
2017 			DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2018 			DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2019 		}
2020 		ASSERT(!(nb % fragsize));
2021 		DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2022 		      swidx, swidx + nb, swptr, swptr + nb);
2023 		pcm_copy_out(wport, swidx, swptr, nb);
2024 		li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2025 		spin_lock_irqsave(&wport->lock, iflags);
2026 		if (hwstate == HW_STOPPED) {
2027 			DBGPV("starting\n");
2028 			li_activate_dma(&wport->chan);
2029 			wport->hwstate = HW_RUNNING;
2030 			li_read_USTMSC(&wport->chan, &ustmsc);
2031 			ASSERT(wport->byte_count % wport->frame_size == 0);
2032 			wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2033 		}
2034 		__swb_inc_i(wport, nb);
2035 		wport->byte_count += nb;
2036 		wport->frag_count += nb / fragsize;
2037 		ASSERT(nb % fragsize == 0);
2038 		wake_up(&wport->queue);
2039 	}
2040 	wport->flags &= ~HW_BUSY;
2041 	spin_unlock_irqrestore(&wport->lock, iflags);
2042 	DBGRV();
2043 }
2044 
2045 /*
2046  * pcm_input() is called both from baselevel and from interrupt level.
2047  * This is where audio frames are copied out of the hardware-accessible
2048  * ring buffer.
2049  *
2050  * Locking note: The part of this routine that figures out what to do
2051  * holds rport->lock.  The longer part releases rport->lock, but sets
2052  * rport->flags & HW_BUSY.  Afterward, it reacquires rport->lock, and
2053  * checks for more work to do.
2054  *
2055  * If another thread calls pcm_input() while HW_BUSY is set, it
2056  * returns immediately, knowing that the thread that set HW_BUSY will
2057  * look for more work to do before returning.
2058  *
2059  * This has the advantage that port->lock is held for several short
2060  * periods instead of one long period.  Also, when pcm_input is
2061  * called from base level, it reenables interrupts.
2062  */
2063 
pcm_input(vwsnd_dev_t * devc,int erflown,int nb)2064 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2065 {
2066 	vwsnd_port_t *rport = &devc->rport;
2067 	const int hwmax  = rport->hwbuf_max;
2068 	const int hwsize = rport->hwbuf_size;
2069 	const int swsize = rport->swbuf_size;
2070 	const int fragsize = rport->hw_fragsize;
2071 	unsigned long iflags;
2072 
2073 	DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2074 
2075 	spin_lock_irqsave(&rport->lock, iflags);
2076 	if (erflown)
2077 		rport->flags |= ERFLOWN;
2078 	(void) __swb_inc_u(rport, nb);
2079 	if (rport->flags & HW_BUSY || !rport->swbuf) {
2080 		spin_unlock_irqrestore(&rport->lock, iflags);
2081 		DBGPV("returning: HW BUSY or !swbuf\n");
2082 		return;
2083 	}
2084 	if (rport->flags & DISABLED) {
2085 		spin_unlock_irqrestore(&rport->lock, iflags);
2086 		DBGPV("returning: DISABLED\n");
2087 		return;
2088 	}
2089 	rport->flags |= HW_BUSY;
2090 	while (1) {
2091 		int swptr, hwptr, hw_avail, sw_avail, swidx;
2092 		vwsnd_port_hwstate_t hwstate = rport->hwstate;
2093 		vwsnd_port_swstate_t swstate = rport->swstate;
2094 
2095 		hwptr = li_read_hwptr(&rport->chan);
2096 		swptr = li_read_swptr(&rport->chan);
2097 		hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2098 		if (hw_avail > hwmax)
2099 			hw_avail = hwmax;
2100 		sw_avail = rport->swb_i_avail & -fragsize;
2101 		if (swstate != SW_RUN) {
2102 			DBGP("stopping.  hwstate = %d\n", hwstate);
2103 			if (hwstate != HW_STOPPED) {
2104 				li_deactivate_dma(&rport->chan);
2105 				rport->hwstate = HW_STOPPED;
2106 			}
2107 			wake_up(&rport->queue);
2108 			break;
2109 		}
2110 		if (!sw_avail || !hw_avail)
2111 			break;
2112 		spin_unlock_irqrestore(&rport->lock, iflags);
2113 
2114 		/*
2115 		 * We gave up the port lock, but we have the HW_BUSY flag.
2116 		 * Proceed without accessing any nonlocal state.
2117 		 * Do not exit the loop -- must check for more work.
2118 		 */
2119 
2120 		swidx = rport->swb_i_idx;
2121 		nb = hw_avail;
2122 		if (nb > sw_avail)
2123 			nb = sw_avail;
2124 		if (nb > hwsize - swptr)
2125 			nb = hwsize - swptr; /* don't overflow hwbuf */
2126 		if (nb > swsize - swidx)
2127 			nb = swsize - swidx; /* don't overflow swbuf */
2128 		ASSERT(nb > 0);
2129 		if (nb % fragsize) {
2130 			DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2131 			DBGP("hw_avail = %d\n", hw_avail);
2132 			DBGP("sw_avail = %d\n", sw_avail);
2133 			DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2134 			DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2135 		}
2136 		ASSERT(!(nb % fragsize));
2137 		DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2138 		      swptr, swptr + nb, swidx, swidx + nb);
2139 		pcm_copy_in(rport, swidx, swptr, nb);
2140 		li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2141 		spin_lock_irqsave(&rport->lock, iflags);
2142 		__swb_inc_i(rport, nb);
2143 		rport->byte_count += nb;
2144 		rport->frag_count += nb / fragsize;
2145 		ASSERT(nb % fragsize == 0);
2146 		wake_up(&rport->queue);
2147 	}
2148 	rport->flags &= ~HW_BUSY;
2149 	spin_unlock_irqrestore(&rport->lock, iflags);
2150 	DBGRV();
2151 }
2152 
2153 /*
2154  * pcm_flush_frag() writes zero samples to fill the current fragment,
2155  * then flushes it to the hardware.
2156  *
2157  * It is only meaningful to flush output, not input.
2158  */
2159 
pcm_flush_frag(vwsnd_dev_t * devc)2160 static void pcm_flush_frag(vwsnd_dev_t *devc)
2161 {
2162 	vwsnd_port_t *wport = &devc->wport;
2163 
2164 	DBGPV("swstate = %d\n", wport->swstate);
2165 	if (wport->swstate == SW_RUN) {
2166 		int idx = wport->swb_u_idx;
2167 		int end = (idx + wport->hw_fragsize - 1)
2168 			>> wport->hw_fragshift
2169 			<< wport->hw_fragshift;
2170 		int nb = end - idx;
2171 		DBGPV("clearing %d bytes\n", nb);
2172 		if (nb)
2173 			memset(wport->swbuf + idx,
2174 			       (char) wport->zero_word,
2175 			       nb);
2176 		wport->swstate = SW_DRAIN;
2177 		pcm_output(devc, 0, nb);
2178 	}
2179 	DBGRV();
2180 }
2181 
2182 /*
2183  * Wait for output to drain.  This sleeps uninterruptibly because
2184  * there is nothing intelligent we can do if interrupted.  This
2185  * means the process will be delayed in responding to the signal.
