1 /*********************************************************************
2 *
3 * Filename: ircomm_tty.c
4 * Version: 1.0
5 * Description: IrCOMM serial TTY driver
6 * Status: Experimental.
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun Jun 6 21:00:56 1999
9 * Modified at: Wed Feb 23 00:09:02 2000
10 * Modified by: Dag Brattli <dagb@cs.uit.no>
11 * Sources: serial.c and previous IrCOMM work by Takahide Higuchi
12 *
13 * Copyright (c) 1999-2000 Dag Brattli, All Rights Reserved.
14 * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; either version 2 of
19 * the License, or (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 * MA 02111-1307 USA
30 *
31 ********************************************************************/
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/fs.h>
36 #include <linux/slab.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/termios.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/interrupt.h>
43 #include <linux/device.h> /* for MODULE_ALIAS_CHARDEV_MAJOR */
44
45 #include <asm/uaccess.h>
46
47 #include <net/irda/irda.h>
48 #include <net/irda/irmod.h>
49
50 #include <net/irda/ircomm_core.h>
51 #include <net/irda/ircomm_param.h>
52 #include <net/irda/ircomm_tty_attach.h>
53 #include <net/irda/ircomm_tty.h>
54
55 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp);
56 static void ircomm_tty_close(struct tty_struct * tty, struct file *filp);
57 static int ircomm_tty_write(struct tty_struct * tty,
58 const unsigned char *buf, int count);
59 static int ircomm_tty_write_room(struct tty_struct *tty);
60 static void ircomm_tty_throttle(struct tty_struct *tty);
61 static void ircomm_tty_unthrottle(struct tty_struct *tty);
62 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty);
63 static void ircomm_tty_flush_buffer(struct tty_struct *tty);
64 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch);
65 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout);
66 static void ircomm_tty_hangup(struct tty_struct *tty);
67 static void ircomm_tty_do_softint(struct work_struct *work);
68 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self);
69 static void ircomm_tty_stop(struct tty_struct *tty);
70
71 static int ircomm_tty_data_indication(void *instance, void *sap,
72 struct sk_buff *skb);
73 static int ircomm_tty_control_indication(void *instance, void *sap,
74 struct sk_buff *skb);
75 static void ircomm_tty_flow_indication(void *instance, void *sap,
76 LOCAL_FLOW cmd);
77 #ifdef CONFIG_PROC_FS
78 static const struct file_operations ircomm_tty_proc_fops;
79 #endif /* CONFIG_PROC_FS */
80 static struct tty_driver *driver;
81
82 static hashbin_t *ircomm_tty = NULL;
83
84 static const struct tty_operations ops = {
85 .open = ircomm_tty_open,
86 .close = ircomm_tty_close,
87 .write = ircomm_tty_write,
88 .write_room = ircomm_tty_write_room,
89 .chars_in_buffer = ircomm_tty_chars_in_buffer,
90 .flush_buffer = ircomm_tty_flush_buffer,
91 .ioctl = ircomm_tty_ioctl, /* ircomm_tty_ioctl.c */
92 .tiocmget = ircomm_tty_tiocmget, /* ircomm_tty_ioctl.c */
93 .tiocmset = ircomm_tty_tiocmset, /* ircomm_tty_ioctl.c */
94 .throttle = ircomm_tty_throttle,
95 .unthrottle = ircomm_tty_unthrottle,
96 .send_xchar = ircomm_tty_send_xchar,
97 .set_termios = ircomm_tty_set_termios,
98 .stop = ircomm_tty_stop,
99 .start = ircomm_tty_start,
100 .hangup = ircomm_tty_hangup,
101 .wait_until_sent = ircomm_tty_wait_until_sent,
102 #ifdef CONFIG_PROC_FS
103 .proc_fops = &ircomm_tty_proc_fops,
104 #endif /* CONFIG_PROC_FS */
105 };
106
107 /*
108 * Function ircomm_tty_init()
109 *
110 * Init IrCOMM TTY layer/driver
111 *
112 */
ircomm_tty_init(void)113 static int __init ircomm_tty_init(void)
114 {
115 driver = alloc_tty_driver(IRCOMM_TTY_PORTS);
116 if (!driver)
117 return -ENOMEM;
118 ircomm_tty = hashbin_new(HB_LOCK);
119 if (ircomm_tty == NULL) {
120 IRDA_ERROR("%s(), can't allocate hashbin!\n", __func__);
121 put_tty_driver(driver);
122 return -ENOMEM;
123 }
124
125 driver->owner = THIS_MODULE;
126 driver->driver_name = "ircomm";
127 driver->name = "ircomm";
128 driver->major = IRCOMM_TTY_MAJOR;
129 driver->minor_start = IRCOMM_TTY_MINOR;
130 driver->type = TTY_DRIVER_TYPE_SERIAL;
131 driver->subtype = SERIAL_TYPE_NORMAL;
132 driver->init_termios = tty_std_termios;
133 driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
134 driver->flags = TTY_DRIVER_REAL_RAW;
135 tty_set_operations(driver, &ops);
136 if (tty_register_driver(driver)) {
137 IRDA_ERROR("%s(): Couldn't register serial driver\n",
138 __func__);
139 put_tty_driver(driver);
140 return -1;
141 }
142 return 0;
143 }
144
__ircomm_tty_cleanup(struct ircomm_tty_cb * self)145 static void __exit __ircomm_tty_cleanup(struct ircomm_tty_cb *self)
146 {
147 IRDA_DEBUG(0, "%s()\n", __func__ );
148
149 IRDA_ASSERT(self != NULL, return;);
150 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
151
152 ircomm_tty_shutdown(self);
153
154 self->magic = 0;
155 kfree(self);
156 }
157
158 /*
159 * Function ircomm_tty_cleanup ()
160 *
161 * Remove IrCOMM TTY layer/driver
162 *
163 */
ircomm_tty_cleanup(void)164 static void __exit ircomm_tty_cleanup(void)
165 {
166 int ret;
167
168 IRDA_DEBUG(4, "%s()\n", __func__ );
169
170 ret = tty_unregister_driver(driver);
171 if (ret) {
172 IRDA_ERROR("%s(), failed to unregister driver\n",
173 __func__);
174 return;
175 }
176
177 hashbin_delete(ircomm_tty, (FREE_FUNC) __ircomm_tty_cleanup);
