1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
disable_randmaps(char * s)105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
init_zero_pfn(void)118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
__sync_task_rss_stat(struct task_struct * task,struct mm_struct * mm)128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
get_mm_counter(struct mm_struct * mm,int member)163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
sync_mm_rss(struct task_struct * task,struct mm_struct * mm)181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
check_sync_rss_stat(struct task_struct * task)190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif /* SPLIT_RSS_COUNTING */
195 
196 #ifdef HAVE_GENERIC_MMU_GATHER
197 
tlb_next_batch(struct mmu_gather * tlb)198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200 	struct mmu_gather_batch *batch;
201 
202 	batch = tlb->active;
203 	if (batch->next) {
204 		tlb->active = batch->next;
205 		return 1;
206 	}
207 
208 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 	if (!batch)
210 		return 0;
211 
212 	batch->next = NULL;
213 	batch->nr   = 0;
214 	batch->max  = MAX_GATHER_BATCH;
215 
216 	tlb->active->next = batch;
217 	tlb->active = batch;
218 
219 	return 1;
220 }
221 
222 /* tlb_gather_mmu
223  *	Called to initialize an (on-stack) mmu_gather structure for page-table
224  *	tear-down from @mm. The @fullmm argument is used when @mm is without
225  *	users and we're going to destroy the full address space (exit/execve).
226  */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,bool fullmm)227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229 	tlb->mm = mm;
230 
231 	tlb->fullmm     = fullmm;
232 	tlb->need_flush = 0;
233 	tlb->fast_mode  = (num_possible_cpus() == 1);
234 	tlb->local.next = NULL;
235 	tlb->local.nr   = 0;
236 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237 	tlb->active     = &tlb->local;
238 
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 	tlb->batch = NULL;
241 #endif
242 }
243 
tlb_flush_mmu(struct mmu_gather * tlb)244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246 	struct mmu_gather_batch *batch;
247 
248 	if (!tlb->need_flush)
249 		return;
250 	tlb->need_flush = 0;
251 	tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 	tlb_table_flush(tlb);
254 #endif
255 
256 	if (tlb_fast_mode(tlb))
257 		return;
258 
259 	for (batch = &tlb->local; batch; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	VM_BUG_ON(!tlb->need_flush);
297 
298 	if (tlb_fast_mode(tlb)) {
299 		free_page_and_swap_cache(page);
300 		return 1; /* avoid calling tlb_flush_mmu() */
301 	}
302 
303 	batch = tlb->active;
304 	batch->pages[batch->nr++] = page;
305 	if (batch->nr == batch->max) {
306 		if (!tlb_next_batch(tlb))
307 			return 0;
308 		batch = tlb->active;
309 	}
310 	VM_BUG_ON(batch->nr > batch->max);
311 
312 	return batch->max - batch->nr;
313 }
314 
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316 
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318 
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322 
tlb_remove_table_smp_sync(void * arg)323 static void tlb_remove_table_smp_sync(void *arg)
324 {
325 	/* Simply deliver the interrupt */
326 }
327 
tlb_remove_table_one(void * table)328 static void tlb_remove_table_one(void *table)
329 {
330 	/*
331 	 * This isn't an RCU grace period and hence the page-tables cannot be
332 	 * assumed to be actually RCU-freed.
333 	 *
334 	 * It is however sufficient for software page-table walkers that rely on
335 	 * IRQ disabling. See the comment near struct mmu_table_batch.
336 	 */
337 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 	__tlb_remove_table(table);
339 }
340 
tlb_remove_table_rcu(struct rcu_head * head)341 static void tlb_remove_table_rcu(struct rcu_head *head)
342 {
343 	struct mmu_table_batch *batch;
344 	int i;
345 
346 	batch = container_of(head, struct mmu_table_batch, rcu);
347 
348 	for (i = 0; i < batch->nr; i++)
349 		__tlb_remove_table(batch->tables[i]);
350 
351 	free_page((unsigned long)batch);
352 }
353 
tlb_table_flush(struct mmu_gather * tlb)354 void tlb_table_flush(struct mmu_gather *tlb)
355 {
356 	struct mmu_table_batch **batch = &tlb->batch;
357 
358 	if (*batch) {
359 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 		*batch = NULL;
361 	}
362 }
363 
tlb_remove_table(struct mmu_gather * tlb,void * table)364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	tlb->need_flush = 1;
369 
370 	/*
371 	 * When there's less then two users of this mm there cannot be a
372 	 * concurrent page-table walk.
