1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13 
14 static unsigned long total_usage;
15 
16 #if !defined(CONFIG_SPARSEMEM)
17 
18 
pgdat_page_cgroup_init(struct pglist_data * pgdat)19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21 	pgdat->node_page_cgroup = NULL;
22 }
23 
lookup_page_cgroup(struct page * page)24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26 	unsigned long pfn = page_to_pfn(page);
27 	unsigned long offset;
28 	struct page_cgroup *base;
29 
30 	base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32 	/*
33 	 * The sanity checks the page allocator does upon freeing a
34 	 * page can reach here before the page_cgroup arrays are
35 	 * allocated when feeding a range of pages to the allocator
36 	 * for the first time during bootup or memory hotplug.
37 	 */
38 	if (unlikely(!base))
39 		return NULL;
40 #endif
41 	offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 	return base + offset;
43 }
44 
alloc_node_page_cgroup(int nid)45 static int __init alloc_node_page_cgroup(int nid)
46 {
47 	struct page_cgroup *base;
48 	unsigned long table_size;
49 	unsigned long nr_pages;
50 
51 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
52 	if (!nr_pages)
53 		return 0;
54 
55 	table_size = sizeof(struct page_cgroup) * nr_pages;
56 
57 	base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
58 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
59 	if (!base)
60 		return -ENOMEM;
61 	NODE_DATA(nid)->node_page_cgroup = base;
62 	total_usage += table_size;
63 	return 0;
64 }
65 
page_cgroup_init_flatmem(void)66 void __init page_cgroup_init_flatmem(void)
67 {
68 
69 	int nid, fail;
70 
71 	if (mem_cgroup_disabled())
72 		return;
73 
74 	for_each_online_node(nid)  {
75 		fail = alloc_node_page_cgroup(nid);
76 		if (fail)
77 			goto fail;
78 	}
79 	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
80 	printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
81 	" don't want memory cgroups\n");
82 	return;
83 fail:
84 	printk(KERN_CRIT "allocation of page_cgroup failed.\n");
85 	printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
86 	panic("Out of memory");
87 }
88 
89 #else /* CONFIG_FLAT_NODE_MEM_MAP */
90 
lookup_page_cgroup(struct page * page)91 struct page_cgroup *lookup_page_cgroup(struct page *page)
92 {
93 	unsigned long pfn = page_to_pfn(page);
94 	struct mem_section *section = __pfn_to_section(pfn);
95 #ifdef CONFIG_DEBUG_VM
96 	/*
97 	 * The sanity checks the page allocator does upon freeing a
98 	 * page can reach here before the page_cgroup arrays are
99 	 * allocated when feeding a range of pages to the allocator
100 	 * for the first time during bootup or memory hotplug.
101 	 */
102 	if (!section->page_cgroup)
103 		return NULL;
104 #endif
105 	return section->page_cgroup + pfn;
106 }
107 
alloc_page_cgroup(size_t size,int nid)108 static void *__meminit alloc_page_cgroup(size_t size, int nid)
109 {
110 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
111 	void *addr = NULL;
112 
113 	addr = alloc_pages_exact_nid(nid, size, flags);
114 	if (addr) {
115 		kmemleak_alloc(addr, size, 1, flags);
116 		return addr;
117 	}
118 
119 	if (node_state(nid, N_HIGH_MEMORY))
120 		addr = vzalloc_node(size, nid);
121 	else
122 		addr = vzalloc(size);
123 
124 	return addr;
125 }
126 
init_section_page_cgroup(unsigned long pfn,int nid)127 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
128 {
129 	struct mem_section *section;
130 	struct page_cgroup *base;
131 	unsigned long table_size;
132 
133 	section = __pfn_to_section(pfn);
134 
135 	if (section->page_cgroup)
136 		return 0;
137 
138 	table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
139 	base = alloc_page_cgroup(table_size, nid);
140 
141 	/*
142 	 * The value stored in section->page_cgroup is (base - pfn)
143 	 * and it does not point to the memory block allocated above,
144 	 * causing kmemleak false positives.
