1 /*********************************************************************
2  *
3  * Filename:      irttp.c
4  * Version:       1.2
5  * Description:   Tiny Transport Protocol (TTP) implementation
6  * Status:        Stable
7  * Author:        Dag Brattli <dagb@cs.uit.no>
8  * Created at:    Sun Aug 31 20:14:31 1997
9  * Modified at:   Wed Jan  5 11:31:27 2000
10  * Modified by:   Dag Brattli <dagb@cs.uit.no>
11  *
12  *     Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
13  *     All Rights Reserved.
14  *     Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15  *
16  *     This program is free software; you can redistribute it and/or
17  *     modify it under the terms of the GNU General Public License as
18  *     published by the Free Software Foundation; either version 2 of
19  *     the License, or (at your option) any later version.
20  *
21  *     Neither Dag Brattli nor University of Tromsø admit liability nor
22  *     provide warranty for any of this software. This material is
23  *     provided "AS-IS" and at no charge.
24  *
25  ********************************************************************/
26 
27 #include <linux/skbuff.h>
28 #include <linux/init.h>
29 #include <linux/fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/irda/irda.h>
38 #include <net/irda/irlap.h>
39 #include <net/irda/irlmp.h>
40 #include <net/irda/parameters.h>
41 #include <net/irda/irttp.h>
42 
43 static struct irttp_cb *irttp;
44 
45 static void __irttp_close_tsap(struct tsap_cb *self);
46 
47 static int irttp_data_indication(void *instance, void *sap,
48 				 struct sk_buff *skb);
49 static int irttp_udata_indication(void *instance, void *sap,
50 				  struct sk_buff *skb);
51 static void irttp_disconnect_indication(void *instance, void *sap,
52 					LM_REASON reason, struct sk_buff *);
53 static void irttp_connect_indication(void *instance, void *sap,
54 				     struct qos_info *qos, __u32 max_sdu_size,
55 				     __u8 header_size, struct sk_buff *skb);
56 static void irttp_connect_confirm(void *instance, void *sap,
57 				  struct qos_info *qos, __u32 max_sdu_size,
58 				  __u8 header_size, struct sk_buff *skb);
59 static void irttp_run_tx_queue(struct tsap_cb *self);
60 static void irttp_run_rx_queue(struct tsap_cb *self);
61 
62 static void irttp_flush_queues(struct tsap_cb *self);
63 static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
64 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
65 static void irttp_todo_expired(unsigned long data);
66 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
67 				    int get);
68 
69 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
70 static void irttp_status_indication(void *instance,
71 				    LINK_STATUS link, LOCK_STATUS lock);
72 
73 /* Information for parsing parameters in IrTTP */
74 static pi_minor_info_t pi_minor_call_table[] = {
75 	{ NULL, 0 },                                             /* 0x00 */
76 	{ irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
77 };
78 static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
79 static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
80 
81 /************************ GLOBAL PROCEDURES ************************/
82 
83 /*
84  * Function irttp_init (void)
85  *
86  *    Initialize the IrTTP layer. Called by module initialization code
87  *
88  */
irttp_init(void)89 int __init irttp_init(void)
90 {
91 	irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
92 	if (irttp == NULL)
93 		return -ENOMEM;
94 
95 	irttp->magic = TTP_MAGIC;
96 
97 	irttp->tsaps = hashbin_new(HB_LOCK);
98 	if (!irttp->tsaps) {
99 		IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
100 			   __func__);
101 		kfree(irttp);
102 		return -ENOMEM;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * Function irttp_cleanup (void)
110  *
111  *    Called by module destruction/cleanup code
112  *
113  */
irttp_cleanup(void)114 void irttp_cleanup(void)
115 {
116 	/* Check for main structure */
117 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
118 
119 	/*
120 	 *  Delete hashbin and close all TSAP instances in it
121 	 */
122 	hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
123 
124 	irttp->magic = 0;
125 
126 	/* De-allocate main structure */
127 	kfree(irttp);
128 
129 	irttp = NULL;
130 }
131 
132 /*************************** SUBROUTINES ***************************/
133 
134 /*
135  * Function irttp_start_todo_timer (self, timeout)
136  *
137  *    Start todo timer.
138  *
139  * Made it more effient and unsensitive to race conditions - Jean II
140  */
irttp_start_todo_timer(struct tsap_cb * self,int timeout)141 static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
142 {
143 	/* Set new value for timer */
144 	mod_timer(&self->todo_timer, jiffies + timeout);
145 }
146 
147 /*
148  * Function irttp_todo_expired (data)
149  *
150  *    Todo timer has expired!
151  *
152  * One of the restriction of the timer is that it is run only on the timer
153  * interrupt which run every 10ms. This mean that even if you set the timer
154  * with a delay of 0, it may take up to 10ms before it's run.
155  * So, to minimise latency and keep cache fresh, we try to avoid using
156  * it as much as possible.
157  * Note : we can't use tasklets, because they can't be asynchronously
158  * killed (need user context), and we can't guarantee that here...
159  * Jean II
160  */
irttp_todo_expired(unsigned long data)161 static void irttp_todo_expired(unsigned long data)
162 {
163 	struct tsap_cb *self = (struct tsap_cb *) data;
164 
165 	/* Check that we still exist */
166 	if (!self || self->magic != TTP_TSAP_MAGIC)
167 		return;
168 
169 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
170 
171 	/* Try to make some progress, especially on Tx side - Jean II */
172 	irttp_run_rx_queue(self);
173 	irttp_run_tx_queue(self);
174 
175 	/* Check if time for disconnect */
176 	if (test_bit(0, &self->disconnect_pend)) {
177 		/* Check if it's possible to disconnect yet */
178 		if (skb_queue_empty(&self->tx_queue)) {
179 			/* Make sure disconnect is not pending anymore */
180 			clear_bit(0, &self->disconnect_pend);	/* FALSE */
181 
182 			/* Note : self->disconnect_skb may be NULL */
183 			irttp_disconnect_request(self, self->disconnect_skb,
184 						 P_NORMAL);
185 			self->disconnect_skb = NULL;
186 		} else {
187 			/* Try again later */
188 			irttp_start_todo_timer(self, HZ/10);
189 
190 			/* No reason to try and close now */
191 			return;
192 		}
193 	}
194 
195 	/* Check if it's closing time */
196 	if (self->close_pend)
197 		/* Finish cleanup */
198 		irttp_close_tsap(self);
199 }
200 
201 /*
202  * Function irttp_flush_queues (self)
203  *
204  *     Flushes (removes all frames) in transitt-buffer (tx_list)
205  */
irttp_flush_queues(struct tsap_cb * self)206 static void irttp_flush_queues(struct tsap_cb *self)
207 {
208 	struct sk_buff* skb;
209 
210 	IRDA_DEBUG(4, "%s()\n", __func__);
211 
212 	IRDA_ASSERT(self != NULL, return;);
213 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
214 
215 	/* Deallocate frames waiting to be sent */
216 	while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
217 		dev_kfree_skb(skb);
218 
219 	/* Deallocate received frames */
220 	while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
221 		dev_kfree_skb(skb);
222 
223 	/* Deallocate received fragments */
224 	while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
225 		dev_kfree_skb(skb);
226 }
227 
228 /*
229  * Function irttp_reassemble (self)
230  *
231  *    Makes a new (continuous) skb of all the fragments in the fragment
232  *    queue
233  *
234  */
irttp_reassemble_skb(struct tsap_cb * self)235 static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
236 {
237 	struct sk_buff *skb, *frag;
238 	int n = 0;  /* Fragment index */
239 
240 	IRDA_ASSERT(self != NULL, return NULL;);
241 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
242 
243 	IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
244 		   self->rx_sdu_size);
245 
246 	skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
247 	if (!skb)
248 		return NULL;
249 
250 	/*
251 	 * Need to reserve space for TTP header in case this skb needs to
252 	 * be requeued in case delivery failes
253 	 */
254 	skb_reserve(skb, TTP_HEADER);
255 	skb_put(skb, self->rx_sdu_size);
256 
257 	/*
258 	 *  Copy all fragments to a new buffer
259 	 */
260 	while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
261 		skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
262 		n += frag->len;
263 
264 		dev_kfree_skb(frag);
265 	}
266 
267 	IRDA_DEBUG(2,
268 		   "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
269 		   __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
270 	/* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
271 	 * by summing the size of all fragments, so we should always
272 	 * have n == self->rx_sdu_size, except in cases where we
273 	 * droped the last fragment (when self->rx_sdu_size exceed
274 	 * self->rx_max_sdu_size), where n < self->rx_sdu_size.
