1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 
76 static DEFINE_RWLOCK(policy_rwlock);
77 
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized;
81 
82 /*
83  * The largest sequence number that has been used when
84  * providing an access decision to the access vector cache.
85  * The sequence number only changes when a policy change
86  * occurs.
87  */
88 static u32 latest_granting;
89 
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct context *scontext,
95 				      struct context *tcontext,
96 				      u16 tclass,
97 				      struct av_decision *avd);
98 
99 struct selinux_mapping {
100 	u16 value; /* policy value */
101 	unsigned num_perms;
102 	u32 perms[sizeof(u32) * 8];
103 };
104 
105 static struct selinux_mapping *current_mapping;
106 static u16 current_mapping_size;
107 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)108 static int selinux_set_mapping(struct policydb *pol,
109 			       struct security_class_mapping *map,
110 			       struct selinux_mapping **out_map_p,
111 			       u16 *out_map_size)
112 {
113 	struct selinux_mapping *out_map = NULL;
114 	size_t size = sizeof(struct selinux_mapping);
115 	u16 i, j;
116 	unsigned k;
117 	bool print_unknown_handle = false;
118 
119 	/* Find number of classes in the input mapping */
120 	if (!map)
121 		return -EINVAL;
122 	i = 0;
123 	while (map[i].name)
124 		i++;
125 
126 	/* Allocate space for the class records, plus one for class zero */
127 	out_map = kcalloc(++i, size, GFP_ATOMIC);
128 	if (!out_map)
129 		return -ENOMEM;
130 
131 	/* Store the raw class and permission values */
132 	j = 0;
133 	while (map[j].name) {
134 		struct security_class_mapping *p_in = map + (j++);
135 		struct selinux_mapping *p_out = out_map + j;
136 
137 		/* An empty class string skips ahead */
138 		if (!strcmp(p_in->name, "")) {
139 			p_out->num_perms = 0;
140 			continue;
141 		}
142 
143 		p_out->value = string_to_security_class(pol, p_in->name);
144 		if (!p_out->value) {
145 			printk(KERN_INFO
146 			       "SELinux:  Class %s not defined in policy.\n",
147 			       p_in->name);
148 			if (pol->reject_unknown)
149 				goto err;
150 			p_out->num_perms = 0;
151 			print_unknown_handle = true;
152 			continue;
153 		}
154 
155 		k = 0;
156 		while (p_in->perms && p_in->perms[k]) {
157 			/* An empty permission string skips ahead */
158 			if (!*p_in->perms[k]) {
159 				k++;
160 				continue;
161 			}
162 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
163 							    p_in->perms[k]);
164 			if (!p_out->perms[k]) {
165 				printk(KERN_INFO
166 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
167 				       p_in->perms[k], p_in->name);
168 				if (pol->reject_unknown)
169 					goto err;
170 				print_unknown_handle = true;
171 			}
172 
173 			k++;
174 		}
175 		p_out->num_perms = k;
176 	}
177 
178 	if (print_unknown_handle)
179 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
180 		       pol->allow_unknown ? "allowed" : "denied");
181 
182 	*out_map_p = out_map;
183 	*out_map_size = i;
184 	return 0;
185 err:
186 	kfree(out_map);
187 	return -EINVAL;
188 }
189 
190 /*
191  * Get real, policy values from mapped values
192  */
193 
unmap_class(u16 tclass)194 static u16 unmap_class(u16 tclass)
195 {
196 	if (tclass < current_mapping_size)
197 		return current_mapping[tclass].value;
198 
199 	return tclass;
200 }
201 
202 /*
203  * Get kernel value for class from its policy value
204  */
map_class(u16 pol_value)205 static u16 map_class(u16 pol_value)
206 {
207 	u16 i;
208 
209 	for (i = 1; i < current_mapping_size; i++) {
210 		if (current_mapping[i].value == pol_value)
211 			return i;
212 	}
213 
214 	return SECCLASS_NULL;
215 }
216 
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)217 static void map_decision(u16 tclass, struct av_decision *avd,
218 			 int allow_unknown)
219 {
220 	if (tclass < current_mapping_size) {
221 		unsigned i, n = current_mapping[tclass].num_perms;
222 		u32 result;
223 
224 		for (i = 0, result = 0; i < n; i++) {
225 			if (avd->allowed & current_mapping[tclass].perms[i])
226 				result |= 1<<i;
227 			if (allow_unknown && !current_mapping[tclass].perms[i])
228 				result |= 1<<i;
229 		}
230 		avd->allowed = result;
231 
232 		for (i = 0, result = 0; i < n; i++)
233 			if (avd->auditallow & current_mapping[tclass].perms[i])
234 				result |= 1<<i;
235 		avd->auditallow = result;
236 
237 		for (i = 0, result = 0; i < n; i++) {
238 			if (avd->auditdeny & current_mapping[tclass].perms[i])
239 				result |= 1<<i;
240 			if (!allow_unknown && !current_mapping[tclass].perms[i])
241 				result |= 1<<i;
242 		}
243 		/*
244 		 * In case the kernel has a bug and requests a permission
245 		 * between num_perms and the maximum permission number, we
246 		 * should audit that denial
247 		 */
248 		for (; i < (sizeof(u32)*8); i++)
249 			result |= 1<<i;
250 		avd->auditdeny = result;
251 	}
252 }
253 
security_mls_enabled(void)254 int security_mls_enabled(void)
255 {
256 	return policydb.mls_enabled;
257 }
258 
259 /*
260  * Return the boolean value of a constraint expression
261  * when it is applied to the specified source and target
262  * security contexts.
263  *
264  * xcontext is a special beast...  It is used by the validatetrans rules
265  * only.  For these rules, scontext is the context before the transition,
266  * tcontext is the context after the transition, and xcontext is the context
267  * of the process performing the transition.  All other callers of
268  * constraint_expr_eval should pass in NULL for xcontext.
269  */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)270 static int constraint_expr_eval(struct context *scontext,
271 				struct context *tcontext,
272 				struct context *xcontext,
273 				struct constraint_expr *cexpr)
274 {
275 	u32 val1, val2;
276 	struct context *c;
277 	struct role_datum *r1, *r2;
278 	struct mls_level *l1, *l2;
279 	struct constraint_expr *e;
280 	int s[CEXPR_MAXDEPTH];
281 	int sp = -1;
282 
283 	for (e = cexpr; e; e = e->next) {
284 		switch (e->expr_type) {
285 		case CEXPR_NOT:
286 			BUG_ON(sp < 0);
287 			s[sp] = !s[sp];
288 			break;
289 		case CEXPR_AND:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] &= s[sp + 1];
293 			break;
294 		case CEXPR_OR:
295 			BUG_ON(sp < 1);
296 			sp--;
297 			s[sp] |= s[sp + 1];
298 			break;
299 		case CEXPR_ATTR:
300 			if (sp == (CEXPR_MAXDEPTH - 1))
301 				return 0;
302 			switch (e->attr) {
303 			case CEXPR_USER:
304 				val1 = scontext->user;
305 				val2 = tcontext->user;
306 				break;
307 			case CEXPR_TYPE:
308 				val1 = scontext->type;
309 				val2 = tcontext->type;
310 				break;
311 			case CEXPR_ROLE:
312 				val1 = scontext->role;
313 				val2 = tcontext->role;
314 				r1 = policydb.role_val_to_struct[val1 - 1];
315 				r2 = policydb.role_val_to_struct[val2 - 1];
316 				switch (e->op) {
317 				case CEXPR_DOM:
318 					s[++sp] = ebitmap_get_bit(&r1->dominates,
319 								  val2 - 1);
320 					continue;
321 				case CEXPR_DOMBY:
322 					s[++sp] = ebitmap_get_bit(&r2->dominates,
323 								  val1 - 1);
324 					continue;
325 				case CEXPR_INCOMP:
326 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 								    val2 - 1) &&
328 						   !ebitmap_get_bit(&r2->dominates,
329 								    val1 - 1));
330 					continue;
331 				default:
332 					break;
333 				}
334 				break;
335 			case CEXPR_L1L2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[0]);
338 				goto mls_ops;
339 			case CEXPR_L1H2:
340 				l1 = &(scontext->range.level[0]);
341 				l2 = &(tcontext->range.level[1]);
342 				goto mls_ops;
343 			case CEXPR_H1L2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[0]);
346 				goto mls_ops;
347 			case CEXPR_H1H2:
348 				l1 = &(scontext->range.level[1]);
349 				l2 = &(tcontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L1H1:
352 				l1 = &(scontext->range.level[0]);
353 				l2 = &(scontext->range.level[1]);
354 				goto mls_ops;
355 			case CEXPR_L2H2:
356 				l1 = &(tcontext->range.level[0]);
357 				l2 = &(tcontext->range.level[1]);
358 				goto mls_ops;
359 mls_ops:
360 			switch (e->op) {
361 			case CEXPR_EQ:
362 				s[++sp] = mls_level_eq(l1, l2);
363 				continue;
364 			case CEXPR_NEQ:
365 				s[++sp] = !mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_DOM:
368 				s[++sp] = mls_level_dom(l1, l2);
369 				continue;
370 			case CEXPR_DOMBY:
371 				s[++sp] = mls_level_dom(l2, l1);
372 				continue;
373 			case CEXPR_INCOMP:
374 				s[++sp] = mls_level_incomp(l2, l1);
375 				continue;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 			break;
381 			default:
382 				BUG();
383 				return 0;
384 			}
385 
386 			switch (e->op) {
387 			case CEXPR_EQ:
388 				s[++sp] = (val1 == val2);
389 				break;
390 			case CEXPR_NEQ:
391 				s[++sp] = (val1 != val2);
392 				break;
393 			default:
394 				BUG();
395 				return 0;
396 			}
397 			break;
398 		case CEXPR_NAMES:
399 			if (sp == (CEXPR_MAXDEPTH-1))
400 				return 0;
401 			c = scontext;
402 			if (e->attr & CEXPR_TARGET)
403 				c = tcontext;
404 			else if (e->attr & CEXPR_XTARGET) {
405 				c = xcontext;
406 				if (!c) {
407 					BUG();
408 					return 0;
409 				}
410 			}
411 			if (e->attr & CEXPR_USER)
412 				val1 = c->user;
413 			else if (e->attr & CEXPR_ROLE)
414 				val1 = c->role;
415 			else if (e->attr & CEXPR_TYPE)
416 				val1 = c->type;
417 			else {
418 				BUG();
419 				return 0;
420 			}
421 
422 			switch (e->op) {
423 			case CEXPR_EQ:
424 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 				break;
426 			case CEXPR_NEQ:
427 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			default:
430 				BUG();
431 				return 0;
432 			}
433 			break;
434 		default:
435 			BUG();
436 			return 0;
437 		}
438 	}
439 
440 	BUG_ON(sp != 0);
441 	return s[0];
442 }
443 
444 /*
445  * security_dump_masked_av - dumps masked permissions during
446  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
447  */
dump_masked_av_helper(void * k,void * d,void * args)448 static int dump_masked_av_helper(void *k, void *d, void *args)
449 {
450 	struct perm_datum *pdatum = d;
451 	char **permission_names = args;
452 
453 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
454 
455 	permission_names[pdatum->value - 1] = (char *)k;
456 
457 	return 0;
458 }
459 
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)460 static void security_dump_masked_av(struct context *scontext,
461 				    struct context *tcontext,
462 				    u16 tclass,
463 				    u32 permissions,
464 				    const char *reason)
465 {
466 	struct common_datum *common_dat;
467 	struct class_datum *tclass_dat;
468 	struct audit_buffer *ab;
469 	char *tclass_name;
470 	char *scontext_name = NULL;
471 	char *tcontext_name = NULL;
472 	char *permission_names[32];
473 	int index;
474 	u32 length;
475 	bool need_comma = false;
476 
477 	if (!permissions)
478 		return;
479 
480 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
481 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
482 	common_dat = tclass_dat->comdatum;
483 
484 	/* init permission_names */
485 	if (common_dat &&
486 	    hashtab_map(common_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	if (hashtab_map(tclass_dat->permissions.table,
491 			dump_masked_av_helper, permission_names) < 0)
492 		goto out;
493 
494 	/* get scontext/tcontext in text form */
495 	if (context_struct_to_string(scontext,
496 				     &scontext_name, &length) < 0)
497 		goto out;
498 
499 	if (context_struct_to_string(tcontext,
500 				     &tcontext_name, &length) < 0)
501 		goto out;
502 
503 	/* audit a message */
504 	ab = audit_log_start(current->audit_context,
505 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 	if (!ab)
507 		goto out;
508 
509 	audit_log_format(ab, "op=security_compute_av reason=%s "
510 			 "scontext=%s tcontext=%s tclass=%s perms=",
511 			 reason, scontext_name, tcontext_name, tclass_name);
512 
513 	for (index = 0; index < 32; index++) {
514 		u32 mask = (1 << index);
515 
516 		if ((mask & permissions) == 0)
517 			continue;
518 
519 		audit_log_format(ab, "%s%s",
520 				 need_comma ? "," : "",
521 				 permission_names[index]
522 				 ? permission_names[index] : "????");
523 		need_comma = true;
524 	}
525 	audit_log_end(ab);
526 out:
527 	/* release scontext/tcontext */
528 	kfree(tcontext_name);
529 	kfree(scontext_name);
530 
531 	return;
532 }
533 
534 /*
535  * security_boundary_permission - drops violated permissions
536  * on boundary constraint.