2186  */
2187 
pcm_write_sync(vwsnd_dev_t * devc)2188 static void pcm_write_sync(vwsnd_dev_t *devc)
2189 {
2190 	vwsnd_port_t *wport = &devc->wport;
2191 	DECLARE_WAITQUEUE(wait, current);
2192 	unsigned long flags;
2193 	vwsnd_port_hwstate_t hwstate;
2194 
2195 	DBGEV("(devc=0x%p)\n", devc);
2196 	add_wait_queue(&wport->queue, &wait);
2197 	while (1) {
2198 		set_current_state(TASK_UNINTERRUPTIBLE);
2199 		spin_lock_irqsave(&wport->lock, flags);
2200 		{
2201 			hwstate = wport->hwstate;
2202 		}
2203 		spin_unlock_irqrestore(&wport->lock, flags);
2204 		if (hwstate == HW_STOPPED)
2205 			break;
2206 		schedule();
2207 	}
2208 	current->state = TASK_RUNNING;
2209 	remove_wait_queue(&wport->queue, &wait);
2210 	DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2211 	DBGRV();
2212 }
2213 
2214 /*****************************************************************************/
2215 /* audio driver */
2216 
2217 /*
2218  * seek on an audio device always fails.
2219  */
2220 
vwsnd_audio_read_intr(vwsnd_dev_t * devc,unsigned int status)2221 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2222 {
2223 	int overflown = status & LI_INTR_COMM1_OVERFLOW;
2224 
2225 	if (status & READ_INTR_MASK)
2226 		pcm_input(devc, overflown, 0);
2227 }
2228 
vwsnd_audio_write_intr(vwsnd_dev_t * devc,unsigned int status)2229 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2230 {
2231 	int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2232 
2233 	if (status & WRITE_INTR_MASK)
2234 		pcm_output(devc, underflown, 0);
2235 }
2236 
vwsnd_audio_intr(int irq,void * dev_id)2237 static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id)
2238 {
2239 	vwsnd_dev_t *devc = dev_id;
2240 	unsigned int status;
2241 
2242 	DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id);
2243 
2244 	status = li_get_clear_intr_status(&devc->lith);
2245 	vwsnd_audio_read_intr(devc, status);
2246 	vwsnd_audio_write_intr(devc, status);
2247 	return IRQ_HANDLED;
2248 }
2249 
vwsnd_audio_do_read(struct file * file,char * buffer,size_t count,loff_t * ppos)2250 static ssize_t vwsnd_audio_do_read(struct file *file,
2251 				   char *buffer,
2252 				   size_t count,
2253 				   loff_t *ppos)
2254 {
2255 	vwsnd_dev_t *devc = file->private_data;
2256 	vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2257 			       &devc->rport : NULL);
2258 	int ret, nb;
2259 
2260 	DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2261 	     file, buffer, count, ppos);
2262 
2263 	if (!rport)
2264 		return -EINVAL;
2265 
2266 	if (rport->swbuf == NULL) {
2267 		vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2268 			&devc->wport : NULL;
2269 		ret = pcm_setup(devc, rport, wport);
2270 		if (ret < 0)
2271 			return ret;
2272 	}
2273 
2274 	if (!access_ok(VERIFY_READ, buffer, count))
2275 		return -EFAULT;
2276 	ret = 0;
2277 	while (count) {
2278 		DECLARE_WAITQUEUE(wait, current);
2279 		add_wait_queue(&rport->queue, &wait);
2280 		while ((nb = swb_inc_u(rport, 0)) == 0) {
2281 			DBGPV("blocking\n");
2282 			set_current_state(TASK_INTERRUPTIBLE);
2283 			if (rport->flags & DISABLED ||
2284 			    file->f_flags & O_NONBLOCK) {
2285 				current->state = TASK_RUNNING;
2286 				remove_wait_queue(&rport->queue, &wait);
2287 				return ret ? ret : -EAGAIN;
2288 			}
2289 			schedule();
2290 			if (signal_pending(current)) {
2291 				current->state = TASK_RUNNING;
2292 				remove_wait_queue(&rport->queue, &wait);
2293 				return ret ? ret : -ERESTARTSYS;
2294 			}
2295 		}
2296 		current->state = TASK_RUNNING;
2297 		remove_wait_queue(&rport->queue, &wait);
2298 		pcm_input(devc, 0, 0);
2299 		/* nb bytes are available in userbuf. */
2300 		if (nb > count)
2301 			nb = count;
2302 		DBGPV("nb = %d\n", nb);
2303 		if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
2304 			return -EFAULT;
2305 		(void) swb_inc_u(rport, nb);
2306 		buffer += nb;
2307 		count -= nb;
2308 		ret += nb;
2309 	}
2310 	DBGPV("returning %d\n", ret);
2311 	return ret;
2312 }
2313 
vwsnd_audio_read(struct file * file,char * buffer,size_t count,loff_t * ppos)2314 static ssize_t vwsnd_audio_read(struct file *file,
2315 				char *buffer,
2316 				size_t count,
2317 				loff_t *ppos)
2318 {
2319 	vwsnd_dev_t *devc = file->private_data;
2320 	ssize_t ret;
2321 
2322 	mutex_lock(&devc->io_mutex);
2323 	ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2324 	mutex_unlock(&devc->io_mutex);
2325 	return ret;
2326 }
2327 
vwsnd_audio_do_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)2328 static ssize_t vwsnd_audio_do_write(struct file *file,
2329 				    const char *buffer,
2330 				    size_t count,
2331 				    loff_t *ppos)
2332 {
2333 	vwsnd_dev_t *devc = file->private_data;
2334 	vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2335 			       &devc->wport : NULL);
2336 	int ret, nb;
2337 
2338 	DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2339 	      file, buffer, count, ppos);
2340 
2341 	if (!wport)
2342 		return -EINVAL;
2343 
2344 	if (wport->swbuf == NULL) {
2345 		vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2346 			&devc->rport : NULL;
2347 		ret = pcm_setup(devc, rport, wport);
2348 		if (ret < 0)
2349 			return ret;
2350 	}
2351 	if (!access_ok(VERIFY_WRITE, buffer, count))
2352 		return -EFAULT;
2353 	ret = 0;
2354 	while (count) {
2355 		DECLARE_WAITQUEUE(wait, current);
2356 		add_wait_queue(&wport->queue, &wait);
2357 		while ((nb = swb_inc_u(wport, 0)) == 0) {
2358 			set_current_state(TASK_INTERRUPTIBLE);
2359 			if (wport->flags & DISABLED ||
2360 			    file->f_flags & O_NONBLOCK) {
2361 				current->state = TASK_RUNNING;
2362 				remove_wait_queue(&wport->queue, &wait);
