1 /*
2  * SLOB Allocator: Simple List Of Blocks
3  *
4  * Matt Mackall <mpm@selenic.com> 12/30/03
5  *
6  * NUMA support by Paul Mundt, 2007.
7  *
8  * How SLOB works:
9  *
10  * The core of SLOB is a traditional K&R style heap allocator, with
11  * support for returning aligned objects. The granularity of this
12  * allocator is as little as 2 bytes, however typically most architectures
13  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14  *
15  * The slob heap is a set of linked list of pages from alloc_pages(),
16  * and within each page, there is a singly-linked list of free blocks
17  * (slob_t). The heap is grown on demand. To reduce fragmentation,
18  * heap pages are segregated into three lists, with objects less than
19  * 256 bytes, objects less than 1024 bytes, and all other objects.
20  *
21  * Allocation from heap involves first searching for a page with
22  * sufficient free blocks (using a next-fit-like approach) followed by
23  * a first-fit scan of the page. Deallocation inserts objects back
24  * into the free list in address order, so this is effectively an
25  * address-ordered first fit.
26  *
27  * Above this is an implementation of kmalloc/kfree. Blocks returned
28  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30  * alloc_pages() directly, allocating compound pages so the page order
31  * does not have to be separately tracked, and also stores the exact
32  * allocation size in page->private so that it can be used to accurately
33  * provide ksize(). These objects are detected in kfree() because slob_page()
34  * is false for them.
35  *
36  * SLAB is emulated on top of SLOB by simply calling constructors and
37  * destructors for every SLAB allocation. Objects are returned with the
38  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39  * case the low-level allocator will fragment blocks to create the proper
40  * alignment. Again, objects of page-size or greater are allocated by
41  * calling alloc_pages(). As SLAB objects know their size, no separate
42  * size bookkeeping is necessary and there is essentially no allocation
43  * space overhead, and compound pages aren't needed for multi-page
44  * allocations.
45  *
46  * NUMA support in SLOB is fairly simplistic, pushing most of the real
47  * logic down to the page allocator, and simply doing the node accounting
48  * on the upper levels. In the event that a node id is explicitly
49  * provided, alloc_pages_exact_node() with the specified node id is used
50  * instead. The common case (or when the node id isn't explicitly provided)
51  * will default to the current node, as per numa_node_id().
52  *
53  * Node aware pages are still inserted in to the global freelist, and
54  * these are scanned for by matching against the node id encoded in the
55  * page flags. As a result, block allocations that can be satisfied from
56  * the freelist will only be done so on pages residing on the same node,
57  * in order to prevent random node placement.
58  */
59 
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include <linux/mm.h>
63 #include <linux/swap.h> /* struct reclaim_state */
64 #include <linux/cache.h>
65 #include <linux/init.h>
66 #include <linux/export.h>
67 #include <linux/rcupdate.h>
68 #include <linux/list.h>
69 #include <linux/kmemleak.h>
70 
71 #include <trace/events/kmem.h>
72 
73 #include <linux/atomic.h>
74 
75 /*
76  * slob_block has a field 'units', which indicates size of block if +ve,
77  * or offset of next block if -ve (in SLOB_UNITs).
78  *
79  * Free blocks of size 1 unit simply contain the offset of the next block.
80  * Those with larger size contain their size in the first SLOB_UNIT of
81  * memory, and the offset of the next free block in the second SLOB_UNIT.
82  */
83 #if PAGE_SIZE <= (32767 * 2)
84 typedef s16 slobidx_t;
85 #else
86 typedef s32 slobidx_t;
87 #endif
88 
89 struct slob_block {
90 	slobidx_t units;
91 };
92 typedef struct slob_block slob_t;
93 
94 /*
95  * We use struct page fields to manage some slob allocation aspects,
96  * however to avoid the horrible mess in include/linux/mm_types.h, we'll
97  * just define our own struct page type variant here.
98  */
99 struct slob_page {
100 	union {
101 		struct {
102 			unsigned long flags;	/* mandatory */
103 			atomic_t _count;	/* mandatory */
104 			slobidx_t units;	/* free units left in page */
105 			unsigned long pad[2];
106 			slob_t *free;		/* first free slob_t in page */
107 			struct list_head list;	/* linked list of free pages */
108 		};
109 		struct page page;
110 	};
111 };
struct_slob_page_wrong_size(void)112 static inline void struct_slob_page_wrong_size(void)
113 { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
114 
115 /*
116  * free_slob_page: call before a slob_page is returned to the page allocator.
