1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
anon_vma_alloc(void)67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	struct anon_vma *anon_vma;
70 
71 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 	if (anon_vma) {
73 		atomic_set(&anon_vma->refcount, 1);
74 		/*
75 		 * Initialise the anon_vma root to point to itself. If called
76 		 * from fork, the root will be reset to the parents anon_vma.
77 		 */
78 		anon_vma->root = anon_vma;
79 	}
80 
81 	return anon_vma;
82 }
83 
anon_vma_free(struct anon_vma * anon_vma)84 static inline void anon_vma_free(struct anon_vma *anon_vma)
85 {
86 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
87 
88 	/*
89 	 * Synchronize against page_lock_anon_vma() such that
90 	 * we can safely hold the lock without the anon_vma getting
91 	 * freed.
92 	 *
93 	 * Relies on the full mb implied by the atomic_dec_and_test() from
94 	 * put_anon_vma() against the acquire barrier implied by
95 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
96 	 *
97 	 * page_lock_anon_vma()		VS	put_anon_vma()
98 	 *   mutex_trylock()			  atomic_dec_and_test()
99 	 *   LOCK				  MB
100 	 *   atomic_read()			  mutex_is_locked()
101 	 *
102 	 * LOCK should suffice since the actual taking of the lock must
103 	 * happen _before_ what follows.
104 	 */
105 	if (mutex_is_locked(&anon_vma->root->mutex)) {
106 		anon_vma_lock(anon_vma);
107 		anon_vma_unlock(anon_vma);
108 	}
109 
110 	kmem_cache_free(anon_vma_cachep, anon_vma);
111 }
112 
anon_vma_chain_alloc(gfp_t gfp)113 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
114 {
115 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
116 }
117 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)118 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
119 {
120 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
121 }
122 
123 /**
124  * anon_vma_prepare - attach an anon_vma to a memory region
125  * @vma: the memory region in question
126  *
127  * This makes sure the memory mapping described by 'vma' has
128  * an 'anon_vma' attached to it, so that we can associate the
129  * anonymous pages mapped into it with that anon_vma.
130  *
131  * The common case will be that we already have one, but if
132  * not we either need to find an adjacent mapping that we
133  * can re-use the anon_vma from (very common when the only
134  * reason for splitting a vma has been mprotect()), or we
135  * allocate a new one.
136  *
137  * Anon-vma allocations are very subtle, because we may have
138  * optimistically looked up an anon_vma in page_lock_anon_vma()
139  * and that may actually touch the spinlock even in the newly
140  * allocated vma (it depends on RCU to make sure that the
141  * anon_vma isn't actually destroyed).
142  *
143  * As a result, we need to do proper anon_vma locking even
144  * for the new allocation. At the same time, we do not want
145  * to do any locking for the common case of already having
146  * an anon_vma.
147  *
148  * This must be called with the mmap_sem held for reading.
149  */
anon_vma_prepare(struct vm_area_struct * vma)150 int anon_vma_prepare(struct vm_area_struct *vma)
151 {
152 	struct anon_vma *anon_vma = vma->anon_vma;
153 	struct anon_vma_chain *avc;
154 
155 	might_sleep();
156 	if (unlikely(!anon_vma)) {
157 		struct mm_struct *mm = vma->vm_mm;
158 		struct anon_vma *allocated;
159 
160 		avc = anon_vma_chain_alloc(GFP_KERNEL);
161 		if (!avc)
162 			goto out_enomem;
163 
164 		anon_vma = find_mergeable_anon_vma(vma);
165 		allocated = NULL;
166 		if (!anon_vma) {
167 			anon_vma = anon_vma_alloc();
168 			if (unlikely(!anon_vma))
169 				goto out_enomem_free_avc;
170 			allocated = anon_vma;
171 		}
172 
173 		anon_vma_lock(anon_vma);
174 		/* page_table_lock to protect against threads */
175 		spin_lock(&mm->page_table_lock);
176 		if (likely(!vma->anon_vma)) {
177 			vma->anon_vma = anon_vma;
178 			avc->anon_vma = anon_vma;
179 			avc->vma = vma;
180 			list_add(&avc->same_vma, &vma->anon_vma_chain);
181 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
182 			allocated = NULL;
183 			avc = NULL;
184 		}
185 		spin_unlock(&mm->page_table_lock);
186 		anon_vma_unlock(anon_vma);
187 
188 		if (unlikely(allocated))
189 			put_anon_vma(allocated);
190 		if (unlikely(avc))
191 			anon_vma_chain_free(avc);
192 	}
193 	return 0;
194 
195  out_enomem_free_avc:
196 	anon_vma_chain_free(avc);
197  out_enomem:
198 	return -ENOMEM;
199 }
200 
201 /*
202  * This is a useful helper function for locking the anon_vma root as
203  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
204  * have the same vma.
205  *
206  * Such anon_vma's should have the same root, so you'd expect to see
207  * just a single mutex_lock for the whole traversal.
208  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)209 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
210 {
211 	struct anon_vma *new_root = anon_vma->root;
212 	if (new_root != root) {
213 		if (WARN_ON_ONCE(root))
214 			mutex_unlock(&root->mutex);
215 		root = new_root;
216 		mutex_lock(&root->mutex);
217 	}
218 	return root;
219 }
220 
unlock_anon_vma_root(struct anon_vma * root)221 static inline void unlock_anon_vma_root(struct anon_vma *root)
222 {
223 	if (root)
224 		mutex_unlock(&root->mutex);
225 }
226 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)227 static void anon_vma_chain_link(struct vm_area_struct *vma,
228 				struct anon_vma_chain *avc,
229 				struct anon_vma *anon_vma)
230 {
231 	avc->vma = vma;
232 	avc->anon_vma = anon_vma;
233 	list_add(&avc->same_vma, &vma->anon_vma_chain);
234 
235 	/*
236 	 * It's critical to add new vmas to the tail of the anon_vma,
237 	 * see comment in huge_memory.c:__split_huge_page().
238 	 */
239 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
240 }
241 
242 /*
243  * Attach the anon_vmas from src to dst.
244  * Returns 0 on success, -ENOMEM on failure.
245  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)246 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
247 {
248 	struct anon_vma_chain *avc, *pavc;
249 	struct anon_vma *root = NULL;
250 
251 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
252 		struct anon_vma *anon_vma;
253 
254 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
255 		if (unlikely(!avc)) {
256 			unlock_anon_vma_root(root);
257 			root = NULL;
258 			avc = anon_vma_chain_alloc(GFP_KERNEL);
259 			if (!avc)
260 				goto enomem_failure;
261 		}
262 		anon_vma = pavc->anon_vma;
263 		root = lock_anon_vma_root(root, anon_vma);
264 		anon_vma_chain_link(dst, avc, anon_vma);
265 	}
266 	unlock_anon_vma_root(root);
267 	return 0;
268 
269  enomem_failure:
270 	unlink_anon_vmas(dst);
271 	return -ENOMEM;
272 }
273 
274 /*
275  * Some rmap walk that needs to find all ptes/hugepmds without false
276  * negatives (like migrate and split_huge_page) running concurrent
277  * with operations that copy or move pagetables (like mremap() and
278  * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
279  * list to be in a certain order: the dst_vma must be placed after the
280  * src_vma in the list. This is always guaranteed by fork() but
281  * mremap() needs to call this function to enforce it in case the
282  * dst_vma isn't newly allocated and chained with the anon_vma_clone()
283  * function but just an extension of a pre-existing vma through
284  * vma_merge.