2363 				return ret ? ret : -EAGAIN;
2364 			}
2365 			schedule();
2366 			if (signal_pending(current)) {
2367 				current->state = TASK_RUNNING;
2368 				remove_wait_queue(&wport->queue, &wait);
2369 				return ret ? ret : -ERESTARTSYS;
2370 			}
2371 		}
2372 		current->state = TASK_RUNNING;
2373 		remove_wait_queue(&wport->queue, &wait);
2374 		/* nb bytes are available in userbuf. */
2375 		if (nb > count)
2376 			nb = count;
2377 		DBGPV("nb = %d\n", nb);
2378 		if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
2379 			return -EFAULT;
2380 		pcm_output(devc, 0, nb);
2381 		buffer += nb;
2382 		count -= nb;
2383 		ret += nb;
2384 	}
2385 	DBGPV("returning %d\n", ret);
2386 	return ret;
2387 }
2388 
vwsnd_audio_write(struct file * file,const char * buffer,size_t count,loff_t * ppos)2389 static ssize_t vwsnd_audio_write(struct file *file,
2390 				 const char *buffer,
2391 				 size_t count,
2392 				 loff_t *ppos)
2393 {
2394 	vwsnd_dev_t *devc = file->private_data;
2395 	ssize_t ret;
2396 
2397 	mutex_lock(&devc->io_mutex);
2398 	ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2399 	mutex_unlock(&devc->io_mutex);
2400 	return ret;
2401 }
2402 
2403 /* No kernel lock - fine */
vwsnd_audio_poll(struct file * file,struct poll_table_struct * wait)2404 static unsigned int vwsnd_audio_poll(struct file *file,
2405 				     struct poll_table_struct *wait)
2406 {
2407 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2408 	vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2409 		&devc->rport : NULL;
2410 	vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2411 		&devc->wport : NULL;
2412 	unsigned int mask = 0;
2413 
2414 	DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2415 
2416 	ASSERT(rport || wport);
2417 	if (rport) {
2418 		poll_wait(file, &rport->queue, wait);
2419 		if (swb_inc_u(rport, 0))
2420 			mask |= (POLLIN | POLLRDNORM);
2421 	}
2422 	if (wport) {
2423 		poll_wait(file, &wport->queue, wait);
2424 		if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2425 			mask |= (POLLOUT | POLLWRNORM);
2426 	}
2427 
2428 	DBGPV("returning 0x%x\n", mask);
2429 	return mask;
2430 }
2431 
vwsnd_audio_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2432 static int vwsnd_audio_do_ioctl(struct file *file,
2433 				unsigned int cmd,
2434 				unsigned long arg)
2435 {
2436 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2437 	vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2438 		&devc->rport : NULL;
2439 	vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2440 		&devc->wport : NULL;
2441 	vwsnd_port_t *aport = rport ? rport : wport;
2442 	struct audio_buf_info buf_info;
2443 	struct count_info info;
2444 	unsigned long flags;
2445 	int ival;
2446 
2447 
2448 	DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2449 	      file, cmd, arg);
2450 	switch (cmd) {
2451 	case OSS_GETVERSION:		/* _SIOR ('M', 118, int) */
2452 		DBGX("OSS_GETVERSION\n");
2453 		ival = SOUND_VERSION;
2454 		return put_user(ival, (int *) arg);
2455 
2456 	case SNDCTL_DSP_GETCAPS:	/* _SIOR ('P',15, int) */
2457 		DBGX("SNDCTL_DSP_GETCAPS\n");
2458 		ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
2459 		return put_user(ival, (int *) arg);
2460 
2461 	case SNDCTL_DSP_GETFMTS:	/* _SIOR ('P',11, int) */
2462 		DBGX("SNDCTL_DSP_GETFMTS\n");
2463 		ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2464 			AFMT_U8 | AFMT_S8);
2465 		return put_user(ival, (int *) arg);
2466 		break;
2467 
2468 	case SOUND_PCM_READ_RATE:	/* _SIOR ('P', 2, int) */
2469 		DBGX("SOUND_PCM_READ_RATE\n");
2470 		ival = aport->sw_framerate;
2471 		return put_user(ival, (int *) arg);
2472 
2473 	case SOUND_PCM_READ_CHANNELS:	/* _SIOR ('P', 6, int) */
2474 		DBGX("SOUND_PCM_READ_CHANNELS\n");
2475 		ival = aport->sw_channels;
2476 		return put_user(ival, (int *) arg);
2477 
2478 	case SNDCTL_DSP_SPEED:		/* _SIOWR('P', 2, int) */
2479 		if (get_user(ival, (int *) arg))
2480 			return -EFAULT;
2481 		DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2482 		if (ival) {
2483 			if (aport->swstate != SW_INITIAL) {
2484 				DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2485 				     aport->swstate);
2486 				return -EINVAL;
2487 			}
2488 			if (ival < MIN_SPEED)
2489 				ival = MIN_SPEED;
2490 			if (ival > MAX_SPEED)
2491 				ival = MAX_SPEED;
2492 			if (rport)
2493 				rport->sw_framerate = ival;
2494 			if (wport)
2495 				wport->sw_framerate = ival;
2496 		} else
2497 			ival = aport->sw_framerate;
2498 		return put_user(ival, (int *) arg);
2499 
2500 	case SNDCTL_DSP_STEREO:		/* _SIOWR('P', 3, int) */
2501 		if (get_user(ival, (int *) arg))
2502 			return -EFAULT;
2503 		DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2504 		if (ival != 0 && ival != 1)
2505 			return -EINVAL;
2506 		if (aport->swstate != SW_INITIAL)
2507 			return -EINVAL;
2508 		if (rport)
2509 			rport->sw_channels = ival + 1;
2510 		if (wport)
2511 			wport->sw_channels = ival + 1;
2512 		return put_user(ival, (int *) arg);
2513 
2514 	case SNDCTL_DSP_CHANNELS:	/* _SIOWR('P', 6, int) */
2515 		if (get_user(ival, (int *) arg))
2516 			return -EFAULT;
2517 		DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2518 		if (ival != 1 && ival != 2)
2519 			return -EINVAL;
2520 		if (aport->swstate != SW_INITIAL)
2521 			return -EINVAL;
2522 		if (rport)
2523 			rport->sw_channels = ival;
2524 		if (wport)
2525 			wport->sw_channels = ival;
2526 		return put_user(ival, (int *) arg);
2527 
2528 	case SNDCTL_DSP_GETBLKSIZE:	/* _SIOWR('P', 4, int) */
2529 		ival = pcm_setup(devc, rport, wport);
2530 		if (ival < 0) {
2531 			DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2532 			return ival;