537  */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)538 static void type_attribute_bounds_av(struct context *scontext,
539 				     struct context *tcontext,
540 				     u16 tclass,
541 				     struct av_decision *avd)
542 {
543 	struct context lo_scontext;
544 	struct context lo_tcontext;
545 	struct av_decision lo_avd;
546 	struct type_datum *source;
547 	struct type_datum *target;
548 	u32 masked = 0;
549 
550 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
551 				    scontext->type - 1);
552 	BUG_ON(!source);
553 
554 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
555 				    tcontext->type - 1);
556 	BUG_ON(!target);
557 
558 	if (source->bounds) {
559 		memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 		lo_scontext.type = source->bounds;
563 
564 		context_struct_compute_av(&lo_scontext,
565 					  tcontext,
566 					  tclass,
567 					  &lo_avd);
568 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
569 			return;		/* no masked permission */
570 		masked = ~lo_avd.allowed & avd->allowed;
571 	}
572 
573 	if (target->bounds) {
574 		memset(&lo_avd, 0, sizeof(lo_avd));
575 
576 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
577 		lo_tcontext.type = target->bounds;
578 
579 		context_struct_compute_av(scontext,
580 					  &lo_tcontext,
581 					  tclass,
582 					  &lo_avd);
583 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
584 			return;		/* no masked permission */
585 		masked = ~lo_avd.allowed & avd->allowed;
586 	}
587 
588 	if (source->bounds && target->bounds) {
589 		memset(&lo_avd, 0, sizeof(lo_avd));
590 		/*
591 		 * lo_scontext and lo_tcontext are already
592 		 * set up.
593 		 */
594 
595 		context_struct_compute_av(&lo_scontext,
596 					  &lo_tcontext,
597 					  tclass,
598 					  &lo_avd);
599 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
600 			return;		/* no masked permission */
601 		masked = ~lo_avd.allowed & avd->allowed;
602 	}
603 
604 	if (masked) {
605 		/* mask violated permissions */
606 		avd->allowed &= ~masked;
607 
608 		/* audit masked permissions */
609 		security_dump_masked_av(scontext, tcontext,
610 					tclass, masked, "bounds");
611 	}
612 }
613 
614 /*
615  * Compute access vectors based on a context structure pair for
616  * the permissions in a particular class.
617  */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)618 static void context_struct_compute_av(struct context *scontext,
619 				      struct context *tcontext,
620 				      u16 tclass,
621 				      struct av_decision *avd)
622 {
623 	struct constraint_node *constraint;
624 	struct role_allow *ra;
625 	struct avtab_key avkey;
626 	struct avtab_node *node;
627 	struct class_datum *tclass_datum;
628 	struct ebitmap *sattr, *tattr;
629 	struct ebitmap_node *snode, *tnode;
630 	unsigned int i, j;
631 
632 	avd->allowed = 0;
633 	avd->auditallow = 0;
634 	avd->auditdeny = 0xffffffff;
635 
636 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
637 		if (printk_ratelimit())
638 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
639 		return;
640 	}
641 
642 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
643 
644 	/*
645 	 * If a specific type enforcement rule was defined for
646 	 * this permission check, then use it.
647 	 */
648 	avkey.target_class = tclass;
649 	avkey.specified = AVTAB_AV;
650 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
651 	BUG_ON(!sattr);
652 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
653 	BUG_ON(!tattr);
654 	ebitmap_for_each_positive_bit(sattr, snode, i) {
655 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
656 			avkey.source_type = i + 1;
657 			avkey.target_type = j + 1;
658 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.data;
667 			}
668 
669 			/* Check conditional av table for additional permissions */
670 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
671 
672 		}
673 	}
674 
675 	/*
676 	 * Remove any permissions prohibited by a constraint (this includes
677 	 * the MLS policy).
678 	 */
679 	constraint = tclass_datum->constraints;
680 	while (constraint) {
681 		if ((constraint->permissions & (avd->allowed)) &&
682 		    !constraint_expr_eval(scontext, tcontext, NULL,
683 					  constraint->expr)) {
684 			avd->allowed &= ~(constraint->permissions);
685 		}
686 		constraint = constraint->next;
687 	}
688 
689 	/*
690 	 * If checking process transition permission and the
691 	 * role is changing, then check the (current_role, new_role)
692 	 * pair.
693 	 */
694 	if (tclass == policydb.process_class &&
695 	    (avd->allowed & policydb.process_trans_perms) &&
696 	    scontext->role != tcontext->role) {
697 		for (ra = policydb.role_allow; ra; ra = ra->next) {
698 			if (scontext->role == ra->role &&
699 			    tcontext->role == ra->new_role)
700 				break;
701 		}
702 		if (!ra)
703 			avd->allowed &= ~policydb.process_trans_perms;
704 	}
705 
706 	/*
707 	 * If the given source and target types have boundary
708 	 * constraint, lazy checks have to mask any violated
709 	 * permission and notice it to userspace via audit.
710 	 */
711 	type_attribute_bounds_av(scontext, tcontext,
712 				 tclass, avd);
713 }
714 
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)715 static int security_validtrans_handle_fail(struct context *ocontext,
716 					   struct context *ncontext,
717 					   struct context *tcontext,
718 					   u16 tclass)
719 {
720 	char *o = NULL, *n = NULL, *t = NULL;
721 	u32 olen, nlen, tlen;
722 
723 	if (context_struct_to_string(ocontext, &o, &olen))
724 		goto out;
725 	if (context_struct_to_string(ncontext, &n, &nlen))
726 		goto out;
727 	if (context_struct_to_string(tcontext, &t, &tlen))
728 		goto out;
729 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
730 		  "security_validate_transition:  denied for"
731 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
733 out:
734 	kfree(o);
735 	kfree(n);
736 	kfree(t);
737 
738 	if (!selinux_enforcing)
739 		return 0;
740 	return -EPERM;
741 }
742 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)743 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
744 				 u16 orig_tclass)
745 {
746 	struct context *ocontext;
747 	struct context *ncontext;
748 	struct context *tcontext;
749 	struct class_datum *tclass_datum;
750 	struct constraint_node *constraint;
751 	u16 tclass;
752 	int rc = 0;
753 
754 	if (!ss_initialized)
755 		return 0;
756 
757 	read_lock(&policy_rwlock);
758 
759 	tclass = unmap_class(orig_tclass);
760 
761 	if (!tclass || tclass > policydb.p_classes.nprim) {
762 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
763 			__func__, tclass);
764 		rc = -EINVAL;
765 		goto out;
766 	}
767 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
768 
769 	ocontext = sidtab_search(&sidtab, oldsid);
770 	if (!ocontext) {
771 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
772 			__func__, oldsid);
773 		rc = -EINVAL;
774 		goto out;
775 	}
776 
777 	ncontext = sidtab_search(&sidtab, newsid);
778 	if (!ncontext) {
779 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
780 			__func__, newsid);
781 		rc = -EINVAL;
782 		goto out;
783 	}
784 
785 	tcontext = sidtab_search(&sidtab, tasksid);
786 	if (!tcontext) {
787 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
788 			__func__, tasksid);
789 		rc = -EINVAL;
790 		goto out;
791 	}
792 
793 	constraint = tclass_datum->validatetrans;
794 	while (constraint) {
795 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
796 					  constraint->expr)) {
797 			rc = security_validtrans_handle_fail(ocontext, ncontext,
798 							     tcontext, tclass);
799 			goto out;
800 		}
801 		constraint = constraint->next;
802 	}
803 
804 out:
805 	read_unlock(&policy_rwlock);
806 	return rc;
807 }
808 
809 /*
810  * security_bounded_transition - check whether the given
811  * transition is directed to bounded, or not.
812  * It returns 0, if @newsid is bounded by @oldsid.
813  * Otherwise, it returns error code.
814  *
815  * @oldsid : current security identifier
816  * @newsid : destinated security identifier
817  */
security_bounded_transition(u32 old_sid,u32 new_sid)818 int security_bounded_transition(u32 old_sid, u32 new_sid)
819 {
820 	struct context *old_context, *new_context;
821 	struct type_datum *type;
822 	int index;
823 	int rc;
824 
825 	read_lock(&policy_rwlock);
826 
827 	rc = -EINVAL;
828 	old_context = sidtab_search(&sidtab, old_sid);
829 	if (!old_context) {
830 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
831 		       __func__, old_sid);
832 		goto out;
833 	}
834 
835 	rc = -EINVAL;
836 	new_context = sidtab_search(&sidtab, new_sid);
837 	if (!new_context) {
838 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
839 		       __func__, new_sid);
840 		goto out;
841 	}
842 
843 	rc = 0;
844 	/* type/domain unchanged */
845 	if (old_context->type == new_context->type)
846 		goto out;
847 
848 	index = new_context->type;
849 	while (true) {
850 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
851 					  index - 1);
852 		BUG_ON(!type);
853 
854 		/* not bounded anymore */
855 		rc = -EPERM;
856 		if (!type->bounds)
857 			break;
858 
859 		/* @newsid is bounded by @oldsid */
860 		rc = 0;
861 		if (type->bounds == old_context->type)
862 			break;
863 
864 		index = type->bounds;
865 	}
866 
867 	if (rc) {
868 		char *old_name = NULL;
869 		char *new_name = NULL;
870 		u32 length;
871 
872 		if (!context_struct_to_string(old_context,
873 					      &old_name, &length) &&
874 		    !context_struct_to_string(new_context,
875 					      &new_name, &length)) {
876 			audit_log(current->audit_context,
877 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
878 				  "op=security_bounded_transition "
879 				  "result=denied "
880 				  "oldcontext=%s newcontext=%s",
881 				  old_name, new_name);
882 		}
883 		kfree(new_name);
884 		kfree(old_name);
885 	}
886 out:
887 	read_unlock(&policy_rwlock);
888 
889 	return rc;
890 }
891 
avd_init(struct av_decision * avd)892 static void avd_init(struct av_decision *avd)
893 {
894 	avd->allowed = 0;
895 	avd->auditallow = 0;
896 	avd->auditdeny = 0xffffffff;
897 	avd->seqno = latest_granting;
898 	avd->flags = 0;
899 }
900 
901 
902 /**
903  * security_compute_av - Compute access vector decisions.