275 	 * Jean II */
276 	IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
277 
278 	/* Set the new length */
279 	skb_trim(skb, n);
280 
281 	self->rx_sdu_size = 0;
282 
283 	return skb;
284 }
285 
286 /*
287  * Function irttp_fragment_skb (skb)
288  *
289  *    Fragments a frame and queues all the fragments for transmission
290  *
291  */
irttp_fragment_skb(struct tsap_cb * self,struct sk_buff * skb)292 static inline void irttp_fragment_skb(struct tsap_cb *self,
293 				      struct sk_buff *skb)
294 {
295 	struct sk_buff *frag;
296 	__u8 *frame;
297 
298 	IRDA_DEBUG(2, "%s()\n", __func__);
299 
300 	IRDA_ASSERT(self != NULL, return;);
301 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
302 	IRDA_ASSERT(skb != NULL, return;);
303 
304 	/*
305 	 *  Split frame into a number of segments
306 	 */
307 	while (skb->len > self->max_seg_size) {
308 		IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
309 
310 		/* Make new segment */
311 		frag = alloc_skb(self->max_seg_size+self->max_header_size,
312 				 GFP_ATOMIC);
313 		if (!frag)
314 			return;
315 
316 		skb_reserve(frag, self->max_header_size);
317 
318 		/* Copy data from the original skb into this fragment. */
319 		skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
320 			      self->max_seg_size);
321 
322 		/* Insert TTP header, with the more bit set */
323 		frame = skb_push(frag, TTP_HEADER);
324 		frame[0] = TTP_MORE;
325 
326 		/* Hide the copied data from the original skb */
327 		skb_pull(skb, self->max_seg_size);
328 
329 		/* Queue fragment */
330 		skb_queue_tail(&self->tx_queue, frag);
331 	}
332 	/* Queue what is left of the original skb */
333 	IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
334 
335 	frame = skb_push(skb, TTP_HEADER);
336 	frame[0] = 0x00; /* Clear more bit */
337 
338 	/* Queue fragment */
339 	skb_queue_tail(&self->tx_queue, skb);
340 }
341 
342 /*
343  * Function irttp_param_max_sdu_size (self, param)
344  *
345  *    Handle the MaxSduSize parameter in the connect frames, this function
346  *    will be called both when this parameter needs to be inserted into, and
347  *    extracted from the connect frames
348  */
irttp_param_max_sdu_size(void * instance,irda_param_t * param,int get)349 static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
350 				    int get)
351 {
352 	struct tsap_cb *self;
353 
354 	self = instance;
355 
356 	IRDA_ASSERT(self != NULL, return -1;);
357 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
358 
359 	if (get)
360 		param->pv.i = self->tx_max_sdu_size;
361 	else
362 		self->tx_max_sdu_size = param->pv.i;
363 
364 	IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
365 
366 	return 0;
367 }
368 
369 /*************************** CLIENT CALLS ***************************/
370 /************************** LMP CALLBACKS **************************/
371 /* Everything is happily mixed up. Waiting for next clean up - Jean II */
372 
373 /*
374  * Initialization, that has to be done on new tsap
375  * instance allocation and on duplication
376  */
irttp_init_tsap(struct tsap_cb * tsap)377 static void irttp_init_tsap(struct tsap_cb *tsap)
378 {
379 	spin_lock_init(&tsap->lock);
380 	init_timer(&tsap->todo_timer);
381 
382 	skb_queue_head_init(&tsap->rx_queue);
383 	skb_queue_head_init(&tsap->tx_queue);
384 	skb_queue_head_init(&tsap->rx_fragments);
385 }
386 
387 /*
388  * Function irttp_open_tsap (stsap, notify)
389  *
390  *    Create TSAP connection endpoint,
391  */
irttp_open_tsap(__u8 stsap_sel,int credit,notify_t * notify)392 struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
393 {
394 	struct tsap_cb *self;
395 	struct lsap_cb *lsap;
396 	notify_t ttp_notify;
397 
398 	IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
399 
400 	/* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
401 	 * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
402 	 * JeanII */
403 	if((stsap_sel != LSAP_ANY) &&
404 	   ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
405 		IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
406 		return NULL;
407 	}
408 
409 	self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
410 	if (self == NULL) {
411 		IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
412 		return NULL;
413 	}
414 
415 	/* Initialize internal objects */
416 	irttp_init_tsap(self);
417 
418 	/* Initialise todo timer */
419 	self->todo_timer.data     = (unsigned long) self;
420 	self->todo_timer.function = &irttp_todo_expired;
421 
422 	/* Initialize callbacks for IrLMP to use */
423 	irda_notify_init(&ttp_notify);
424 	ttp_notify.connect_confirm = irttp_connect_confirm;
425 	ttp_notify.connect_indication = irttp_connect_indication;
426 	ttp_notify.disconnect_indication = irttp_disconnect_indication;
427 	ttp_notify.data_indication = irttp_data_indication;
428 	ttp_notify.udata_indication = irttp_udata_indication;
429 	ttp_notify.flow_indication = irttp_flow_indication;
430 	if(notify->status_indication != NULL)
431 		ttp_notify.status_indication = irttp_status_indication;
432 	ttp_notify.instance = self;
433 	strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
434 
435 	self->magic = TTP_TSAP_MAGIC;
436 	self->connected = FALSE;
437 
438 	/*
439 	 *  Create LSAP at IrLMP layer
440 	 */
441 	lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
442 	if (lsap == NULL) {
443 		IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
444 		return NULL;
445 	}
446 
447 	/*
448 	 *  If user specified LSAP_ANY as source TSAP selector, then IrLMP
449 	 *  will replace it with whatever source selector which is free, so
450 	 *  the stsap_sel we have might not be valid anymore
451 	 */
452 	self->stsap_sel = lsap->slsap_sel;
453 	IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
454 
455 	self->notify = *notify;
456 	self->lsap = lsap;
457 
458 	hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
459 
460 	if (credit > TTP_RX_MAX_CREDIT)
461 		self->initial_credit = TTP_RX_MAX_CREDIT;
462 	else
463 		self->initial_credit = credit;
464 
465 	return self;
466 }
467 EXPORT_SYMBOL(irttp_open_tsap);
468 
469 /*
470  * Function irttp_close (handle)
471  *
472  *    Remove an instance of a TSAP. This function should only deal with the
473  *    deallocation of the TSAP, and resetting of the TSAPs values;
474  *
475  */
__irttp_close_tsap(struct tsap_cb * self)476 static void __irttp_close_tsap(struct tsap_cb *self)
477 {
478 	/* First make sure we're connected. */
479 	IRDA_ASSERT(self != NULL, return;);
480 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
481 
482 	irttp_flush_queues(self);
483 
484 	del_timer(&self->todo_timer);
485 
486 	/* This one won't be cleaned up if we are disconnect_pend + close_pend
487 	 * and we receive a disconnect_indication */
488 	if (self->disconnect_skb)
489 		dev_kfree_skb(self->disconnect_skb);
490 
491 	self->connected = FALSE;
492 	self->magic = ~TTP_TSAP_MAGIC;
493 
494 	kfree(self);
495 }
496 
497 /*
498  * Function irttp_close (self)
499  *
500  *    Remove TSAP from list of all TSAPs and then deallocate all resources
501  *    associated with this TSAP
502  *
503  * Note : because we *free* the tsap structure, it is the responsibility
504  * of the caller to make sure we are called only once and to deal with
505  * possible race conditions. - Jean II
506  */
irttp_close_tsap(struct tsap_cb * self)507 int irttp_close_tsap(struct tsap_cb *self)
508 {
509 	struct tsap_cb *tsap;
510 
511 	IRDA_DEBUG(4, "%s()\n", __func__);
512 
513 	IRDA_ASSERT(self != NULL, return -1;);