2533 		}
2534 		ival = 1 << aport->sw_fragshift;
2535 		DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2536 		return put_user(ival, (int *) arg);
2537 
2538 	case SNDCTL_DSP_SETFRAGMENT:	/* _SIOWR('P',10, int) */
2539 		if (get_user(ival, (int *) arg))
2540 			return -EFAULT;
2541 		DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2542 		     ival >> 16, ival & 0xFFFF);
2543 		if (aport->swstate != SW_INITIAL)
2544 			return -EINVAL;
2545 		{
2546 			int sw_fragshift = ival & 0xFFFF;
2547 			int sw_subdivshift = aport->sw_subdivshift;
2548 			int hw_fragshift = sw_fragshift - sw_subdivshift;
2549 			int sw_fragcount = (ival >> 16) & 0xFFFF;
2550 			int hw_fragsize;
2551 			if (hw_fragshift < MIN_FRAGSHIFT)
2552 				hw_fragshift = MIN_FRAGSHIFT;
2553 			if (hw_fragshift > MAX_FRAGSHIFT)
2554 				hw_fragshift = MAX_FRAGSHIFT;
2555 			sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2556 			hw_fragsize = 1 << hw_fragshift;
2557 			if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2558 				sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2559 			if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2560 				sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2561 			DBGPV("sw_fragshift = %d\n", sw_fragshift);
2562 			DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2563 			if (rport) {
2564 				rport->sw_fragshift = sw_fragshift;
2565 				rport->sw_fragcount = sw_fragcount;
2566 			}
2567 			if (wport) {
2568 				wport->sw_fragshift = sw_fragshift;
2569 				wport->sw_fragcount = sw_fragcount;
2570 			}
2571 			ival = sw_fragcount << 16 | sw_fragshift;
2572 		}
2573 		DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2574 		      ival >> 16, ival & 0xFFFF);
2575 		return put_user(ival, (int *) arg);
2576 
2577 	case SNDCTL_DSP_SUBDIVIDE:	/* _SIOWR('P', 9, int) */
2578                 if (get_user(ival, (int *) arg))
2579 			return -EFAULT;
2580 		DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2581 		if (aport->swstate != SW_INITIAL)
2582 			return -EINVAL;
2583 		{
2584 			int subdivshift;
2585 			int hw_fragshift, hw_fragsize, hw_fragcount;
2586 			switch (ival) {
2587 			case 1: subdivshift = 0; break;
2588 			case 2: subdivshift = 1; break;
2589 			case 4: subdivshift = 2; break;
2590 			default: return -EINVAL;
2591 			}
2592 			hw_fragshift = aport->sw_fragshift - subdivshift;
2593 			if (hw_fragshift < MIN_FRAGSHIFT ||
2594 			    hw_fragshift > MAX_FRAGSHIFT)
2595 				return -EINVAL;
2596 			hw_fragsize = 1 << hw_fragshift;
2597 			hw_fragcount = aport->sw_fragcount >> subdivshift;
2598 			if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2599 			    hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2600 				return -EINVAL;
2601 			if (rport)
2602 				rport->sw_subdivshift = subdivshift;
2603 			if (wport)
2604 				wport->sw_subdivshift = subdivshift;
2605 		}
2606 		return 0;
2607 
2608 	case SNDCTL_DSP_SETFMT:		/* _SIOWR('P',5, int) */
2609 		if (get_user(ival, (int *) arg))
2610 			return -EFAULT;
2611 		DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2612 		if (ival != AFMT_QUERY) {
2613 			if (aport->swstate != SW_INITIAL) {
2614 				DBGP("SETFMT failed, swstate = %d\n",
2615 				     aport->swstate);
2616 				return -EINVAL;
2617 			}
2618 			switch (ival) {
2619 			case AFMT_MU_LAW:
2620 			case AFMT_A_LAW:
2621 			case AFMT_U8:
2622 			case AFMT_S8:
2623 			case AFMT_S16_LE:
2624 				if (rport)
2625 					rport->sw_samplefmt = ival;
2626 				if (wport)
2627 					wport->sw_samplefmt = ival;
2628 				break;
2629 			default:
2630 				return -EINVAL;
2631 			}
2632 		}
2633 		ival = aport->sw_samplefmt;
2634 		return put_user(ival, (int *) arg);
2635 
2636 	case SNDCTL_DSP_GETOSPACE:	/* _SIOR ('P',12, audio_buf_info) */
2637 		DBGXV("SNDCTL_DSP_GETOSPACE\n");
2638 		if (!wport)
2639 			return -EINVAL;
2640 		ival = pcm_setup(devc, rport, wport);
2641 		if (ival < 0)
2642 			return ival;
2643 		ival = swb_inc_u(wport, 0);
2644 		buf_info.fragments = ival >> wport->sw_fragshift;
2645 		buf_info.fragstotal = wport->sw_fragcount;
2646 		buf_info.fragsize = 1 << wport->sw_fragshift;
2647 		buf_info.bytes = ival;
2648 		DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2649 		     buf_info.fragments, buf_info.fragstotal,
2650 		     buf_info.fragsize, buf_info.bytes);
2651 		if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2652 			return -EFAULT;
2653 		return 0;
2654 
2655 	case SNDCTL_DSP_GETISPACE:	/* _SIOR ('P',13, audio_buf_info) */
2656 		DBGX("SNDCTL_DSP_GETISPACE\n");
2657 		if (!rport)
2658 			return -EINVAL;
2659 		ival = pcm_setup(devc, rport, wport);
2660 		if (ival < 0)
2661 			return ival;
2662 		ival = swb_inc_u(rport, 0);
2663 		buf_info.fragments = ival >> rport->sw_fragshift;
2664 		buf_info.fragstotal = rport->sw_fragcount;
2665 		buf_info.fragsize = 1 << rport->sw_fragshift;
2666 		buf_info.bytes = ival;
2667 		DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2668 		     buf_info.fragments, buf_info.fragstotal,
2669 		     buf_info.fragsize, buf_info.bytes);
2670 		if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2671 			return -EFAULT;
2672 		return 0;
2673 
2674 	case SNDCTL_DSP_NONBLOCK:	/* _SIO  ('P',14) */
2675 		DBGX("SNDCTL_DSP_NONBLOCK\n");
2676 		spin_lock(&file->f_lock);
2677 		file->f_flags |= O_NONBLOCK;
2678 		spin_unlock(&file->f_lock);
2679 		return 0;
2680 
2681 	case SNDCTL_DSP_RESET:		/* _SIO  ('P', 0) */
2682 		DBGX("SNDCTL_DSP_RESET\n");
2683 		/*
2684 		 * Nothing special needs to be done for input.  Input
2685 		 * samples sit in swbuf, but it will be reinitialized
2686 		 * to empty when pcm_setup() is called.