904  * @ssid: source security identifier
905  * @tsid: target security identifier
906  * @tclass: target security class
907  * @avd: access vector decisions
908  *
909  * Compute a set of access vector decisions based on the
910  * SID pair (@ssid, @tsid) for the permissions in @tclass.
911  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd)912 void security_compute_av(u32 ssid,
913 			 u32 tsid,
914 			 u16 orig_tclass,
915 			 struct av_decision *avd)
916 {
917 	u16 tclass;
918 	struct context *scontext = NULL, *tcontext = NULL;
919 
920 	read_lock(&policy_rwlock);
921 	avd_init(avd);
922 	if (!ss_initialized)
923 		goto allow;
924 
925 	scontext = sidtab_search(&sidtab, ssid);
926 	if (!scontext) {
927 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
928 		       __func__, ssid);
929 		goto out;
930 	}
931 
932 	/* permissive domain? */
933 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
934 		avd->flags |= AVD_FLAGS_PERMISSIVE;
935 
936 	tcontext = sidtab_search(&sidtab, tsid);
937 	if (!tcontext) {
938 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
939 		       __func__, tsid);
940 		goto out;
941 	}
942 
943 	tclass = unmap_class(orig_tclass);
944 	if (unlikely(orig_tclass && !tclass)) {
945 		if (policydb.allow_unknown)
946 			goto allow;
947 		goto out;
948 	}
949 	context_struct_compute_av(scontext, tcontext, tclass, avd);
950 	map_decision(orig_tclass, avd, policydb.allow_unknown);
951 out:
952 	read_unlock(&policy_rwlock);
953 	return;
954 allow:
955 	avd->allowed = 0xffffffff;
956 	goto out;
957 }
958 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)959 void security_compute_av_user(u32 ssid,
960 			      u32 tsid,
961 			      u16 tclass,
962 			      struct av_decision *avd)
963 {
964 	struct context *scontext = NULL, *tcontext = NULL;
965 
966 	read_lock(&policy_rwlock);
967 	avd_init(avd);
968 	if (!ss_initialized)
969 		goto allow;
970 
971 	scontext = sidtab_search(&sidtab, ssid);
972 	if (!scontext) {
973 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
974 		       __func__, ssid);
975 		goto out;
976 	}
977 
978 	/* permissive domain? */
979 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
980 		avd->flags |= AVD_FLAGS_PERMISSIVE;
981 
982 	tcontext = sidtab_search(&sidtab, tsid);
983 	if (!tcontext) {
984 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
985 		       __func__, tsid);
986 		goto out;
987 	}
988 
989 	if (unlikely(!tclass)) {
990 		if (policydb.allow_unknown)
991 			goto allow;
992 		goto out;
993 	}
994 
995 	context_struct_compute_av(scontext, tcontext, tclass, avd);
996  out:
997 	read_unlock(&policy_rwlock);
998 	return;
999 allow:
1000 	avd->allowed = 0xffffffff;
1001 	goto out;
1002 }
1003 
1004 /*
1005  * Write the security context string representation of
1006  * the context structure `context' into a dynamically
1007  * allocated string of the correct size.  Set `*scontext'
1008  * to point to this string and set `*scontext_len' to
1009  * the length of the string.
1010  */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1011 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1012 {
1013 	char *scontextp;
1014 
1015 	if (scontext)
1016 		*scontext = NULL;
1017 	*scontext_len = 0;
1018 
1019 	if (context->len) {
1020 		*scontext_len = context->len;
1021 		*scontext = kstrdup(context->str, GFP_ATOMIC);
1022 		if (!(*scontext))
1023 			return -ENOMEM;
1024 		return 0;
1025 	}
1026 
1027 	/* Compute the size of the context. */
1028 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1029 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1030 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1031 	*scontext_len += mls_compute_context_len(context);
1032 
1033 	if (!scontext)
1034 		return 0;
1035 
1036 	/* Allocate space for the context; caller must free this space. */
1037 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1038 	if (!scontextp)
1039 		return -ENOMEM;
1040 	*scontext = scontextp;
1041 
1042 	/*
1043 	 * Copy the user name, role name and type name into the context.
1044 	 */
1045 	sprintf(scontextp, "%s:%s:%s",
1046 		sym_name(&policydb, SYM_USERS, context->user - 1),
1047 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1048 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1049 	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1050 		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1051 		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1052 
1053 	mls_sid_to_context(context, &scontextp);
1054 
1055 	*scontextp = 0;
1056 
1057 	return 0;
1058 }
1059 
1060 #include "initial_sid_to_string.h"
1061 
security_get_initial_sid_context(u32 sid)1062 const char *security_get_initial_sid_context(u32 sid)
1063 {
1064 	if (unlikely(sid > SECINITSID_NUM))
1065 		return NULL;
1066 	return initial_sid_to_string[sid];
1067 }
1068 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1069 static int security_sid_to_context_core(u32 sid, char **scontext,
1070 					u32 *scontext_len, int force)
1071 {
1072 	struct context *context;
1073 	int rc = 0;
1074 
1075 	if (scontext)
1076 		*scontext = NULL;
1077 	*scontext_len  = 0;
1078 
1079 	if (!ss_initialized) {
1080 		if (sid <= SECINITSID_NUM) {
1081 			char *scontextp;
1082 
1083 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1084 			if (!scontext)
1085 				goto out;
1086 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1087 			if (!scontextp) {
1088 				rc = -ENOMEM;
1089 				goto out;
1090 			}
1091 			strcpy(scontextp, initial_sid_to_string[sid]);
1092 			*scontext = scontextp;
1093 			goto out;
1094 		}
1095 		printk(KERN_ERR "SELinux: %s:  called before initial "
1096 		       "load_policy on unknown SID %d\n", __func__, sid);
1097 		rc = -EINVAL;
1098 		goto out;
1099 	}
1100 	read_lock(&policy_rwlock);
1101 	if (force)
1102 		context = sidtab_search_force(&sidtab, sid);
1103 	else
1104 		context = sidtab_search(&sidtab, sid);
1105 	if (!context) {
1106 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1107 			__func__, sid);
1108 		rc = -EINVAL;
1109 		goto out_unlock;
1110 	}
1111 	rc = context_struct_to_string(context, scontext, scontext_len);
1112 out_unlock:
1113 	read_unlock(&policy_rwlock);
1114 out:
1115 	return rc;
1116 
1117 }
1118 
1119 /**
1120  * security_sid_to_context - Obtain a context for a given SID.
1121  * @sid: security identifier, SID
1122  * @scontext: security context
1123  * @scontext_len: length in bytes
1124  *
1125  * Write the string representation of the context associated with @sid
1126  * into a dynamically allocated string of the correct size.  Set @scontext
1127  * to point to this string and set @scontext_len to the length of the string.
1128  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1129 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1130 {
1131 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1132 }
1133 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1134 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1135 {
1136 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1137 }
1138 
1139 /*
1140  * Caveat:  Mutates scontext.
1141  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1142 static int string_to_context_struct(struct policydb *pol,
1143 				    struct sidtab *sidtabp,
1144 				    char *scontext,
1145 				    u32 scontext_len,
1146 				    struct context *ctx,
1147 				    u32 def_sid)
1148 {
1149 	struct role_datum *role;
1150 	struct type_datum *typdatum;
1151 	struct user_datum *usrdatum;
1152 	char *scontextp, *p, oldc;
1153 	int rc = 0;
1154 
1155 	context_init(ctx);
1156 
1157 	/* Parse the security context. */
1158 
1159 	rc = -EINVAL;
1160 	scontextp = (char *) scontext;
1161 
1162 	/* Extract the user. */
1163 	p = scontextp;
1164 	while (*p && *p != ':')
1165 		p++;
1166 
1167 	if (*p == 0)
1168 		goto out;
1169 
1170 	*p++ = 0;
1171 
1172 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1173 	if (!usrdatum)
1174 		goto out;
1175 
1176 	ctx->user = usrdatum->value;
1177 
1178 	/* Extract role. */
1179 	scontextp = p;
1180 	while (*p && *p != ':')
1181 		p++;
1182 
1183 	if (*p == 0)
1184 		goto out;
1185 
1186 	*p++ = 0;
1187 
1188 	role = hashtab_search(pol->p_roles.table, scontextp);
1189 	if (!role)
1190 		goto out;
1191 	ctx->role = role->value;
1192 
1193 	/* Extract type. */
1194 	scontextp = p;
1195 	while (*p && *p != ':')
1196 		p++;
1197 	oldc = *p;
1198 	*p++ = 0;
1199 
1200 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1201 	if (!typdatum || typdatum->attribute)
1202 		goto out;
1203 
1204 	ctx->type = typdatum->value;
1205 
1206 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1207 	if (rc)
1208 		goto out;
1209 
1210 	rc = -EINVAL;
1211 	if ((p - scontext) < scontext_len)
1212 		goto out;
1213 
1214 	/* Check the validity of the new context. */
1215 	if (!policydb_context_isvalid(pol, ctx))
1216 		goto out;
1217 	rc = 0;
1218 out:
1219 	if (rc)
1220 		context_destroy(ctx);
1221 	return rc;
1222 }
1223 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1224 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1225 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1226 					int force)
1227 {
1228 	char *scontext2, *str = NULL;
1229 	struct context context;
1230 	int rc = 0;
1231 
1232 	if (!ss_initialized) {
1233 		int i;
1234 
1235 		for (i = 1; i < SECINITSID_NUM; i++) {
1236 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1237 				*sid = i;
1238 				return 0;
1239 			}
1240 		}
1241 		*sid = SECINITSID_KERNEL;
1242 		return 0;
1243 	}
1244 	*sid = SECSID_NULL;
1245 
1246 	/* Copy the string so that we can modify the copy as we parse it. */
1247 	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1248 	if (!scontext2)
1249 		return -ENOMEM;
1250 	memcpy(scontext2, scontext, scontext_len);
1251 	scontext2[scontext_len] = 0;
1252 
1253 	if (force) {
1254 		/* Save another copy for storing in uninterpreted form */
1255 		rc = -ENOMEM;
1256 		str = kstrdup(scontext2, gfp_flags);
1257 		if (!str)
1258 			goto out;
1259 	}
1260 
1261 	read_lock(&policy_rwlock);
1262 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1263 				      scontext_len, &context, def_sid);
1264 	if (rc == -EINVAL && force) {
1265 		context.str = str;
1266 		context.len = scontext_len;
1267 		str = NULL;
1268 	} else if (rc)
1269 		goto out_unlock;
1270 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1271 	context_destroy(&context);
1272 out_unlock:
1273 	read_unlock(&policy_rwlock);
1274 out:
1275 	kfree(scontext2);
1276 	kfree(str);
1277 	return rc;
1278 }
1279 
1280 /**
1281  * security_context_to_sid - Obtain a SID for a given security context.
1282  * @scontext: security context
1283  * @scontext_len: length in bytes
1284  * @sid: security identifier, SID
1285  *
1286  * Obtains a SID associated with the security context that
1287  * has the string representation specified by @scontext.
1288  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1289  * memory is available, or 0 on success.
1290  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid)1291 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1292 {
1293 	return security_context_to_sid_core(scontext, scontext_len,
1294 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1295 }
1296 
1297 /**
1298  * security_context_to_sid_default - Obtain a SID for a given security context,
1299  * falling back to specified default if needed.
1300  *
1301  * @scontext: security context
1302  * @scontext_len: length in bytes
1303  * @sid: security identifier, SID
1304  * @def_sid: default SID to assign on error
1305  *
1306  * Obtains a SID associated with the security context that
1307  * has the string representation specified by @scontext.