285  *
286  * NOTE: the same_anon_vma list can still be changed by other
287  * processes while mremap runs because mremap doesn't hold the
288  * anon_vma mutex to prevent modifications to the list while it
289  * runs. All we need to enforce is that the relative order of this
290  * process vmas isn't changing (we don't care about other vmas
291  * order). Each vma corresponds to an anon_vma_chain structure so
292  * there's no risk that other processes calling anon_vma_moveto_tail()
293  * and changing the same_anon_vma list under mremap() will screw with
294  * the relative order of this process vmas in the list, because we
295  * they can't alter the order of any vma that belongs to this
296  * process. And there can't be another anon_vma_moveto_tail() running
297  * concurrently with mremap() coming from this process because we hold
298  * the mmap_sem for the whole mremap(). fork() ordering dependency
299  * also shouldn't be affected because fork() only cares that the
300  * parent vmas are placed in the list before the child vmas and
301  * anon_vma_moveto_tail() won't reorder vmas from either the fork()
302  * parent or child.
303  */
anon_vma_moveto_tail(struct vm_area_struct * dst)304 void anon_vma_moveto_tail(struct vm_area_struct *dst)
305 {
306 	struct anon_vma_chain *pavc;
307 	struct anon_vma *root = NULL;
308 
309 	list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
310 		struct anon_vma *anon_vma = pavc->anon_vma;
311 		VM_BUG_ON(pavc->vma != dst);
312 		root = lock_anon_vma_root(root, anon_vma);
313 		list_del(&pavc->same_anon_vma);
314 		list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
315 	}
316 	unlock_anon_vma_root(root);
317 }
318 
319 /*
320  * Attach vma to its own anon_vma, as well as to the anon_vmas that
321  * the corresponding VMA in the parent process is attached to.
322  * Returns 0 on success, non-zero on failure.
323  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)324 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
325 {
326 	struct anon_vma_chain *avc;
327 	struct anon_vma *anon_vma;
328 
329 	/* Don't bother if the parent process has no anon_vma here. */
330 	if (!pvma->anon_vma)
331 		return 0;
332 
333 	/*
334 	 * First, attach the new VMA to the parent VMA's anon_vmas,
335 	 * so rmap can find non-COWed pages in child processes.
336 	 */
337 	if (anon_vma_clone(vma, pvma))
338 		return -ENOMEM;
339 
340 	/* Then add our own anon_vma. */
341 	anon_vma = anon_vma_alloc();
342 	if (!anon_vma)
343 		goto out_error;
344 	avc = anon_vma_chain_alloc(GFP_KERNEL);
345 	if (!avc)
346 		goto out_error_free_anon_vma;
347 
348 	/*
349 	 * The root anon_vma's spinlock is the lock actually used when we
350 	 * lock any of the anon_vmas in this anon_vma tree.
351 	 */
352 	anon_vma->root = pvma->anon_vma->root;
353 	/*
354 	 * With refcounts, an anon_vma can stay around longer than the
355 	 * process it belongs to. The root anon_vma needs to be pinned until
356 	 * this anon_vma is freed, because the lock lives in the root.
357 	 */
358 	get_anon_vma(anon_vma->root);
359 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
360 	vma->anon_vma = anon_vma;
361 	anon_vma_lock(anon_vma);
362 	anon_vma_chain_link(vma, avc, anon_vma);
363 	anon_vma_unlock(anon_vma);
364 
365 	return 0;
366 
367  out_error_free_anon_vma:
368 	put_anon_vma(anon_vma);
369  out_error:
370 	unlink_anon_vmas(vma);
371 	return -ENOMEM;
372 }
373 
unlink_anon_vmas(struct vm_area_struct * vma)374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 	struct anon_vma_chain *avc, *next;
377 	struct anon_vma *root = NULL;
378 
379 	/*
380 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
381 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 	 */
383 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 		struct anon_vma *anon_vma = avc->anon_vma;
385 
386 		root = lock_anon_vma_root(root, anon_vma);
387 		list_del(&avc->same_anon_vma);
388 
389 		/*
390 		 * Leave empty anon_vmas on the list - we'll need
391 		 * to free them outside the lock.
392 		 */
393 		if (list_empty(&anon_vma->head))
394 			continue;
395 
396 		list_del(&avc->same_vma);
397 		anon_vma_chain_free(avc);
398 	}
399 	unlock_anon_vma_root(root);
400 
401 	/*
402 	 * Iterate the list once more, it now only contains empty and unlinked
403 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
404 	 * needing to acquire the anon_vma->root->mutex.
405 	 */
406 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
407 		struct anon_vma *anon_vma = avc->anon_vma;
408 
409 		put_anon_vma(anon_vma);
410 
411 		list_del(&avc->same_vma);
412 		anon_vma_chain_free(avc);
413 	}
414 }
415 
anon_vma_ctor(void * data)416 static void anon_vma_ctor(void *data)
417 {
418 	struct anon_vma *anon_vma = data;
419 
420 	mutex_init(&anon_vma->mutex);
421 	atomic_set(&anon_vma->refcount, 0);
422 	INIT_LIST_HEAD(&anon_vma->head);
423 }
424 
anon_vma_init(void)425 void __init anon_vma_init(void)
426 {
427 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
428 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
429 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
430 }
431 
432 /*
433  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
434  *
435  * Since there is no serialization what so ever against page_remove_rmap()
436  * the best this function can do is return a locked anon_vma that might
437  * have been relevant to this page.
438  *
439  * The page might have been remapped to a different anon_vma or the anon_vma
440  * returned may already be freed (and even reused).
441  *
442  * In case it was remapped to a different anon_vma, the new anon_vma will be a
443  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
444  * ensure that any anon_vma obtained from the page will still be valid for as
445  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
446  *
447  * All users of this function must be very careful when walking the anon_vma
448  * chain and verify that the page in question is indeed mapped in it
449  * [ something equivalent to page_mapped_in_vma() ].
450  *
451  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
452  * that the anon_vma pointer from page->mapping is valid if there is a
453  * mapcount, we can dereference the anon_vma after observing those.
454  */
page_get_anon_vma(struct page * page)455 struct anon_vma *page_get_anon_vma(struct page *page)
456 {
457 	struct anon_vma *anon_vma = NULL;
458 	unsigned long anon_mapping;
459 
460 	rcu_read_lock();
461 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
462 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
463 		goto out;
464 	if (!page_mapped(page))
465 		goto out;
466 
467 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
468 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
469 		anon_vma = NULL;
470 		goto out;
471 	}
472 
473 	/*
474 	 * If this page is still mapped, then its anon_vma cannot have been
475 	 * freed.  But if it has been unmapped, we have no security against the
476 	 * anon_vma structure being freed and reused (for another anon_vma:
477 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
478 	 * above cannot corrupt).
479 	 */
480 	if (!page_mapped(page)) {
481 		put_anon_vma(anon_vma);
482 		anon_vma = NULL;
483 	}
484 out:
485 	rcu_read_unlock();
486 
487 	return anon_vma;
488 }
489 
490 /*
491  * Similar to page_get_anon_vma() except it locks the anon_vma.
492  *
493  * Its a little more complex as it tries to keep the fast path to a single
494  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
495  * reference like with page_get_anon_vma() and then block on the mutex.