514 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
515 
516 	/* Make sure tsap has been disconnected */
517 	if (self->connected) {
518 		/* Check if disconnect is not pending */
519 		if (!test_bit(0, &self->disconnect_pend)) {
520 			IRDA_WARNING("%s: TSAP still connected!\n",
521 				     __func__);
522 			irttp_disconnect_request(self, NULL, P_NORMAL);
523 		}
524 		self->close_pend = TRUE;
525 		irttp_start_todo_timer(self, HZ/10);
526 
527 		return 0; /* Will be back! */
528 	}
529 
530 	tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
531 
532 	IRDA_ASSERT(tsap == self, return -1;);
533 
534 	/* Close corresponding LSAP */
535 	if (self->lsap) {
536 		irlmp_close_lsap(self->lsap);
537 		self->lsap = NULL;
538 	}
539 
540 	__irttp_close_tsap(self);
541 
542 	return 0;
543 }
544 EXPORT_SYMBOL(irttp_close_tsap);
545 
546 /*
547  * Function irttp_udata_request (self, skb)
548  *
549  *    Send unreliable data on this TSAP
550  *
551  */
irttp_udata_request(struct tsap_cb * self,struct sk_buff * skb)552 int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
553 {
554 	int ret;
555 
556 	IRDA_ASSERT(self != NULL, return -1;);
557 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
558 	IRDA_ASSERT(skb != NULL, return -1;);
559 
560 	IRDA_DEBUG(4, "%s()\n", __func__);
561 
562 	/* Take shortcut on zero byte packets */
563 	if (skb->len == 0) {
564 		ret = 0;
565 		goto err;
566 	}
567 
568 	/* Check that nothing bad happens */
569 	if (!self->connected) {
570 		IRDA_WARNING("%s(), Not connected\n", __func__);
571 		ret = -ENOTCONN;
572 		goto err;
573 	}
574 
575 	if (skb->len > self->max_seg_size) {
576 		IRDA_ERROR("%s(), UData is too large for IrLAP!\n", __func__);
577 		ret = -EMSGSIZE;
578 		goto err;
579 	}
580 
581 	irlmp_udata_request(self->lsap, skb);
582 	self->stats.tx_packets++;
583 
584 	return 0;
585 
586 err:
587 	dev_kfree_skb(skb);
588 	return ret;
589 }
590 EXPORT_SYMBOL(irttp_udata_request);
591 
592 
593 /*
594  * Function irttp_data_request (handle, skb)
595  *
596  *    Queue frame for transmission. If SAR is enabled, fragement the frame
597  *    and queue the fragments for transmission
598  */
irttp_data_request(struct tsap_cb * self,struct sk_buff * skb)599 int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
600 {
601 	__u8 *frame;
602 	int ret;
603 
604 	IRDA_ASSERT(self != NULL, return -1;);
605 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
606 	IRDA_ASSERT(skb != NULL, return -1;);
607 
608 	IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
609 		   skb_queue_len(&self->tx_queue));
610 
611 	/* Take shortcut on zero byte packets */
612 	if (skb->len == 0) {
613 		ret = 0;
614 		goto err;
615 	}
616 
617 	/* Check that nothing bad happens */
618 	if (!self->connected) {
619 		IRDA_WARNING("%s: Not connected\n", __func__);
620 		ret = -ENOTCONN;
621 		goto err;
622 	}
623 
624 	/*
625 	 *  Check if SAR is disabled, and the frame is larger than what fits
626 	 *  inside an IrLAP frame
627 	 */
628 	if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
629 		IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
630 			   __func__);
631 		ret = -EMSGSIZE;
632 		goto err;
633 	}
634 
635 	/*
636 	 *  Check if SAR is enabled, and the frame is larger than the
637 	 *  TxMaxSduSize
638 	 */
639 	if ((self->tx_max_sdu_size != 0) &&
640 	    (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
641 	    (skb->len > self->tx_max_sdu_size))
642 	{
643 		IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
644 			   __func__);
645 		ret = -EMSGSIZE;
646 		goto err;
647 	}
648 	/*
649 	 *  Check if transmit queue is full
650 	 */
651 	if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
652 		/*
653 		 *  Give it a chance to empty itself
654 		 */
655 		irttp_run_tx_queue(self);
656 
657 		/* Drop packet. This error code should trigger the caller
658 		 * to resend the data in the client code - Jean II */
659 		ret = -ENOBUFS;
660 		goto err;
661 	}
662 
663 	/* Queue frame, or queue frame segments */
664 	if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
665 		/* Queue frame */
666 		IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
667 		frame = skb_push(skb, TTP_HEADER);
668 		frame[0] = 0x00; /* Clear more bit */
669 
670 		skb_queue_tail(&self->tx_queue, skb);
671 	} else {
672 		/*
673 		 *  Fragment the frame, this function will also queue the
674 		 *  fragments, we don't care about the fact the transmit
675 		 *  queue may be overfilled by all the segments for a little
676 		 *  while
677 		 */
678 		irttp_fragment_skb(self, skb);
679 	}
680 
681 	/* Check if we can accept more data from client */
682 	if ((!self->tx_sdu_busy) &&
683 	    (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
684 		/* Tx queue filling up, so stop client. */
685 		if (self->notify.flow_indication) {
686 			self->notify.flow_indication(self->notify.instance,
687 						     self, FLOW_STOP);
688 		}
689 		/* self->tx_sdu_busy is the state of the client.
690 		 * Update state after notifying client to avoid
691 		 * race condition with irttp_flow_indication().
692 		 * If the queue empty itself after our test but before
693 		 * we set the flag, we will fix ourselves below in
694 		 * irttp_run_tx_queue().
695 		 * Jean II */
696 		self->tx_sdu_busy = TRUE;
697 	}
698 
699 	/* Try to make some progress */
700 	irttp_run_tx_queue(self);
701 
702 	return 0;
703 
704 err:
705 	dev_kfree_skb(skb);
706 	return ret;
707 }
708 EXPORT_SYMBOL(irttp_data_request);
709 
710 /*
711  * Function irttp_run_tx_queue (self)
712  *
713  *    Transmit packets queued for transmission (if possible)
714  *
715  */
irttp_run_tx_queue(struct tsap_cb * self)716 static void irttp_run_tx_queue(struct tsap_cb *self)
717 {
718 	struct sk_buff *skb;
719 	unsigned long flags;
720 	int n;
721 
722 	IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
723 		   __func__,
724 		   self->send_credit, skb_queue_len(&self->tx_queue));
725 
726 	/* Get exclusive access to the tx queue, otherwise don't touch it */
727 	if (irda_lock(&self->tx_queue_lock) == FALSE)
728 		return;
729 
730 	/* Try to send out frames as long as we have credits
731 	 * and as long as LAP is not full. If LAP is full, it will
732 	 * poll us through irttp_flow_indication() - Jean II */
733 	while ((self->send_credit > 0) &&
734 	       (!irlmp_lap_tx_queue_full(self->lsap)) &&
735 	       (skb = skb_dequeue(&self->tx_queue)))
736 	{
737 		/*
738 		 *  Since we can transmit and receive frames concurrently,
739 		 *  the code below is a critical region and we must assure that
740 		 *  nobody messes with the credits while we update them.
741 		 */
742 		spin_lock_irqsave(&self->lock, flags);
743 
744 		n = self->avail_credit;
745 		self->avail_credit = 0;
746 
747 		/* Only room for 127 credits in frame */
748 		if (n > 127) {
749 			self->avail_credit = n-127;
750 			n = 127;
751 		}
752 		self->remote_credit += n;
753 		self->send_credit--;
754 
755 		spin_unlock_irqrestore(&self->lock, flags);
756 
757 		/*
758 		 *  More bit must be set by the data_request() or fragment()
759 		 *  functions
760 		 */
761 		skb->data[0] |= (n & 0x7f);
762 
763 		/* Detach from socket.
764 		 * The current skb has a reference to the socket that sent
765 		 * it (skb->sk). When we pass it to IrLMP, the skb will be
766 		 * stored in in IrLAP (self->wx_list). When we are within
767 		 * IrLAP, we lose the notion of socket, so we should not
768 		 * have a reference to a socket. So, we drop it here.