145 	 */
146 	kmemleak_not_leak(base);
147 
148 	if (!base) {
149 		printk(KERN_ERR "page cgroup allocation failure\n");
150 		return -ENOMEM;
151 	}
152 
153 	/*
154 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
155 	 * we need to apply a mask.
156 	 */
157 	pfn &= PAGE_SECTION_MASK;
158 	section->page_cgroup = base - pfn;
159 	total_usage += table_size;
160 	return 0;
161 }
162 #ifdef CONFIG_MEMORY_HOTPLUG
free_page_cgroup(void * addr)163 static void free_page_cgroup(void *addr)
164 {
165 	if (is_vmalloc_addr(addr)) {
166 		vfree(addr);
167 	} else {
168 		struct page *page = virt_to_page(addr);
169 		size_t table_size =
170 			sizeof(struct page_cgroup) * PAGES_PER_SECTION;
171 
172 		BUG_ON(PageReserved(page));
173 		free_pages_exact(addr, table_size);
174 	}
175 }
176 
__free_page_cgroup(unsigned long pfn)177 void __free_page_cgroup(unsigned long pfn)
178 {
179 	struct mem_section *ms;
180 	struct page_cgroup *base;
181 
182 	ms = __pfn_to_section(pfn);
183 	if (!ms || !ms->page_cgroup)
184 		return;
185 	base = ms->page_cgroup + pfn;
186 	free_page_cgroup(base);
187 	ms->page_cgroup = NULL;
188 }
189 
online_page_cgroup(unsigned long start_pfn,unsigned long nr_pages,int nid)190 int __meminit online_page_cgroup(unsigned long start_pfn,
191 			unsigned long nr_pages,
192 			int nid)
193 {
194 	unsigned long start, end, pfn;
195 	int fail = 0;
196 
197 	start = SECTION_ALIGN_DOWN(start_pfn);
198 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
199 
200 	if (nid == -1) {
201 		/*
202 		 * In this case, "nid" already exists and contains valid memory.
203 		 * "start_pfn" passed to us is a pfn which is an arg for
204 		 * online__pages(), and start_pfn should exist.
205 		 */
206 		nid = pfn_to_nid(start_pfn);
207 		VM_BUG_ON(!node_state(nid, N_ONLINE));
208 	}
209 
210 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
211 		if (!pfn_present(pfn))
212 			continue;
213 		fail = init_section_page_cgroup(pfn, nid);
214 	}
215 	if (!fail)
216 		return 0;
217 
218 	/* rollback */
219 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
220 		__free_page_cgroup(pfn);
221 
222 	return -ENOMEM;
223 }
224 
offline_page_cgroup(unsigned long start_pfn,unsigned long nr_pages,int nid)225 int __meminit offline_page_cgroup(unsigned long start_pfn,
226 		unsigned long nr_pages, int nid)
227 {
228 	unsigned long start, end, pfn;
229 
230 	start = SECTION_ALIGN_DOWN(start_pfn);
231 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
232 
233 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
234 		__free_page_cgroup(pfn);
235 	return 0;
236 
237 }
238 
page_cgroup_callback(struct notifier_block * self,unsigned long action,void * arg)239 static int __meminit page_cgroup_callback(struct notifier_block *self,
240 			       unsigned long action, void *arg)
241 {
242 	struct memory_notify *mn = arg;
243 	int ret = 0;
244 	switch (action) {
245 	case MEM_GOING_ONLINE:
246 		ret = online_page_cgroup(mn->start_pfn,
247 				   mn->nr_pages, mn->status_change_nid);
248 		break;
249 	case MEM_OFFLINE:
250 		offline_page_cgroup(mn->start_pfn,
251 				mn->nr_pages, mn->status_change_nid);
252 		break;
253 	case MEM_CANCEL_ONLINE:
254 	case MEM_GOING_OFFLINE:
255 		break;
256 	case MEM_ONLINE:
257 	case MEM_CANCEL_OFFLINE:
258 		break;
259 	}
260 
261 	return notifier_from_errno(ret);
262 }
263 
264 #endif
265 
page_cgroup_init(void)266 void __init page_cgroup_init(void)
267 {
268 	unsigned long pfn;
269 	int nid;
270 
271 	if (mem_cgroup_disabled())
272 		return;
273 
274 	for_each_node_state(nid, N_HIGH_MEMORY) {
275 		unsigned long start_pfn, end_pfn;
276 
277 		start_pfn = node_start_pfn(nid);
278 		end_pfn = node_end_pfn(nid);
279 		/*
280 		 * start_pfn and end_pfn may not be aligned to SECTION and the
281 		 * page->flags of out of node pages are not initialized.  So we
282 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
283 		 */
284 		for (pfn = start_pfn;
285 		     pfn < end_pfn;
286                      pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
287 
288 			if (!pfn_valid(pfn))
289 				continue;
290 			/*
291 			 * Nodes's pfns can be overlapping.