178 put_tty_driver(driver);
179 }
180
181 /*
182 * Function ircomm_startup (self)
183 *
184 *
185 *
186 */
ircomm_tty_startup(struct ircomm_tty_cb * self)187 static int ircomm_tty_startup(struct ircomm_tty_cb *self)
188 {
189 notify_t notify;
190 int ret = -ENODEV;
191
192 IRDA_DEBUG(2, "%s()\n", __func__ );
193
194 IRDA_ASSERT(self != NULL, return -1;);
195 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
196
197 /* Check if already open */
198 if (test_and_set_bit(ASYNC_B_INITIALIZED, &self->flags)) {
199 IRDA_DEBUG(2, "%s(), already open so break out!\n", __func__ );
200 return 0;
201 }
202
203 /* Register with IrCOMM */
204 irda_notify_init(¬ify);
205 /* These callbacks we must handle ourselves */
206 notify.data_indication = ircomm_tty_data_indication;
207 notify.udata_indication = ircomm_tty_control_indication;
208 notify.flow_indication = ircomm_tty_flow_indication;
209
210 /* Use the ircomm_tty interface for these ones */
211 notify.disconnect_indication = ircomm_tty_disconnect_indication;
212 notify.connect_confirm = ircomm_tty_connect_confirm;
213 notify.connect_indication = ircomm_tty_connect_indication;
214 strlcpy(notify.name, "ircomm_tty", sizeof(notify.name));
215 notify.instance = self;
216
217 if (!self->ircomm) {
218 self->ircomm = ircomm_open(¬ify, self->service_type,
219 self->line);
220 }
221 if (!self->ircomm)
222 goto err;
223
224 self->slsap_sel = self->ircomm->slsap_sel;
225
226 /* Connect IrCOMM link with remote device */
227 ret = ircomm_tty_attach_cable(self);
228 if (ret < 0) {
229 IRDA_ERROR("%s(), error attaching cable!\n", __func__);
230 goto err;
231 }
232
233 return 0;
234 err:
235 clear_bit(ASYNC_B_INITIALIZED, &self->flags);
236 return ret;
237 }
238
239 /*
240 * Function ircomm_block_til_ready (self, filp)
241 *
242 *
243 *
244 */
ircomm_tty_block_til_ready(struct ircomm_tty_cb * self,struct file * filp)245 static int ircomm_tty_block_til_ready(struct ircomm_tty_cb *self,
246 struct file *filp)
247 {
248 DECLARE_WAITQUEUE(wait, current);
249 int retval;
250 int do_clocal = 0, extra_count = 0;
251 unsigned long flags;
252 struct tty_struct *tty;
253
254 IRDA_DEBUG(2, "%s()\n", __func__ );
255
256 tty = self->tty;
257
258 /*
259 * If non-blocking mode is set, or the port is not enabled,
260 * then make the check up front and then exit.
261 */
262 if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
263 /* nonblock mode is set or port is not enabled */
264 self->flags |= ASYNC_NORMAL_ACTIVE;
265 IRDA_DEBUG(1, "%s(), O_NONBLOCK requested!\n", __func__ );
266 return 0;
267 }
268
269 if (tty->termios->c_cflag & CLOCAL) {
270 IRDA_DEBUG(1, "%s(), doing CLOCAL!\n", __func__ );
271 do_clocal = 1;
272 }
273
274 /* Wait for carrier detect and the line to become
275 * free (i.e., not in use by the callout). While we are in
276 * this loop, self->open_count is dropped by one, so that
277 * mgsl_close() knows when to free things. We restore it upon
278 * exit, either normal or abnormal.
279 */
280
281 retval = 0;
282 add_wait_queue(&self->open_wait, &wait);
283
284 IRDA_DEBUG(2, "%s(%d):block_til_ready before block on %s open_count=%d\n",
285 __FILE__,__LINE__, tty->driver->name, self->open_count );
286
287 /* As far as I can see, we protect open_count - Jean II */
288 spin_lock_irqsave(&self->spinlock, flags);
289 if (!tty_hung_up_p(filp)) {
290 extra_count = 1;
291 self->open_count--;
292 }
293 spin_unlock_irqrestore(&self->spinlock, flags);
294 self->blocked_open++;
295
296 while (1) {
297 if (tty->termios->c_cflag & CBAUD) {
298 /* Here, we use to lock those two guys, but
299 * as ircomm_param_request() does it itself,
300 * I don't see the point (and I see the deadlock).
301 * Jean II */
302 self->settings.dte |= IRCOMM_RTS + IRCOMM_DTR;
303
304 ircomm_param_request(self, IRCOMM_DTE, TRUE);
305 }
306
307 current->state = TASK_INTERRUPTIBLE;
308
309 if (tty_hung_up_p(filp) ||
310 !test_bit(ASYNC_B_INITIALIZED, &self->flags)) {
311 retval = (self->flags & ASYNC_HUP_NOTIFY) ?
312 -EAGAIN : -ERESTARTSYS;
313 break;
314 }
315
316 /*
317 * Check if link is ready now. Even if CLOCAL is
318 * specified, we cannot return before the IrCOMM link is
319 * ready
320 */
321 if (!test_bit(ASYNC_B_CLOSING, &self->flags) &&
322 (do_clocal || (self->settings.dce & IRCOMM_CD)) &&
323 self->state == IRCOMM_TTY_READY)
324 {
325 break;
326 }
327
328 if (signal_pending(current)) {
329 retval = -ERESTARTSYS;
330 break;
331 }
332
333 IRDA_DEBUG(1, "%s(%d):block_til_ready blocking on %s open_count=%d\n",
334 __FILE__,__LINE__, tty->driver->name, self->open_count );
335
336 schedule();
337 }
338
339 __set_current_state(TASK_RUNNING);
340 remove_wait_queue(&self->open_wait, &wait);
341
342 if (extra_count) {
343 /* ++ is not atomic, so this should be protected - Jean II */
344 spin_lock_irqsave(&self->spinlock, flags);
345 self->open_count++;
346 spin_unlock_irqrestore(&self->spinlock, flags);
347 }
348 self->blocked_open--;
349
350 IRDA_DEBUG(1, "%s(%d):block_til_ready after blocking on %s open_count=%d\n",
351 __FILE__,__LINE__, tty->driver->name, self->open_count);
352
353 if (!retval)
354 self->flags |= ASYNC_NORMAL_ACTIVE;
355
356 return retval;
357 }
358
359 /*
360 * Function ircomm_tty_open (tty, filp)
361 *
362 * This routine is called when a particular tty device is opened. This
363 * routine is mandatory; if this routine is not filled in, the attempted
364 * open will fail with ENODEV.