769 		 *
770 		 * Why does it matter ?
771 		 * When the skb is freed (kfree_skb), if it is associated
772 		 * with a socket, it release buffer space on the socket
773 		 * (through sock_wfree() and sock_def_write_space()).
774 		 * If the socket no longer exist, we may crash. Hard.
775 		 * When we close a socket, we make sure that associated packets
776 		 * in IrTTP are freed. However, we have no way to cancel
777 		 * the packet that we have passed to IrLAP. So, if a packet
778 		 * remains in IrLAP (retry on the link or else) after we
779 		 * close the socket, we are dead !
780 		 * Jean II */
781 		if (skb->sk != NULL) {
782 			/* IrSOCK application, IrOBEX, ... */
783 			skb_orphan(skb);
784 		}
785 			/* IrCOMM over IrTTP, IrLAN, ... */
786 
787 		/* Pass the skb to IrLMP - done */
788 		irlmp_data_request(self->lsap, skb);
789 		self->stats.tx_packets++;
790 	}
791 
792 	/* Check if we can accept more frames from client.
793 	 * We don't want to wait until the todo timer to do that, and we
794 	 * can't use tasklets (grr...), so we are obliged to give control
795 	 * to client. That's ok, this test will be true not too often
796 	 * (max once per LAP window) and we are called from places
797 	 * where we can spend a bit of time doing stuff. - Jean II */
798 	if ((self->tx_sdu_busy) &&
799 	    (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
800 	    (!self->close_pend))
801 	{
802 		if (self->notify.flow_indication)
803 			self->notify.flow_indication(self->notify.instance,
804 						     self, FLOW_START);
805 
806 		/* self->tx_sdu_busy is the state of the client.
807 		 * We don't really have a race here, but it's always safer
808 		 * to update our state after the client - Jean II */
809 		self->tx_sdu_busy = FALSE;
810 	}
811 
812 	/* Reset lock */
813 	self->tx_queue_lock = 0;
814 }
815 
816 /*
817  * Function irttp_give_credit (self)
818  *
819  *    Send a dataless flowdata TTP-PDU and give available credit to peer
820  *    TSAP
821  */
irttp_give_credit(struct tsap_cb * self)822 static inline void irttp_give_credit(struct tsap_cb *self)
823 {
824 	struct sk_buff *tx_skb = NULL;
825 	unsigned long flags;
826 	int n;
827 
828 	IRDA_ASSERT(self != NULL, return;);
829 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
830 
831 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
832 		   __func__,
833 		   self->send_credit, self->avail_credit, self->remote_credit);
834 
835 	/* Give credit to peer */
836 	tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
837 	if (!tx_skb)
838 		return;
839 
840 	/* Reserve space for LMP, and LAP header */
841 	skb_reserve(tx_skb, LMP_MAX_HEADER);
842 
843 	/*
844 	 *  Since we can transmit and receive frames concurrently,
845 	 *  the code below is a critical region and we must assure that
846 	 *  nobody messes with the credits while we update them.
847 	 */
848 	spin_lock_irqsave(&self->lock, flags);
849 
850 	n = self->avail_credit;
851 	self->avail_credit = 0;
852 
853 	/* Only space for 127 credits in frame */
854 	if (n > 127) {
855 		self->avail_credit = n - 127;
856 		n = 127;
857 	}
858 	self->remote_credit += n;
859 
860 	spin_unlock_irqrestore(&self->lock, flags);
861 
862 	skb_put(tx_skb, 1);
863 	tx_skb->data[0] = (__u8) (n & 0x7f);
864 
865 	irlmp_data_request(self->lsap, tx_skb);
866 	self->stats.tx_packets++;
867 }
868 
869 /*
870  * Function irttp_udata_indication (instance, sap, skb)
871  *
872  *    Received some unit-data (unreliable)
873  *
874  */
irttp_udata_indication(void * instance,void * sap,struct sk_buff * skb)875 static int irttp_udata_indication(void *instance, void *sap,
876 				  struct sk_buff *skb)
877 {
878 	struct tsap_cb *self;
879 	int err;
880 
881 	IRDA_DEBUG(4, "%s()\n", __func__);
882 
883 	self = instance;
884 
885 	IRDA_ASSERT(self != NULL, return -1;);
886 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
887 	IRDA_ASSERT(skb != NULL, return -1;);
888 
889 	self->stats.rx_packets++;
890 
891 	/* Just pass data to layer above */
892 	if (self->notify.udata_indication) {
893 		err = self->notify.udata_indication(self->notify.instance,
894 						    self,skb);
895 		/* Same comment as in irttp_do_data_indication() */
896 		if (!err)
897 			return 0;
898 	}
899 	/* Either no handler, or handler returns an error */
900 	dev_kfree_skb(skb);
901 
902 	return 0;
903 }
904 
905 /*
906  * Function irttp_data_indication (instance, sap, skb)
907  *
908  *    Receive segment from IrLMP.
909  *
910  */
irttp_data_indication(void * instance,void * sap,struct sk_buff * skb)911 static int irttp_data_indication(void *instance, void *sap,
912 				 struct sk_buff *skb)
913 {
914 	struct tsap_cb *self;
915 	unsigned long flags;
916 	int n;
917 
918 	self = instance;
919 
920 	n = skb->data[0] & 0x7f;     /* Extract the credits */
921 
922 	self->stats.rx_packets++;
923 
924 	/*  Deal with inbound credit
925 	 *  Since we can transmit and receive frames concurrently,
926 	 *  the code below is a critical region and we must assure that
927 	 *  nobody messes with the credits while we update them.
928 	 */
929 	spin_lock_irqsave(&self->lock, flags);
930 	self->send_credit += n;
931 	if (skb->len > 1)
932 		self->remote_credit--;
933 	spin_unlock_irqrestore(&self->lock, flags);
934 
935 	/*
936 	 *  Data or dataless packet? Dataless frames contains only the
937 	 *  TTP_HEADER.
938 	 */
939 	if (skb->len > 1) {
940 		/*
941 		 *  We don't remove the TTP header, since we must preserve the
942 		 *  more bit, so the defragment routing knows what to do
943 		 */
944 		skb_queue_tail(&self->rx_queue, skb);
945 	} else {
946 		/* Dataless flowdata TTP-PDU */
947 		dev_kfree_skb(skb);
948 	}
949 
950 
951 	/* Push data to the higher layer.
952 	 * We do it synchronously because running the todo timer for each
953 	 * receive packet would be too much overhead and latency.
954 	 * By passing control to the higher layer, we run the risk that
955 	 * it may take time or grab a lock. Most often, the higher layer
956 	 * will only put packet in a queue.
957 	 * Anyway, packets are only dripping through the IrDA, so we can
958 	 * have time before the next packet.
959 	 * Further, we are run from NET_BH, so the worse that can happen is
960 	 * us missing the optimal time to send back the PF bit in LAP.
961 	 * Jean II */
962 	irttp_run_rx_queue(self);
963 
964 	/* We now give credits to peer in irttp_run_rx_queue().
965 	 * We need to send credit *NOW*, otherwise we are going
966 	 * to miss the next Tx window. The todo timer may take
967 	 * a while before it's run... - Jean II */
968 
969 	/*
970 	 * If the peer device has given us some credits and we didn't have
971 	 * anyone from before, then we need to shedule the tx queue.
972 	 * We need to do that because our Tx have stopped (so we may not
973 	 * get any LAP flow indication) and the user may be stopped as
974 	 * well. - Jean II
975 	 */
976 	if (self->send_credit == n) {
977 		/* Restart pushing stuff to LAP */
978 		irttp_run_tx_queue(self);
979 		/* Note : we don't want to schedule the todo timer
980 		 * because it has horrible latency. No tasklets
981 		 * because the tasklet API is broken. - Jean II */
982 	}
983 
984 	return 0;
985 }
986 
987 /*
988  * Function irttp_status_indication (self, reason)
989  *
990  *    Status_indication, just pass to the higher layer...