292 			 * We know some arch can have a nodes layout such as
293 			 * -------------pfn-------------->
294 			 * N0 | N1 | N2 | N0 | N1 | N2|....
295 			 */
296 			if (pfn_to_nid(pfn) != nid)
297 				continue;
298 			if (init_section_page_cgroup(pfn, nid))
299 				goto oom;
300 		}
301 	}
302 	hotplug_memory_notifier(page_cgroup_callback, 0);
303 	printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
304 	printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
305 			 "don't want memory cgroups\n");
306 	return;
307 oom:
308 	printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
309 	panic("Out of memory");
310 }
311 
pgdat_page_cgroup_init(struct pglist_data * pgdat)312 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
313 {
314 	return;
315 }
316 
317 #endif
318 
319 
320 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
321 
322 static DEFINE_MUTEX(swap_cgroup_mutex);
323 struct swap_cgroup_ctrl {
324 	struct page **map;
325 	unsigned long length;
326 	spinlock_t	lock;
327 };
328 
329 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
330 
331 struct swap_cgroup {
332 	unsigned short		id;
333 };
334 #define SC_PER_PAGE	(PAGE_SIZE/sizeof(struct swap_cgroup))
335 
336 /*
337  * SwapCgroup implements "lookup" and "exchange" operations.
338  * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
339  * against SwapCache. At swap_free(), this is accessed directly from swap.
340  *
341  * This means,
342  *  - we have no race in "exchange" when we're accessed via SwapCache because
343  *    SwapCache(and its swp_entry) is under lock.
344  *  - When called via swap_free(), there is no user of this entry and no race.
345  * Then, we don't need lock around "exchange".
346  *
347  * TODO: we can push these buffers out to HIGHMEM.
348  */
349 
350 /*
351  * allocate buffer for swap_cgroup.
352  */
swap_cgroup_prepare(int type)353 static int swap_cgroup_prepare(int type)
354 {
355 	struct page *page;
356 	struct swap_cgroup_ctrl *ctrl;
357 	unsigned long idx, max;
358 
359 	ctrl = &swap_cgroup_ctrl[type];
360 
361 	for (idx = 0; idx < ctrl->length; idx++) {
362 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
363 		if (!page)
364 			goto not_enough_page;
365 		ctrl->map[idx] = page;
366 	}
367 	return 0;
368 not_enough_page:
369 	max = idx;
370 	for (idx = 0; idx < max; idx++)
371 		__free_page(ctrl->map[idx]);
372 
373 	return -ENOMEM;
374 }
375 
lookup_swap_cgroup(swp_entry_t ent,struct swap_cgroup_ctrl ** ctrlp)376 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
377 					struct swap_cgroup_ctrl **ctrlp)
378 {
379 	pgoff_t offset = swp_offset(ent);
380 	struct swap_cgroup_ctrl *ctrl;
381 	struct page *mappage;
382 	struct swap_cgroup *sc;
383 
384 	ctrl = &swap_cgroup_ctrl[swp_type(ent)];
385 	if (ctrlp)
386 		*ctrlp = ctrl;
387 
388 	mappage = ctrl->map[offset / SC_PER_PAGE];
389 	sc = page_address(mappage);
390 	return sc + offset % SC_PER_PAGE;
391 }
392 
393 /**
394  * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
395  * @end: swap entry to be cmpxchged
396  * @old: old id
397  * @new: new id
398  *
399  * Returns old id at success, 0 at failure.