1308  * The default SID is passed to the MLS layer to be used to allow
1309  * kernel labeling of the MLS field if the MLS field is not present
1310  * (for upgrading to MLS without full relabel).
1311  * Implicitly forces adding of the context even if it cannot be mapped yet.
1312  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1313  * memory is available, or 0 on success.
1314  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1315 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1316 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1317 {
1318 	return security_context_to_sid_core(scontext, scontext_len,
1319 					    sid, def_sid, gfp_flags, 1);
1320 }
1321 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1322 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1323 				  u32 *sid)
1324 {
1325 	return security_context_to_sid_core(scontext, scontext_len,
1326 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1327 }
1328 
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1329 static int compute_sid_handle_invalid_context(
1330 	struct context *scontext,
1331 	struct context *tcontext,
1332 	u16 tclass,
1333 	struct context *newcontext)
1334 {
1335 	char *s = NULL, *t = NULL, *n = NULL;
1336 	u32 slen, tlen, nlen;
1337 
1338 	if (context_struct_to_string(scontext, &s, &slen))
1339 		goto out;
1340 	if (context_struct_to_string(tcontext, &t, &tlen))
1341 		goto out;
1342 	if (context_struct_to_string(newcontext, &n, &nlen))
1343 		goto out;
1344 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1345 		  "security_compute_sid:  invalid context %s"
1346 		  " for scontext=%s"
1347 		  " tcontext=%s"
1348 		  " tclass=%s",
1349 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1350 out:
1351 	kfree(s);
1352 	kfree(t);
1353 	kfree(n);
1354 	if (!selinux_enforcing)
1355 		return 0;
1356 	return -EACCES;
1357 }
1358 
filename_compute_type(struct policydb * p,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1359 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1360 				  u32 stype, u32 ttype, u16 tclass,
1361 				  const char *objname)
1362 {
1363 	struct filename_trans ft;
1364 	struct filename_trans_datum *otype;
1365 
1366 	/*
1367 	 * Most filename trans rules are going to live in specific directories
1368 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1369 	 * if the ttype does not contain any rules.
1370 	 */
1371 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1372 		return;
1373 
1374 	ft.stype = stype;
1375 	ft.ttype = ttype;
1376 	ft.tclass = tclass;
1377 	ft.name = objname;
1378 
1379 	otype = hashtab_search(p->filename_trans, &ft);
1380 	if (otype)
1381 		newcontext->type = otype->otype;
1382 }
1383 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1384 static int security_compute_sid(u32 ssid,
1385 				u32 tsid,
1386 				u16 orig_tclass,
1387 				u32 specified,
1388 				const char *objname,
1389 				u32 *out_sid,
1390 				bool kern)
1391 {
1392 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1393 	struct role_trans *roletr = NULL;
1394 	struct avtab_key avkey;
1395 	struct avtab_datum *avdatum;
1396 	struct avtab_node *node;
1397 	u16 tclass;
1398 	int rc = 0;
1399 	bool sock;
1400 
1401 	if (!ss_initialized) {
1402 		switch (orig_tclass) {
1403 		case SECCLASS_PROCESS: /* kernel value */
1404 			*out_sid = ssid;
1405 			break;
1406 		default:
1407 			*out_sid = tsid;
1408 			break;
1409 		}
1410 		goto out;
1411 	}
1412 
1413 	context_init(&newcontext);
1414 
1415 	read_lock(&policy_rwlock);
1416 
1417 	if (kern) {
1418 		tclass = unmap_class(orig_tclass);
1419 		sock = security_is_socket_class(orig_tclass);
1420 	} else {
1421 		tclass = orig_tclass;
1422 		sock = security_is_socket_class(map_class(tclass));
1423 	}
1424 
1425 	scontext = sidtab_search(&sidtab, ssid);
1426 	if (!scontext) {
1427 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1428 		       __func__, ssid);
1429 		rc = -EINVAL;
1430 		goto out_unlock;
1431 	}
1432 	tcontext = sidtab_search(&sidtab, tsid);
1433 	if (!tcontext) {
1434 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1435 		       __func__, tsid);
1436 		rc = -EINVAL;
1437 		goto out_unlock;
1438 	}
1439 
1440 	/* Set the user identity. */
1441 	switch (specified) {
1442 	case AVTAB_TRANSITION:
1443 	case AVTAB_CHANGE:
1444 		/* Use the process user identity. */
1445 		newcontext.user = scontext->user;
1446 		break;
1447 	case AVTAB_MEMBER:
1448 		/* Use the related object owner. */
1449 		newcontext.user = tcontext->user;
1450 		break;
1451 	}
1452 
1453 	/* Set the role and type to default values. */
1454 	if ((tclass == policydb.process_class) || (sock == true)) {
1455 		/* Use the current role and type of process. */
1456 		newcontext.role = scontext->role;
1457 		newcontext.type = scontext->type;
1458 	} else {
1459 		/* Use the well-defined object role. */
1460 		newcontext.role = OBJECT_R_VAL;
1461 		/* Use the type of the related object. */
1462 		newcontext.type = tcontext->type;
1463 	}
1464 
1465 	/* Look for a type transition/member/change rule. */
1466 	avkey.source_type = scontext->type;
1467 	avkey.target_type = tcontext->type;
1468 	avkey.target_class = tclass;
1469 	avkey.specified = specified;
1470 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1471 
1472 	/* If no permanent rule, also check for enabled conditional rules */
1473 	if (!avdatum) {
1474 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1475 		for (; node; node = avtab_search_node_next(node, specified)) {
1476 			if (node->key.specified & AVTAB_ENABLED) {
1477 				avdatum = &node->datum;
1478 				break;
1479 			}
1480 		}
1481 	}
1482 
1483 	if (avdatum) {
1484 		/* Use the type from the type transition/member/change rule. */
1485 		newcontext.type = avdatum->data;
1486 	}
1487 
1488 	/* if we have a objname this is a file trans check so check those rules */
1489 	if (objname)
1490 		filename_compute_type(&policydb, &newcontext, scontext->type,
1491 				      tcontext->type, tclass, objname);
1492 
1493 	/* Check for class-specific changes. */
1494 	if (specified & AVTAB_TRANSITION) {
1495 		/* Look for a role transition rule. */
1496 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1497 			if ((roletr->role == scontext->role) &&
1498 			    (roletr->type == tcontext->type) &&
1499 			    (roletr->tclass == tclass)) {
1500 				/* Use the role transition rule. */
1501 				newcontext.role = roletr->new_role;
1502 				break;
1503 			}
1504 		}
1505 	}
1506 
1507 	/* Set the MLS attributes.
1508 	   This is done last because it may allocate memory. */
1509 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1510 			     &newcontext, sock);
1511 	if (rc)
1512 		goto out_unlock;
1513 
1514 	/* Check the validity of the context. */
1515 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1516 		rc = compute_sid_handle_invalid_context(scontext,
1517 							tcontext,
1518 							tclass,
1519 							&newcontext);
1520 		if (rc)
1521 			goto out_unlock;
1522 	}
1523 	/* Obtain the sid for the context. */
1524 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1525 out_unlock:
1526 	read_unlock(&policy_rwlock);
1527 	context_destroy(&newcontext);
1528 out:
1529 	return rc;
1530 }
1531 
1532 /**
1533  * security_transition_sid - Compute the SID for a new subject/object.
1534  * @ssid: source security identifier
1535  * @tsid: target security identifier
1536  * @tclass: target security class
1537  * @out_sid: security identifier for new subject/object
1538  *
1539  * Compute a SID to use for labeling a new subject or object in the
1540  * class @tclass based on a SID pair (@ssid, @tsid).
1541  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1542  * if insufficient memory is available, or %0 if the new SID was
1543  * computed successfully.
1544  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1545 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1546 			    const struct qstr *qstr, u32 *out_sid)
1547 {
1548 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1549 				    qstr ? qstr->name : NULL, out_sid, true);
1550 }
1551 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1552 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1553 				 const char *objname, u32 *out_sid)
1554 {
1555 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1556 				    objname, out_sid, false);
1557 }
1558 
1559 /**
1560  * security_member_sid - Compute the SID for member selection.
1561  * @ssid: source security identifier
1562  * @tsid: target security identifier
1563  * @tclass: target security class
1564  * @out_sid: security identifier for selected member
1565  *
1566  * Compute a SID to use when selecting a member of a polyinstantiated
1567  * object of class @tclass based on a SID pair (@ssid, @tsid).
1568  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569  * if insufficient memory is available, or %0 if the SID was
1570  * computed successfully.
1571  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1572 int security_member_sid(u32 ssid,
1573 			u32 tsid,
1574 			u16 tclass,
1575 			u32 *out_sid)
1576 {
1577 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1578 				    out_sid, false);
1579 }
1580 
1581 /**
1582  * security_change_sid - Compute the SID for object relabeling.
1583  * @ssid: source security identifier
1584  * @tsid: target security identifier
1585  * @tclass: target security class
1586  * @out_sid: security identifier for selected member
1587  *
1588  * Compute a SID to use for relabeling an object of class @tclass
1589  * based on a SID pair (@ssid, @tsid).
1590  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1591  * if insufficient memory is available, or %0 if the SID was
1592  * computed successfully.
1593  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1594 int security_change_sid(u32 ssid,
1595 			u32 tsid,
1596 			u16 tclass,
1597 			u32 *out_sid)
1598 {
1599 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1600 				    out_sid, false);
1601 }
1602 
1603 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1604 static int clone_sid(u32 sid,
1605 		     struct context *context,
1606 		     void *arg)
1607 {
1608 	struct sidtab *s = arg;
1609 
1610 	if (sid > SECINITSID_NUM)
1611 		return sidtab_insert(s, sid, context);
1612 	else
1613 		return 0;
1614 }
1615 
convert_context_handle_invalid_context(struct context * context)1616 static inline int convert_context_handle_invalid_context(struct context *context)
1617 {
1618 	char *s;
1619 	u32 len;
1620 
1621 	if (selinux_enforcing)
1622 		return -EINVAL;
1623 
1624 	if (!context_struct_to_string(context, &s, &len)) {
1625 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1626 		kfree(s);
1627 	}
1628 	return 0;
1629 }
1630 
1631 struct convert_context_args {
1632 	struct policydb *oldp;
1633 	struct policydb *newp;
1634 };
1635 
1636 /*
1637  * Convert the values in the security context
1638  * structure `c' from the values specified
1639  * in the policy `p->oldp' to the values specified
1640  * in the policy `p->newp'.  Verify that the
1641  * context is valid under the new policy.