117  */
free_slob_page(struct slob_page * sp)118 static inline void free_slob_page(struct slob_page *sp)
119 {
120 	reset_page_mapcount(&sp->page);
121 	sp->page.mapping = NULL;
122 }
123 
124 /*
125  * All partially free slob pages go on these lists.
126  */
127 #define SLOB_BREAK1 256
128 #define SLOB_BREAK2 1024
129 static LIST_HEAD(free_slob_small);
130 static LIST_HEAD(free_slob_medium);
131 static LIST_HEAD(free_slob_large);
132 
133 /*
134  * is_slob_page: True for all slob pages (false for bigblock pages)
135  */
is_slob_page(struct slob_page * sp)136 static inline int is_slob_page(struct slob_page *sp)
137 {
138 	return PageSlab((struct page *)sp);
139 }
140 
set_slob_page(struct slob_page * sp)141 static inline void set_slob_page(struct slob_page *sp)
142 {
143 	__SetPageSlab((struct page *)sp);
144 }
145 
clear_slob_page(struct slob_page * sp)146 static inline void clear_slob_page(struct slob_page *sp)
147 {
148 	__ClearPageSlab((struct page *)sp);
149 }
150 
slob_page(const void * addr)151 static inline struct slob_page *slob_page(const void *addr)
152 {
153 	return (struct slob_page *)virt_to_page(addr);
154 }
155 
156 /*
157  * slob_page_free: true for pages on free_slob_pages list.
158  */
slob_page_free(struct slob_page * sp)159 static inline int slob_page_free(struct slob_page *sp)
160 {
161 	return PageSlobFree((struct page *)sp);
162 }
163 
set_slob_page_free(struct slob_page * sp,struct list_head * list)164 static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
165 {
166 	list_add(&sp->list, list);
167 	__SetPageSlobFree((struct page *)sp);
168 }
169 
clear_slob_page_free(struct slob_page * sp)170 static inline void clear_slob_page_free(struct slob_page *sp)
171 {
172 	list_del(&sp->list);
173 	__ClearPageSlobFree((struct page *)sp);
174 }
175 
176 #define SLOB_UNIT sizeof(slob_t)
177 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
178 #define SLOB_ALIGN L1_CACHE_BYTES
179 
180 /*
181  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
182  * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
183  * the block using call_rcu.
184  */
185 struct slob_rcu {
186 	struct rcu_head head;
187 	int size;
188 };
189 
190 /*
191  * slob_lock protects all slob allocator structures.
192  */
193 static DEFINE_SPINLOCK(slob_lock);
194 
195 /*
196  * Encode the given size and next info into a free slob block s.
197  */
set_slob(slob_t * s,slobidx_t size,slob_t * next)198 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
199 {
200 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
201 	slobidx_t offset = next - base;
202 
203 	if (size > 1) {
204 		s[0].units = size;
205 		s[1].units = offset;
206 	} else
207 		s[0].units = -offset;
208 }
209 
210 /*
211  * Return the size of a slob block.
212  */
slob_units(slob_t * s)213 static slobidx_t slob_units(slob_t *s)
214 {
215 	if (s->units > 0)
216 		return s->units;
217 	return 1;
218 }
219 
220 /*
221  * Return the next free slob block pointer after this one.
222  */
slob_next(slob_t * s)223 static slob_t *slob_next(slob_t *s)
224 {
225 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
226 	slobidx_t next;
227 
228 	if (s[0].units < 0)
229 		next = -s[0].units;
230 	else
231 		next = s[1].units;
232 	return base+next;
233 }
234 
235 /*
236  * Returns true if s is the last free block in its page.
237  */
slob_last(slob_t * s)238 static int slob_last(slob_t *s)
239 {
240 	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
241 }
242 
slob_new_pages(gfp_t gfp,int order,int node)243 static void *slob_new_pages(gfp_t gfp, int order, int node)
244 {
245 	void *page;
246 
247 #ifdef CONFIG_NUMA
248 	if (node != -1)
249 		page = alloc_pages_exact_node(node, gfp, order);
250 	else
251 #endif
252 		page = alloc_pages(gfp, order);
253 
254 	if (!page)
255 		return NULL;
256 
257 	return page_address(page);
258 }
259 
slob_free_pages(void * b,int order)260 static void slob_free_pages(void *b, int order)
261 {
262 	if (current->reclaim_state)
263 		current->reclaim_state->reclaimed_slab += 1 << order;
264 	free_pages((unsigned long)b, order);
265 }
266 
267 /*
268  * Allocate a slob block within a given slob_page sp.