496  */
page_lock_anon_vma(struct page * page)497 struct anon_vma *page_lock_anon_vma(struct page *page)
498 {
499 	struct anon_vma *anon_vma = NULL;
500 	struct anon_vma *root_anon_vma;
501 	unsigned long anon_mapping;
502 
503 	rcu_read_lock();
504 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
505 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
506 		goto out;
507 	if (!page_mapped(page))
508 		goto out;
509 
510 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
511 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
512 	if (mutex_trylock(&root_anon_vma->mutex)) {
513 		/*
514 		 * If the page is still mapped, then this anon_vma is still
515 		 * its anon_vma, and holding the mutex ensures that it will
516 		 * not go away, see anon_vma_free().
517 		 */
518 		if (!page_mapped(page)) {
519 			mutex_unlock(&root_anon_vma->mutex);
520 			anon_vma = NULL;
521 		}
522 		goto out;
523 	}
524 
525 	/* trylock failed, we got to sleep */
526 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
527 		anon_vma = NULL;
528 		goto out;
529 	}
530 
531 	if (!page_mapped(page)) {
532 		put_anon_vma(anon_vma);
533 		anon_vma = NULL;
534 		goto out;
535 	}
536 
537 	/* we pinned the anon_vma, its safe to sleep */
538 	rcu_read_unlock();
539 	anon_vma_lock(anon_vma);
540 
541 	if (atomic_dec_and_test(&anon_vma->refcount)) {
542 		/*
543 		 * Oops, we held the last refcount, release the lock
544 		 * and bail -- can't simply use put_anon_vma() because
545 		 * we'll deadlock on the anon_vma_lock() recursion.
546 		 */
547 		anon_vma_unlock(anon_vma);
548 		__put_anon_vma(anon_vma);
549 		anon_vma = NULL;
550 	}
551 
552 	return anon_vma;
553 
554 out:
555 	rcu_read_unlock();
556 	return anon_vma;
557 }
558 
page_unlock_anon_vma(struct anon_vma * anon_vma)559 void page_unlock_anon_vma(struct anon_vma *anon_vma)
560 {
561 	anon_vma_unlock(anon_vma);
562 }
563 
564 /*
565  * At what user virtual address is page expected in @vma?
566  * Returns virtual address or -EFAULT if page's index/offset is not
567  * within the range mapped the @vma.
568  */
569 inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)570 vma_address(struct page *page, struct vm_area_struct *vma)
571 {
572 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573 	unsigned long address;
574 
575 	if (unlikely(is_vm_hugetlb_page(vma)))
576 		pgoff = page->index << huge_page_order(page_hstate(page));
577 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
578 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
579 		/* page should be within @vma mapping range */
580 		return -EFAULT;
581 	}
582 	return address;
583 }
584 
585 /*
586  * At what user virtual address is page expected in vma?
587  * Caller should check the page is actually part of the vma.
588  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)589 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
590 {
591 	if (PageAnon(page)) {
592 		struct anon_vma *page__anon_vma = page_anon_vma(page);
593 		/*
594 		 * Note: swapoff's unuse_vma() is more efficient with this
595 		 * check, and needs it to match anon_vma when KSM is active.
596 		 */
597 		if (!vma->anon_vma || !page__anon_vma ||
598 		    vma->anon_vma->root != page__anon_vma->root)
599 			return -EFAULT;
600 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
601 		if (!vma->vm_file ||
602 		    vma->vm_file->f_mapping != page->mapping)
603 			return -EFAULT;
604 	} else
605 		return -EFAULT;
606 	return vma_address(page, vma);
607 }
608 
609 /*
610  * Check that @page is mapped at @address into @mm.
611  *
612  * If @sync is false, page_check_address may perform a racy check to avoid
613  * the page table lock when the pte is not present (helpful when reclaiming
614  * highly shared pages).
615  *
616  * On success returns with pte mapped and locked.
617  */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)618 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
619 			  unsigned long address, spinlock_t **ptlp, int sync)
620 {
621 	pgd_t *pgd;
622 	pud_t *pud;
623 	pmd_t *pmd;
624 	pte_t *pte;
625 	spinlock_t *ptl;
626 
627 	if (unlikely(PageHuge(page))) {
628 		pte = huge_pte_offset(mm, address);
629 		ptl = &mm->page_table_lock;
630 		goto check;
631 	}
632 
633 	pgd = pgd_offset(mm, address);
634 	if (!pgd_present(*pgd))
635 		return NULL;
636 
637 	pud = pud_offset(pgd, address);
638 	if (!pud_present(*pud))
639 		return NULL;
640 
641 	pmd = pmd_offset(pud, address);
642 	if (!pmd_present(*pmd))
643 		return NULL;
644 	if (pmd_trans_huge(*pmd))
645 		return NULL;
646 
647 	pte = pte_offset_map(pmd, address);
648 	/* Make a quick check before getting the lock */
649 	if (!sync && !pte_present(*pte)) {
650 		pte_unmap(pte);
651 		return NULL;
652 	}
653 
654 	ptl = pte_lockptr(mm, pmd);
655 check:
656 	spin_lock(ptl);
657 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
658 		*ptlp = ptl;
659 		return pte;
660 	}
661 	pte_unmap_unlock(pte, ptl);
662 	return NULL;
663 }
664 
665 /**
666  * page_mapped_in_vma - check whether a page is really mapped in a VMA
667  * @page: the page to test
668  * @vma: the VMA to test
669  *
670  * Returns 1 if the page is mapped into the page tables of the VMA, 0
671  * if the page is not mapped into the page tables of this VMA.  Only
672  * valid for normal file or anonymous VMAs.
673  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)674 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
675 {
676 	unsigned long address;
677 	pte_t *pte;
678 	spinlock_t *ptl;
679 
680 	address = vma_address(page, vma);
681 	if (address == -EFAULT)		/* out of vma range */
682 		return 0;
683 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
684 	if (!pte)			/* the page is not in this mm */
685 		return 0;
686 	pte_unmap_unlock(pte, ptl);
687 
688 	return 1;
689 }
690 
691 /*
692  * Subfunctions of page_referenced: page_referenced_one called
693  * repeatedly from either page_referenced_anon or page_referenced_file.
694  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,unsigned int * mapcount,unsigned long * vm_flags)695 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
696 			unsigned long address, unsigned int *mapcount,
697 			unsigned long *vm_flags)
698 {
699 	struct mm_struct *mm = vma->vm_mm;
700 	int referenced = 0;
701 
702 	if (unlikely(PageTransHuge(page))) {
703 		pmd_t *pmd;
704 
705 		spin_lock(&mm->page_table_lock);
706 		/*
707 		 * rmap might return false positives; we must filter
708 		 * these out using page_check_address_pmd().
709 		 */
710 		pmd = page_check_address_pmd(page, mm, address,
711 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
712 		if (!pmd) {
713 			spin_unlock(&mm->page_table_lock);
714 			goto out;
715 		}
716 
717 		if (vma->vm_flags & VM_LOCKED) {
718 			spin_unlock(&mm->page_table_lock);
719 			*mapcount = 0;	/* break early from loop */
720 			*vm_flags |= VM_LOCKED;
721 			goto out;
722 		}
723 
724 		/* go ahead even if the pmd is pmd_trans_splitting() */
725 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
726 			referenced++;
727 		spin_unlock(&mm->page_table_lock);
728 	} else {
729 		pte_t *pte;
730 		spinlock_t *ptl;
731 
732 		/*
733 		 * rmap might return false positives; we must filter
734 		 * these out using page_check_address().