1642  */
convert_context(u32 key,struct context * c,void * p)1643 static int convert_context(u32 key,
1644 			   struct context *c,
1645 			   void *p)
1646 {
1647 	struct convert_context_args *args;
1648 	struct context oldc;
1649 	struct ocontext *oc;
1650 	struct mls_range *range;
1651 	struct role_datum *role;
1652 	struct type_datum *typdatum;
1653 	struct user_datum *usrdatum;
1654 	char *s;
1655 	u32 len;
1656 	int rc = 0;
1657 
1658 	if (key <= SECINITSID_NUM)
1659 		goto out;
1660 
1661 	args = p;
1662 
1663 	if (c->str) {
1664 		struct context ctx;
1665 
1666 		rc = -ENOMEM;
1667 		s = kstrdup(c->str, GFP_KERNEL);
1668 		if (!s)
1669 			goto out;
1670 
1671 		rc = string_to_context_struct(args->newp, NULL, s,
1672 					      c->len, &ctx, SECSID_NULL);
1673 		kfree(s);
1674 		if (!rc) {
1675 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1676 			       c->str);
1677 			/* Replace string with mapped representation. */
1678 			kfree(c->str);
1679 			memcpy(c, &ctx, sizeof(*c));
1680 			goto out;
1681 		} else if (rc == -EINVAL) {
1682 			/* Retain string representation for later mapping. */
1683 			rc = 0;
1684 			goto out;
1685 		} else {
1686 			/* Other error condition, e.g. ENOMEM. */
1687 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1688 			       c->str, -rc);
1689 			goto out;
1690 		}
1691 	}
1692 
1693 	rc = context_cpy(&oldc, c);
1694 	if (rc)
1695 		goto out;
1696 
1697 	/* Convert the user. */
1698 	rc = -EINVAL;
1699 	usrdatum = hashtab_search(args->newp->p_users.table,
1700 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1701 	if (!usrdatum)
1702 		goto bad;
1703 	c->user = usrdatum->value;
1704 
1705 	/* Convert the role. */
1706 	rc = -EINVAL;
1707 	role = hashtab_search(args->newp->p_roles.table,
1708 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1709 	if (!role)
1710 		goto bad;
1711 	c->role = role->value;
1712 
1713 	/* Convert the type. */
1714 	rc = -EINVAL;
1715 	typdatum = hashtab_search(args->newp->p_types.table,
1716 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1717 	if (!typdatum)
1718 		goto bad;
1719 	c->type = typdatum->value;
1720 
1721 	/* Convert the MLS fields if dealing with MLS policies */
1722 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1723 		rc = mls_convert_context(args->oldp, args->newp, c);
1724 		if (rc)
1725 			goto bad;
1726 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1727 		/*
1728 		 * Switching between MLS and non-MLS policy:
1729 		 * free any storage used by the MLS fields in the
1730 		 * context for all existing entries in the sidtab.
1731 		 */
1732 		mls_context_destroy(c);
1733 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1734 		/*
1735 		 * Switching between non-MLS and MLS policy:
1736 		 * ensure that the MLS fields of the context for all
1737 		 * existing entries in the sidtab are filled in with a
1738 		 * suitable default value, likely taken from one of the
1739 		 * initial SIDs.
1740 		 */
1741 		oc = args->newp->ocontexts[OCON_ISID];
1742 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1743 			oc = oc->next;
1744 		rc = -EINVAL;
1745 		if (!oc) {
1746 			printk(KERN_ERR "SELinux:  unable to look up"
1747 				" the initial SIDs list\n");
1748 			goto bad;
1749 		}
1750 		range = &oc->context[0].range;
1751 		rc = mls_range_set(c, range);
1752 		if (rc)
1753 			goto bad;
1754 	}
1755 
1756 	/* Check the validity of the new context. */
1757 	if (!policydb_context_isvalid(args->newp, c)) {
1758 		rc = convert_context_handle_invalid_context(&oldc);
1759 		if (rc)
1760 			goto bad;
1761 	}
1762 
1763 	context_destroy(&oldc);
1764 
1765 	rc = 0;
1766 out:
1767 	return rc;
1768 bad:
1769 	/* Map old representation to string and save it. */
1770 	rc = context_struct_to_string(&oldc, &s, &len);
1771 	if (rc)
1772 		return rc;
1773 	context_destroy(&oldc);
1774 	context_destroy(c);
1775 	c->str = s;
1776 	c->len = len;
1777 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1778 	       c->str);
1779 	rc = 0;
1780 	goto out;
1781 }
1782 
security_load_policycaps(void)1783 static void security_load_policycaps(void)
1784 {
1785 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1786 						  POLICYDB_CAPABILITY_NETPEER);
1787 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1788 						  POLICYDB_CAPABILITY_OPENPERM);
1789 }
1790 
1791 static int security_preserve_bools(struct policydb *p);
1792 
1793 /**
1794  * security_load_policy - Load a security policy configuration.
1795  * @data: binary policy data
1796  * @len: length of data in bytes
1797  *
1798  * Load a new set of security policy configuration data,
1799  * validate it and convert the SID table as necessary.
1800  * This function will flush the access vector cache after
1801  * loading the new policy.
1802  */
security_load_policy(void * data,size_t len)1803 int security_load_policy(void *data, size_t len)
1804 {
1805 	struct policydb oldpolicydb, newpolicydb;
1806 	struct sidtab oldsidtab, newsidtab;
1807 	struct selinux_mapping *oldmap, *map = NULL;
1808 	struct convert_context_args args;
1809 	u32 seqno;
1810 	u16 map_size;
1811 	int rc = 0;
1812 	struct policy_file file = { data, len }, *fp = &file;
1813 
1814 	if (!ss_initialized) {
1815 		avtab_cache_init();
1816 		rc = policydb_read(&policydb, fp);
1817 		if (rc) {
1818 			avtab_cache_destroy();
1819 			return rc;
1820 		}
1821 
1822 		policydb.len = len;
1823 		rc = selinux_set_mapping(&policydb, secclass_map,
1824 					 &current_mapping,
1825 					 &current_mapping_size);
1826 		if (rc) {
1827 			policydb_destroy(&policydb);
1828 			avtab_cache_destroy();
1829 			return rc;
1830 		}
1831 
1832 		rc = policydb_load_isids(&policydb, &sidtab);
1833 		if (rc) {
1834 			policydb_destroy(&policydb);
1835 			avtab_cache_destroy();
1836 			return rc;
1837 		}
1838 
1839 		security_load_policycaps();
1840 		ss_initialized = 1;
1841 		seqno = ++latest_granting;
1842 		selinux_complete_init();
1843 		avc_ss_reset(seqno);
1844 		selnl_notify_policyload(seqno);
1845 		selinux_status_update_policyload(seqno);
1846 		selinux_netlbl_cache_invalidate();
1847 		selinux_xfrm_notify_policyload();
1848 		return 0;
1849 	}
1850 
1851 #if 0
1852 	sidtab_hash_eval(&sidtab, "sids");
1853 #endif
1854 
1855 	rc = policydb_read(&newpolicydb, fp);
1856 	if (rc)
1857 		return rc;
1858 
1859 	newpolicydb.len = len;
1860 	/* If switching between different policy types, log MLS status */
1861 	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1862 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1863 	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1864 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1865 
1866 	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1867 	if (rc) {
1868 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1869 		policydb_destroy(&newpolicydb);
1870 		return rc;
1871 	}
1872 
1873 	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1874 	if (rc)
1875 		goto err;
1876 
1877 	rc = security_preserve_bools(&newpolicydb);
1878 	if (rc) {
1879 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1880 		goto err;
1881 	}
1882 
1883 	/* Clone the SID table. */
1884 	sidtab_shutdown(&sidtab);
1885 
1886 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1887 	if (rc)
1888 		goto err;
1889 
1890 	/*
1891 	 * Convert the internal representations of contexts
1892 	 * in the new SID table.
1893 	 */
1894 	args.oldp = &policydb;
1895 	args.newp = &newpolicydb;
1896 	rc = sidtab_map(&newsidtab, convert_context, &args);
1897 	if (rc) {
1898 		printk(KERN_ERR "SELinux:  unable to convert the internal"
1899 			" representation of contexts in the new SID"
1900 			" table\n");
1901 		goto err;
1902 	}
1903 
1904 	/* Save the old policydb and SID table to free later. */
1905 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1906 	sidtab_set(&oldsidtab, &sidtab);
1907 
1908 	/* Install the new policydb and SID table. */
1909 	write_lock_irq(&policy_rwlock);
1910 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1911 	sidtab_set(&sidtab, &newsidtab);
1912 	security_load_policycaps();
1913 	oldmap = current_mapping;
1914 	current_mapping = map;
1915 	current_mapping_size = map_size;
1916 	seqno = ++latest_granting;
1917 	write_unlock_irq(&policy_rwlock);
1918 
1919 	/* Free the old policydb and SID table. */
1920 	policydb_destroy(&oldpolicydb);
1921 	sidtab_destroy(&oldsidtab);
1922 	kfree(oldmap);
1923 
1924 	avc_ss_reset(seqno);
1925 	selnl_notify_policyload(seqno);
1926 	selinux_status_update_policyload(seqno);
1927 	selinux_netlbl_cache_invalidate();
1928 	selinux_xfrm_notify_policyload();
1929 
1930 	return 0;
1931 
1932 err:
1933 	kfree(map);
1934 	sidtab_destroy(&newsidtab);
1935 	policydb_destroy(&newpolicydb);
1936 	return rc;
1937 
1938 }
1939 
security_policydb_len(void)1940 size_t security_policydb_len(void)
1941 {
1942 	size_t len;
1943 
1944 	read_lock(&policy_rwlock);
1945 	len = policydb.len;
1946 	read_unlock(&policy_rwlock);
1947 
1948 	return len;
1949 }
1950 
1951 /**
1952  * security_port_sid - Obtain the SID for a port.
1953  * @protocol: protocol number
1954  * @port: port number
1955  * @out_sid: security identifier
1956  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)1957 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1958 {
1959 	struct ocontext *c;
1960 	int rc = 0;
1961 
1962 	read_lock(&policy_rwlock);
1963 
1964 	c = policydb.ocontexts[OCON_PORT];
1965 	while (c) {
1966 		if (c->u.port.protocol == protocol &&
1967 		    c->u.port.low_port <= port &&
1968 		    c->u.port.high_port >= port)
1969 			break;
1970 		c = c->next;
1971 	}
1972 
1973 	if (c) {
1974 		if (!c->sid[0]) {
1975 			rc = sidtab_context_to_sid(&sidtab,
1976 						   &c->context[0],
1977 						   &c->sid[0]);
1978 			if (rc)
1979 				goto out;
1980 		}
1981 		*out_sid = c->sid[0];
1982 	} else {
1983 		*out_sid = SECINITSID_PORT;
1984 	}
1985 
1986 out:
1987 	read_unlock(&policy_rwlock);
1988 	return rc;
1989 }
1990 
1991 /**
1992  * security_netif_sid - Obtain the SID for a network interface.
1993  * @name: interface name
1994  * @if_sid: interface SID
1995  */
security_netif_sid(char * name,u32 * if_sid)1996 int security_netif_sid(char *name, u32 *if_sid)
1997 {
1998 	int rc = 0;
1999 	struct ocontext *c;
2000 
2001 	read_lock(&policy_rwlock);
2002 
2003 	c = policydb.ocontexts[OCON_NETIF];
2004 	while (c) {
2005 		if (strcmp(name, c->u.name) == 0)
2006 			break;
2007 		c = c->next;
2008 	}
2009 
2010 	if (c) {
2011 		if (!c->sid[0] || !c->sid[1]) {
2012 			rc = sidtab_context_to_sid(&sidtab,
2013 						  &c->context[0],
2014 						  &c->sid[0]);
2015 			if (rc)
2016 				goto out;
2017 			rc = sidtab_context_to_sid(&sidtab,
2018 						   &c->context[1],
2019 						   &c->sid[1]);
2020 			if (rc)
2021 				goto out;
2022 		}
2023 		*if_sid = c->sid[0];
2024 	} else
2025 		*if_sid = SECINITSID_NETIF;
2026 
2027 out:
2028 	read_unlock(&policy_rwlock);
2029 	return rc;
2030 }
2031 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2032 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2033 {
2034 	int i, fail = 0;
2035 
2036 	for (i = 0; i < 4; i++)
2037 		if (addr[i] != (input[i] & mask[i])) {
2038 			fail = 1;
2039 			break;
2040 		}
2041 
2042 	return !fail;
2043 }
2044 
2045 /**
2046  * security_node_sid - Obtain the SID for a node (host).