365 */
ircomm_tty_open(struct tty_struct * tty,struct file * filp)366 static int ircomm_tty_open(struct tty_struct *tty, struct file *filp)
367 {
368 struct ircomm_tty_cb *self;
369 unsigned int line;
370 unsigned long flags;
371 int ret;
372
373 IRDA_DEBUG(2, "%s()\n", __func__ );
374
375 line = tty->index;
376 if (line >= IRCOMM_TTY_PORTS)
377 return -ENODEV;
378
379 /* Check if instance already exists */
380 self = hashbin_lock_find(ircomm_tty, line, NULL);
381 if (!self) {
382 /* No, so make new instance */
383 self = kzalloc(sizeof(struct ircomm_tty_cb), GFP_KERNEL);
384 if (self == NULL) {
385 IRDA_ERROR("%s(), kmalloc failed!\n", __func__);
386 return -ENOMEM;
387 }
388
389 self->magic = IRCOMM_TTY_MAGIC;
390 self->flow = FLOW_STOP;
391
392 self->line = line;
393 INIT_WORK(&self->tqueue, ircomm_tty_do_softint);
394 self->max_header_size = IRCOMM_TTY_HDR_UNINITIALISED;
395 self->max_data_size = IRCOMM_TTY_DATA_UNINITIALISED;
396 self->close_delay = 5*HZ/10;
397 self->closing_wait = 30*HZ;
398
399 /* Init some important stuff */
400 init_timer(&self->watchdog_timer);
401 init_waitqueue_head(&self->open_wait);
402 init_waitqueue_head(&self->close_wait);
403 spin_lock_init(&self->spinlock);
404
405 /*
406 * Force TTY into raw mode by default which is usually what
407 * we want for IrCOMM and IrLPT. This way applications will
408 * not have to twiddle with printcap etc.
409 *
410 * Note this is completely usafe and doesn't work properly
411 */
412 tty->termios->c_iflag = 0;
413 tty->termios->c_oflag = 0;
414
415 /* Insert into hash */
416 hashbin_insert(ircomm_tty, (irda_queue_t *) self, line, NULL);
417 }
418 /* ++ is not atomic, so this should be protected - Jean II */
419 spin_lock_irqsave(&self->spinlock, flags);
420 self->open_count++;
421
422 tty->driver_data = self;
423 self->tty = tty;
424 spin_unlock_irqrestore(&self->spinlock, flags);
425
426 IRDA_DEBUG(1, "%s(), %s%d, count = %d\n", __func__ , tty->driver->name,
427 self->line, self->open_count);
428
429 /* Not really used by us, but lets do it anyway */
430 self->tty->low_latency = (self->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
431
432 /*
433 * If the port is the middle of closing, bail out now
434 */
435 if (tty_hung_up_p(filp) ||
436 test_bit(ASYNC_B_CLOSING, &self->flags)) {
437
438 /* Hm, why are we blocking on ASYNC_CLOSING if we
439 * do return -EAGAIN/-ERESTARTSYS below anyway?
440 * IMHO it's either not needed in the first place
441 * or for some reason we need to make sure the async
442 * closing has been finished - if so, wouldn't we
443 * probably better sleep uninterruptible?
444 */
445
446 if (wait_event_interruptible(self->close_wait, !test_bit(ASYNC_B_CLOSING, &self->flags))) {
447 IRDA_WARNING("%s - got signal while blocking on ASYNC_CLOSING!\n",
448 __func__);
449 return -ERESTARTSYS;
450 }
451
452 #ifdef SERIAL_DO_RESTART
453 return (self->flags & ASYNC_HUP_NOTIFY) ?
454 -EAGAIN : -ERESTARTSYS;
455 #else
456 return -EAGAIN;
457 #endif
458 }
459
460 /* Check if this is a "normal" ircomm device, or an irlpt device */
461 if (line < 0x10) {
462 self->service_type = IRCOMM_3_WIRE | IRCOMM_9_WIRE;
463 self->settings.service_type = IRCOMM_9_WIRE; /* 9 wire as default */
464 /* Jan Kiszka -> add DSR/RI -> Conform to IrCOMM spec */
465 self->settings.dce = IRCOMM_CTS | IRCOMM_CD | IRCOMM_DSR | IRCOMM_RI; /* Default line settings */
466 IRDA_DEBUG(2, "%s(), IrCOMM device\n", __func__ );
467 } else {
468 IRDA_DEBUG(2, "%s(), IrLPT device\n", __func__ );
469 self->service_type = IRCOMM_3_WIRE_RAW;
470 self->settings.service_type = IRCOMM_3_WIRE_RAW; /* Default */
471 }
472
473 ret = ircomm_tty_startup(self);
474 if (ret)
475 return ret;
476
477 ret = ircomm_tty_block_til_ready(self, filp);
478 if (ret) {
479 IRDA_DEBUG(2,
480 "%s(), returning after block_til_ready with %d\n", __func__ ,
481 ret);
482
483 return ret;
484 }
485 return 0;
486 }
487
488 /*
489 * Function ircomm_tty_close (tty, filp)
490 *
491 * This routine is called when a particular tty device is closed.
492 *
493 */
ircomm_tty_close(struct tty_struct * tty,struct file * filp)494 static void ircomm_tty_close(struct tty_struct *tty, struct file *filp)
495 {
496 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
497 unsigned long flags;
498
499 IRDA_DEBUG(0, "%s()\n", __func__ );
500
501 IRDA_ASSERT(self != NULL, return;);
502 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
503
504 spin_lock_irqsave(&self->spinlock, flags);
505
506 if (tty_hung_up_p(filp)) {
507 spin_unlock_irqrestore(&self->spinlock, flags);
508
509 IRDA_DEBUG(0, "%s(), returning 1\n", __func__ );
510 return;
511 }
512
513 if ((tty->count == 1) && (self->open_count != 1)) {
514 /*
515 * Uh, oh. tty->count is 1, which means that the tty
516 * structure will be freed. state->count should always
517 * be one in these conditions. If it's greater than
518 * one, we've got real problems, since it means the
519 * serial port won't be shutdown.