373 	 */
374 	if (atomic_read(&tlb->mm->mm_users) < 2) {
375 		__tlb_remove_table(table);
376 		return;
377 	}
378 
379 	if (*batch == NULL) {
380 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 		if (*batch == NULL) {
382 			tlb_remove_table_one(table);
383 			return;
384 		}
385 		(*batch)->nr = 0;
386 	}
387 	(*batch)->tables[(*batch)->nr++] = table;
388 	if ((*batch)->nr == MAX_TABLE_BATCH)
389 		tlb_table_flush(tlb);
390 }
391 
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
393 
394 /*
395  * If a p?d_bad entry is found while walking page tables, report
396  * the error, before resetting entry to p?d_none.  Usually (but
397  * very seldom) called out from the p?d_none_or_clear_bad macros.
398  */
399 
pgd_clear_bad(pgd_t * pgd)400 void pgd_clear_bad(pgd_t *pgd)
401 {
402 	pgd_ERROR(*pgd);
403 	pgd_clear(pgd);
404 }
405 
pud_clear_bad(pud_t * pud)406 void pud_clear_bad(pud_t *pud)
407 {
408 	pud_ERROR(*pud);
409 	pud_clear(pud);
410 }
411 
pmd_clear_bad(pmd_t * pmd)412 void pmd_clear_bad(pmd_t *pmd)
413 {
414 	pmd_ERROR(*pmd);
415 	pmd_clear(pmd);
416 }
417 
418 /*
419  * Note: this doesn't free the actual pages themselves. That
420  * has been handled earlier when unmapping all the memory regions.
421  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 			   unsigned long addr)
424 {
425 	pgtable_t token = pmd_pgtable(*pmd);
426 	pmd_clear(pmd);
427 	pte_free_tlb(tlb, token, addr);
428 	tlb->mm->nr_ptes--;
429 }
430 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 				unsigned long addr, unsigned long end,
433 				unsigned long floor, unsigned long ceiling)
434 {
435 	pmd_t *pmd;
436 	unsigned long next;
437 	unsigned long start;
438 
439 	start = addr;
440 	pmd = pmd_offset(pud, addr);
441 	do {
442 		next = pmd_addr_end(addr, end);
443 		if (pmd_none_or_clear_bad(pmd))
444 			continue;
445 		free_pte_range(tlb, pmd, addr);
446 	} while (pmd++, addr = next, addr != end);
447 
448 	start &= PUD_MASK;
449 	if (start < floor)
450 		return;
451 	if (ceiling) {
452 		ceiling &= PUD_MASK;
453 		if (!ceiling)
454 			return;
455 	}
456 	if (end - 1 > ceiling - 1)
457 		return;
458 
459 	pmd = pmd_offset(pud, start);
460 	pud_clear(pud);
461 	pmd_free_tlb(tlb, pmd, start);
462 }
463 
free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 				unsigned long addr, unsigned long end,
466 				unsigned long floor, unsigned long ceiling)
467 {
468 	pud_t *pud;
469 	unsigned long next;
470 	unsigned long start;
471 
472 	start = addr;
473 	pud = pud_offset(pgd, addr);
474 	do {
475 		next = pud_addr_end(addr, end);
476 		if (pud_none_or_clear_bad(pud))
477 			continue;
478 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479 	} while (pud++, addr = next, addr != end);
480 
481 	start &= PGDIR_MASK;
482 	if (start < floor)
483 		return;
484 	if (ceiling) {
485 		ceiling &= PGDIR_MASK;
486 		if (!ceiling)
487 			return;
488 	}
489 	if (end - 1 > ceiling - 1)
490 		return;
491 
492 	pud = pud_offset(pgd, start);
493 	pgd_clear(pgd);
494 	pud_free_tlb(tlb, pud, start);
495 }
496 
497 /*
498  * This function frees user-level page tables of a process.
499  *
500  * Must be called with pagetable lock held.
501  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)502 void free_pgd_range(struct mmu_gather *tlb,
503 			unsigned long addr, unsigned long end,
504 			unsigned long floor, unsigned long ceiling)
505 {
506 	pgd_t *pgd;
507 	unsigned long next;
508 
509 	/*
510 	 * The next few lines have given us lots of grief...
511 	 *
512 	 * Why are we testing PMD* at this top level?  Because often
513 	 * there will be no work to do at all, and we'd prefer not to
514 	 * go all the way down to the bottom just to discover that.
515 	 *
516 	 * Why all these "- 1"s?  Because 0 represents both the bottom
517 	 * of the address space and the top of it (using -1 for the
518 	 * top wouldn't help much: the masks would do the wrong thing).
519 	 * The rule is that addr 0 and floor 0 refer to the bottom of
520 	 * the address space, but end 0 and ceiling 0 refer to the top
521 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 	 * that end 0 case should be mythical).