991  *
992  */
irttp_status_indication(void * instance,LINK_STATUS link,LOCK_STATUS lock)993 static void irttp_status_indication(void *instance,
994 				    LINK_STATUS link, LOCK_STATUS lock)
995 {
996 	struct tsap_cb *self;
997 
998 	IRDA_DEBUG(4, "%s()\n", __func__);
999 
1000 	self = instance;
1001 
1002 	IRDA_ASSERT(self != NULL, return;);
1003 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1004 
1005 	/* Check if client has already closed the TSAP and gone away */
1006 	if (self->close_pend)
1007 		return;
1008 
1009 	/*
1010 	 *  Inform service user if he has requested it
1011 	 */
1012 	if (self->notify.status_indication != NULL)
1013 		self->notify.status_indication(self->notify.instance,
1014 					       link, lock);
1015 	else
1016 		IRDA_DEBUG(2, "%s(), no handler\n", __func__);
1017 }
1018 
1019 /*
1020  * Function irttp_flow_indication (self, reason)
1021  *
1022  *    Flow_indication : IrLAP tells us to send more data.
1023  *
1024  */
irttp_flow_indication(void * instance,void * sap,LOCAL_FLOW flow)1025 static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
1026 {
1027 	struct tsap_cb *self;
1028 
1029 	self = instance;
1030 
1031 	IRDA_ASSERT(self != NULL, return;);
1032 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1033 
1034 	IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
1035 
1036 	/* We are "polled" directly from LAP, and the LAP want to fill
1037 	 * its Tx window. We want to do our best to send it data, so that
1038 	 * we maximise the window. On the other hand, we want to limit the
1039 	 * amount of work here so that LAP doesn't hang forever waiting
1040 	 * for packets. - Jean II */
1041 
1042 	/* Try to send some packets. Currently, LAP calls us every time
1043 	 * there is one free slot, so we will send only one packet.
1044 	 * This allow the scheduler to do its round robin - Jean II */
1045 	irttp_run_tx_queue(self);
1046 
1047 	/* Note regarding the interraction with higher layer.
1048 	 * irttp_run_tx_queue() may call the client when its queue
1049 	 * start to empty, via notify.flow_indication(). Initially.
1050 	 * I wanted this to happen in a tasklet, to avoid client
1051 	 * grabbing the CPU, but we can't use tasklets safely. And timer
1052 	 * is definitely too slow.
1053 	 * This will happen only once per LAP window, and usually at
1054 	 * the third packet (unless window is smaller). LAP is still
1055 	 * doing mtt and sending first packet so it's sort of OK
1056 	 * to do that. Jean II */
1057 
1058 	/* If we need to send disconnect. try to do it now */
1059 	if(self->disconnect_pend)
1060 		irttp_start_todo_timer(self, 0);
1061 }
1062 
1063 /*
1064  * Function irttp_flow_request (self, command)
1065  *
1066  *    This function could be used by the upper layers to tell IrTTP to stop
1067  *    delivering frames if the receive queues are starting to get full, or
1068  *    to tell IrTTP to start delivering frames again.
1069  */
irttp_flow_request(struct tsap_cb * self,LOCAL_FLOW flow)1070 void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
1071 {
1072 	IRDA_DEBUG(1, "%s()\n", __func__);
1073 
1074 	IRDA_ASSERT(self != NULL, return;);
1075 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1076 
1077 	switch (flow) {
1078 	case FLOW_STOP:
1079 		IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
1080 		self->rx_sdu_busy = TRUE;
1081 		break;
1082 	case FLOW_START:
1083 		IRDA_DEBUG(1, "%s(), flow start\n", __func__);
1084 		self->rx_sdu_busy = FALSE;
1085 
1086 		/* Client say he can accept more data, try to free our
1087 		 * queues ASAP - Jean II */
1088 		irttp_run_rx_queue(self);
1089 
1090 		break;
1091 	default:
1092 		IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
1093 	}
1094 }
1095 EXPORT_SYMBOL(irttp_flow_request);
1096 
1097 /*
1098  * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
1099  *
1100  *    Try to connect to remote destination TSAP selector
1101  *
1102  */
irttp_connect_request(struct tsap_cb * self,__u8 dtsap_sel,__u32 saddr,__u32 daddr,struct qos_info * qos,__u32 max_sdu_size,struct sk_buff * userdata)1103 int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
1104 			  __u32 saddr, __u32 daddr,
1105 			  struct qos_info *qos, __u32 max_sdu_size,
1106 			  struct sk_buff *userdata)
1107 {
1108 	struct sk_buff *tx_skb;
1109 	__u8 *frame;
1110 	__u8 n;
1111 
1112 	IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
1113 
1114 	IRDA_ASSERT(self != NULL, return -EBADR;);
1115 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
1116 
1117 	if (self->connected) {
1118 		if(userdata)
1119 			dev_kfree_skb(userdata);
1120 		return -EISCONN;
1121 	}
1122 
1123 	/* Any userdata supplied? */
1124 	if (userdata == NULL) {
1125 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1126 				   GFP_ATOMIC);
1127 		if (!tx_skb)
1128 			return -ENOMEM;
1129 
1130 		/* Reserve space for MUX_CONTROL and LAP header */
1131 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1132 	} else {
1133 		tx_skb = userdata;
1134 		/*
1135 		 *  Check that the client has reserved enough space for
1136 		 *  headers
1137 		 */
1138 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1139 			{ dev_kfree_skb(userdata); return -1; } );
1140 	}
1141 
1142 	/* Initialize connection parameters */
1143 	self->connected = FALSE;
1144 	self->avail_credit = 0;
1145 	self->rx_max_sdu_size = max_sdu_size;
1146 	self->rx_sdu_size = 0;
1147 	self->rx_sdu_busy = FALSE;
1148 	self->dtsap_sel = dtsap_sel;
1149 
1150 	n = self->initial_credit;
1151 
1152 	self->remote_credit = 0;
1153 	self->send_credit = 0;
1154 
1155 	/*
1156 	 *  Give away max 127 credits for now
1157 	 */
1158 	if (n > 127) {
1159 		self->avail_credit=n-127;
1160 		n = 127;
1161 	}
1162 
1163 	self->remote_credit = n;
1164 
1165 	/* SAR enabled? */
1166 	if (max_sdu_size > 0) {
1167 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1168 			{ dev_kfree_skb(tx_skb); return -1; } );
1169 
1170 		/* Insert SAR parameters */
1171 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1172 
1173 		frame[0] = TTP_PARAMETERS | n;
1174 		frame[1] = 0x04; /* Length */
1175 		frame[2] = 0x01; /* MaxSduSize */
1176 		frame[3] = 0x02; /* Value length */
1177 
1178 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1179 			      (__be16 *)(frame+4));
1180 	} else {
1181 		/* Insert plain TTP header */
1182 		frame = skb_push(tx_skb, TTP_HEADER);
1183 
1184 		/* Insert initial credit in frame */
1185 		frame[0] = n & 0x7f;
1186 	}
1187 
1188 	/* Connect with IrLMP. No QoS parameters for now */
1189 	return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
1190 				     tx_skb);
1191 }
1192 EXPORT_SYMBOL(irttp_connect_request);
1193 
1194 /*
1195  * Function irttp_connect_confirm (handle, qos, skb)
1196  *
1197  *    Service user confirms TSAP connection with peer.
1198  *
1199  */
irttp_connect_confirm(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1200 static void irttp_connect_confirm(void *instance, void *sap,
1201 				  struct qos_info *qos, __u32 max_seg_size,
1202 				  __u8 max_header_size, struct sk_buff *skb)
1203 {
1204 	struct tsap_cb *self;
1205 	int parameters;
1206 	int ret;
1207 	__u8 plen;
1208 	__u8 n;
1209 
1210 	IRDA_DEBUG(4, "%s()\n", __func__);
1211 
1212 	self = instance;
1213 
1214 	IRDA_ASSERT(self != NULL, return;);
1215 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1216 	IRDA_ASSERT(skb != NULL, return;);
1217 
1218 	self->max_seg_size = max_seg_size - TTP_HEADER;
1219 	self->max_header_size = max_header_size + TTP_HEADER;
1220 
1221 	/*
1222 	 *  Check if we have got some QoS parameters back! This should be the
1223 	 *  negotiated QoS for the link.