520 */
521 IRDA_DEBUG(0, "%s(), bad serial port count; "
522 "tty->count is 1, state->count is %d\n", __func__ ,
523 self->open_count);
524 self->open_count = 1;
525 }
526
527 if (--self->open_count < 0) {
528 IRDA_ERROR("%s(), bad serial port count for ttys%d: %d\n",
529 __func__, self->line, self->open_count);
530 self->open_count = 0;
531 }
532 if (self->open_count) {
533 spin_unlock_irqrestore(&self->spinlock, flags);
534
535 IRDA_DEBUG(0, "%s(), open count > 0\n", __func__ );
536 return;
537 }
538
539 /* Hum... Should be test_and_set_bit ??? - Jean II */
540 set_bit(ASYNC_B_CLOSING, &self->flags);
541
542 /* We need to unlock here (we were unlocking at the end of this
543 * function), because tty_wait_until_sent() may schedule.
544 * I don't know if the rest should be protected somehow,
545 * so someone should check. - Jean II */
546 spin_unlock_irqrestore(&self->spinlock, flags);
547
548 /*
549 * Now we wait for the transmit buffer to clear; and we notify
550 * the line discipline to only process XON/XOFF characters.
551 */
552 tty->closing = 1;
553 if (self->closing_wait != ASYNC_CLOSING_WAIT_NONE)
554 tty_wait_until_sent_from_close(tty, self->closing_wait);
555
556 ircomm_tty_shutdown(self);
557
558 tty_driver_flush_buffer(tty);
559 tty_ldisc_flush(tty);
560
561 tty->closing = 0;
562 self->tty = NULL;
563
564 if (self->blocked_open) {
565 if (self->close_delay)
566 schedule_timeout_interruptible(self->close_delay);
567 wake_up_interruptible(&self->open_wait);
568 }
569
570 self->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
571 wake_up_interruptible(&self->close_wait);
572 }
573
574 /*
575 * Function ircomm_tty_flush_buffer (tty)
576 *
577 *
578 *
579 */
ircomm_tty_flush_buffer(struct tty_struct * tty)580 static void ircomm_tty_flush_buffer(struct tty_struct *tty)
581 {
582 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
583
584 IRDA_ASSERT(self != NULL, return;);
585 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
586
587 /*
588 * Let do_softint() do this to avoid race condition with
589 * do_softint() ;-)
590 */
591 schedule_work(&self->tqueue);
592 }
593
594 /*
595 * Function ircomm_tty_do_softint (work)
596 *
597 * We use this routine to give the write wakeup to the user at at a
598 * safe time (as fast as possible after write have completed). This
599 * can be compared to the Tx interrupt.
600 */
ircomm_tty_do_softint(struct work_struct * work)601 static void ircomm_tty_do_softint(struct work_struct *work)
602 {
603 struct ircomm_tty_cb *self =
604 container_of(work, struct ircomm_tty_cb, tqueue);
605 struct tty_struct *tty;
606 unsigned long flags;
607 struct sk_buff *skb, *ctrl_skb;
608
609 IRDA_DEBUG(2, "%s()\n", __func__ );
610
611 if (!self || self->magic != IRCOMM_TTY_MAGIC)
612 return;
613
614 tty = self->tty;
615 if (!tty)
616 return;
617
618 /* Unlink control buffer */
619 spin_lock_irqsave(&self->spinlock, flags);
620
621 ctrl_skb = self->ctrl_skb;
622 self->ctrl_skb = NULL;
623
624 spin_unlock_irqrestore(&self->spinlock, flags);
625
626 /* Flush control buffer if any */
627 if(ctrl_skb) {
628 if(self->flow == FLOW_START)
629 ircomm_control_request(self->ircomm, ctrl_skb);
630 /* Drop reference count - see ircomm_ttp_data_request(). */
631 dev_kfree_skb(ctrl_skb);
632 }
633
634 if (tty->hw_stopped)
635 return;
636
637 /* Unlink transmit buffer */
638 spin_lock_irqsave(&self->spinlock, flags);
639
640 skb = self->tx_skb;
641 self->tx_skb = NULL;
642
643 spin_unlock_irqrestore(&self->spinlock, flags);
644
645 /* Flush transmit buffer if any */
646 if (skb) {
647 ircomm_tty_do_event(self, IRCOMM_TTY_DATA_REQUEST, skb, NULL);
648 /* Drop reference count - see ircomm_ttp_data_request(). */
649 dev_kfree_skb(skb);
650 }
651
652 /* Check if user (still) wants to be waken up */
653 tty_wakeup(tty);
654 }
655
656 /*
657 * Function ircomm_tty_write (tty, buf, count)
658 *
659 * This routine is called by the kernel to write a series of characters
660 * to the tty device. The characters may come from user space or kernel
661 * space. This routine will return the number of characters actually
662 * accepted for writing. This routine is mandatory.
663 */
ircomm_tty_write(struct tty_struct * tty,const unsigned char * buf,int count)664 static int ircomm_tty_write(struct tty_struct *tty,
665 const unsigned char *buf, int count)
666 {
667 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
668 unsigned long flags;
669 struct sk_buff *skb;
670 int tailroom = 0;
671 int len = 0;
672 int size;
673
674 IRDA_DEBUG(2, "%s(), count=%d, hw_stopped=%d\n", __func__ , count,
675 tty->hw_stopped);
676
677 IRDA_ASSERT(self != NULL, return -1;);
678 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
679
680 /* We may receive packets from the TTY even before we have finished
681 * our setup. Not cool.
682 * The problem is that we don't know the final header and data size
683 * to create the proper skb, so any skb we would create would have
684 * bogus header and data size, so need care.
685 * We use a bogus header size to safely detect this condition.
686 * Another problem is that hw_stopped was set to 0 way before it
687 * should be, so we would drop this skb. It should now be fixed.
688 * One option is to not accept data until we are properly setup.
689 * But, I suspect that when it happens, the ppp line discipline
690 * just "drops" the data, which might screw up connect scripts.
691 * The second option is to create a "safe skb", with large header
692 * and small size (see ircomm_tty_open() for values).
693 * We just need to make sure that when the real values get filled,
694 * we don't mess up the original "safe skb" (see tx_data_size).