735 		 */
736 		pte = page_check_address(page, mm, address, &ptl, 0);
737 		if (!pte)
738 			goto out;
739 
740 		if (vma->vm_flags & VM_LOCKED) {
741 			pte_unmap_unlock(pte, ptl);
742 			*mapcount = 0;	/* break early from loop */
743 			*vm_flags |= VM_LOCKED;
744 			goto out;
745 		}
746 
747 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
748 			/*
749 			 * Don't treat a reference through a sequentially read
750 			 * mapping as such.  If the page has been used in
751 			 * another mapping, we will catch it; if this other
752 			 * mapping is already gone, the unmap path will have
753 			 * set PG_referenced or activated the page.
754 			 */
755 			if (likely(!VM_SequentialReadHint(vma)))
756 				referenced++;
757 		}
758 		pte_unmap_unlock(pte, ptl);
759 	}
760 
761 	/* Pretend the page is referenced if the task has the
762 	   swap token and is in the middle of a page fault. */
763 	if (mm != current->mm && has_swap_token(mm) &&
764 			rwsem_is_locked(&mm->mmap_sem))
765 		referenced++;
766 
767 	(*mapcount)--;
768 
769 	if (referenced)
770 		*vm_flags |= vma->vm_flags;
771 out:
772 	return referenced;
773 }
774 
page_referenced_anon(struct page * page,struct mem_cgroup * memcg,unsigned long * vm_flags)775 static int page_referenced_anon(struct page *page,
776 				struct mem_cgroup *memcg,
777 				unsigned long *vm_flags)
778 {
779 	unsigned int mapcount;
780 	struct anon_vma *anon_vma;
781 	struct anon_vma_chain *avc;
782 	int referenced = 0;
783 
784 	anon_vma = page_lock_anon_vma(page);
785 	if (!anon_vma)
786 		return referenced;
787 
788 	mapcount = page_mapcount(page);
789 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
790 		struct vm_area_struct *vma = avc->vma;
791 		unsigned long address = vma_address(page, vma);
792 		if (address == -EFAULT)
793 			continue;
794 		/*
795 		 * If we are reclaiming on behalf of a cgroup, skip
796 		 * counting on behalf of references from different
797 		 * cgroups
798 		 */
799 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
800 			continue;
801 		referenced += page_referenced_one(page, vma, address,
802 						  &mapcount, vm_flags);
803 		if (!mapcount)
804 			break;
805 	}
806 
807 	page_unlock_anon_vma(anon_vma);
808 	return referenced;
809 }
810 
811 /**
812  * page_referenced_file - referenced check for object-based rmap
813  * @page: the page we're checking references on.
814  * @memcg: target memory control group
815  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
816  *
817  * For an object-based mapped page, find all the places it is mapped and
818  * check/clear the referenced flag.  This is done by following the page->mapping
819  * pointer, then walking the chain of vmas it holds.  It returns the number
820  * of references it found.
821  *
822  * This function is only called from page_referenced for object-based pages.
823  */
page_referenced_file(struct page * page,struct mem_cgroup * memcg,unsigned long * vm_flags)824 static int page_referenced_file(struct page *page,
825 				struct mem_cgroup *memcg,
826 				unsigned long *vm_flags)
827 {
828 	unsigned int mapcount;
829 	struct address_space *mapping = page->mapping;
830 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
831 	struct vm_area_struct *vma;
832 	struct prio_tree_iter iter;
833 	int referenced = 0;
834 
835 	/*
836 	 * The caller's checks on page->mapping and !PageAnon have made
837 	 * sure that this is a file page: the check for page->mapping
838 	 * excludes the case just before it gets set on an anon page.
839 	 */
840 	BUG_ON(PageAnon(page));
841 
842 	/*
843 	 * The page lock not only makes sure that page->mapping cannot
844 	 * suddenly be NULLified by truncation, it makes sure that the
845 	 * structure at mapping cannot be freed and reused yet,
846 	 * so we can safely take mapping->i_mmap_mutex.
847 	 */
848 	BUG_ON(!PageLocked(page));
849 
850 	mutex_lock(&mapping->i_mmap_mutex);
851 
852 	/*
853 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
854 	 * is more likely to be accurate if we note it after spinning.
855 	 */
856 	mapcount = page_mapcount(page);
857 
858 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
859 		unsigned long address = vma_address(page, vma);
860 		if (address == -EFAULT)
861 			continue;
862 		/*
863 		 * If we are reclaiming on behalf of a cgroup, skip
864 		 * counting on behalf of references from different
865 		 * cgroups
866 		 */
867 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
868 			continue;
869 		referenced += page_referenced_one(page, vma, address,
870 						  &mapcount, vm_flags);
871 		if (!mapcount)
872 			break;
873 	}
874 
875 	mutex_unlock(&mapping->i_mmap_mutex);
876 	return referenced;
877 }
878 
879 /**
880  * page_referenced - test if the page was referenced
881  * @page: the page to test
882  * @is_locked: caller holds lock on the page
883  * @memcg: target memory cgroup
884  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
885  *
886  * Quick test_and_clear_referenced for all mappings to a page,
887  * returns the number of ptes which referenced the page.
888  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)889 int page_referenced(struct page *page,
890 		    int is_locked,
891 		    struct mem_cgroup *memcg,
892 		    unsigned long *vm_flags)
893 {
894 	int referenced = 0;
895 	int we_locked = 0;
896 
897 	*vm_flags = 0;
898 	if (page_mapped(page) && page_rmapping(page)) {
899 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
900 			we_locked = trylock_page(page);
901 			if (!we_locked) {
902 				referenced++;
903 				goto out;
904 			}
905 		}
906 		if (unlikely(PageKsm(page)))
907 			referenced += page_referenced_ksm(page, memcg,
908 								vm_flags);
909 		else if (PageAnon(page))
910 			referenced += page_referenced_anon(page, memcg,
911 								vm_flags);
912 		else if (page->mapping)
913 			referenced += page_referenced_file(page, memcg,
914 								vm_flags);
915 		if (we_locked)
916 			unlock_page(page);
917 
918 		if (page_test_and_clear_young(page_to_pfn(page)))
919 			referenced++;
920 	}
921 out:
922 	return referenced;
923 }
924 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address)925 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
926 			    unsigned long address)
927 {
928 	struct mm_struct *mm = vma->vm_mm;
929 	pte_t *pte;
930 	spinlock_t *ptl;
931 	int ret = 0;
932 
933 	pte = page_check_address(page, mm, address, &ptl, 1);
934 	if (!pte)
935 		goto out;
936 
937 	if (pte_dirty(*pte) || pte_write(*pte)) {
938 		pte_t entry;
939 
940 		flush_cache_page(vma, address, pte_pfn(*pte));
941 		entry = ptep_clear_flush_notify(vma, address, pte);
942 		entry = pte_wrprotect(entry);
943 		entry = pte_mkclean(entry);
944 		set_pte_at(mm, address, pte, entry);
945 		ret = 1;
946 	}
947 
948 	pte_unmap_unlock(pte, ptl);
949 out:
950 	return ret;
951 }
952 
page_mkclean_file(struct address_space * mapping,struct page * page)953 static int page_mkclean_file(struct address_space *mapping, struct page *page)
954 {
955 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
956 	struct vm_area_struct *vma;
957 	struct prio_tree_iter iter;
958 	int ret = 0;
959 
960 	BUG_ON(PageAnon(page));
961 
962 	mutex_lock(&mapping->i_mmap_mutex);
963 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
964 		if (vma->vm_flags & VM_SHARED) {
965 			unsigned long address = vma_address(page, vma);
966 			if (address == -EFAULT)
967 				continue;
968 			ret += page_mkclean_one(page, vma, address);
969 		}
970 	}
971 	mutex_unlock(&mapping->i_mmap_mutex);
972 	return ret;
973 }
974 
page_mkclean(struct page * page)975 int page_mkclean(struct page *page)
976 {
977 	int ret = 0;
978 
979 	BUG_ON(!PageLocked(page));
980 
981 	if (page_mapped(page)) {
982 		struct address_space *mapping = page_mapping(page);
983 		if (mapping) {
984 			ret = page_mkclean_file(mapping, page);
985 			if (page_test_and_clear_dirty(page_to_pfn(page), 1))
986 				ret = 1;
987 		}
988 	}
989 
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(page_mkclean);
993 
994 /**
995  * page_move_anon_rmap - move a page to our anon_vma
996  * @page:	the page to move to our anon_vma
997  * @vma:	the vma the page belongs to
998  * @address:	the user virtual address mapped
999  *
1000  * When a page belongs exclusively to one process after a COW event,
1001  * that page can be moved into the anon_vma that belongs to just that
1002  * process, so the rmap code will not search the parent or sibling
1003  * processes.