400  * (There is no mem_cgroup using 0 as its id)
401  */
swap_cgroup_cmpxchg(swp_entry_t ent,unsigned short old,unsigned short new)402 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
403 					unsigned short old, unsigned short new)
404 {
405 	struct swap_cgroup_ctrl *ctrl;
406 	struct swap_cgroup *sc;
407 	unsigned long flags;
408 	unsigned short retval;
409 
410 	sc = lookup_swap_cgroup(ent, &ctrl);
411 
412 	spin_lock_irqsave(&ctrl->lock, flags);
413 	retval = sc->id;
414 	if (retval == old)
415 		sc->id = new;
416 	else
417 		retval = 0;
418 	spin_unlock_irqrestore(&ctrl->lock, flags);
419 	return retval;
420 }
421 
422 /**
423  * swap_cgroup_record - record mem_cgroup for this swp_entry.
424  * @ent: swap entry to be recorded into
425  * @mem: mem_cgroup to be recorded
426  *
427  * Returns old value at success, 0 at failure.
428  * (Of course, old value can be 0.)
429  */
swap_cgroup_record(swp_entry_t ent,unsigned short id)430 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
431 {
432 	struct swap_cgroup_ctrl *ctrl;
433 	struct swap_cgroup *sc;
434 	unsigned short old;
435 	unsigned long flags;
436 
437 	sc = lookup_swap_cgroup(ent, &ctrl);
438 
439 	spin_lock_irqsave(&ctrl->lock, flags);
440 	old = sc->id;
441 	sc->id = id;
442 	spin_unlock_irqrestore(&ctrl->lock, flags);
443 
444 	return old;
445 }
446 
447 /**
448  * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
449  * @ent: swap entry to be looked up.
450  *
451  * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
452  */
lookup_swap_cgroup_id(swp_entry_t ent)453 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
454 {
455 	return lookup_swap_cgroup(ent, NULL)->id;
456 }
457 
swap_cgroup_swapon(int type,unsigned long max_pages)458 int swap_cgroup_swapon(int type, unsigned long max_pages)
459 {
460 	void *array;
461 	unsigned long array_size;
462 	unsigned long length;
463 	struct swap_cgroup_ctrl *ctrl;
464 
465 	if (!do_swap_account)
466 		return 0;
467 
468 	length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
469 	array_size = length * sizeof(void *);
470 
471 	array = vzalloc(array_size);
472 	if (!array)
473 		goto nomem;
474 
475 	ctrl = &swap_cgroup_ctrl[type];
476 	mutex_lock(&swap_cgroup_mutex);
477 	ctrl->length = length;
478 	ctrl->map = array;
479 	spin_lock_init(&ctrl->lock);
480 	if (swap_cgroup_prepare(type)) {
481 		/* memory shortage */
482 		ctrl->map = NULL;
483 		ctrl->length = 0;
484 		mutex_unlock(&swap_cgroup_mutex);
485 		vfree(array);
486 		goto nomem;
487 	}
488 	mutex_unlock(&swap_cgroup_mutex);
489 
490 	return 0;
491 nomem:
492 	printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
493 	printk(KERN_INFO
494 		"swap_cgroup can be disabled by swapaccount=0 boot option\n");
495 	return -ENOMEM;
496 }
497 
swap_cgroup_swapoff(int type)498 void swap_cgroup_swapoff(int type)
499 {
500 	struct page **map;
501 	unsigned long i, length;
502 	struct swap_cgroup_ctrl *ctrl;
503 
504 	if (!do_swap_account)
505 		return;
506 
507 	mutex_lock(&swap_cgroup_mutex);
508 	ctrl = &swap_cgroup_ctrl[type];
509 	map = ctrl->map;
510 	length = ctrl->length;
511 	ctrl->map = NULL;
512 	ctrl->length = 0;
513 	mutex_unlock(&swap_cgroup_mutex);
514 
515 	if (map) {
516 		for (i = 0; i < length; i++) {
517 			struct page *page = map[i];
518 			if (page)
519 				__free_page(page);
520 		}
521 		vfree(map);
522 	}
523 }
524 
525 #endif
526