695 * Jean II */
696 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED) {
697 IRDA_DEBUG(1, "%s() : not initialised\n", __func__);
698 #ifdef IRCOMM_NO_TX_BEFORE_INIT
699 /* We didn't consume anything, TTY will retry */
700 return 0;
701 #endif
702 }
703
704 if (count < 1)
705 return 0;
706
707 /* Protect our manipulation of self->tx_skb and related */
708 spin_lock_irqsave(&self->spinlock, flags);
709
710 /* Fetch current transmit buffer */
711 skb = self->tx_skb;
712
713 /*
714 * Send out all the data we get, possibly as multiple fragmented
715 * frames, but this will only happen if the data is larger than the
716 * max data size. The normal case however is just the opposite, and
717 * this function may be called multiple times, and will then actually
718 * defragment the data and send it out as one packet as soon as
719 * possible, but at a safer point in time
720 */
721 while (count) {
722 size = count;
723
724 /* Adjust data size to the max data size */
725 if (size > self->max_data_size)
726 size = self->max_data_size;
727
728 /*
729 * Do we already have a buffer ready for transmit, or do
730 * we need to allocate a new frame
731 */
732 if (skb) {
733 /*
734 * Any room for more data at the end of the current
735 * transmit buffer? Cannot use skb_tailroom, since
736 * dev_alloc_skb gives us a larger skb than we
737 * requested
738 * Note : use tx_data_size, because max_data_size
739 * may have changed and we don't want to overwrite
740 * the skb. - Jean II
741 */
742 if ((tailroom = (self->tx_data_size - skb->len)) > 0) {
743 /* Adjust data to tailroom */
744 if (size > tailroom)
745 size = tailroom;
746 } else {
747 /*
748 * Current transmit frame is full, so break
749 * out, so we can send it as soon as possible
750 */
751 break;
752 }
753 } else {
754 /* Prepare a full sized frame */
755 skb = alloc_skb(self->max_data_size+
756 self->max_header_size,
757 GFP_ATOMIC);
758 if (!skb) {
759 spin_unlock_irqrestore(&self->spinlock, flags);
760 return -ENOBUFS;
761 }
762 skb_reserve(skb, self->max_header_size);
763 self->tx_skb = skb;
764 /* Remember skb size because max_data_size may
765 * change later on - Jean II */
766 self->tx_data_size = self->max_data_size;
767 }
768
769 /* Copy data */
770 memcpy(skb_put(skb,size), buf + len, size);
771
772 count -= size;
773 len += size;
774 }
775
776 spin_unlock_irqrestore(&self->spinlock, flags);
777
778 /*
779 * Schedule a new thread which will transmit the frame as soon
780 * as possible, but at a safe point in time. We do this so the
781 * "user" can give us data multiple times, as PPP does (because of
782 * its 256 byte tx buffer). We will then defragment and send out
783 * all this data as one single packet.
784 */
785 schedule_work(&self->tqueue);
786
787 return len;
788 }
789
790 /*
791 * Function ircomm_tty_write_room (tty)
792 *
793 * This routine returns the numbers of characters the tty driver will
794 * accept for queuing to be written. This number is subject to change as
795 * output buffers get emptied, or if the output flow control is acted.
796 */
ircomm_tty_write_room(struct tty_struct * tty)797 static int ircomm_tty_write_room(struct tty_struct *tty)
798 {
799 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
800 unsigned long flags;
801 int ret;
802
803 IRDA_ASSERT(self != NULL, return -1;);
804 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
805
806 #ifdef IRCOMM_NO_TX_BEFORE_INIT
807 /* max_header_size tells us if the channel is initialised or not. */
808 if (self->max_header_size == IRCOMM_TTY_HDR_UNINITIALISED)
809 /* Don't bother us yet */
810 return 0;
811 #endif
812
813 /* Check if we are allowed to transmit any data.
814 * hw_stopped is the regular flow control.
815 * Jean II */
816 if (tty->hw_stopped)
817 ret = 0;
818 else {
819 spin_lock_irqsave(&self->spinlock, flags);
820 if (self->tx_skb)
821 ret = self->tx_data_size - self->tx_skb->len;
822 else
823 ret = self->max_data_size;
824 spin_unlock_irqrestore(&self->spinlock, flags);
825 }
826 IRDA_DEBUG(2, "%s(), ret=%d\n", __func__ , ret);
827
828 return ret;
829 }
830
831 /*
832 * Function ircomm_tty_wait_until_sent (tty, timeout)
833 *
834 * This routine waits until the device has written out all of the
835 * characters in its transmitter FIFO.
836 */
ircomm_tty_wait_until_sent(struct tty_struct * tty,int timeout)837 static void ircomm_tty_wait_until_sent(struct tty_struct *tty, int timeout)
838 {
839 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
840 unsigned long orig_jiffies, poll_time;
841 unsigned long flags;
842
843 IRDA_DEBUG(2, "%s()\n", __func__ );
844
845 IRDA_ASSERT(self != NULL, return;);
846 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
847
848 orig_jiffies = jiffies;
849
850 /* Set poll time to 200 ms */
851 poll_time = IRDA_MIN(timeout, msecs_to_jiffies(200));
852
853 spin_lock_irqsave(&self->spinlock, flags);
854 while (self->tx_skb && self->tx_skb->len) {
855 spin_unlock_irqrestore(&self->spinlock, flags);
856 schedule_timeout_interruptible(poll_time);
857 spin_lock_irqsave(&self->spinlock, flags);
858 if (signal_pending(current))
859 break;
860 if (timeout && time_after(jiffies, orig_jiffies + timeout))
861 break;
862 }
863 spin_unlock_irqrestore(&self->spinlock, flags);
864 current->state = TASK_RUNNING;
865 }
866
867 /*
868 * Function ircomm_tty_throttle (tty)
869 *
870 * This routine notifies the tty driver that input buffers for the line
871 * discipline are close to full, and it should somehow signal that no
872 * more characters should be sent to the tty.
873 */
ircomm_tty_throttle(struct tty_struct * tty)874 static void ircomm_tty_throttle(struct tty_struct *tty)
875 {
876 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
877
878 IRDA_DEBUG(2, "%s()\n", __func__ );
879
880 IRDA_ASSERT(self != NULL, return;);
881 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
882
883 /* Software flow control? */
884 if (I_IXOFF(tty))
885 ircomm_tty_send_xchar(tty, STOP_CHAR(tty));
886
887 /* Hardware flow control? */
888 if (tty->termios->c_cflag & CRTSCTS) {
889 self->settings.dte &= ~IRCOMM_RTS;
890 self->settings.dte |= IRCOMM_DELTA_RTS;
891
892 ircomm_param_request(self, IRCOMM_DTE, TRUE);
893 }
894
895 ircomm_flow_request(self->ircomm, FLOW_STOP);
896 }
897
898 /*
899 * Function ircomm_tty_unthrottle (tty)
900 *
901 * This routine notifies the tty drivers that it should signals that
902 * characters can now be sent to the tty without fear of overrunning the
903 * input buffers of the line disciplines.