1004  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1005 void page_move_anon_rmap(struct page *page,
1006 	struct vm_area_struct *vma, unsigned long address)
1007 {
1008 	struct anon_vma *anon_vma = vma->anon_vma;
1009 
1010 	VM_BUG_ON(!PageLocked(page));
1011 	VM_BUG_ON(!anon_vma);
1012 	VM_BUG_ON(page->index != linear_page_index(vma, address));
1013 
1014 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1015 	page->mapping = (struct address_space *) anon_vma;
1016 }
1017 
1018 /**
1019  * __page_set_anon_rmap - set up new anonymous rmap
1020  * @page:	Page to add to rmap
1021  * @vma:	VM area to add page to.
1022  * @address:	User virtual address of the mapping
1023  * @exclusive:	the page is exclusively owned by the current process
1024  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1025 static void __page_set_anon_rmap(struct page *page,
1026 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1027 {
1028 	struct anon_vma *anon_vma = vma->anon_vma;
1029 
1030 	BUG_ON(!anon_vma);
1031 
1032 	if (PageAnon(page))
1033 		return;
1034 
1035 	/*
1036 	 * If the page isn't exclusively mapped into this vma,
1037 	 * we must use the _oldest_ possible anon_vma for the
1038 	 * page mapping!
1039 	 */
1040 	if (!exclusive)
1041 		anon_vma = anon_vma->root;
1042 
1043 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 	page->mapping = (struct address_space *) anon_vma;
1045 	page->index = linear_page_index(vma, address);
1046 }
1047 
1048 /**
1049  * __page_check_anon_rmap - sanity check anonymous rmap addition
1050  * @page:	the page to add the mapping to
1051  * @vma:	the vm area in which the mapping is added
1052  * @address:	the user virtual address mapped
1053  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1054 static void __page_check_anon_rmap(struct page *page,
1055 	struct vm_area_struct *vma, unsigned long address)
1056 {
1057 #ifdef CONFIG_DEBUG_VM
1058 	/*
1059 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1060 	 * be set up correctly at this point.
1061 	 *
1062 	 * We have exclusion against page_add_anon_rmap because the caller
1063 	 * always holds the page locked, except if called from page_dup_rmap,
1064 	 * in which case the page is already known to be setup.
1065 	 *
1066 	 * We have exclusion against page_add_new_anon_rmap because those pages
1067 	 * are initially only visible via the pagetables, and the pte is locked
1068 	 * over the call to page_add_new_anon_rmap.
1069 	 */
1070 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1071 	BUG_ON(page->index != linear_page_index(vma, address));
1072 #endif
1073 }
1074 
1075 /**
1076  * page_add_anon_rmap - add pte mapping to an anonymous page
1077  * @page:	the page to add the mapping to
1078  * @vma:	the vm area in which the mapping is added
1079  * @address:	the user virtual address mapped
1080  *
1081  * The caller needs to hold the pte lock, and the page must be locked in
1082  * the anon_vma case: to serialize mapping,index checking after setting,
1083  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084  * (but PageKsm is never downgraded to PageAnon).
1085  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1086 void page_add_anon_rmap(struct page *page,
1087 	struct vm_area_struct *vma, unsigned long address)
1088 {
1089 	do_page_add_anon_rmap(page, vma, address, 0);
1090 }
1091 
1092 /*
1093  * Special version of the above for do_swap_page, which often runs
1094  * into pages that are exclusively owned by the current process.
1095  * Everybody else should continue to use page_add_anon_rmap above.
1096  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1097 void do_page_add_anon_rmap(struct page *page,
1098 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1099 {
1100 	int first = atomic_inc_and_test(&page->_mapcount);
1101 	if (first) {
1102 		if (!PageTransHuge(page))
1103 			__inc_zone_page_state(page, NR_ANON_PAGES);
1104 		else
1105 			__inc_zone_page_state(page,
1106 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1107 	}
1108 	if (unlikely(PageKsm(page)))
1109 		return;
1110 
1111 	VM_BUG_ON(!PageLocked(page));
1112 	/* address might be in next vma when migration races vma_adjust */
1113 	if (first)
1114 		__page_set_anon_rmap(page, vma, address, exclusive);
1115 	else
1116 		__page_check_anon_rmap(page, vma, address);
1117 }
1118 
1119 /**
1120  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1121  * @page:	the page to add the mapping to
1122  * @vma:	the vm area in which the mapping is added
1123  * @address:	the user virtual address mapped
1124  *
1125  * Same as page_add_anon_rmap but must only be called on *new* pages.
1126  * This means the inc-and-test can be bypassed.
1127  * Page does not have to be locked.
1128  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1129 void page_add_new_anon_rmap(struct page *page,
1130 	struct vm_area_struct *vma, unsigned long address)
1131 {
1132 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1133 	SetPageSwapBacked(page);
1134 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1135 	if (!PageTransHuge(page))
1136 		__inc_zone_page_state(page, NR_ANON_PAGES);
1137 	else
1138 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1139 	__page_set_anon_rmap(page, vma, address, 1);
1140 	if (page_evictable(page, vma))
1141 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1142 	else
1143 		add_page_to_unevictable_list(page);
1144 }
1145 
1146 /**
1147  * page_add_file_rmap - add pte mapping to a file page
1148  * @page: the page to add the mapping to
1149  *
1150  * The caller needs to hold the pte lock.
1151  */
page_add_file_rmap(struct page * page)1152 void page_add_file_rmap(struct page *page)
1153 {
1154 	if (atomic_inc_and_test(&page->_mapcount)) {
1155 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1156 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1157 	}
1158 }
1159 
1160 /**
1161  * page_remove_rmap - take down pte mapping from a page
1162  * @page: page to remove mapping from
1163  *
1164  * The caller needs to hold the pte lock.
1165  */
page_remove_rmap(struct page * page)1166 void page_remove_rmap(struct page *page)
1167 {
1168 	/* page still mapped by someone else? */
1169 	if (!atomic_add_negative(-1, &page->_mapcount))
1170 		return;
1171 
1172 	/*
1173 	 * Now that the last pte has gone, s390 must transfer dirty
1174 	 * flag from storage key to struct page.  We can usually skip
1175 	 * this if the page is anon, so about to be freed; but perhaps
1176 	 * not if it's in swapcache - there might be another pte slot
1177 	 * containing the swap entry, but page not yet written to swap.
1178 	 */
1179 	if ((!PageAnon(page) || PageSwapCache(page)) &&
1180 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1181 		set_page_dirty(page);
1182 	/*
1183 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1184 	 * and not charged by memcg for now.