1224 	 */
1225 	if (qos) {
1226 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
1227 		       qos->baud_rate.bits);
1228 		IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
1229 		       qos->baud_rate.value);
1230 	}
1231 
1232 	n = skb->data[0] & 0x7f;
1233 
1234 	IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
1235 
1236 	self->send_credit = n;
1237 	self->tx_max_sdu_size = 0;
1238 	self->connected = TRUE;
1239 
1240 	parameters = skb->data[0] & 0x80;
1241 
1242 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1243 	skb_pull(skb, TTP_HEADER);
1244 
1245 	if (parameters) {
1246 		plen = skb->data[0];
1247 
1248 		ret = irda_param_extract_all(self, skb->data+1,
1249 					     IRDA_MIN(skb->len-1, plen),
1250 					     &param_info);
1251 
1252 		/* Any errors in the parameter list? */
1253 		if (ret < 0) {
1254 			IRDA_WARNING("%s: error extracting parameters\n",
1255 				     __func__);
1256 			dev_kfree_skb(skb);
1257 
1258 			/* Do not accept this connection attempt */
1259 			return;
1260 		}
1261 		/* Remove parameters */
1262 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1263 	}
1264 
1265 	IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1266 	      self->send_credit, self->avail_credit, self->remote_credit);
1267 
1268 	IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
1269 		   self->tx_max_sdu_size);
1270 
1271 	if (self->notify.connect_confirm) {
1272 		self->notify.connect_confirm(self->notify.instance, self, qos,
1273 					     self->tx_max_sdu_size,
1274 					     self->max_header_size, skb);
1275 	} else
1276 		dev_kfree_skb(skb);
1277 }
1278 
1279 /*
1280  * Function irttp_connect_indication (handle, skb)
1281  *
1282  *    Some other device is connecting to this TSAP
1283  *
1284  */
irttp_connect_indication(void * instance,void * sap,struct qos_info * qos,__u32 max_seg_size,__u8 max_header_size,struct sk_buff * skb)1285 static void irttp_connect_indication(void *instance, void *sap,
1286 		struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
1287 		struct sk_buff *skb)
1288 {
1289 	struct tsap_cb *self;
1290 	struct lsap_cb *lsap;
1291 	int parameters;
1292 	int ret;
1293 	__u8 plen;
1294 	__u8 n;
1295 
1296 	self = instance;
1297 
1298 	IRDA_ASSERT(self != NULL, return;);
1299 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1300 	IRDA_ASSERT(skb != NULL, return;);
1301 
1302 	lsap = sap;
1303 
1304 	self->max_seg_size = max_seg_size - TTP_HEADER;
1305 	self->max_header_size = max_header_size+TTP_HEADER;
1306 
1307 	IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
1308 
1309 	/* Need to update dtsap_sel if its equal to LSAP_ANY */
1310 	self->dtsap_sel = lsap->dlsap_sel;
1311 
1312 	n = skb->data[0] & 0x7f;
1313 
1314 	self->send_credit = n;
1315 	self->tx_max_sdu_size = 0;
1316 
1317 	parameters = skb->data[0] & 0x80;
1318 
1319 	IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
1320 	skb_pull(skb, TTP_HEADER);
1321 
1322 	if (parameters) {
1323 		plen = skb->data[0];
1324 
1325 		ret = irda_param_extract_all(self, skb->data+1,
1326 					     IRDA_MIN(skb->len-1, plen),
1327 					     &param_info);
1328 
1329 		/* Any errors in the parameter list? */
1330 		if (ret < 0) {
1331 			IRDA_WARNING("%s: error extracting parameters\n",
1332 				     __func__);
1333 			dev_kfree_skb(skb);
1334 
1335 			/* Do not accept this connection attempt */
1336 			return;
1337 		}
1338 
1339 		/* Remove parameters */
1340 		skb_pull(skb, IRDA_MIN(skb->len, plen+1));
1341 	}
1342 
1343 	if (self->notify.connect_indication) {
1344 		self->notify.connect_indication(self->notify.instance, self,
1345 						qos, self->tx_max_sdu_size,
1346 						self->max_header_size, skb);
1347 	} else
1348 		dev_kfree_skb(skb);
1349 }
1350 
1351 /*
1352  * Function irttp_connect_response (handle, userdata)
1353  *
1354  *    Service user is accepting the connection, just pass it down to
1355  *    IrLMP!
1356  *
1357  */
irttp_connect_response(struct tsap_cb * self,__u32 max_sdu_size,struct sk_buff * userdata)1358 int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
1359 			   struct sk_buff *userdata)
1360 {
1361 	struct sk_buff *tx_skb;
1362 	__u8 *frame;
1363 	int ret;
1364 	__u8 n;
1365 
1366 	IRDA_ASSERT(self != NULL, return -1;);
1367 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1368 
1369 	IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
1370 		   self->stsap_sel);
1371 
1372 	/* Any userdata supplied? */
1373 	if (userdata == NULL) {
1374 		tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
1375 				   GFP_ATOMIC);
1376 		if (!tx_skb)
1377 			return -ENOMEM;
1378 
1379 		/* Reserve space for MUX_CONTROL and LAP header */
1380 		skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
1381 	} else {
1382 		tx_skb = userdata;
1383 		/*
1384 		 *  Check that the client has reserved enough space for
1385 		 *  headers
1386 		 */
1387 		IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
1388 			{ dev_kfree_skb(userdata); return -1; } );
1389 	}
1390 
1391 	self->avail_credit = 0;
1392 	self->remote_credit = 0;
1393 	self->rx_max_sdu_size = max_sdu_size;
1394 	self->rx_sdu_size = 0;
1395 	self->rx_sdu_busy = FALSE;
1396 
1397 	n = self->initial_credit;
1398 
1399 	/* Frame has only space for max 127 credits (7 bits) */
1400 	if (n > 127) {
1401 		self->avail_credit = n - 127;
1402 		n = 127;
1403 	}
1404 
1405 	self->remote_credit = n;
1406 	self->connected = TRUE;
1407 
1408 	/* SAR enabled? */
1409 	if (max_sdu_size > 0) {
1410 		IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
1411 			{ dev_kfree_skb(tx_skb); return -1; } );
1412 
1413 		/* Insert TTP header with SAR parameters */
1414 		frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
1415 
1416 		frame[0] = TTP_PARAMETERS | n;
1417 		frame[1] = 0x04; /* Length */
1418 
1419 		/* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1,  */
1420 /*				  TTP_SAR_HEADER, &param_info) */
1421 
1422 		frame[2] = 0x01; /* MaxSduSize */
1423 		frame[3] = 0x02; /* Value length */
1424 
1425 		put_unaligned(cpu_to_be16((__u16) max_sdu_size),
1426 			      (__be16 *)(frame+4));
1427 	} else {
1428 		/* Insert TTP header */
1429 		frame = skb_push(tx_skb, TTP_HEADER);
1430 
1431 		frame[0] = n & 0x7f;
1432 	}
1433 
1434 	ret = irlmp_connect_response(self->lsap, tx_skb);
1435 
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL(irttp_connect_response);
1439 
1440 /*
1441  * Function irttp_dup (self, instance)
1442  *
1443  *    Duplicate TSAP, can be used by servers to confirm a connection on a
1444  *    new TSAP so it can keep listening on the old one.