904 */
ircomm_tty_unthrottle(struct tty_struct * tty)905 static void ircomm_tty_unthrottle(struct tty_struct *tty)
906 {
907 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
908
909 IRDA_DEBUG(2, "%s()\n", __func__ );
910
911 IRDA_ASSERT(self != NULL, return;);
912 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
913
914 /* Using software flow control? */
915 if (I_IXOFF(tty)) {
916 ircomm_tty_send_xchar(tty, START_CHAR(tty));
917 }
918
919 /* Using hardware flow control? */
920 if (tty->termios->c_cflag & CRTSCTS) {
921 self->settings.dte |= (IRCOMM_RTS|IRCOMM_DELTA_RTS);
922
923 ircomm_param_request(self, IRCOMM_DTE, TRUE);
924 IRDA_DEBUG(1, "%s(), FLOW_START\n", __func__ );
925 }
926 ircomm_flow_request(self->ircomm, FLOW_START);
927 }
928
929 /*
930 * Function ircomm_tty_chars_in_buffer (tty)
931 *
932 * Indicates if there are any data in the buffer
933 *
934 */
ircomm_tty_chars_in_buffer(struct tty_struct * tty)935 static int ircomm_tty_chars_in_buffer(struct tty_struct *tty)
936 {
937 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
938 unsigned long flags;
939 int len = 0;
940
941 IRDA_ASSERT(self != NULL, return -1;);
942 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
943
944 spin_lock_irqsave(&self->spinlock, flags);
945
946 if (self->tx_skb)
947 len = self->tx_skb->len;
948
949 spin_unlock_irqrestore(&self->spinlock, flags);
950
951 return len;
952 }
953
ircomm_tty_shutdown(struct ircomm_tty_cb * self)954 static void ircomm_tty_shutdown(struct ircomm_tty_cb *self)
955 {
956 unsigned long flags;
957
958 IRDA_ASSERT(self != NULL, return;);
959 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
960
961 IRDA_DEBUG(0, "%s()\n", __func__ );
962
963 if (!test_and_clear_bit(ASYNC_B_INITIALIZED, &self->flags))
964 return;
965
966 ircomm_tty_detach_cable(self);
967
968 spin_lock_irqsave(&self->spinlock, flags);
969
970 del_timer(&self->watchdog_timer);
971
972 /* Free parameter buffer */
973 if (self->ctrl_skb) {
974 dev_kfree_skb(self->ctrl_skb);
975 self->ctrl_skb = NULL;
976 }
977
978 /* Free transmit buffer */
979 if (self->tx_skb) {
980 dev_kfree_skb(self->tx_skb);
981 self->tx_skb = NULL;
982 }
983
984 if (self->ircomm) {
985 ircomm_close(self->ircomm);
986 self->ircomm = NULL;
987 }
988
989 spin_unlock_irqrestore(&self->spinlock, flags);
990 }
991
992 /*
993 * Function ircomm_tty_hangup (tty)
994 *
995 * This routine notifies the tty driver that it should hangup the tty
996 * device.
997 *
998 */
ircomm_tty_hangup(struct tty_struct * tty)999 static void ircomm_tty_hangup(struct tty_struct *tty)
1000 {
1001 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1002 unsigned long flags;
1003
1004 IRDA_DEBUG(0, "%s()\n", __func__ );
1005
1006 IRDA_ASSERT(self != NULL, return;);
1007 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1008
1009 /* ircomm_tty_flush_buffer(tty); */
1010 ircomm_tty_shutdown(self);
1011
1012 /* I guess we need to lock here - Jean II */
1013 spin_lock_irqsave(&self->spinlock, flags);
1014 self->flags &= ~ASYNC_NORMAL_ACTIVE;
1015 self->tty = NULL;
1016 self->open_count = 0;
1017 spin_unlock_irqrestore(&self->spinlock, flags);
1018
1019 wake_up_interruptible(&self->open_wait);
1020 }
1021
1022 /*
1023 * Function ircomm_tty_send_xchar (tty, ch)
1024 *
1025 * This routine is used to send a high-priority XON/XOFF character to
1026 * the device.
1027 */
ircomm_tty_send_xchar(struct tty_struct * tty,char ch)1028 static void ircomm_tty_send_xchar(struct tty_struct *tty, char ch)
1029 {
1030 IRDA_DEBUG(0, "%s(), not impl\n", __func__ );
1031 }
1032
1033 /*
1034 * Function ircomm_tty_start (tty)
1035 *
1036 * This routine notifies the tty driver that it resume sending
1037 * characters to the tty device.
1038 */
ircomm_tty_start(struct tty_struct * tty)1039 void ircomm_tty_start(struct tty_struct *tty)
1040 {
1041 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1042
1043 ircomm_flow_request(self->ircomm, FLOW_START);
1044 }
1045
1046 /*
1047 * Function ircomm_tty_stop (tty)
1048 *
1049 * This routine notifies the tty driver that it should stop outputting
1050 * characters to the tty device.