269  */
slob_page_alloc(struct slob_page * sp,size_t size,int align)270 static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
271 {
272 	slob_t *prev, *cur, *aligned = NULL;
273 	int delta = 0, units = SLOB_UNITS(size);
274 
275 	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
276 		slobidx_t avail = slob_units(cur);
277 
278 		if (align) {
279 			aligned = (slob_t *)ALIGN((unsigned long)cur, align);
280 			delta = aligned - cur;
281 		}
282 		if (avail >= units + delta) { /* room enough? */
283 			slob_t *next;
284 
285 			if (delta) { /* need to fragment head to align? */
286 				next = slob_next(cur);
287 				set_slob(aligned, avail - delta, next);
288 				set_slob(cur, delta, aligned);
289 				prev = cur;
290 				cur = aligned;
291 				avail = slob_units(cur);
292 			}
293 
294 			next = slob_next(cur);
295 			if (avail == units) { /* exact fit? unlink. */
296 				if (prev)
297 					set_slob(prev, slob_units(prev), next);
298 				else
299 					sp->free = next;
300 			} else { /* fragment */
301 				if (prev)
302 					set_slob(prev, slob_units(prev), cur + units);
303 				else
304 					sp->free = cur + units;
305 				set_slob(cur + units, avail - units, next);
306 			}
307 
308 			sp->units -= units;
309 			if (!sp->units)
310 				clear_slob_page_free(sp);
311 			return cur;
312 		}
313 		if (slob_last(cur))
314 			return NULL;
315 	}
316 }
317 
318 /*
319  * slob_alloc: entry point into the slob allocator.
320  */
slob_alloc(size_t size,gfp_t gfp,int align,int node)321 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
322 {
323 	struct slob_page *sp;
324 	struct list_head *prev;
325 	struct list_head *slob_list;
326 	slob_t *b = NULL;
327 	unsigned long flags;
328 
329 	if (size < SLOB_BREAK1)
330 		slob_list = &free_slob_small;
331 	else if (size < SLOB_BREAK2)
332 		slob_list = &free_slob_medium;
333 	else
334 		slob_list = &free_slob_large;
335 
336 	spin_lock_irqsave(&slob_lock, flags);
337 	/* Iterate through each partially free page, try to find room */
338 	list_for_each_entry(sp, slob_list, list) {
339 #ifdef CONFIG_NUMA
340 		/*
341 		 * If there's a node specification, search for a partial
342 		 * page with a matching node id in the freelist.
343 		 */
344 		if (node != -1 && page_to_nid(&sp->page) != node)
345 			continue;
346 #endif
347 		/* Enough room on this page? */
348 		if (sp->units < SLOB_UNITS(size))
349 			continue;
350 
351 		/* Attempt to alloc */
352 		prev = sp->list.prev;
353 		b = slob_page_alloc(sp, size, align);
354 		if (!b)
355 			continue;
356 
357 		/* Improve fragment distribution and reduce our average
358 		 * search time by starting our next search here. (see
359 		 * Knuth vol 1, sec 2.5, pg 449) */
360 		if (prev != slob_list->prev &&
361 				slob_list->next != prev->next)
362 			list_move_tail(slob_list, prev->next);
363 		break;
364 	}
365 	spin_unlock_irqrestore(&slob_lock, flags);
366 
367 	/* Not enough space: must allocate a new page */
368 	if (!b) {
369 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
370 		if (!b)
371 			return NULL;
372 		sp = slob_page(b);
373 		set_slob_page(sp);
374 
375 		spin_lock_irqsave(&slob_lock, flags);
376 		sp->units = SLOB_UNITS(PAGE_SIZE);
377 		sp->free = b;
378 		INIT_LIST_HEAD(&sp->list);
379 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
380 		set_slob_page_free(sp, slob_list);
381 		b = slob_page_alloc(sp, size, align);
382 		BUG_ON(!b);
383 		spin_unlock_irqrestore(&slob_lock, flags);
384 	}
385 	if (unlikely((gfp & __GFP_ZERO) && b))
386 		memset(b, 0, size);
387 	return b;
388 }
389 
390 /*
391  * slob_free: entry point into the slob allocator.