2687 		 */
2688 		if (wport && wport->swbuf) {
2689 			wport->swstate = SW_INITIAL;
2690 			pcm_output(devc, 0, 0);
2691 			pcm_write_sync(devc);
2692 		}
2693 		pcm_shutdown(devc, rport, wport);
2694 		return 0;
2695 
2696 	case SNDCTL_DSP_SYNC:		/* _SIO  ('P', 1) */
2697 		DBGX("SNDCTL_DSP_SYNC\n");
2698 		if (wport) {
2699 			pcm_flush_frag(devc);
2700 			pcm_write_sync(devc);
2701 		}
2702 		pcm_shutdown(devc, rport, wport);
2703 		return 0;
2704 
2705 	case SNDCTL_DSP_POST:		/* _SIO  ('P', 8) */
2706 		DBGX("SNDCTL_DSP_POST\n");
2707 		if (!wport)
2708 			return -EINVAL;
2709 		pcm_flush_frag(devc);
2710 		return 0;
2711 
2712 	case SNDCTL_DSP_GETIPTR:	/* _SIOR ('P', 17, count_info) */
2713 		DBGX("SNDCTL_DSP_GETIPTR\n");
2714 		if (!rport)
2715 			return -EINVAL;
2716 		spin_lock_irqsave(&rport->lock, flags);
2717 		{
2718 			ustmsc_t ustmsc;
2719 			if (rport->hwstate == HW_RUNNING) {
2720 				ASSERT(rport->swstate == SW_RUN);
2721 				li_read_USTMSC(&rport->chan, &ustmsc);
2722 				info.bytes = ustmsc.msc - rport->MSC_offset;
2723 				info.bytes *= rport->frame_size;
2724 			} else {
2725 				info.bytes = rport->byte_count;
2726 			}
2727 			info.blocks = rport->frag_count;
2728 			info.ptr = 0;	/* not implemented */
2729 			rport->frag_count = 0;
2730 		}
2731 		spin_unlock_irqrestore(&rport->lock, flags);
2732 		if (copy_to_user((void *) arg, &info, sizeof info))
2733 			return -EFAULT;
2734 		return 0;
2735 
2736 	case SNDCTL_DSP_GETOPTR:	/* _SIOR ('P',18, count_info) */
2737 		DBGX("SNDCTL_DSP_GETOPTR\n");
2738 		if (!wport)
2739 			return -EINVAL;
2740 		spin_lock_irqsave(&wport->lock, flags);
2741 		{
2742 			ustmsc_t ustmsc;
2743 			if (wport->hwstate == HW_RUNNING) {
2744 				ASSERT(wport->swstate == SW_RUN);
2745 				li_read_USTMSC(&wport->chan, &ustmsc);
2746 				info.bytes = ustmsc.msc - wport->MSC_offset;
2747 				info.bytes *= wport->frame_size;
2748 			} else {
2749 				info.bytes = wport->byte_count;
2750 			}
2751 			info.blocks = wport->frag_count;
2752 			info.ptr = 0;	/* not implemented */
2753 			wport->frag_count = 0;
2754 		}
2755 		spin_unlock_irqrestore(&wport->lock, flags);
2756 		if (copy_to_user((void *) arg, &info, sizeof info))
2757 			return -EFAULT;
2758 		return 0;
2759 
2760 	case SNDCTL_DSP_GETODELAY:	/* _SIOR ('P', 23, int) */
2761 		DBGX("SNDCTL_DSP_GETODELAY\n");
2762 		if (!wport)
2763 			return -EINVAL;
2764 		spin_lock_irqsave(&wport->lock, flags);
2765 		{
2766 			int fsize = wport->frame_size;
2767 			ival = wport->swb_i_avail / fsize;
2768 			if (wport->hwstate == HW_RUNNING) {
2769 				int swptr, hwptr, hwframes, hwbytes, hwsize;
2770 				int totalhwbytes;
2771 				ustmsc_t ustmsc;
2772 
2773 				hwsize = wport->hwbuf_size;
2774 				swptr = li_read_swptr(&wport->chan);
2775 				li_read_USTMSC(&wport->chan, &ustmsc);
2776 				hwframes = ustmsc.msc - wport->MSC_offset;
2777 				totalhwbytes = hwframes * fsize;
2778 				hwptr = totalhwbytes % hwsize;
2779 				hwbytes = (swptr - hwptr + hwsize) % hwsize;
2780 				ival += hwbytes / fsize;
2781 			}
2782 		}
2783 		spin_unlock_irqrestore(&wport->lock, flags);
2784 		return put_user(ival, (int *) arg);
2785 
2786 	case SNDCTL_DSP_PROFILE:	/* _SIOW ('P', 23, int) */
2787 		DBGX("SNDCTL_DSP_PROFILE\n");
2788 
2789 		/*
2790 		 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2791 		 * (private email, March 24, 1999):
2792 		 *
2793 		 *     This gives the sound driver a hint on what it
2794 		 *     should do with partial fragments
2795 		 *     (i.e. fragments partially filled with write).
2796 		 *     This can direct the driver to zero them or
2797 		 *     leave them alone.  But don't ask me what this
2798 		 *     is good for, my driver just zeroes the last
2799 		 *     fragment before the receiver stops, no idea
2800 		 *     what good for any other behaviour could
2801 		 *     be. Implementing it as NOP seems safe.
2802 		 */
2803 
2804 		break;
2805 
2806 	case SNDCTL_DSP_GETTRIGGER:	/* _SIOR ('P',16, int) */
2807 		DBGX("SNDCTL_DSP_GETTRIGGER\n");
2808 		ival = 0;
2809 		if (rport) {
2810 			spin_lock_irqsave(&rport->lock, flags);
2811 			{
2812 				if (!(rport->flags & DISABLED))
2813 					ival |= PCM_ENABLE_INPUT;
2814 			}
2815 			spin_unlock_irqrestore(&rport->lock, flags);
2816 		}
2817 		if (wport) {
2818 			spin_lock_irqsave(&wport->lock, flags);
2819 			{
2820 				if (!(wport->flags & DISABLED))
2821 					ival |= PCM_ENABLE_OUTPUT;
2822 			}
2823 			spin_unlock_irqrestore(&wport->lock, flags);
2824 		}
2825 		return put_user(ival, (int *) arg);
2826 
2827 	case SNDCTL_DSP_SETTRIGGER:	/* _SIOW ('P',16, int) */
2828 		if (get_user(ival, (int *) arg))
2829 			return -EFAULT;
2830 		DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2831 
2832 		/*
2833 		 * If user is disabling I/O and port is not in initial
2834 		 * state, fail with EINVAL.
2835 		 */
2836 
2837 		if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2838 		     (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2839 		    aport->swstate != SW_INITIAL)
2840 			return -EINVAL;
2841 
2842 		if (rport) {
2843 			vwsnd_port_hwstate_t hwstate;
2844 			spin_lock_irqsave(&rport->lock, flags);
2845 			{
2846 				hwstate = rport->hwstate;
2847 				if (ival & PCM_ENABLE_INPUT)
2848 					rport->flags &= ~DISABLED;
2849 				else
2850 					rport->flags |= DISABLED;
2851 			}
2852 			spin_unlock_irqrestore(&rport->lock, flags);
2853 			if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2854 
2855 				if (rport->swstate == SW_INITIAL)
2856 					pcm_setup(devc, rport, wport);
2857 				else
2858 					li_activate_dma(&rport->chan);
2859 			}
2860 		}
2861 		if (wport) {
2862 			vwsnd_port_flags_t pflags;
2863 			spin_lock_irqsave(&wport->lock, flags);
2864 			{
2865 				pflags = wport->flags;
2866 				if (ival & PCM_ENABLE_OUTPUT)
2867 					wport->flags &= ~DISABLED;
2868 				else
2869 					wport->flags |= DISABLED;
2870 			}
2871 			spin_unlock_irqrestore(&wport->lock, flags);
2872 			if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2873 				if (wport->swstate == SW_RUN)
2874 					pcm_output(devc, 0, 0);
2875 			}
2876 		}
2877 		return 0;
2878 
2879 	default:
2880 		DBGP("unknown ioctl 0x%x\n", cmd);
2881 		return -EINVAL;
2882 	}
2883 	DBGP("unimplemented ioctl 0x%x\n", cmd);
2884 	return -EINVAL;
2885 }
2886 
vwsnd_audio_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2887 static long vwsnd_audio_ioctl(struct file *file,
2888 				unsigned int cmd,
2889 				unsigned long arg)
2890 {
2891 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2892 	int ret;
2893 
2894 	mutex_lock(&vwsnd_mutex);
2895 	mutex_lock(&devc->io_mutex);
2896 	ret = vwsnd_audio_do_ioctl(file, cmd, arg);
2897 	mutex_unlock(&devc->io_mutex);
2898 	mutex_unlock(&vwsnd_mutex);
2899 
2900 	return ret;
2901 }
2902 
2903 /* No mmap. */
2904 
vwsnd_audio_mmap(struct file * file,struct vm_area_struct * vma)2905 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2906 {
2907 	DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2908 	return -ENODEV;
2909 }
2910 
2911 /*
2912  * Open the audio device for read and/or write.