2047  * @domain: communication domain aka address family
2048  * @addrp: address
2049  * @addrlen: address length in bytes
2050  * @out_sid: security identifier
2051  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2052 int security_node_sid(u16 domain,
2053 		      void *addrp,
2054 		      u32 addrlen,
2055 		      u32 *out_sid)
2056 {
2057 	int rc;
2058 	struct ocontext *c;
2059 
2060 	read_lock(&policy_rwlock);
2061 
2062 	switch (domain) {
2063 	case AF_INET: {
2064 		u32 addr;
2065 
2066 		rc = -EINVAL;
2067 		if (addrlen != sizeof(u32))
2068 			goto out;
2069 
2070 		addr = *((u32 *)addrp);
2071 
2072 		c = policydb.ocontexts[OCON_NODE];
2073 		while (c) {
2074 			if (c->u.node.addr == (addr & c->u.node.mask))
2075 				break;
2076 			c = c->next;
2077 		}
2078 		break;
2079 	}
2080 
2081 	case AF_INET6:
2082 		rc = -EINVAL;
2083 		if (addrlen != sizeof(u64) * 2)
2084 			goto out;
2085 		c = policydb.ocontexts[OCON_NODE6];
2086 		while (c) {
2087 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2088 						c->u.node6.mask))
2089 				break;
2090 			c = c->next;
2091 		}
2092 		break;
2093 
2094 	default:
2095 		rc = 0;
2096 		*out_sid = SECINITSID_NODE;
2097 		goto out;
2098 	}
2099 
2100 	if (c) {
2101 		if (!c->sid[0]) {
2102 			rc = sidtab_context_to_sid(&sidtab,
2103 						   &c->context[0],
2104 						   &c->sid[0]);
2105 			if (rc)
2106 				goto out;
2107 		}
2108 		*out_sid = c->sid[0];
2109 	} else {
2110 		*out_sid = SECINITSID_NODE;
2111 	}
2112 
2113 	rc = 0;
2114 out:
2115 	read_unlock(&policy_rwlock);
2116 	return rc;
2117 }
2118 
2119 #define SIDS_NEL 25
2120 
2121 /**
2122  * security_get_user_sids - Obtain reachable SIDs for a user.
2123  * @fromsid: starting SID
2124  * @username: username
2125  * @sids: array of reachable SIDs for user
2126  * @nel: number of elements in @sids
2127  *
2128  * Generate the set of SIDs for legal security contexts
2129  * for a given user that can be reached by @fromsid.
2130  * Set *@sids to point to a dynamically allocated
2131  * array containing the set of SIDs.  Set *@nel to the
2132  * number of elements in the array.
2133  */
2134 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2135 int security_get_user_sids(u32 fromsid,
2136 			   char *username,
2137 			   u32 **sids,
2138 			   u32 *nel)
2139 {
2140 	struct context *fromcon, usercon;
2141 	u32 *mysids = NULL, *mysids2, sid;
2142 	u32 mynel = 0, maxnel = SIDS_NEL;
2143 	struct user_datum *user;
2144 	struct role_datum *role;
2145 	struct ebitmap_node *rnode, *tnode;
2146 	int rc = 0, i, j;
2147 
2148 	*sids = NULL;
2149 	*nel = 0;
2150 
2151 	if (!ss_initialized)
2152 		goto out;
2153 
2154 	read_lock(&policy_rwlock);
2155 
2156 	context_init(&usercon);
2157 
2158 	rc = -EINVAL;
2159 	fromcon = sidtab_search(&sidtab, fromsid);
2160 	if (!fromcon)
2161 		goto out_unlock;
2162 
2163 	rc = -EINVAL;
2164 	user = hashtab_search(policydb.p_users.table, username);
2165 	if (!user)
2166 		goto out_unlock;
2167 
2168 	usercon.user = user->value;
2169 
2170 	rc = -ENOMEM;
2171 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2172 	if (!mysids)
2173 		goto out_unlock;
2174 
2175 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2176 		role = policydb.role_val_to_struct[i];
2177 		usercon.role = i + 1;
2178 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2179 			usercon.type = j + 1;
2180 
2181 			if (mls_setup_user_range(fromcon, user, &usercon))
2182 				continue;
2183 
2184 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2185 			if (rc)
2186 				goto out_unlock;
2187 			if (mynel < maxnel) {
2188 				mysids[mynel++] = sid;
2189 			} else {
2190 				rc = -ENOMEM;
2191 				maxnel += SIDS_NEL;
2192 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2193 				if (!mysids2)
2194 					goto out_unlock;
2195 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2196 				kfree(mysids);
2197 				mysids = mysids2;
2198 				mysids[mynel++] = sid;
2199 			}
2200 		}
2201 	}
2202 	rc = 0;
2203 out_unlock:
2204 	read_unlock(&policy_rwlock);
2205 	if (rc || !mynel) {
2206 		kfree(mysids);
2207 		goto out;
2208 	}
2209 
2210 	rc = -ENOMEM;
2211 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2212 	if (!mysids2) {
2213 		kfree(mysids);
2214 		goto out;
2215 	}
2216 	for (i = 0, j = 0; i < mynel; i++) {
2217 		struct av_decision dummy_avd;
2218 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2219 					  SECCLASS_PROCESS, /* kernel value */
2220 					  PROCESS__TRANSITION, AVC_STRICT,
2221 					  &dummy_avd);
2222 		if (!rc)
2223 			mysids2[j++] = mysids[i];
2224 		cond_resched();
2225 	}
2226 	rc = 0;
2227 	kfree(mysids);
2228 	*sids = mysids2;
2229 	*nel = j;
2230 out:
2231 	return rc;
2232 }
2233 
2234 /**
2235  * security_genfs_sid - Obtain a SID for a file in a filesystem
2236  * @fstype: filesystem type
2237  * @path: path from root of mount
2238  * @sclass: file security class
2239  * @sid: SID for path
2240  *
2241  * Obtain a SID to use for a file in a filesystem that
2242  * cannot support xattr or use a fixed labeling behavior like
2243  * transition SIDs or task SIDs.
2244  */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2245 int security_genfs_sid(const char *fstype,
2246 		       char *path,
2247 		       u16 orig_sclass,
2248 		       u32 *sid)
2249 {
2250 	int len;
2251 	u16 sclass;
2252 	struct genfs *genfs;
2253 	struct ocontext *c;
2254 	int rc, cmp = 0;
2255 
2256 	while (path[0] == '/' && path[1] == '/')
2257 		path++;
2258 
2259 	read_lock(&policy_rwlock);
2260 
2261 	sclass = unmap_class(orig_sclass);
2262 	*sid = SECINITSID_UNLABELED;
2263 
2264 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2265 		cmp = strcmp(fstype, genfs->fstype);
2266 		if (cmp <= 0)
2267 			break;
2268 	}
2269 
2270 	rc = -ENOENT;
2271 	if (!genfs || cmp)
2272 		goto out;
2273 
2274 	for (c = genfs->head; c; c = c->next) {
2275 		len = strlen(c->u.name);
2276 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2277 		    (strncmp(c->u.name, path, len) == 0))
2278 			break;
2279 	}
2280 
2281 	rc = -ENOENT;
2282 	if (!c)
2283 		goto out;
2284 
2285 	if (!c->sid[0]) {
2286 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2287 		if (rc)
2288 			goto out;
2289 	}
2290 
2291 	*sid = c->sid[0];
2292 	rc = 0;
2293 out:
2294 	read_unlock(&policy_rwlock);
2295 	return rc;
2296 }
2297 
2298 /**
2299  * security_fs_use - Determine how to handle labeling for a filesystem.
2300  * @fstype: filesystem type
2301  * @behavior: labeling behavior
2302  * @sid: SID for filesystem (superblock)
2303  */
security_fs_use(const char * fstype,unsigned int * behavior,u32 * sid)2304 int security_fs_use(
2305 	const char *fstype,
2306 	unsigned int *behavior,
2307 	u32 *sid)
2308 {
2309 	int rc = 0;
2310 	struct ocontext *c;
2311 
2312 	read_lock(&policy_rwlock);
2313 
2314 	c = policydb.ocontexts[OCON_FSUSE];
2315 	while (c) {
2316 		if (strcmp(fstype, c->u.name) == 0)
2317 			break;
2318 		c = c->next;
2319 	}
2320 
2321 	if (c) {
2322 		*behavior = c->v.behavior;
2323 		if (!c->sid[0]) {
2324 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2325 						   &c->sid[0]);
2326 			if (rc)
2327 				goto out;
2328 		}
2329 		*sid = c->sid[0];
2330 	} else {
2331 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2332 		if (rc) {
2333 			*behavior = SECURITY_FS_USE_NONE;
2334 			rc = 0;
2335 		} else {
2336 			*behavior = SECURITY_FS_USE_GENFS;
2337 		}
2338 	}
2339 
2340 out:
2341 	read_unlock(&policy_rwlock);
2342 	return rc;
2343 }
2344 
security_get_bools(int * len,char *** names,int ** values)2345 int security_get_bools(int *len, char ***names, int **values)
2346 {
2347 	int i, rc;
2348 
2349 	read_lock(&policy_rwlock);
2350 	*names = NULL;
2351 	*values = NULL;
2352 
2353 	rc = 0;
2354 	*len = policydb.p_bools.nprim;
2355 	if (!*len)
2356 		goto out;
2357 
2358 	rc = -ENOMEM;
2359 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2360 	if (!*names)
2361 		goto err;
2362 
2363 	rc = -ENOMEM;
2364 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2365 	if (!*values)
2366 		goto err;
2367 
2368 	for (i = 0; i < *len; i++) {
2369 		size_t name_len;
2370 
2371 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2372 		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2373 
2374 		rc = -ENOMEM;
2375 		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2376 		if (!(*names)[i])
2377 			goto err;
2378 
2379 		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2380 		(*names)[i][name_len - 1] = 0;
2381 	}
2382 	rc = 0;
2383 out:
2384 	read_unlock(&policy_rwlock);
2385 	return rc;
2386 err:
2387 	if (*names) {
2388 		for (i = 0; i < *len; i++)
2389 			kfree((*names)[i]);
2390 	}
2391 	kfree(*values);
2392 	goto out;
2393 }
2394 
2395 
security_set_bools(int len,int * values)2396 int security_set_bools(int len, int *values)
2397 {
2398 	int i, rc;
2399 	int lenp, seqno = 0;
2400 	struct cond_node *cur;
2401 
2402 	write_lock_irq(&policy_rwlock);
2403 
2404 	rc = -EFAULT;
2405 	lenp = policydb.p_bools.nprim;
2406 	if (len != lenp)
2407 		goto out;
2408 
2409 	for (i = 0; i < len; i++) {
2410 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2411 			audit_log(current->audit_context, GFP_ATOMIC,
2412 				AUDIT_MAC_CONFIG_CHANGE,
2413 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2414 				sym_name(&policydb, SYM_BOOLS, i),
2415 				!!values[i],
2416 				policydb.bool_val_to_struct[i]->state,
2417 				audit_get_loginuid(current),
2418 				audit_get_sessionid(current));
2419 		}
2420 		if (values[i])
2421 			policydb.bool_val_to_struct[i]->state = 1;
2422 		else
2423 			policydb.bool_val_to_struct[i]->state = 0;
2424 	}
2425 
2426 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2427 		rc = evaluate_cond_node(&policydb, cur);
2428 		if (rc)
2429 			goto out;
2430 	}
2431 
2432 	seqno = ++latest_granting;
2433 	rc = 0;
2434 out:
2435 	write_unlock_irq(&policy_rwlock);
2436 	if (!rc) {
2437 		avc_ss_reset(seqno);
2438 		selnl_notify_policyload(seqno);
2439 		selinux_status_update_policyload(seqno);
2440 		selinux_xfrm_notify_policyload();
2441 	}
2442 	return rc;
2443 }
2444 
security_get_bool_value(int bool)2445 int security_get_bool_value(int bool)
2446 {
2447 	int rc;
2448 	int len;
2449 
2450 	read_lock(&policy_rwlock);
2451 
2452 	rc = -EFAULT;
2453 	len = policydb.p_bools.nprim;
2454 	if (bool >= len)
2455 		goto out;
2456 
2457 	rc = policydb.bool_val_to_struct[bool]->state;
2458 out:
2459 	read_unlock(&policy_rwlock);
2460 	return rc;
2461 }
2462 
security_preserve_bools(struct policydb * p)2463 static int security_preserve_bools(struct policydb *p)
2464 {
2465 	int rc, nbools = 0, *bvalues = NULL, i;
2466 	char **bnames = NULL;
2467 	struct cond_bool_datum *booldatum;
2468 	struct cond_node *cur;
2469 
2470 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2471 	if (rc)
2472 		goto out;
2473 	for (i = 0; i < nbools; i++) {
2474 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2475 		if (booldatum)
2476 			booldatum->state = bvalues[i];
2477 	}
2478 	for (cur = p->cond_list; cur; cur = cur->next) {
2479 		rc = evaluate_cond_node(p, cur);
2480 		if (rc)
2481 			goto out;
2482 	}
2483 
2484 out:
2485 	if (bnames) {
2486 		for (i = 0; i < nbools; i++)
2487 			kfree(bnames[i]);
2488 	}
2489 	kfree(bnames);
2490 	kfree(bvalues);
2491 	return rc;
2492 }
2493 
2494 /*
2495  * security_sid_mls_copy() - computes a new sid based on the given
2496  * sid and the mls portion of mls_sid.