1185 	 */
1186 	if (unlikely(PageHuge(page)))
1187 		return;
1188 	if (PageAnon(page)) {
1189 		mem_cgroup_uncharge_page(page);
1190 		if (!PageTransHuge(page))
1191 			__dec_zone_page_state(page, NR_ANON_PAGES);
1192 		else
1193 			__dec_zone_page_state(page,
1194 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1195 	} else {
1196 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1197 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1198 	}
1199 	/*
1200 	 * It would be tidy to reset the PageAnon mapping here,
1201 	 * but that might overwrite a racing page_add_anon_rmap
1202 	 * which increments mapcount after us but sets mapping
1203 	 * before us: so leave the reset to free_hot_cold_page,
1204 	 * and remember that it's only reliable while mapped.
1205 	 * Leaving it set also helps swapoff to reinstate ptes
1206 	 * faster for those pages still in swapcache.
1207 	 */
1208 }
1209 
1210 /*
1211  * Subfunctions of try_to_unmap: try_to_unmap_one called
1212  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1213  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,enum ttu_flags flags)1214 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1215 		     unsigned long address, enum ttu_flags flags)
1216 {
1217 	struct mm_struct *mm = vma->vm_mm;
1218 	pte_t *pte;
1219 	pte_t pteval;
1220 	spinlock_t *ptl;
1221 	int ret = SWAP_AGAIN;
1222 
1223 	pte = page_check_address(page, mm, address, &ptl, 0);
1224 	if (!pte)
1225 		goto out;
1226 
1227 	/*
1228 	 * If the page is mlock()d, we cannot swap it out.
1229 	 * If it's recently referenced (perhaps page_referenced
1230 	 * skipped over this mm) then we should reactivate it.
1231 	 */
1232 	if (!(flags & TTU_IGNORE_MLOCK)) {
1233 		if (vma->vm_flags & VM_LOCKED)
1234 			goto out_mlock;
1235 
1236 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1237 			goto out_unmap;
1238 	}
1239 	if (!(flags & TTU_IGNORE_ACCESS)) {
1240 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1241 			ret = SWAP_FAIL;
1242 			goto out_unmap;
1243 		}
1244   	}
1245 
1246 	/* Nuke the page table entry. */
1247 	flush_cache_page(vma, address, page_to_pfn(page));
1248 	pteval = ptep_clear_flush_notify(vma, address, pte);
1249 
1250 	/* Move the dirty bit to the physical page now the pte is gone. */
1251 	if (pte_dirty(pteval))
1252 		set_page_dirty(page);
1253 
1254 	/* Update high watermark before we lower rss */
1255 	update_hiwater_rss(mm);
1256 
1257 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1258 		if (PageAnon(page))
1259 			dec_mm_counter(mm, MM_ANONPAGES);
1260 		else
1261 			dec_mm_counter(mm, MM_FILEPAGES);
1262 		set_pte_at(mm, address, pte,
1263 				swp_entry_to_pte(make_hwpoison_entry(page)));
1264 	} else if (PageAnon(page)) {
1265 		swp_entry_t entry = { .val = page_private(page) };
1266 
1267 		if (PageSwapCache(page)) {
1268 			/*
1269 			 * Store the swap location in the pte.
1270 			 * See handle_pte_fault() ...
1271 			 */
1272 			if (swap_duplicate(entry) < 0) {
1273 				set_pte_at(mm, address, pte, pteval);
1274 				ret = SWAP_FAIL;
1275 				goto out_unmap;
1276 			}
1277 			if (list_empty(&mm->mmlist)) {
1278 				spin_lock(&mmlist_lock);
1279 				if (list_empty(&mm->mmlist))
1280 					list_add(&mm->mmlist, &init_mm.mmlist);
1281 				spin_unlock(&mmlist_lock);
1282 			}
1283 			dec_mm_counter(mm, MM_ANONPAGES);
1284 			inc_mm_counter(mm, MM_SWAPENTS);
1285 		} else if (PAGE_MIGRATION) {
1286 			/*
1287 			 * Store the pfn of the page in a special migration
1288 			 * pte. do_swap_page() will wait until the migration
1289 			 * pte is removed and then restart fault handling.
1290 			 */
1291 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1292 			entry = make_migration_entry(page, pte_write(pteval));
1293 		}
1294 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1295 		BUG_ON(pte_file(*pte));
1296 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1297 		/* Establish migration entry for a file page */
1298 		swp_entry_t entry;
1299 		entry = make_migration_entry(page, pte_write(pteval));
1300 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1301 	} else
1302 		dec_mm_counter(mm, MM_FILEPAGES);
1303 
1304 	page_remove_rmap(page);
1305 	page_cache_release(page);
1306 
1307 out_unmap:
1308 	pte_unmap_unlock(pte, ptl);
1309 out:
1310 	return ret;
1311 
1312 out_mlock:
1313 	pte_unmap_unlock(pte, ptl);
1314 
1315 
1316 	/*
1317 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1318 	 * unstable result and race. Plus, We can't wait here because
1319 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1320 	 * if trylock failed, the page remain in evictable lru and later
1321 	 * vmscan could retry to move the page to unevictable lru if the
1322 	 * page is actually mlocked.
1323 	 */
1324 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1325 		if (vma->vm_flags & VM_LOCKED) {
1326 			mlock_vma_page(page);
1327 			ret = SWAP_MLOCK;
1328 		}
1329 		up_read(&vma->vm_mm->mmap_sem);
1330 	}
1331 	return ret;
1332 }
1333 
1334 /*
1335  * objrmap doesn't work for nonlinear VMAs because the assumption that
1336  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1337  * Consequently, given a particular page and its ->index, we cannot locate the
1338  * ptes which are mapping that page without an exhaustive linear search.
1339  *
1340  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1341  * maps the file to which the target page belongs.  The ->vm_private_data field
1342  * holds the current cursor into that scan.  Successive searches will circulate
1343  * around the vma's virtual address space.
1344  *
1345  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1346  * more scanning pressure is placed against them as well.   Eventually pages
1347  * will become fully unmapped and are eligible for eviction.
1348  *
1349  * For very sparsely populated VMAs this is a little inefficient - chances are
1350  * there there won't be many ptes located within the scan cluster.  In this case
1351  * maybe we could scan further - to the end of the pte page, perhaps.
1352  *
1353  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1354  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1355  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1356  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1357  */
1358 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1359 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1360 
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)1361 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1362 		struct vm_area_struct *vma, struct page *check_page)
1363 {
1364 	struct mm_struct *mm = vma->vm_mm;
1365 	pgd_t *pgd;
1366 	pud_t *pud;
1367 	pmd_t *pmd;
1368 	pte_t *pte;
1369 	pte_t pteval;
1370 	spinlock_t *ptl;
1371 	struct page *page;
1372 	unsigned long address;
1373 	unsigned long end;
1374 	int ret = SWAP_AGAIN;
1375 	int locked_vma = 0;
1376 
1377 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1378 	end = address + CLUSTER_SIZE;
1379 	if (address < vma->vm_start)
1380 		address = vma->vm_start;
1381 	if (end > vma->vm_end)
1382 		end = vma->vm_end;
1383 
1384 	pgd = pgd_offset(mm, address);
1385 	if (!pgd_present(*pgd))
1386 		return ret;
1387 
1388 	pud = pud_offset(pgd, address);
1389 	if (!pud_present(*pud))
1390 		return ret;
1391 
1392 	pmd = pmd_offset(pud, address);
1393 	if (!pmd_present(*pmd))
1394 		return ret;
1395 
1396 	/*
1397 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1398 	 * keep the sem while scanning the cluster for mlocking pages.