2913  *
2914  * Returns 0 on success, -errno on failure.
2915  */
2916 
vwsnd_audio_open(struct inode * inode,struct file * file)2917 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2918 {
2919 	vwsnd_dev_t *devc;
2920 	int minor = iminor(inode);
2921 	int sw_samplefmt;
2922 
2923 	DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2924 
2925 	mutex_lock(&vwsnd_mutex);
2926 	INC_USE_COUNT;
2927 	for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2928 		if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2929 			break;
2930 
2931 	if (devc == NULL) {
2932 		DEC_USE_COUNT;
2933 		mutex_unlock(&vwsnd_mutex);
2934 		return -ENODEV;
2935 	}
2936 
2937 	mutex_lock(&devc->open_mutex);
2938 	while (devc->open_mode & file->f_mode) {
2939 		mutex_unlock(&devc->open_mutex);
2940 		if (file->f_flags & O_NONBLOCK) {
2941 			DEC_USE_COUNT;
2942 			mutex_unlock(&vwsnd_mutex);
2943 			return -EBUSY;
2944 		}
2945 		interruptible_sleep_on(&devc->open_wait);
2946 		if (signal_pending(current)) {
2947 			DEC_USE_COUNT;
2948 			mutex_unlock(&vwsnd_mutex);
2949 			return -ERESTARTSYS;
2950 		}
2951 		mutex_lock(&devc->open_mutex);
2952 	}
2953 	devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2954 	mutex_unlock(&devc->open_mutex);
2955 
2956 	/* get default sample format from minor number. */
2957 
2958 	sw_samplefmt = 0;
2959 	if ((minor & 0xF) == SND_DEV_DSP)
2960 		sw_samplefmt = AFMT_U8;
2961 	else if ((minor & 0xF) == SND_DEV_AUDIO)
2962 		sw_samplefmt = AFMT_MU_LAW;
2963 	else if ((minor & 0xF) == SND_DEV_DSP16)
2964 		sw_samplefmt = AFMT_S16_LE;
2965 	else
2966 		ASSERT(0);
2967 
2968 	/* Initialize vwsnd_ports. */
2969 
2970 	mutex_lock(&devc->io_mutex);
2971 	{
2972 		if (file->f_mode & FMODE_READ) {
2973 			devc->rport.swstate        = SW_INITIAL;
2974 			devc->rport.flags          = 0;
2975 			devc->rport.sw_channels    = 1;
2976 			devc->rport.sw_samplefmt   = sw_samplefmt;
2977 			devc->rport.sw_framerate   = 8000;
2978 			devc->rport.sw_fragshift   = DEFAULT_FRAGSHIFT;
2979 			devc->rport.sw_fragcount   = DEFAULT_FRAGCOUNT;
2980 			devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2981 			devc->rport.byte_count     = 0;
2982 			devc->rport.frag_count     = 0;
2983 		}
2984 		if (file->f_mode & FMODE_WRITE) {
2985 			devc->wport.swstate        = SW_INITIAL;
2986 			devc->wport.flags          = 0;
2987 			devc->wport.sw_channels    = 1;
2988 			devc->wport.sw_samplefmt   = sw_samplefmt;
2989 			devc->wport.sw_framerate   = 8000;
2990 			devc->wport.sw_fragshift   = DEFAULT_FRAGSHIFT;
2991 			devc->wport.sw_fragcount   = DEFAULT_FRAGCOUNT;
2992 			devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2993 			devc->wport.byte_count     = 0;
2994 			devc->wport.frag_count     = 0;
2995 		}
2996 	}
2997 	mutex_unlock(&devc->io_mutex);
2998 
2999 	file->private_data = devc;
3000 	DBGRV();
3001 	mutex_unlock(&vwsnd_mutex);
3002 	return 0;
3003 }
3004 
3005 /*
3006  * Release (close) the audio device.