2497  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2498 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2499 {
2500 	struct context *context1;
2501 	struct context *context2;
2502 	struct context newcon;
2503 	char *s;
2504 	u32 len;
2505 	int rc;
2506 
2507 	rc = 0;
2508 	if (!ss_initialized || !policydb.mls_enabled) {
2509 		*new_sid = sid;
2510 		goto out;
2511 	}
2512 
2513 	context_init(&newcon);
2514 
2515 	read_lock(&policy_rwlock);
2516 
2517 	rc = -EINVAL;
2518 	context1 = sidtab_search(&sidtab, sid);
2519 	if (!context1) {
2520 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2521 			__func__, sid);
2522 		goto out_unlock;
2523 	}
2524 
2525 	rc = -EINVAL;
2526 	context2 = sidtab_search(&sidtab, mls_sid);
2527 	if (!context2) {
2528 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2529 			__func__, mls_sid);
2530 		goto out_unlock;
2531 	}
2532 
2533 	newcon.user = context1->user;
2534 	newcon.role = context1->role;
2535 	newcon.type = context1->type;
2536 	rc = mls_context_cpy(&newcon, context2);
2537 	if (rc)
2538 		goto out_unlock;
2539 
2540 	/* Check the validity of the new context. */
2541 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2542 		rc = convert_context_handle_invalid_context(&newcon);
2543 		if (rc) {
2544 			if (!context_struct_to_string(&newcon, &s, &len)) {
2545 				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2546 					  "security_sid_mls_copy: invalid context %s", s);
2547 				kfree(s);
2548 			}
2549 			goto out_unlock;
2550 		}
2551 	}
2552 
2553 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2554 out_unlock:
2555 	read_unlock(&policy_rwlock);
2556 	context_destroy(&newcon);
2557 out:
2558 	return rc;
2559 }
2560 
2561 /**
2562  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2563  * @nlbl_sid: NetLabel SID
2564  * @nlbl_type: NetLabel labeling protocol type
2565  * @xfrm_sid: XFRM SID
2566  *
2567  * Description:
2568  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2569  * resolved into a single SID it is returned via @peer_sid and the function
2570  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2571  * returns a negative value.  A table summarizing the behavior is below:
2572  *
2573  *                                 | function return |      @sid
2574  *   ------------------------------+-----------------+-----------------
2575  *   no peer labels                |        0        |    SECSID_NULL
2576  *   single peer label             |        0        |    <peer_label>
2577  *   multiple, consistent labels   |        0        |    <peer_label>
2578  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2579  *
2580  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2581 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2582 				 u32 xfrm_sid,
2583 				 u32 *peer_sid)
2584 {
2585 	int rc;
2586 	struct context *nlbl_ctx;
2587 	struct context *xfrm_ctx;
2588 
2589 	*peer_sid = SECSID_NULL;
2590 
2591 	/* handle the common (which also happens to be the set of easy) cases
2592 	 * right away, these two if statements catch everything involving a
2593 	 * single or absent peer SID/label */
2594 	if (xfrm_sid == SECSID_NULL) {
2595 		*peer_sid = nlbl_sid;
2596 		return 0;
2597 	}
2598 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2599 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2600 	 * is present */
2601 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2602 		*peer_sid = xfrm_sid;
2603 		return 0;
2604 	}
2605 
2606 	/* we don't need to check ss_initialized here since the only way both
2607 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2608 	 * security server was initialized and ss_initialized was true */
2609 	if (!policydb.mls_enabled)
2610 		return 0;
2611 
2612 	read_lock(&policy_rwlock);
2613 
2614 	rc = -EINVAL;
2615 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2616 	if (!nlbl_ctx) {
2617 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2618 		       __func__, nlbl_sid);
2619 		goto out;
2620 	}
2621 	rc = -EINVAL;
2622 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2623 	if (!xfrm_ctx) {
2624 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2625 		       __func__, xfrm_sid);
2626 		goto out;
2627 	}
2628 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2629 	if (rc)
2630 		goto out;
2631 
2632 	/* at present NetLabel SIDs/labels really only carry MLS
2633 	 * information so if the MLS portion of the NetLabel SID
2634 	 * matches the MLS portion of the labeled XFRM SID/label
2635 	 * then pass along the XFRM SID as it is the most
2636 	 * expressive */
2637 	*peer_sid = xfrm_sid;
2638 out:
2639 	read_unlock(&policy_rwlock);
2640 	return rc;
2641 }
2642 
get_classes_callback(void * k,void * d,void * args)2643 static int get_classes_callback(void *k, void *d, void *args)
2644 {
2645 	struct class_datum *datum = d;
2646 	char *name = k, **classes = args;
2647 	int value = datum->value - 1;
2648 
2649 	classes[value] = kstrdup(name, GFP_ATOMIC);
2650 	if (!classes[value])
2651 		return -ENOMEM;
2652 
2653 	return 0;
2654 }
2655 
security_get_classes(char *** classes,int * nclasses)2656 int security_get_classes(char ***classes, int *nclasses)
2657 {
2658 	int rc;
2659 
2660 	read_lock(&policy_rwlock);
2661 
2662 	rc = -ENOMEM;
2663 	*nclasses = policydb.p_classes.nprim;
2664 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2665 	if (!*classes)
2666 		goto out;
2667 
2668 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2669 			*classes);
2670 	if (rc) {
2671 		int i;
2672 		for (i = 0; i < *nclasses; i++)
2673 			kfree((*classes)[i]);
2674 		kfree(*classes);
2675 	}
2676 
2677 out:
2678 	read_unlock(&policy_rwlock);
2679 	return rc;
2680 }
2681 
get_permissions_callback(void * k,void * d,void * args)2682 static int get_permissions_callback(void *k, void *d, void *args)
2683 {
2684 	struct perm_datum *datum = d;
2685 	char *name = k, **perms = args;
2686 	int value = datum->value - 1;
2687 
2688 	perms[value] = kstrdup(name, GFP_ATOMIC);
2689 	if (!perms[value])
2690 		return -ENOMEM;
2691 
2692 	return 0;
2693 }
2694 
security_get_permissions(char * class,char *** perms,int * nperms)2695 int security_get_permissions(char *class, char ***perms, int *nperms)
2696 {
2697 	int rc, i;
2698 	struct class_datum *match;
2699 
2700 	read_lock(&policy_rwlock);
2701 
2702 	rc = -EINVAL;
2703 	match = hashtab_search(policydb.p_classes.table, class);
2704 	if (!match) {
2705 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2706 			__func__, class);
2707 		goto out;
2708 	}
2709 
2710 	rc = -ENOMEM;
2711 	*nperms = match->permissions.nprim;
2712 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2713 	if (!*perms)
2714 		goto out;
2715 
2716 	if (match->comdatum) {
2717 		rc = hashtab_map(match->comdatum->permissions.table,
2718 				get_permissions_callback, *perms);
2719 		if (rc)
2720 			goto err;
2721 	}
2722 
2723 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2724 			*perms);
2725 	if (rc)
2726 		goto err;
2727 
2728 out:
2729 	read_unlock(&policy_rwlock);
2730 	return rc;
2731 
2732 err:
2733 	read_unlock(&policy_rwlock);
2734 	for (i = 0; i < *nperms; i++)
2735 		kfree((*perms)[i]);
2736 	kfree(*perms);
2737 	return rc;
2738 }
2739 
security_get_reject_unknown(void)2740 int security_get_reject_unknown(void)
2741 {
2742 	return policydb.reject_unknown;
2743 }
2744 
security_get_allow_unknown(void)2745 int security_get_allow_unknown(void)
2746 {
2747 	return policydb.allow_unknown;
2748 }
2749 
2750 /**
2751  * security_policycap_supported - Check for a specific policy capability
2752  * @req_cap: capability
2753  *
2754  * Description:
2755  * This function queries the currently loaded policy to see if it supports the
2756  * capability specified by @req_cap.  Returns true (1) if the capability is
2757  * supported, false (0) if it isn't supported.