1051 */
ircomm_tty_stop(struct tty_struct * tty)1052 static void ircomm_tty_stop(struct tty_struct *tty)
1053 {
1054 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) tty->driver_data;
1055
1056 IRDA_ASSERT(self != NULL, return;);
1057 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1058
1059 ircomm_flow_request(self->ircomm, FLOW_STOP);
1060 }
1061
1062 /*
1063 * Function ircomm_check_modem_status (self)
1064 *
1065 * Check for any changes in the DCE's line settings. This function should
1066 * be called whenever the dce parameter settings changes, to update the
1067 * flow control settings and other things
1068 */
ircomm_tty_check_modem_status(struct ircomm_tty_cb * self)1069 void ircomm_tty_check_modem_status(struct ircomm_tty_cb *self)
1070 {
1071 struct tty_struct *tty;
1072 int status;
1073
1074 IRDA_DEBUG(0, "%s()\n", __func__ );
1075
1076 IRDA_ASSERT(self != NULL, return;);
1077 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1078
1079 tty = self->tty;
1080
1081 status = self->settings.dce;
1082
1083 if (status & IRCOMM_DCE_DELTA_ANY) {
1084 /*wake_up_interruptible(&self->delta_msr_wait);*/
1085 }
1086 if ((self->flags & ASYNC_CHECK_CD) && (status & IRCOMM_DELTA_CD)) {
1087 IRDA_DEBUG(2,
1088 "%s(), ircomm%d CD now %s...\n", __func__ , self->line,
1089 (status & IRCOMM_CD) ? "on" : "off");
1090
1091 if (status & IRCOMM_CD) {
1092 wake_up_interruptible(&self->open_wait);
1093 } else {
1094 IRDA_DEBUG(2,
1095 "%s(), Doing serial hangup..\n", __func__ );
1096 if (tty)
1097 tty_hangup(tty);
1098
1099 /* Hangup will remote the tty, so better break out */
1100 return;
1101 }
1102 }
1103 if (self->flags & ASYNC_CTS_FLOW) {
1104 if (tty->hw_stopped) {
1105 if (status & IRCOMM_CTS) {
1106 IRDA_DEBUG(2,
1107 "%s(), CTS tx start...\n", __func__ );
1108 tty->hw_stopped = 0;
1109
1110 /* Wake up processes blocked on open */
1111 wake_up_interruptible(&self->open_wait);
1112
1113 schedule_work(&self->tqueue);
1114 return;
1115 }
1116 } else {
1117 if (!(status & IRCOMM_CTS)) {
1118 IRDA_DEBUG(2,
1119 "%s(), CTS tx stop...\n", __func__ );
1120 tty->hw_stopped = 1;
1121 }
1122 }
1123 }
1124 }
1125
1126 /*
1127 * Function ircomm_tty_data_indication (instance, sap, skb)
1128 *
1129 * Handle incoming data, and deliver it to the line discipline
1130 *
1131 */
ircomm_tty_data_indication(void * instance,void * sap,struct sk_buff * skb)1132 static int ircomm_tty_data_indication(void *instance, void *sap,
1133 struct sk_buff *skb)
1134 {
1135 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1136
1137 IRDA_DEBUG(2, "%s()\n", __func__ );
1138
1139 IRDA_ASSERT(self != NULL, return -1;);
1140 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1141 IRDA_ASSERT(skb != NULL, return -1;);
1142
1143 if (!self->tty) {
1144 IRDA_DEBUG(0, "%s(), no tty!\n", __func__ );
1145 return 0;
1146 }
1147
1148 /*
1149 * If we receive data when hardware is stopped then something is wrong.
1150 * We try to poll the peers line settings to check if we are up todate.
1151 * Devices like WinCE can do this, and since they don't send any
1152 * params, we can just as well declare the hardware for running.
1153 */
1154 if (self->tty->hw_stopped && (self->flow == FLOW_START)) {
1155 IRDA_DEBUG(0, "%s(), polling for line settings!\n", __func__ );
1156 ircomm_param_request(self, IRCOMM_POLL, TRUE);
1157
1158 /* We can just as well declare the hardware for running */
1159 ircomm_tty_send_initial_parameters(self);
1160 ircomm_tty_link_established(self);
1161 }
1162
1163 /*
1164 * Use flip buffer functions since the code may be called from interrupt
1165 * context
1166 */
1167 tty_insert_flip_string(self->tty, skb->data, skb->len);
1168 tty_flip_buffer_push(self->tty);
1169
1170 /* No need to kfree_skb - see ircomm_ttp_data_indication() */
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * Function ircomm_tty_control_indication (instance, sap, skb)
1177 *
1178 * Parse all incoming parameters (easy!)
1179 *
1180 */
ircomm_tty_control_indication(void * instance,void * sap,struct sk_buff * skb)1181 static int ircomm_tty_control_indication(void *instance, void *sap,
1182 struct sk_buff *skb)
1183 {
1184 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1185 int clen;
1186
1187 IRDA_DEBUG(4, "%s()\n", __func__ );
1188
1189 IRDA_ASSERT(self != NULL, return -1;);
1190 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return -1;);
1191 IRDA_ASSERT(skb != NULL, return -1;);
1192
1193 clen = skb->data[0];
1194
1195 irda_param_extract_all(self, skb->data+1, IRDA_MIN(skb->len-1, clen),
1196 &ircomm_param_info);
1197
1198 /* No need to kfree_skb - see ircomm_control_indication() */
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Function ircomm_tty_flow_indication (instance, sap, cmd)
1205 *
1206 * This function is called by IrTTP when it wants us to slow down the
1207 * transmission of data. We just mark the hardware as stopped, and wait
1208 * for IrTTP to notify us that things are OK again.
1209 */
ircomm_tty_flow_indication(void * instance,void * sap,LOCAL_FLOW cmd)1210 static void ircomm_tty_flow_indication(void *instance, void *sap,
1211 LOCAL_FLOW cmd)
1212 {
1213 struct ircomm_tty_cb *self = (struct ircomm_tty_cb *) instance;
1214 struct tty_struct *tty;
1215
1216 IRDA_ASSERT(self != NULL, return;);
1217 IRDA_ASSERT(self->magic == IRCOMM_TTY_MAGIC, return;);
1218
1219 tty = self->tty;
1220
1221 switch (cmd) {
1222 case FLOW_START:
1223 IRDA_DEBUG(2, "%s(), hw start!\n", __func__ );
1224 tty->hw_stopped = 0;
1225
1226 /* ircomm_tty_do_softint will take care of the rest */