3007  */
3008 
vwsnd_audio_release(struct inode * inode,struct file * file)3009 static int vwsnd_audio_release(struct inode *inode, struct file *file)
3010 {
3011 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3012 	vwsnd_port_t *wport = NULL, *rport = NULL;
3013 	int err = 0;
3014 
3015 	mutex_lock(&vwsnd_mutex);
3016 	mutex_lock(&devc->io_mutex);
3017 	{
3018 		DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3019 
3020 		if (file->f_mode & FMODE_READ)
3021 			rport = &devc->rport;
3022 		if (file->f_mode & FMODE_WRITE) {
3023 			wport = &devc->wport;
3024 			pcm_flush_frag(devc);
3025 			pcm_write_sync(devc);
3026 		}
3027 		pcm_shutdown(devc, rport, wport);
3028 		if (rport)
3029 			rport->swstate = SW_OFF;
3030 		if (wport)
3031 			wport->swstate = SW_OFF;
3032 	}
3033 	mutex_unlock(&devc->io_mutex);
3034 
3035 	mutex_lock(&devc->open_mutex);
3036 	{
3037 		devc->open_mode &= ~file->f_mode;
3038 	}
3039 	mutex_unlock(&devc->open_mutex);
3040 	wake_up(&devc->open_wait);
3041 	DEC_USE_COUNT;
3042 	DBGR();
3043 	mutex_unlock(&vwsnd_mutex);
3044 	return err;
3045 }
3046 
3047 static const struct file_operations vwsnd_audio_fops = {
3048 	.owner =	THIS_MODULE,
3049 	.llseek =	no_llseek,
3050 	.read =		vwsnd_audio_read,
3051 	.write =	vwsnd_audio_write,
3052 	.poll =		vwsnd_audio_poll,
3053 	.unlocked_ioctl = vwsnd_audio_ioctl,
3054 	.mmap =		vwsnd_audio_mmap,
3055 	.open =		vwsnd_audio_open,
3056 	.release =	vwsnd_audio_release,
3057 };
3058 
3059 /*****************************************************************************/
3060 /* mixer driver */
3061 
3062 /* open the mixer device. */
3063 
vwsnd_mixer_open(struct inode * inode,struct file * file)3064 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3065 {
3066 	vwsnd_dev_t *devc;
3067 
3068 	DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3069 
3070 	INC_USE_COUNT;
3071 	mutex_lock(&vwsnd_mutex);
3072 	for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3073 		if (devc->mixer_minor == iminor(inode))
3074 			break;
3075 
3076 	if (devc == NULL) {
3077 		DEC_USE_COUNT;
3078 		mutex_unlock(&vwsnd_mutex);
3079 		return -ENODEV;
3080 	}
3081 	file->private_data = devc;
3082 	mutex_unlock(&vwsnd_mutex);
3083 	return 0;
3084 }
3085 
3086 /* release (close) the mixer device. */
3087 
vwsnd_mixer_release(struct inode * inode,struct file * file)3088 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3089 {
3090 	DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3091 	DEC_USE_COUNT;
3092 	return 0;
3093 }
3094 
3095 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3096 
mixer_read_ioctl(vwsnd_dev_t * devc,unsigned int nr,void __user * arg)3097 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3098 {
3099 	int val = -1;
3100 
3101 	DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3102 
3103 	switch (nr) {
3104 	case SOUND_MIXER_CAPS:
3105 		val = SOUND_CAP_EXCL_INPUT;
3106 		break;
3107 
3108 	case SOUND_MIXER_DEVMASK:
3109 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3110 		       SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3111 		break;
3112 
3113 	case SOUND_MIXER_STEREODEVS:
3114 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3115 		       SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3116 		break;
3117 
3118 	case SOUND_MIXER_OUTMASK:
3119 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3120 		       SOUND_MASK_MIC | SOUND_MASK_CD);
3121 		break;
3122 
3123 	case SOUND_MIXER_RECMASK:
3124 		val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3125 		       SOUND_MASK_MIC | SOUND_MASK_CD);
3126 		break;
3127 
3128 	case SOUND_MIXER_PCM:
3129 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3130 		break;
3131 
3132 	case SOUND_MIXER_LINE:
3133 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3134 		break;
3135 
3136 	case SOUND_MIXER_MIC:
3137 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3138 		break;
3139 
3140 	case SOUND_MIXER_CD:
3141 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3142 		break;
3143 
3144 	case SOUND_MIXER_RECLEV:
3145 		val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3146 		break;
3147 
3148 	case SOUND_MIXER_RECSRC:
3149 		val = ad1843_get_recsrc(&devc->lith);
3150 		break;
3151 
3152 	case SOUND_MIXER_OUTSRC:
3153 		val = ad1843_get_outsrc(&devc->lith);
3154 		break;
3155 
3156 	default:
3157 		return -EINVAL;
3158 	}
3159 	return put_user(val, (int __user *) arg);
3160 }
3161 
3162 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3163 
mixer_write_ioctl(vwsnd_dev_t * devc,unsigned int nr,void __user * arg)3164 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3165 {
3166 	int val;
3167 	int err;
3168 
3169 	DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3170 
3171 	err = get_user(val, (int __user *) arg);
3172 	if (err)
3173 		return -EFAULT;
3174 	switch (nr) {
3175 	case SOUND_MIXER_PCM:
3176 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3177 		break;
3178 
3179 	case SOUND_MIXER_LINE:
3180 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3181 		break;
3182 
3183 	case SOUND_MIXER_MIC:
3184 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3185 		break;
3186 
3187 	case SOUND_MIXER_CD:
3188 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3189 		break;
3190 
3191 	case SOUND_MIXER_RECLEV:
3192 		val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3193 		break;
3194 
3195 	case SOUND_MIXER_RECSRC:
3196 		if (devc->rport.swbuf || devc->wport.swbuf)
3197 			return -EBUSY;	/* can't change recsrc while running */
3198 		val = ad1843_set_recsrc(&devc->lith, val);
3199 		break;
3200 
3201 	case SOUND_MIXER_OUTSRC:
3202 		val = ad1843_set_outsrc(&devc->lith, val);
3203 		break;
3204 
3205 	default:
3206 		return -EINVAL;
3207 	}
3208 	if (val < 0)
3209 		return val;
3210 	return put_user(val, (int __user *) arg);
3211 }
3212 
3213 /* This is the ioctl entry to the mixer driver. */
3214 
vwsnd_mixer_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3215 static long vwsnd_mixer_ioctl(struct file *file,
3216 			      unsigned int cmd,
3217 			      unsigned long arg)
3218 {
3219 	vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3220 	const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3221 	const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3222 	int retval;
3223 
3224 	DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3225 
3226 	mutex_lock(&vwsnd_mutex);
3227 	mutex_lock(&devc->mix_mutex);
3228 	{
3229 		if ((cmd & ~nrmask) == MIXER_READ(0))
3230 			retval = mixer_read_ioctl(devc, nr, (void __user *) arg);
3231 		else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3232 			retval = mixer_write_ioctl(devc, nr, (void __user *) arg);
3233 		else
3234 			retval = -EINVAL;
3235 	}
3236 	mutex_unlock(&devc->mix_mutex);
3237 	mutex_unlock(&vwsnd_mutex);
3238 	return retval;
3239 }
3240 
3241 static const struct file_operations vwsnd_mixer_fops = {
3242 	.owner =	THIS_MODULE,
3243 	.llseek =	no_llseek,
3244 	.unlocked_ioctl = vwsnd_mixer_ioctl,
3245 	.open =		vwsnd_mixer_open,
3246 	.release =	vwsnd_mixer_release,
3247 };
3248 
3249 /*****************************************************************************/
3250 /* probe/attach/unload */
3251 
3252 /* driver probe routine.  Return nonzero if hardware is found. */
3253 
probe_vwsnd(struct address_info * hw_config)3254 static int __init probe_vwsnd(struct address_info *hw_config)
3255 {
3256 	lithium_t lith;
3257 	int w;
3258 	unsigned long later;
3259 
3260 	DBGEV("(hw_config=0x%p)\n", hw_config);
3261 
3262 	/* XXX verify lithium present (to prevent crash on non-vw) */
3263 
3264 	if (li_create(&lith, hw_config->io_base) != 0) {
3265 		printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3266 		return 0;
3267 	}
3268 	later = jiffies + 2;
3269 	li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3270 	do {
3271 		w = li_readl(&lith, LI_HOST_CONTROLLER);
3272 	} while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later));
3273 
3274 	li_destroy(&lith);
3275 
3276 	DBGPV("HC = 0x%04x\n", w);
3277 
3278 	if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3279 
3280 		/* This may indicate a beta machine with no audio,
3281 		 * or a future machine with different audio.