2758  *
2759  */
security_policycap_supported(unsigned int req_cap)2760 int security_policycap_supported(unsigned int req_cap)
2761 {
2762 	int rc;
2763 
2764 	read_lock(&policy_rwlock);
2765 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2766 	read_unlock(&policy_rwlock);
2767 
2768 	return rc;
2769 }
2770 
2771 struct selinux_audit_rule {
2772 	u32 au_seqno;
2773 	struct context au_ctxt;
2774 };
2775 
selinux_audit_rule_free(void * vrule)2776 void selinux_audit_rule_free(void *vrule)
2777 {
2778 	struct selinux_audit_rule *rule = vrule;
2779 
2780 	if (rule) {
2781 		context_destroy(&rule->au_ctxt);
2782 		kfree(rule);
2783 	}
2784 }
2785 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)2786 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2787 {
2788 	struct selinux_audit_rule *tmprule;
2789 	struct role_datum *roledatum;
2790 	struct type_datum *typedatum;
2791 	struct user_datum *userdatum;
2792 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2793 	int rc = 0;
2794 
2795 	*rule = NULL;
2796 
2797 	if (!ss_initialized)
2798 		return -EOPNOTSUPP;
2799 
2800 	switch (field) {
2801 	case AUDIT_SUBJ_USER:
2802 	case AUDIT_SUBJ_ROLE:
2803 	case AUDIT_SUBJ_TYPE:
2804 	case AUDIT_OBJ_USER:
2805 	case AUDIT_OBJ_ROLE:
2806 	case AUDIT_OBJ_TYPE:
2807 		/* only 'equals' and 'not equals' fit user, role, and type */
2808 		if (op != Audit_equal && op != Audit_not_equal)
2809 			return -EINVAL;
2810 		break;
2811 	case AUDIT_SUBJ_SEN:
2812 	case AUDIT_SUBJ_CLR:
2813 	case AUDIT_OBJ_LEV_LOW:
2814 	case AUDIT_OBJ_LEV_HIGH:
2815 		/* we do not allow a range, indicated by the presence of '-' */
2816 		if (strchr(rulestr, '-'))
2817 			return -EINVAL;
2818 		break;
2819 	default:
2820 		/* only the above fields are valid */
2821 		return -EINVAL;
2822 	}
2823 
2824 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2825 	if (!tmprule)
2826 		return -ENOMEM;
2827 
2828 	context_init(&tmprule->au_ctxt);
2829 
2830 	read_lock(&policy_rwlock);
2831 
2832 	tmprule->au_seqno = latest_granting;
2833 
2834 	switch (field) {
2835 	case AUDIT_SUBJ_USER:
2836 	case AUDIT_OBJ_USER:
2837 		rc = -EINVAL;
2838 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2839 		if (!userdatum)
2840 			goto out;
2841 		tmprule->au_ctxt.user = userdatum->value;
2842 		break;
2843 	case AUDIT_SUBJ_ROLE:
2844 	case AUDIT_OBJ_ROLE:
2845 		rc = -EINVAL;
2846 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2847 		if (!roledatum)
2848 			goto out;
2849 		tmprule->au_ctxt.role = roledatum->value;
2850 		break;
2851 	case AUDIT_SUBJ_TYPE:
2852 	case AUDIT_OBJ_TYPE:
2853 		rc = -EINVAL;
2854 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2855 		if (!typedatum)
2856 			goto out;
2857 		tmprule->au_ctxt.type = typedatum->value;
2858 		break;
2859 	case AUDIT_SUBJ_SEN:
2860 	case AUDIT_SUBJ_CLR:
2861 	case AUDIT_OBJ_LEV_LOW:
2862 	case AUDIT_OBJ_LEV_HIGH:
2863 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2864 		if (rc)
2865 			goto out;
2866 		break;
2867 	}
2868 	rc = 0;
2869 out:
2870 	read_unlock(&policy_rwlock);
2871 
2872 	if (rc) {
2873 		selinux_audit_rule_free(tmprule);
2874 		tmprule = NULL;
2875 	}
2876 
2877 	*rule = tmprule;
2878 
2879 	return rc;
2880 }
2881 
2882 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)2883 int selinux_audit_rule_known(struct audit_krule *rule)
2884 {
2885 	int i;
2886 
2887 	for (i = 0; i < rule->field_count; i++) {
2888 		struct audit_field *f = &rule->fields[i];
2889 		switch (f->type) {
2890 		case AUDIT_SUBJ_USER:
2891 		case AUDIT_SUBJ_ROLE:
2892 		case AUDIT_SUBJ_TYPE:
2893 		case AUDIT_SUBJ_SEN:
2894 		case AUDIT_SUBJ_CLR:
2895 		case AUDIT_OBJ_USER:
2896 		case AUDIT_OBJ_ROLE:
2897 		case AUDIT_OBJ_TYPE:
2898 		case AUDIT_OBJ_LEV_LOW:
2899 		case AUDIT_OBJ_LEV_HIGH:
2900 			return 1;
2901 		}
2902 	}
2903 
2904 	return 0;
2905 }
2906 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)2907 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2908 			     struct audit_context *actx)
2909 {
2910 	struct context *ctxt;
2911 	struct mls_level *level;
2912 	struct selinux_audit_rule *rule = vrule;
2913 	int match = 0;
2914 
2915 	if (!rule) {
2916 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2917 			  "selinux_audit_rule_match: missing rule\n");
2918 		return -ENOENT;
2919 	}
2920 
2921 	read_lock(&policy_rwlock);
2922 
2923 	if (rule->au_seqno < latest_granting) {
2924 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2925 			  "selinux_audit_rule_match: stale rule\n");
2926 		match = -ESTALE;
2927 		goto out;
2928 	}
2929 
2930 	ctxt = sidtab_search(&sidtab, sid);
2931 	if (!ctxt) {
2932 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2933 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2934 			  sid);
2935 		match = -ENOENT;
2936 		goto out;
2937 	}
2938 
2939 	/* a field/op pair that is not caught here will simply fall through
2940 	   without a match */
2941 	switch (field) {
2942 	case AUDIT_SUBJ_USER:
2943 	case AUDIT_OBJ_USER:
2944 		switch (op) {
2945 		case Audit_equal:
2946 			match = (ctxt->user == rule->au_ctxt.user);
2947 			break;
2948 		case Audit_not_equal:
2949 			match = (ctxt->user != rule->au_ctxt.user);
2950 			break;
2951 		}
2952 		break;
2953 	case AUDIT_SUBJ_ROLE:
2954 	case AUDIT_OBJ_ROLE:
2955 		switch (op) {
2956 		case Audit_equal:
2957 			match = (ctxt->role == rule->au_ctxt.role);
2958 			break;
2959 		case Audit_not_equal:
2960 			match = (ctxt->role != rule->au_ctxt.role);
2961 			break;
2962 		}
2963 		break;
2964 	case AUDIT_SUBJ_TYPE:
2965 	case AUDIT_OBJ_TYPE:
2966 		switch (op) {
2967 		case Audit_equal:
2968 			match = (ctxt->type == rule->au_ctxt.type);
2969 			break;
2970 		case Audit_not_equal:
2971 			match = (ctxt->type != rule->au_ctxt.type);
2972 			break;
2973 		}
2974 		break;
2975 	case AUDIT_SUBJ_SEN:
2976 	case AUDIT_SUBJ_CLR:
2977 	case AUDIT_OBJ_LEV_LOW:
2978 	case AUDIT_OBJ_LEV_HIGH:
2979 		level = ((field == AUDIT_SUBJ_SEN ||
2980 			  field == AUDIT_OBJ_LEV_LOW) ?
2981 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2982 		switch (op) {
2983 		case Audit_equal:
2984 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2985 					     level);
2986 			break;
2987 		case Audit_not_equal:
2988 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2989 					      level);
2990 			break;
2991 		case Audit_lt:
2992 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2993 					       level) &&
2994 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2995 					       level));
2996 			break;
2997 		case Audit_le:
2998 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2999 					      level);
3000 			break;
3001 		case Audit_gt:
3002 			match = (mls_level_dom(level,
3003 					      &rule->au_ctxt.range.level[0]) &&
3004 				 !mls_level_eq(level,
3005 					       &rule->au_ctxt.range.level[0]));
3006 			break;
3007 		case Audit_ge:
3008 			match = mls_level_dom(level,
3009 					      &rule->au_ctxt.range.level[0]);
3010 			break;
3011 		}
3012 	}
3013 
3014 out:
3015 	read_unlock(&policy_rwlock);
3016 	return match;
3017 }
3018 
3019 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3020 
aurule_avc_callback(u32 event,u32 ssid,u32 tsid,u16 class,u32 perms,u32 * retained)3021 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3022 			       u16 class, u32 perms, u32 *retained)
3023 {
3024 	int err = 0;
3025 
3026 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3027 		err = aurule_callback();
3028 	return err;
3029 }
3030 
aurule_init(void)3031 static int __init aurule_init(void)
3032 {
3033 	int err;
3034 
3035 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3036 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3037 	if (err)
3038 		panic("avc_add_callback() failed, error %d\n", err);
3039 
3040 	return err;
3041 }
3042 __initcall(aurule_init);
3043 
3044 #ifdef CONFIG_NETLABEL
3045 /**
3046  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3047  * @secattr: the NetLabel packet security attributes
3048  * @sid: the SELinux SID
3049  *
3050  * Description:
3051  * Attempt to cache the context in @ctx, which was derived from the packet in
3052  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3053  * already been initialized.
3054  *
3055  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3056 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3057 				      u32 sid)
3058 {
3059 	u32 *sid_cache;
3060 
3061 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3062 	if (sid_cache == NULL)
3063 		return;
3064 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3065 	if (secattr->cache == NULL) {
3066 		kfree(sid_cache);
3067 		return;
3068 	}
3069 
3070 	*sid_cache = sid;
3071 	secattr->cache->free = kfree;
3072 	secattr->cache->data = sid_cache;
3073 	secattr->flags |= NETLBL_SECATTR_CACHE;
3074 }
3075 
3076 /**
3077  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3078  * @secattr: the NetLabel packet security attributes
3079  * @sid: the SELinux SID
3080  *
3081  * Description:
3082  * Convert the given NetLabel security attributes in @secattr into a
3083  * SELinux SID.  If the @secattr field does not contain a full SELinux
3084  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3085  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3086  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3087  * conversion for future lookups.  Returns zero on success, negative values on
3088  * failure.
3089  *
3090  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3091 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3092 				   u32 *sid)
3093 {
3094 	int rc;
3095 	struct context *ctx;
3096 	struct context ctx_new;
3097 
3098 	if (!ss_initialized) {
3099 		*sid = SECSID_NULL;
3100 		return 0;
3101 	}
3102 
3103 	read_lock(&policy_rwlock);
3104 
3105 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3106 		*sid = *(u32 *)secattr->cache->data;
3107 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3108 		*sid = secattr->attr.secid;
3109 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3110 		rc = -EIDRM;
3111 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3112 		if (ctx == NULL)
3113 			goto out;
3114 
3115 		context_init(&ctx_new);
3116 		ctx_new.user = ctx->user;
3117 		ctx_new.role = ctx->role;
3118 		ctx_new.type = ctx->type;
3119 		mls_import_netlbl_lvl(&ctx_new, secattr);
3120 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3121 			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3122 						   secattr->attr.mls.cat);
3123 			if (rc)
3124 				goto out;
3125 			memcpy(&ctx_new.range.level[1].cat,
3126 			       &ctx_new.range.level[0].cat,
3127 			       sizeof(ctx_new.range.level[0].cat));
3128 		}
3129 		rc = -EIDRM;
3130 		if (!mls_context_isvalid(&policydb, &ctx_new))
3131 			goto out_free;
3132 
3133 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3134 		if (rc)
3135 			goto out_free;
3136 
3137 		security_netlbl_cache_add(secattr, *sid);
3138 
3139 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3140 	} else
3141 		*sid = SECSID_NULL;
3142 
3143 	read_unlock(&policy_rwlock);
3144 	return 0;
3145 out_free:
3146 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3147 out:
3148 	read_unlock(&policy_rwlock);
3149 	return rc;
3150 }
3151 
3152 /**
3153  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3154  * @sid: the SELinux SID
3155  * @secattr: the NetLabel packet security attributes
3156  *
3157  * Description:
3158  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3159  * Returns zero on success, negative values on failure.
3160  *
3161  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3162 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3163 {
3164 	int rc;
3165 	struct context *ctx;
3166 
3167 	if (!ss_initialized)
3168 		return 0;
3169 
3170 	read_lock(&policy_rwlock);
3171 
3172 	rc = -ENOENT;
3173 	ctx = sidtab_search(&sidtab, sid);
3174 	if (ctx == NULL)
3175 		goto out;
3176 
3177 	rc = -ENOMEM;
3178 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3179 				  GFP_ATOMIC);
3180 	if (secattr->domain == NULL)
3181 		goto out;
3182 
3183 	secattr->attr.secid = sid;
3184 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3185 	mls_export_netlbl_lvl(ctx, secattr);
3186 	rc = mls_export_netlbl_cat(ctx, secattr);
3187 out:
3188 	read_unlock(&policy_rwlock);
3189 	return rc;
3190 }
3191 #endif /* CONFIG_NETLABEL */
3192 
3193 /**
3194  * security_read_policy - read the policy.
3195  * @data: binary policy data
3196  * @len: length of data in bytes
3197  *
3198  */
security_read_policy(void ** data,size_t * len)3199 int security_read_policy(void **data, size_t *len)
3200 {
3201 	int rc;
3202 	struct policy_file fp;
3203 
3204 	if (!ss_initialized)
3205 		return -EINVAL;
3206 
3207 	*len = security_policydb_len();
3208 
3209 	*data = vmalloc_user(*len);
3210 	if (!*data)
3211 		return -ENOMEM;
3212 
3213 	fp.data = *data;
3214 	fp.len = *len;
3215 
3216 	read_lock(&policy_rwlock);
3217 	rc = policydb_write(&policydb, &fp);
3218 	read_unlock(&policy_rwlock);
3219 
3220 	if (rc)
3221 		return rc;
3222 
3223 	*len = (unsigned long)fp.data - (unsigned long)*data;
3224 	return 0;
3225 
3226 }
3227