1399 	 */
1400 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1401 		locked_vma = (vma->vm_flags & VM_LOCKED);
1402 		if (!locked_vma)
1403 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1404 	}
1405 
1406 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1407 
1408 	/* Update high watermark before we lower rss */
1409 	update_hiwater_rss(mm);
1410 
1411 	for (; address < end; pte++, address += PAGE_SIZE) {
1412 		if (!pte_present(*pte))
1413 			continue;
1414 		page = vm_normal_page(vma, address, *pte);
1415 		BUG_ON(!page || PageAnon(page));
1416 
1417 		if (locked_vma) {
1418 			mlock_vma_page(page);   /* no-op if already mlocked */
1419 			if (page == check_page)
1420 				ret = SWAP_MLOCK;
1421 			continue;	/* don't unmap */
1422 		}
1423 
1424 		if (ptep_clear_flush_young_notify(vma, address, pte))
1425 			continue;
1426 
1427 		/* Nuke the page table entry. */
1428 		flush_cache_page(vma, address, pte_pfn(*pte));
1429 		pteval = ptep_clear_flush_notify(vma, address, pte);
1430 
1431 		/* If nonlinear, store the file page offset in the pte. */
1432 		if (page->index != linear_page_index(vma, address))
1433 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1434 
1435 		/* Move the dirty bit to the physical page now the pte is gone. */
1436 		if (pte_dirty(pteval))
1437 			set_page_dirty(page);
1438 
1439 		page_remove_rmap(page);
1440 		page_cache_release(page);
1441 		dec_mm_counter(mm, MM_FILEPAGES);
1442 		(*mapcount)--;
1443 	}
1444 	pte_unmap_unlock(pte - 1, ptl);
1445 	if (locked_vma)
1446 		up_read(&vma->vm_mm->mmap_sem);
1447 	return ret;
1448 }
1449 
is_vma_temporary_stack(struct vm_area_struct * vma)1450 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1451 {
1452 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1453 
1454 	if (!maybe_stack)
1455 		return false;
1456 
1457 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1458 						VM_STACK_INCOMPLETE_SETUP)
1459 		return true;
1460 
1461 	return false;
1462 }
1463 
1464 /**
1465  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1466  * rmap method
1467  * @page: the page to unmap/unlock
1468  * @flags: action and flags
1469  *
1470  * Find all the mappings of a page using the mapping pointer and the vma chains
1471  * contained in the anon_vma struct it points to.
1472  *
1473  * This function is only called from try_to_unmap/try_to_munlock for
1474  * anonymous pages.
1475  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1476  * where the page was found will be held for write.  So, we won't recheck
1477  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1478  * 'LOCKED.
1479  */
try_to_unmap_anon(struct page * page,enum ttu_flags flags)1480 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1481 {
1482 	struct anon_vma *anon_vma;
1483 	struct anon_vma_chain *avc;
1484 	int ret = SWAP_AGAIN;
1485 
1486 	anon_vma = page_lock_anon_vma(page);
1487 	if (!anon_vma)
1488 		return ret;
1489 
1490 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1491 		struct vm_area_struct *vma = avc->vma;
1492 		unsigned long address;
1493 
1494 		/*
1495 		 * During exec, a temporary VMA is setup and later moved.
1496 		 * The VMA is moved under the anon_vma lock but not the
1497 		 * page tables leading to a race where migration cannot
1498 		 * find the migration ptes. Rather than increasing the
1499 		 * locking requirements of exec(), migration skips
1500 		 * temporary VMAs until after exec() completes.
1501 		 */
1502 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1503 				is_vma_temporary_stack(vma))
1504 			continue;
1505 
1506 		address = vma_address(page, vma);
1507 		if (address == -EFAULT)
1508 			continue;
1509 		ret = try_to_unmap_one(page, vma, address, flags);
1510 		if (ret != SWAP_AGAIN || !page_mapped(page))
1511 			break;
1512 	}
1513 
1514 	page_unlock_anon_vma(anon_vma);
1515 	return ret;
1516 }
1517 
1518 /**
1519  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1520  * @page: the page to unmap/unlock
1521  * @flags: action and flags
1522  *
1523  * Find all the mappings of a page using the mapping pointer and the vma chains
1524  * contained in the address_space struct it points to.
1525  *
1526  * This function is only called from try_to_unmap/try_to_munlock for
1527  * object-based pages.
1528  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1529  * where the page was found will be held for write.  So, we won't recheck
1530  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1531  * 'LOCKED.
1532  */
try_to_unmap_file(struct page * page,enum ttu_flags flags)1533 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1534 {
1535 	struct address_space *mapping = page->mapping;
1536 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1537 	struct vm_area_struct *vma;
1538 	struct prio_tree_iter iter;
1539 	int ret = SWAP_AGAIN;
1540 	unsigned long cursor;
1541 	unsigned long max_nl_cursor = 0;
1542 	unsigned long max_nl_size = 0;
1543 	unsigned int mapcount;
1544 
1545 	mutex_lock(&mapping->i_mmap_mutex);
1546 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1547 		unsigned long address = vma_address(page, vma);
1548 		if (address == -EFAULT)
1549 			continue;
1550 		ret = try_to_unmap_one(page, vma, address, flags);
1551 		if (ret != SWAP_AGAIN || !page_mapped(page))
1552 			goto out;
1553 	}
1554 
1555 	if (list_empty(&mapping->i_mmap_nonlinear))
1556 		goto out;
1557 
1558 	/*
1559 	 * We don't bother to try to find the munlocked page in nonlinears.
1560 	 * It's costly. Instead, later, page reclaim logic may call
1561 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1562 	 */
1563 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1564 		goto out;
1565 
1566 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1567 						shared.vm_set.list) {
1568 		cursor = (unsigned long) vma->vm_private_data;
1569 		if (cursor > max_nl_cursor)
1570 			max_nl_cursor = cursor;
1571 		cursor = vma->vm_end - vma->vm_start;
1572 		if (cursor > max_nl_size)
1573 			max_nl_size = cursor;
1574 	}
1575 
1576 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1577 		ret = SWAP_FAIL;
1578 		goto out;
1579 	}
1580 
1581 	/*
1582 	 * We don't try to search for this page in the nonlinear vmas,
1583 	 * and page_referenced wouldn't have found it anyway.  Instead
1584 	 * just walk the nonlinear vmas trying to age and unmap some.
1585 	 * The mapcount of the page we came in with is irrelevant,
1586 	 * but even so use it as a guide to how hard we should try?
1587 	 */
1588 	mapcount = page_mapcount(page);
1589 	if (!mapcount)
1590 		goto out;
1591 	cond_resched();
1592 
1593 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1594 	if (max_nl_cursor == 0)
1595 		max_nl_cursor = CLUSTER_SIZE;
1596 
1597 	do {
1598 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1599 						shared.vm_set.list) {
1600 			cursor = (unsigned long) vma->vm_private_data;
1601 			while ( cursor < max_nl_cursor &&
1602 				cursor < vma->vm_end - vma->vm_start) {
1603 				if (try_to_unmap_cluster(cursor, &mapcount,
1604 						vma, page) == SWAP_MLOCK)
1605 					ret = SWAP_MLOCK;
1606 				cursor += CLUSTER_SIZE;
1607 				vma->vm_private_data = (void *) cursor;
1608 				if ((int)mapcount <= 0)
1609 					goto out;
1610 			}
1611 			vma->vm_private_data = (void *) max_nl_cursor;
1612 		}
1613 		cond_resched();
1614 		max_nl_cursor += CLUSTER_SIZE;
1615 	} while (max_nl_cursor <= max_nl_size);
1616 
1617 	/*
1618 	 * Don't loop forever (perhaps all the remaining pages are
1619 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1620 	 * vmas, now forgetting on which ones it had fallen behind.