1227 schedule_work(&self->tqueue);
1228 break;
1229 default: /* If we get here, something is very wrong, better stop */
1230 case FLOW_STOP:
1231 IRDA_DEBUG(2, "%s(), hw stopped!\n", __func__ );
1232 tty->hw_stopped = 1;
1233 break;
1234 }
1235 self->flow = cmd;
1236 }
1237
1238 #ifdef CONFIG_PROC_FS
ircomm_tty_line_info(struct ircomm_tty_cb * self,struct seq_file * m)1239 static void ircomm_tty_line_info(struct ircomm_tty_cb *self, struct seq_file *m)
1240 {
1241 char sep;
1242
1243 seq_printf(m, "State: %s\n", ircomm_tty_state[self->state]);
1244
1245 seq_puts(m, "Service type: ");
1246 if (self->service_type & IRCOMM_9_WIRE)
1247 seq_puts(m, "9_WIRE");
1248 else if (self->service_type & IRCOMM_3_WIRE)
1249 seq_puts(m, "3_WIRE");
1250 else if (self->service_type & IRCOMM_3_WIRE_RAW)
1251 seq_puts(m, "3_WIRE_RAW");
1252 else
1253 seq_puts(m, "No common service type!\n");
1254 seq_putc(m, '\n');
1255
1256 seq_printf(m, "Port name: %s\n", self->settings.port_name);
1257
1258 seq_printf(m, "DTE status:");
1259 sep = ' ';
1260 if (self->settings.dte & IRCOMM_RTS) {
1261 seq_printf(m, "%cRTS", sep);
1262 sep = '|';
1263 }
1264 if (self->settings.dte & IRCOMM_DTR) {
1265 seq_printf(m, "%cDTR", sep);
1266 sep = '|';
1267 }
1268 seq_putc(m, '\n');
1269
1270 seq_puts(m, "DCE status:");
1271 sep = ' ';
1272 if (self->settings.dce & IRCOMM_CTS) {
1273 seq_printf(m, "%cCTS", sep);
1274 sep = '|';
1275 }
1276 if (self->settings.dce & IRCOMM_DSR) {
1277 seq_printf(m, "%cDSR", sep);
1278 sep = '|';
1279 }
1280 if (self->settings.dce & IRCOMM_CD) {
1281 seq_printf(m, "%cCD", sep);
1282 sep = '|';
1283 }
1284 if (self->settings.dce & IRCOMM_RI) {
1285 seq_printf(m, "%cRI", sep);
1286 sep = '|';
1287 }
1288 seq_putc(m, '\n');
1289
1290 seq_puts(m, "Configuration: ");
1291 if (!self->settings.null_modem)
1292 seq_puts(m, "DTE <-> DCE\n");
1293 else
1294 seq_puts(m, "DTE <-> DTE (null modem emulation)\n");
1295
1296 seq_printf(m, "Data rate: %d\n", self->settings.data_rate);
1297
1298 seq_puts(m, "Flow control:");
1299 sep = ' ';
1300 if (self->settings.flow_control & IRCOMM_XON_XOFF_IN) {
1301 seq_printf(m, "%cXON_XOFF_IN", sep);
1302 sep = '|';
1303 }
1304 if (self->settings.flow_control & IRCOMM_XON_XOFF_OUT) {
1305 seq_printf(m, "%cXON_XOFF_OUT", sep);
1306 sep = '|';
1307 }
1308 if (self->settings.flow_control & IRCOMM_RTS_CTS_IN) {
1309 seq_printf(m, "%cRTS_CTS_IN", sep);
1310 sep = '|';
1311 }
1312 if (self->settings.flow_control & IRCOMM_RTS_CTS_OUT) {
1313 seq_printf(m, "%cRTS_CTS_OUT", sep);
1314 sep = '|';
1315 }
1316 if (self->settings.flow_control & IRCOMM_DSR_DTR_IN) {
1317 seq_printf(m, "%cDSR_DTR_IN", sep);
1318 sep = '|';
1319 }
1320 if (self->settings.flow_control & IRCOMM_DSR_DTR_OUT) {
1321 seq_printf(m, "%cDSR_DTR_OUT", sep);
1322 sep = '|';
1323 }
1324 if (self->settings.flow_control & IRCOMM_ENQ_ACK_IN) {
1325 seq_printf(m, "%cENQ_ACK_IN", sep);
1326 sep = '|';
1327 }
1328 if (self->settings.flow_control & IRCOMM_ENQ_ACK_OUT) {
1329 seq_printf(m, "%cENQ_ACK_OUT", sep);
1330 sep = '|';
1331 }
1332 seq_putc(m, '\n');
1333
1334 seq_puts(m, "Flags:");
1335 sep = ' ';
1336 if (self->flags & ASYNC_CTS_FLOW) {
1337 seq_printf(m, "%cASYNC_CTS_FLOW", sep);
1338 sep = '|';
1339 }
1340 if (self->flags & ASYNC_CHECK_CD) {
1341 seq_printf(m, "%cASYNC_CHECK_CD", sep);
1342 sep = '|';
1343 }
1344 if (self->flags & ASYNC_INITIALIZED) {
1345 seq_printf(m, "%cASYNC_INITIALIZED", sep);
1346 sep = '|';
1347 }
1348 if (self->flags & ASYNC_LOW_LATENCY) {
1349 seq_printf(m, "%cASYNC_LOW_LATENCY", sep);
1350 sep = '|';
1351 }
1352 if (self->flags & ASYNC_CLOSING) {
1353 seq_printf(m, "%cASYNC_CLOSING", sep);
1354 sep = '|';
1355 }
1356 if (self->flags & ASYNC_NORMAL_ACTIVE) {
1357 seq_printf(m, "%cASYNC_NORMAL_ACTIVE", sep);
1358 sep = '|';
1359 }
1360 seq_putc(m, '\n');
1361
1362 seq_printf(m, "Role: %s\n", self->client ? "client" : "server");
1363 seq_printf(m, "Open count: %d\n", self->open_count);
1364 seq_printf(m, "Max data size: %d\n", self->max_data_size);
1365 seq_printf(m, "Max header size: %d\n", self->max_header_size);
1366
1367 if (self->tty)
1368 seq_printf(m, "Hardware: %s\n",
1369 self->tty->hw_stopped ? "Stopped" : "Running");
1370 }
1371
ircomm_tty_proc_show(struct seq_file * m,void * v)1372 static int ircomm_tty_proc_show(struct seq_file *m, void *v)
1373 {
1374 struct ircomm_tty_cb *self;
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&ircomm_tty->hb_spinlock, flags);
1378
1379 self = (struct ircomm_tty_cb *) hashbin_get_first(ircomm_tty);
1380 while (self != NULL) {
1381 if (self->magic != IRCOMM_TTY_MAGIC)
1382 break;
1383
1384 ircomm_tty_line_info(self, m);
1385 self = (struct ircomm_tty_cb *) hashbin_get_next(ircomm_tty);
1386 }
1387 spin_unlock_irqrestore(&ircomm_tty->hb_spinlock, flags);
1388 return 0;
1389 }
1390
ircomm_tty_proc_open(struct inode * inode,struct file * file)1391 static int ircomm_tty_proc_open(struct inode *inode, struct file *file)
1392 {
1393 return single_open(file, ircomm_tty_proc_show, NULL);
1394 }
1395
1396 static const struct file_operations ircomm_tty_proc_fops = {
1397 .owner = THIS_MODULE,
1398 .open = ircomm_tty_proc_open,
1399 .read = seq_read,
1400 .llseek = seq_lseek,
1401 .release = single_release,
1402 };
1403 #endif /* CONFIG_PROC_FS */
1404
1405 MODULE_AUTHOR("Dag Brattli <dagb@cs.uit.no>");
1406 MODULE_DESCRIPTION("IrCOMM serial TTY driver");
1407 MODULE_LICENSE("GPL");
1408 MODULE_ALIAS_CHARDEV_MAJOR(IRCOMM_TTY_MAJOR);
1409
1410 module_init(ircomm_tty_init);
1411 module_exit(ircomm_tty_cleanup);
1412