392  */
slob_free(void * block,int size)393 static void slob_free(void *block, int size)
394 {
395 	struct slob_page *sp;
396 	slob_t *prev, *next, *b = (slob_t *)block;
397 	slobidx_t units;
398 	unsigned long flags;
399 	struct list_head *slob_list;
400 
401 	if (unlikely(ZERO_OR_NULL_PTR(block)))
402 		return;
403 	BUG_ON(!size);
404 
405 	sp = slob_page(block);
406 	units = SLOB_UNITS(size);
407 
408 	spin_lock_irqsave(&slob_lock, flags);
409 
410 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
411 		/* Go directly to page allocator. Do not pass slob allocator */
412 		if (slob_page_free(sp))
413 			clear_slob_page_free(sp);
414 		spin_unlock_irqrestore(&slob_lock, flags);
415 		clear_slob_page(sp);
416 		free_slob_page(sp);
417 		slob_free_pages(b, 0);
418 		return;
419 	}
420 
421 	if (!slob_page_free(sp)) {
422 		/* This slob page is about to become partially free. Easy! */
423 		sp->units = units;
424 		sp->free = b;
425 		set_slob(b, units,
426 			(void *)((unsigned long)(b +
427 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
428 		if (size < SLOB_BREAK1)
429 			slob_list = &free_slob_small;
430 		else if (size < SLOB_BREAK2)
431 			slob_list = &free_slob_medium;
432 		else
433 			slob_list = &free_slob_large;
434 		set_slob_page_free(sp, slob_list);
435 		goto out;
436 	}
437 
438 	/*
439 	 * Otherwise the page is already partially free, so find reinsertion
440 	 * point.
441 	 */
442 	sp->units += units;
443 
444 	if (b < sp->free) {
445 		if (b + units == sp->free) {
446 			units += slob_units(sp->free);
447 			sp->free = slob_next(sp->free);
448 		}
449 		set_slob(b, units, sp->free);
450 		sp->free = b;
451 	} else {
452 		prev = sp->free;
453 		next = slob_next(prev);
454 		while (b > next) {
455 			prev = next;
456 			next = slob_next(prev);
457 		}
458 
459 		if (!slob_last(prev) && b + units == next) {
460 			units += slob_units(next);
461 			set_slob(b, units, slob_next(next));
462 		} else
463 			set_slob(b, units, next);
464 
465 		if (prev + slob_units(prev) == b) {
466 			units = slob_units(b) + slob_units(prev);
467 			set_slob(prev, units, slob_next(b));
468 		} else
469 			set_slob(prev, slob_units(prev), b);
470 	}
471 out:
472 	spin_unlock_irqrestore(&slob_lock, flags);
473 }
474 
475 /*
476  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
477  */
478 
__kmalloc_node(size_t size,gfp_t gfp,int node)479 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
480 {
481 	unsigned int *m;
482 	int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
483 	void *ret;
484 
485 	gfp &= gfp_allowed_mask;
486 
487 	lockdep_trace_alloc(gfp);
488 
489 	if (size < PAGE_SIZE - align) {
490 		if (!size)
491 			return ZERO_SIZE_PTR;
492 
493 		m = slob_alloc(size + align, gfp, align, node);
494 
495 		if (!m)
496 			return NULL;
497 		*m = size;
498 		ret = (void *)m + align;
499 
500 		trace_kmalloc_node(_RET_IP_, ret,
501 				   size, size + align, gfp, node);
502 	} else {
503 		unsigned int order = get_order(size);
504 
505 		if (likely(order))
506 			gfp |= __GFP_COMP;
507 		ret = slob_new_pages(gfp, order, node);
508 		if (ret) {
509 			struct page *page;
510 			page = virt_to_page(ret);
511 			page->private = size;
512 		}
513 
514 		trace_kmalloc_node(_RET_IP_, ret,
515 				   size, PAGE_SIZE << order, gfp, node);
516 	}
517 
518 	kmemleak_alloc(ret, size, 1, gfp);
519 	return ret;
520 }
521 EXPORT_SYMBOL(__kmalloc_node);
522 
kfree(const void * block)523 void kfree(const void *block)
524 {
525 	struct slob_page *sp;
526 
527 	trace_kfree(_RET_IP_, block);
528 
529 	if (unlikely(ZERO_OR_NULL_PTR(block)))
530 		return;
531 	kmemleak_free(block);
532 
533 	sp = slob_page(block);
534 	if (is_slob_page(sp)) {
535 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
536 		unsigned int *m = (unsigned int *)(block - align);
537 		slob_free(m, *m + align);
538 	} else
539 		put_page(&sp->page);
540 }
541 EXPORT_SYMBOL(kfree);
542 
543 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
ksize(const void * block)544 size_t ksize(const void *block)
545 {
546 	struct slob_page *sp;
547 
548 	BUG_ON(!block);
549 	if (unlikely(block == ZERO_SIZE_PTR))
550 		return 0;
551 
552 	sp = slob_page(block);
553 	if (is_slob_page(sp)) {