1621 	 */
1622 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1623 		vma->vm_private_data = NULL;
1624 out:
1625 	mutex_unlock(&mapping->i_mmap_mutex);
1626 	return ret;
1627 }
1628 
1629 /**
1630  * try_to_unmap - try to remove all page table mappings to a page
1631  * @page: the page to get unmapped
1632  * @flags: action and flags
1633  *
1634  * Tries to remove all the page table entries which are mapping this
1635  * page, used in the pageout path.  Caller must hold the page lock.
1636  * Return values are:
1637  *
1638  * SWAP_SUCCESS	- we succeeded in removing all mappings
1639  * SWAP_AGAIN	- we missed a mapping, try again later
1640  * SWAP_FAIL	- the page is unswappable
1641  * SWAP_MLOCK	- page is mlocked.
1642  */
try_to_unmap(struct page * page,enum ttu_flags flags)1643 int try_to_unmap(struct page *page, enum ttu_flags flags)
1644 {
1645 	int ret;
1646 
1647 	BUG_ON(!PageLocked(page));
1648 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1649 
1650 	if (unlikely(PageKsm(page)))
1651 		ret = try_to_unmap_ksm(page, flags);
1652 	else if (PageAnon(page))
1653 		ret = try_to_unmap_anon(page, flags);
1654 	else
1655 		ret = try_to_unmap_file(page, flags);
1656 	if (ret != SWAP_MLOCK && !page_mapped(page))
1657 		ret = SWAP_SUCCESS;
1658 	return ret;
1659 }
1660 
1661 /**
1662  * try_to_munlock - try to munlock a page
1663  * @page: the page to be munlocked
1664  *
1665  * Called from munlock code.  Checks all of the VMAs mapping the page
1666  * to make sure nobody else has this page mlocked. The page will be
1667  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1668  *
1669  * Return values are:
1670  *
1671  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1672  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1673  * SWAP_FAIL	- page cannot be located at present
1674  * SWAP_MLOCK	- page is now mlocked.
1675  */
try_to_munlock(struct page * page)1676 int try_to_munlock(struct page *page)
1677 {
1678 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1679 
1680 	if (unlikely(PageKsm(page)))
1681 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1682 	else if (PageAnon(page))
1683 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1684 	else
1685 		return try_to_unmap_file(page, TTU_MUNLOCK);
1686 }
1687 
__put_anon_vma(struct anon_vma * anon_vma)1688 void __put_anon_vma(struct anon_vma *anon_vma)
1689 {
1690 	struct anon_vma *root = anon_vma->root;
1691 
1692 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1693 		anon_vma_free(root);
1694 
1695 	anon_vma_free(anon_vma);
1696 }
1697 
1698 #ifdef CONFIG_MIGRATION
1699 /*
1700  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1701  * Called by migrate.c to remove migration ptes, but might be used more later.
1702  */
rmap_walk_anon(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1703 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1704 		struct vm_area_struct *, unsigned long, void *), void *arg)
1705 {
1706 	struct anon_vma *anon_vma;
1707 	struct anon_vma_chain *avc;
1708 	int ret = SWAP_AGAIN;
1709 
1710 	/*
1711 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1712 	 * because that depends on page_mapped(); but not all its usages
1713 	 * are holding mmap_sem. Users without mmap_sem are required to
1714 	 * take a reference count to prevent the anon_vma disappearing
1715 	 */
1716 	anon_vma = page_anon_vma(page);
1717 	if (!anon_vma)
1718 		return ret;
1719 	anon_vma_lock(anon_vma);
1720 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1721 		struct vm_area_struct *vma = avc->vma;
1722 		unsigned long address = vma_address(page, vma);
1723 		if (address == -EFAULT)
1724 			continue;
1725 		ret = rmap_one(page, vma, address, arg);
1726 		if (ret != SWAP_AGAIN)
1727 			break;
1728 	}
1729 	anon_vma_unlock(anon_vma);
1730 	return ret;
1731 }
1732 
rmap_walk_file(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1733 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1734 		struct vm_area_struct *, unsigned long, void *), void *arg)
1735 {
1736 	struct address_space *mapping = page->mapping;
1737 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1738 	struct vm_area_struct *vma;
1739 	struct prio_tree_iter iter;
1740 	int ret = SWAP_AGAIN;
1741 
1742 	if (!mapping)
1743 		return ret;
1744 	mutex_lock(&mapping->i_mmap_mutex);
1745 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1746 		unsigned long address = vma_address(page, vma);
1747 		if (address == -EFAULT)
1748 			continue;
1749 		ret = rmap_one(page, vma, address, arg);
1750 		if (ret != SWAP_AGAIN)
1751 			break;
1752 	}
1753 	/*
1754 	 * No nonlinear handling: being always shared, nonlinear vmas
1755 	 * never contain migration ptes.  Decide what to do about this
1756 	 * limitation to linear when we need rmap_walk() on nonlinear.
1757 	 */
1758 	mutex_unlock(&mapping->i_mmap_mutex);
1759 	return ret;
1760 }
1761 
rmap_walk(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1762 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1763 		struct vm_area_struct *, unsigned long, void *), void *arg)
1764 {
1765 	VM_BUG_ON(!PageLocked(page));
1766 
1767 	if (unlikely(PageKsm(page)))
1768 		return rmap_walk_ksm(page, rmap_one, arg);
1769 	else if (PageAnon(page))
1770 		return rmap_walk_anon(page, rmap_one, arg);
1771 	else
1772 		return rmap_walk_file(page, rmap_one, arg);
1773 }
1774 #endif /* CONFIG_MIGRATION */
1775 
1776 #ifdef CONFIG_HUGETLB_PAGE
1777 /*
1778  * The following three functions are for anonymous (private mapped) hugepages.
1779  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1780  * and no lru code, because we handle hugepages differently from common pages.
1781  */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1782 static void __hugepage_set_anon_rmap(struct page *page,
1783 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1784 {
1785 	struct anon_vma *anon_vma = vma->anon_vma;
1786 
1787 	BUG_ON(!anon_vma);
1788 
1789 	if (PageAnon(page))
1790 		return;
1791 	if (!exclusive)
1792 		anon_vma = anon_vma->root;
1793 
1794 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1795 	page->mapping = (struct address_space *) anon_vma;
1796 	page->index = linear_page_index(vma, address);
1797 }
1798 
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1799 void hugepage_add_anon_rmap(struct page *page,
1800 			    struct vm_area_struct *vma, unsigned long address)
1801 {
1802 	struct anon_vma *anon_vma = vma->anon_vma;
1803 	int first;
1804 
1805 	BUG_ON(!PageLocked(page));
1806 	BUG_ON(!anon_vma);
1807 	/* address might be in next vma when migration races vma_adjust */
1808 	first = atomic_inc_and_test(&page->_mapcount);
1809 	if (first)
1810 		__hugepage_set_anon_rmap(page, vma, address, 0);
1811 }
1812 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1813 void hugepage_add_new_anon_rmap(struct page *page,
1814 			struct vm_area_struct *vma, unsigned long address)
1815 {
1816 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1817 	atomic_set(&page->_mapcount, 0);
1818 	__hugepage_set_anon_rmap(page, vma, address, 1);
1819 }
1820 #endif /* CONFIG_HUGETLB_PAGE */
1821