3282 		 * On beta-release 320 w/ no audio, HC == 0x4000 */
3283 
3284 		printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3285 		return 0;
3286 	}
3287 
3288 	if (w & LI_HC_LINK_FAILURE) {
3289 		printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3290 		return 0;
3291 	}
3292 
3293 	printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n",
3294 		hw_config->io_base, hw_config->irq);
3295 
3296 	return 1;
3297 }
3298 
3299 /*
3300  * driver attach routine.  Initialize driver data structures and
3301  * initialize hardware.  A new vwsnd_dev_t is allocated and put
3302  * onto the global list, vwsnd_dev_list.
3303  *
3304  * Return +minor_dev on success, -errno on failure.
3305  */
3306 
attach_vwsnd(struct address_info * hw_config)3307 static int __init attach_vwsnd(struct address_info *hw_config)
3308 {
3309 	vwsnd_dev_t *devc = NULL;
3310 	int err = -ENOMEM;
3311 
3312 	DBGEV("(hw_config=0x%p)\n", hw_config);
3313 
3314 	devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3315 	if (devc == NULL)
3316 		goto fail0;
3317 
3318 	err = li_create(&devc->lith, hw_config->io_base);
3319 	if (err)
3320 		goto fail1;
3321 
3322 	init_waitqueue_head(&devc->open_wait);
3323 
3324 	devc->rport.hwbuf_size = HWBUF_SIZE;
3325 	devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3326 	if (!devc->rport.hwbuf_vaddr)
3327 		goto fail2;
3328 	devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr;
3329 	devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3330 
3331 	/*
3332 	 * Quote from the NT driver:
3333 	 *
3334 	 * // WARNING!!! HACK to setup output dma!!!
3335 	 * // This is required because even on output there is some data
3336 	 * // trickling into the input DMA channel.  This is a bug in the
3337 	 * // Lithium microcode.
3338 	 * // --sde
3339 	 *
3340 	 * We set the input side's DMA base address here.  It will remain
3341 	 * valid until the driver is unloaded.
3342 	 */
3343 
3344 	li_writel(&devc->lith, LI_COMM1_BASE,
3345 		  devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3346 
3347 	devc->wport.hwbuf_size = HWBUF_SIZE;
3348 	devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3349 	if (!devc->wport.hwbuf_vaddr)
3350 		goto fail3;
3351 	devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr;
3352 	devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3353 	DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3354 
3355 	DBGDO(shut_up++);
3356 	err = ad1843_init(&devc->lith);
3357 	DBGDO(shut_up--);
3358 	if (err)
3359 		goto fail4;
3360 
3361 	/* install interrupt handler */
3362 
3363 	err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3364 	if (err)
3365 		goto fail5;
3366 
3367 	/* register this device's drivers. */
3368 
3369 	devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3370 	if ((err = devc->audio_minor) < 0) {
3371 		DBGDO(printk(KERN_WARNING
3372 			     "attach_vwsnd: register_sound_dsp error %d\n",
3373 			     err));
3374 		goto fail6;
3375 	}
3376 	devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3377 						 devc->audio_minor >> 4);
3378 	if ((err = devc->mixer_minor) < 0) {
3379 		DBGDO(printk(KERN_WARNING
3380 			     "attach_vwsnd: register_sound_mixer error %d\n",
3381 			     err));
3382 		goto fail7;
3383 	}
3384 
3385 	/* Squirrel away device indices for unload routine. */
3386 
3387 	hw_config->slots[0] = devc->audio_minor;
3388 
3389 	/* Initialize as much of *devc as possible */
3390 
3391 	mutex_init(&devc->open_mutex);
3392 	mutex_init(&devc->io_mutex);
3393 	mutex_init(&devc->mix_mutex);
3394 	devc->open_mode = 0;
3395 	spin_lock_init(&devc->rport.lock);
3396 	init_waitqueue_head(&devc->rport.queue);
3397 	devc->rport.swstate = SW_OFF;
3398 	devc->rport.hwstate = HW_STOPPED;
3399 	devc->rport.flags = 0;
3400 	devc->rport.swbuf = NULL;
3401 	spin_lock_init(&devc->wport.lock);
3402 	init_waitqueue_head(&devc->wport.queue);
3403 	devc->wport.swstate = SW_OFF;
3404 	devc->wport.hwstate = HW_STOPPED;
3405 	devc->wport.flags = 0;
3406 	devc->wport.swbuf = NULL;
3407 
3408 	/* Success.  Link us onto the local device list. */
3409 
3410 	devc->next_dev = vwsnd_dev_list;
3411 	vwsnd_dev_list = devc;
3412 	return devc->audio_minor;
3413 
3414 	/* So many ways to fail.  Undo what we did. */
3415 
3416  fail7:
3417 	unregister_sound_dsp(devc->audio_minor);
3418  fail6:
3419 	free_irq(hw_config->irq, devc);
3420  fail5:
3421  fail4:
3422 	free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3423  fail3:
3424 	free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3425  fail2:
3426 	li_destroy(&devc->lith);
3427  fail1:
3428 	kfree(devc);
3429  fail0:
3430 	return err;
3431 }
3432 
unload_vwsnd(struct address_info * hw_config)3433 static int __exit unload_vwsnd(struct address_info *hw_config)
3434 {
3435 	vwsnd_dev_t *devc, **devcp;
3436 
3437 	DBGE("()\n");
3438 
3439 	devcp = &vwsnd_dev_list;
3440 	while ((devc = *devcp)) {
3441 		if (devc->audio_minor == hw_config->slots[0]) {
3442 			*devcp = devc->next_dev;
3443 			break;
3444 		}
3445 		devcp = &devc->next_dev;
3446 	}
3447 
3448 	if (!devc)
3449 		return -ENODEV;
3450 
3451 	unregister_sound_mixer(devc->mixer_minor);
3452 	unregister_sound_dsp(devc->audio_minor);
3453 	free_irq(hw_config->irq, devc);
3454 	free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3455 	free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3456 	li_destroy(&devc->lith);
3457 	kfree(devc);
3458 
3459 	return 0;
3460 }
3461 
3462 /*****************************************************************************/
3463 /* initialization and loadable kernel module interface */
3464 
3465 static struct address_info the_hw_config = {
3466 	0xFF001000,			/* lithium phys addr  */
3467 	CO_IRQ(CO_APIC_LI_AUDIO)	/* irq */
3468 };
3469 
3470 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3471 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3472 MODULE_LICENSE("GPL");
3473 
init_vwsnd(void)3474 static int __init init_vwsnd(void)
3475 {
3476 	int err;
3477 
3478 	DBGXV("\n");
3479 	DBGXV("sound::vwsnd::init_module()\n");
3480 
3481 	if (!probe_vwsnd(&the_hw_config))
3482 		return -ENODEV;
3483 
3484 	err = attach_vwsnd(&the_hw_config);
3485 	if (err < 0)
3486 		return err;
3487 	return 0;
3488 }
3489 
cleanup_vwsnd(void)3490 static void __exit cleanup_vwsnd(void)
3491 {
3492 	DBGX("sound::vwsnd::cleanup_module()\n");
3493 
3494 	unload_vwsnd(&the_hw_config);
3495 }
3496 
3497 module_init(init_vwsnd);
3498 module_exit(cleanup_vwsnd);
3499