554 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
555 		unsigned int *m = (unsigned int *)(block - align);
556 		return SLOB_UNITS(*m) * SLOB_UNIT;
557 	} else
558 		return sp->page.private;
559 }
560 EXPORT_SYMBOL(ksize);
561 
562 struct kmem_cache {
563 	unsigned int size, align;
564 	unsigned long flags;
565 	const char *name;
566 	void (*ctor)(void *);
567 };
568 
kmem_cache_create(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))569 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
570 	size_t align, unsigned long flags, void (*ctor)(void *))
571 {
572 	struct kmem_cache *c;
573 
574 	c = slob_alloc(sizeof(struct kmem_cache),
575 		GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
576 
577 	if (c) {
578 		c->name = name;
579 		c->size = size;
580 		if (flags & SLAB_DESTROY_BY_RCU) {
581 			/* leave room for rcu footer at the end of object */
582 			c->size += sizeof(struct slob_rcu);
583 		}
584 		c->flags = flags;
585 		c->ctor = ctor;
586 		/* ignore alignment unless it's forced */
587 		c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
588 		if (c->align < ARCH_SLAB_MINALIGN)
589 			c->align = ARCH_SLAB_MINALIGN;
590 		if (c->align < align)
591 			c->align = align;
592 	} else if (flags & SLAB_PANIC)
593 		panic("Cannot create slab cache %s\n", name);
594 
595 	kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
596 	return c;
597 }
598 EXPORT_SYMBOL(kmem_cache_create);
599 
kmem_cache_destroy(struct kmem_cache * c)600 void kmem_cache_destroy(struct kmem_cache *c)
601 {
602 	kmemleak_free(c);
603 	if (c->flags & SLAB_DESTROY_BY_RCU)
604 		rcu_barrier();
605 	slob_free(c, sizeof(struct kmem_cache));
606 }
607 EXPORT_SYMBOL(kmem_cache_destroy);
608 
kmem_cache_alloc_node(struct kmem_cache * c,gfp_t flags,int node)609 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
610 {
611 	void *b;
612 
613 	flags &= gfp_allowed_mask;
614 
615 	lockdep_trace_alloc(flags);
616 
617 	if (c->size < PAGE_SIZE) {
618 		b = slob_alloc(c->size, flags, c->align, node);
619 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
620 					    SLOB_UNITS(c->size) * SLOB_UNIT,
621 					    flags, node);
622 	} else {
623 		b = slob_new_pages(flags, get_order(c->size), node);
624 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
625 					    PAGE_SIZE << get_order(c->size),
626 					    flags, node);
627 	}
628 
629 	if (c->ctor)
630 		c->ctor(b);
631 
632 	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
633 	return b;
634 }
635 EXPORT_SYMBOL(kmem_cache_alloc_node);
636 
__kmem_cache_free(void * b,int size)637 static void __kmem_cache_free(void *b, int size)
638 {
639 	if (size < PAGE_SIZE)
640 		slob_free(b, size);
641 	else
642 		slob_free_pages(b, get_order(size));
643 }
644 
kmem_rcu_free(struct rcu_head * head)645 static void kmem_rcu_free(struct rcu_head *head)
646 {
647 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
648 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
649 
650 	__kmem_cache_free(b, slob_rcu->size);
651 }
652 
kmem_cache_free(struct kmem_cache * c,void * b)653 void kmem_cache_free(struct kmem_cache *c, void *b)
654 {
655 	kmemleak_free_recursive(b, c->flags);
656 	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
657 		struct slob_rcu *slob_rcu;
658 		slob_rcu = b + (c->size - sizeof(struct slob_rcu));
659 		slob_rcu->size = c->size;
660 		call_rcu(&slob_rcu->head, kmem_rcu_free);
661 	} else {
662 		__kmem_cache_free(b, c->size);
663 	}
664 
665 	trace_kmem_cache_free(_RET_IP_, b);
666 }
667 EXPORT_SYMBOL(kmem_cache_free);
668 
kmem_cache_size(struct kmem_cache * c)669 unsigned int kmem_cache_size(struct kmem_cache *c)
670 {
671 	return c->size;
672 }
673 EXPORT_SYMBOL(kmem_cache_size);
674 
kmem_cache_shrink(struct kmem_cache * d)675 int kmem_cache_shrink(struct kmem_cache *d)
676 {
677 	return 0;
678 }
679 EXPORT_SYMBOL(kmem_cache_shrink);
680 
681 static unsigned int slob_ready __read_mostly;
682 
slab_is_available(void)683 int slab_is_available(void)
684 {
685 	return slob_ready;
686 }
687 
kmem_cache_init(void)688 void __init kmem_cache_init(void)
689 {
690 	slob_ready = 1;
691 }
692 
kmem_cache_init_late(void)693 void __init kmem_cache_init_late(void)
694 {
695 	/* Nothing to do */
696 }
697