1445  */
irttp_dup(struct tsap_cb * orig,void * instance)1446 struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
1447 {
1448 	struct tsap_cb *new;
1449 	unsigned long flags;
1450 
1451 	IRDA_DEBUG(1, "%s()\n", __func__);
1452 
1453 	/* Protect our access to the old tsap instance */
1454 	spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
1455 
1456 	/* Find the old instance */
1457 	if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
1458 		IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
1459 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1460 		return NULL;
1461 	}
1462 
1463 	/* Allocate a new instance */
1464 	new = kmemdup(orig, sizeof(struct tsap_cb), GFP_ATOMIC);
1465 	if (!new) {
1466 		IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
1467 		spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1468 		return NULL;
1469 	}
1470 	spin_lock_init(&new->lock);
1471 
1472 	/* We don't need the old instance any more */
1473 	spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
1474 
1475 	/* Try to dup the LSAP (may fail if we were too slow) */
1476 	new->lsap = irlmp_dup(orig->lsap, new);
1477 	if (!new->lsap) {
1478 		IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
1479 		kfree(new);
1480 		return NULL;
1481 	}
1482 
1483 	/* Not everything should be copied */
1484 	new->notify.instance = instance;
1485 
1486 	/* Initialize internal objects */
1487 	irttp_init_tsap(new);
1488 
1489 	/* This is locked */
1490 	hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
1491 
1492 	return new;
1493 }
1494 EXPORT_SYMBOL(irttp_dup);
1495 
1496 /*
1497  * Function irttp_disconnect_request (self)
1498  *
1499  *    Close this connection please! If priority is high, the queued data
1500  *    segments, if any, will be deallocated first
1501  *
1502  */
irttp_disconnect_request(struct tsap_cb * self,struct sk_buff * userdata,int priority)1503 int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
1504 			     int priority)
1505 {
1506 	int ret;
1507 
1508 	IRDA_ASSERT(self != NULL, return -1;);
1509 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
1510 
1511 	/* Already disconnected? */
1512 	if (!self->connected) {
1513 		IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
1514 		if (userdata)
1515 			dev_kfree_skb(userdata);
1516 		return -1;
1517 	}
1518 
1519 	/* Disconnect already pending ?
1520 	 * We need to use an atomic operation to prevent reentry. This
1521 	 * function may be called from various context, like user, timer
1522 	 * for following a disconnect_indication() (i.e. net_bh).
1523 	 * Jean II */
1524 	if(test_and_set_bit(0, &self->disconnect_pend)) {
1525 		IRDA_DEBUG(0, "%s(), disconnect already pending\n",
1526 			   __func__);
1527 		if (userdata)
1528 			dev_kfree_skb(userdata);
1529 
1530 		/* Try to make some progress */
1531 		irttp_run_tx_queue(self);
1532 		return -1;
1533 	}
1534 
1535 	/*
1536 	 *  Check if there is still data segments in the transmit queue
1537 	 */
1538 	if (!skb_queue_empty(&self->tx_queue)) {
1539 		if (priority == P_HIGH) {
1540 			/*
1541 			 *  No need to send the queued data, if we are
1542 			 *  disconnecting right now since the data will
1543 			 *  not have any usable connection to be sent on
1544 			 */
1545 			IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
1546 			irttp_flush_queues(self);
1547 		} else if (priority == P_NORMAL) {
1548 			/*
1549 			 *  Must delay disconnect until after all data segments
1550 			 *  have been sent and the tx_queue is empty
1551 			 */
1552 			/* We'll reuse this one later for the disconnect */
1553 			self->disconnect_skb = userdata;  /* May be NULL */
1554 
1555 			irttp_run_tx_queue(self);
1556 
1557 			irttp_start_todo_timer(self, HZ/10);
1558 			return -1;
1559 		}
1560 	}
1561 	/* Note : we don't need to check if self->rx_queue is full and the
1562 	 * state of self->rx_sdu_busy because the disconnect response will
1563 	 * be sent at the LMP level (so even if the peer has its Tx queue
1564 	 * full of data). - Jean II */
1565 
1566 	IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
1567 	self->connected = FALSE;
1568 
1569 	if (!userdata) {
1570 		struct sk_buff *tx_skb;
1571 		tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
1572 		if (!tx_skb)
1573 			return -ENOMEM;
1574 
1575 		/*
1576 		 *  Reserve space for MUX and LAP header
1577 		 */
1578 		skb_reserve(tx_skb, LMP_MAX_HEADER);
1579 
1580 		userdata = tx_skb;
1581 	}
1582 	ret = irlmp_disconnect_request(self->lsap, userdata);
1583 
1584 	/* The disconnect is no longer pending */
1585 	clear_bit(0, &self->disconnect_pend);	/* FALSE */
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(irttp_disconnect_request);
1590 
1591 /*
1592  * Function irttp_disconnect_indication (self, reason)
1593  *
1594  *    Disconnect indication, TSAP disconnected by peer?
1595  *
1596  */
irttp_disconnect_indication(void * instance,void * sap,LM_REASON reason,struct sk_buff * skb)1597 static void irttp_disconnect_indication(void *instance, void *sap,
1598 		LM_REASON reason, struct sk_buff *skb)
1599 {
1600 	struct tsap_cb *self;
1601 
1602 	IRDA_DEBUG(4, "%s()\n", __func__);
1603 
1604 	self = instance;
1605 
1606 	IRDA_ASSERT(self != NULL, return;);
1607 	IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
1608 
1609 	/* Prevent higher layer to send more data */
1610 	self->connected = FALSE;
1611 
1612 	/* Check if client has already tried to close the TSAP */
1613 	if (self->close_pend) {
1614 		/* In this case, the higher layer is probably gone. Don't
1615 		 * bother it and clean up the remains - Jean II */
1616 		if (skb)
1617 			dev_kfree_skb(skb);
1618 		irttp_close_tsap(self);
1619 		return;
1620 	}
1621 
1622 	/* If we are here, we assume that is the higher layer is still
1623 	 * waiting for the disconnect notification and able to process it,
1624 	 * even if he tried to disconnect. Otherwise, it would have already
1625 	 * attempted to close the tsap and self->close_pend would be TRUE.
1626 	 * Jean II */
1627 
1628 	/* No need to notify the client if has already tried to disconnect */
1629 	if(self->notify.disconnect_indication)
1630 		self->notify.disconnect_indication(self->notify.instance, self,
1631 						   reason, skb);
1632 	else
1633 		if (skb)
1634 			dev_kfree_skb(skb);
1635 }
1636 
1637 /*
1638  * Function irttp_do_data_indication (self, skb)
1639  *
1640  *    Try to deliver reassembled skb to layer above, and requeue it if that
1641  *    for some reason should fail. We mark rx sdu as busy to apply back
1642  *    pressure is necessary.
1643  */
irttp_do_data_indication(struct tsap_cb * self,struct sk_buff * skb)1644 static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
1645 {
1646 	int err;
1647 
1648 	/* Check if client has already closed the TSAP and gone away */
1649 	if (self->close_pend) {
1650 		dev_kfree_skb(skb);
1651 		return;
1652 	}
1653 
1654 	err = self->notify.data_indication(self->notify.instance, self, skb);
1655 
1656 	/* Usually the layer above will notify that it's input queue is
1657 	 * starting to get filled by using the flow request, but this may
1658 	 * be difficult, so it can instead just refuse to eat it and just
1659 	 * give an error back
1660 	 */
1661 	if (err) {
1662 		IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
1663 
1664 		/* Make sure we take a break */
1665 		self->rx_sdu_busy = TRUE;
1666 
1667 		/* Need to push the header in again */
1668 		skb_push(skb, TTP_HEADER);
1669 		skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
1670 
1671 		/* Put skb back on queue */
1672 		skb_queue_head(&self->rx_queue, skb);
1673 	}
1674 }
1675 
1676 /*
1677  * Function irttp_run_rx_queue (self)
1678  *
1679  *     Check if we have any frames to be transmitted, or if we have any
1680  *     available credit to give away.
1681  */
irttp_run_rx_queue(struct tsap_cb * self)1682 static void irttp_run_rx_queue(struct tsap_cb *self)
1683 {
1684 	struct sk_buff *skb;
1685 	int more = 0;
1686 
1687 	IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
1688 		   self->send_credit, self->avail_credit, self->remote_credit);
1689 
1690 	/* Get exclusive access to the rx queue, otherwise don't touch it */
1691 	if (irda_lock(&self->rx_queue_lock) == FALSE)
1692 		return;
1693 
1694 	/*
1695 	 *  Reassemble all frames in receive queue and deliver them
1696 	 */
1697 	while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
1698 		/* This bit will tell us if it's the last fragment or not */
1699 		more = skb->data[0] & 0x80;
1700 
1701 		/* Remove TTP header */
1702 		skb_pull(skb, TTP_HEADER);
1703 
1704 		/* Add the length of the remaining data */
1705 		self->rx_sdu_size += skb->len;
1706 
1707 		/*
1708 		 * If SAR is disabled, or user has requested no reassembly
1709 		 * of received fragments then we just deliver them
1710 		 * immediately. This can be requested by clients that
1711 		 * implements byte streams without any message boundaries
1712 		 */
1713 		if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
1714 			irttp_do_data_indication(self, skb);
1715 			self->rx_sdu_size = 0;
1716 
1717 			continue;
1718 		}
1719 
1720 		/* Check if this is a fragment, and not the last fragment */
1721 		if (more) {
1722 			/*
1723 			 *  Queue the fragment if we still are within the
1724 			 *  limits of the maximum size of the rx_sdu
1725 			 */
1726 			if (self->rx_sdu_size <= self->rx_max_sdu_size) {
1727 				IRDA_DEBUG(4, "%s(), queueing frag\n",
1728 					   __func__);
1729 				skb_queue_tail(&self->rx_fragments, skb);
1730 			} else {
1731 				/* Free the part of the SDU that is too big */
1732 				dev_kfree_skb(skb);
1733 			}
1734 			continue;
1735 		}
1736 		/*
1737 		 *  This is the last fragment, so time to reassemble!
1738 		 */
1739 		if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
1740 		    (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
1741 		{
1742 			/*
1743 			 * A little optimizing. Only queue the fragment if
1744 			 * there are other fragments. Since if this is the
1745 			 * last and only fragment, there is no need to
1746 			 * reassemble :-)
1747 			 */
1748 			if (!skb_queue_empty(&self->rx_fragments)) {
1749 				skb_queue_tail(&self->rx_fragments,
1750 					       skb);
1751 
1752 				skb = irttp_reassemble_skb(self);
1753 			}
1754 
1755 			/* Now we can deliver the reassembled skb */
1756 			irttp_do_data_indication(self, skb);
1757 		} else {
1758 			IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
1759 
1760 			/* Free the part of the SDU that is too big */
1761 			dev_kfree_skb(skb);
1762 
1763 			/* Deliver only the valid but truncated part of SDU */
1764 			skb = irttp_reassemble_skb(self);
1765 
1766 			irttp_do_data_indication(self, skb);
1767 		}
1768 		self->rx_sdu_size = 0;
1769 	}
1770 
1771 	/*
1772 	 * It's not trivial to keep track of how many credits are available
1773 	 * by incrementing at each packet, because delivery may fail
1774 	 * (irttp_do_data_indication() may requeue the frame) and because
1775 	 * we need to take care of fragmentation.
1776 	 * We want the other side to send up to initial_credit packets.
1777 	 * We have some frames in our queues, and we have already allowed it
1778 	 * to send remote_credit.
1779 	 * No need to spinlock, write is atomic and self correcting...
1780 	 * Jean II
1781 	 */
1782 	self->avail_credit = (self->initial_credit -
1783 			      (self->remote_credit +
1784 			       skb_queue_len(&self->rx_queue) +
1785 			       skb_queue_len(&self->rx_fragments)));
1786 
1787 	/* Do we have too much credits to send to peer ? */
1788 	if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
1789 	    (self->avail_credit > 0)) {
1790 		/* Send explicit credit frame */
1791 		irttp_give_credit(self);
1792 		/* Note : do *NOT* check if tx_queue is non-empty, that
1793 		 * will produce deadlocks. I repeat : send a credit frame
1794 		 * even if we have something to send in our Tx queue.
1795 		 * If we have credits, it means that our Tx queue is blocked.
1796 		 *
1797 		 * Let's suppose the peer can't keep up with our Tx. He will
1798 		 * flow control us by not sending us any credits, and we
1799 		 * will stop Tx and start accumulating credits here.
1800 		 * Up to the point where the peer will stop its Tx queue,
1801 		 * for lack of credits.
1802 		 * Let's assume the peer application is single threaded.
1803 		 * It will block on Tx and never consume any Rx buffer.
1804 		 * Deadlock. Guaranteed. - Jean II
1805 		 */
1806 	}
1807 
1808 	/* Reset lock */
1809 	self->rx_queue_lock = 0;
1810 }
1811 
1812 #ifdef CONFIG_PROC_FS
1813 struct irttp_iter_state {
1814 	int id;
1815 };
1816 
irttp_seq_start(struct seq_file * seq,loff_t * pos)1817 static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
1818 {
1819 	struct irttp_iter_state *iter = seq->private;
1820 	struct tsap_cb *self;
1821 
1822 	/* Protect our access to the tsap list */
1823 	spin_lock_irq(&irttp->tsaps->hb_spinlock);
1824 	iter->id = 0;
1825 
1826 	for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
1827 	     self != NULL;
1828 	     self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
1829 		if (iter->id == *pos)
1830 			break;
1831 		++iter->id;
1832 	}
1833 
1834 	return self;
1835 }
1836 
irttp_seq_next(struct seq_file * seq,void * v,loff_t * pos)1837 static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1838 {
1839 	struct irttp_iter_state *iter = seq->private;
1840 
1841 	++*pos;
1842 	++iter->id;
1843 	return (void *) hashbin_get_next(irttp->tsaps);
1844 }
1845 
irttp_seq_stop(struct seq_file * seq,void * v)1846 static void irttp_seq_stop(struct seq_file *seq, void *v)
1847 {
1848 	spin_unlock_irq(&irttp->tsaps->hb_spinlock);
1849 }
1850 
irttp_seq_show(struct seq_file * seq,void * v)1851 static int irttp_seq_show(struct seq_file *seq, void *v)
1852 {
1853 	const struct irttp_iter_state *iter = seq->private;
1854 	const struct tsap_cb *self = v;
1855 
1856 	seq_printf(seq, "TSAP %d, ", iter->id);
1857 	seq_printf(seq, "stsap_sel: %02x, ",
1858 		   self->stsap_sel);
1859 	seq_printf(seq, "dtsap_sel: %02x\n",
1860 		   self->dtsap_sel);
1861 	seq_printf(seq, "  connected: %s, ",
1862 		   self->connected? "TRUE":"FALSE");
1863 	seq_printf(seq, "avail credit: %d, ",
1864 		   self->avail_credit);
1865 	seq_printf(seq, "remote credit: %d, ",
1866 		   self->remote_credit);
1867 	seq_printf(seq, "send credit: %d\n",
1868 		   self->send_credit);
1869 	seq_printf(seq, "  tx packets: %lu, ",
1870 		   self->stats.tx_packets);
1871 	seq_printf(seq, "rx packets: %lu, ",
1872 		   self->stats.rx_packets);
1873 	seq_printf(seq, "tx_queue len: %u ",
1874 		   skb_queue_len(&self->tx_queue));
1875 	seq_printf(seq, "rx_queue len: %u\n",
1876 		   skb_queue_len(&self->rx_queue));
1877 	seq_printf(seq, "  tx_sdu_busy: %s, ",
1878 		   self->tx_sdu_busy? "TRUE":"FALSE");
1879 	seq_printf(seq, "rx_sdu_busy: %s\n",
1880 		   self->rx_sdu_busy? "TRUE":"FALSE");
1881 	seq_printf(seq, "  max_seg_size: %u, ",
1882 		   self->max_seg_size);
1883 	seq_printf(seq, "tx_max_sdu_size: %u, ",
1884 		   self->tx_max_sdu_size);
1885 	seq_printf(seq, "rx_max_sdu_size: %u\n",
1886 		   self->rx_max_sdu_size);
1887 
1888 	seq_printf(seq, "  Used by (%s)\n\n",
1889 		   self->notify.name);
1890 	return 0;
1891 }
1892 
1893 static const struct seq_operations irttp_seq_ops = {
1894 	.start  = irttp_seq_start,
1895 	.next   = irttp_seq_next,
1896 	.stop   = irttp_seq_stop,
1897 	.show   = irttp_seq_show,
1898 };
1899 
irttp_seq_open(struct inode * inode,struct file * file)1900 static int irttp_seq_open(struct inode *inode, struct file *file)
1901 {
1902 	return seq_open_private(file, &irttp_seq_ops,
1903 			sizeof(struct irttp_iter_state));
1904 }
1905 
1906 const struct file_operations irttp_seq_fops = {
1907 	.owner		= THIS_MODULE,
1908 	.open           = irttp_seq_open,
1909 	.read           = seq_read,
1910 	.llseek         = seq_lseek,
1911 	.release	= seq_release_private,
1912 };
1913 
1914 #endif /* PROC_FS */
1915