523 	 *
524 	 * Wherever addr is brought up or ceiling brought down, we must
525 	 * be careful to reject "the opposite 0" before it confuses the
526 	 * subsequent tests.  But what about where end is brought down
527 	 * by PMD_SIZE below? no, end can't go down to 0 there.
528 	 *
529 	 * Whereas we round start (addr) and ceiling down, by different
530 	 * masks at different levels, in order to test whether a table
531 	 * now has no other vmas using it, so can be freed, we don't
532 	 * bother to round floor or end up - the tests don't need that.
533 	 */
534 
535 	addr &= PMD_MASK;
536 	if (addr < floor) {
537 		addr += PMD_SIZE;
538 		if (!addr)
539 			return;
540 	}
541 	if (ceiling) {
542 		ceiling &= PMD_MASK;
543 		if (!ceiling)
544 			return;
545 	}
546 	if (end - 1 > ceiling - 1)
547 		end -= PMD_SIZE;
548 	if (addr > end - 1)
549 		return;
550 
551 	pgd = pgd_offset(tlb->mm, addr);
552 	do {
553 		next = pgd_addr_end(addr, end);
554 		if (pgd_none_or_clear_bad(pgd))
555 			continue;
556 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557 	} while (pgd++, addr = next, addr != end);
558 }
559 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561 		unsigned long floor, unsigned long ceiling)
562 {
563 	while (vma) {
564 		struct vm_area_struct *next = vma->vm_next;
565 		unsigned long addr = vma->vm_start;
566 
567 		/*
568 		 * Hide vma from rmap and truncate_pagecache before freeing
569 		 * pgtables
570 		 */
571 		unlink_anon_vmas(vma);
572 		unlink_file_vma(vma);
573 
574 		if (is_vm_hugetlb_page(vma)) {
575 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576 				floor, next? next->vm_start: ceiling);
577 		} else {
578 			/*
579 			 * Optimization: gather nearby vmas into one call down
580 			 */
581 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582 			       && !is_vm_hugetlb_page(next)) {
583 				vma = next;
584 				next = vma->vm_next;
585 				unlink_anon_vmas(vma);
586 				unlink_file_vma(vma);
587 			}
588 			free_pgd_range(tlb, addr, vma->vm_end,
589 				floor, next? next->vm_start: ceiling);
590 		}
591 		vma = next;
592 	}
593 }
594 
__pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,unsigned long address)595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 		pmd_t *pmd, unsigned long address)
597 {
598 	pgtable_t new = pte_alloc_one(mm, address);
599 	int wait_split_huge_page;
600 	if (!new)
601 		return -ENOMEM;
602 
603 	/*
604 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 	 * visible before the pte is made visible to other CPUs by being
606 	 * put into page tables.
607 	 *
608 	 * The other side of the story is the pointer chasing in the page
609 	 * table walking code (when walking the page table without locking;
610 	 * ie. most of the time). Fortunately, these data accesses consist
611 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 	 * being the notable exception) will already guarantee loads are
613 	 * seen in-order. See the alpha page table accessors for the
614 	 * smp_read_barrier_depends() barriers in page table walking code.
615 	 */
616 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
617 
618 	spin_lock(&mm->page_table_lock);
619 	wait_split_huge_page = 0;
620 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
621 		mm->nr_ptes++;
622 		pmd_populate(mm, pmd, new);
623 		new = NULL;
624 	} else if (unlikely(pmd_trans_splitting(*pmd)))
625 		wait_split_huge_page = 1;
626 	spin_unlock(&mm->page_table_lock);
627 	if (new)
628 		pte_free(mm, new);
629 	if (wait_split_huge_page)
630 		wait_split_huge_page(vma->anon_vma, pmd);
631 	return 0;
632 }
633 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
635 {
636 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 	if (!new)
638 		return -ENOMEM;
639 
640 	smp_wmb(); /* See comment in __pte_alloc */
641 
642 	spin_lock(&init_mm.page_table_lock);
643 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
644 		pmd_populate_kernel(&init_mm, pmd, new);
645 		new = NULL;
646 	} else
647 		VM_BUG_ON(pmd_trans_splitting(*pmd));
648 	spin_unlock(&init_mm.page_table_lock);
649 	if (new)
650 		pte_free_kernel(&init_mm, new);
651 	return 0;
652 }
653 
init_rss_vec(int * rss)654 static inline void init_rss_vec(int *rss)
655 {
656 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
657 }
658 
add_mm_rss_vec(struct mm_struct * mm,int * rss)659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
660 {
661 	int i;
662 
663 	if (current->mm == mm)
664 		sync_mm_rss(current, mm);
665 	for (i = 0; i < NR_MM_COUNTERS; i++)
666 		if (rss[i])
667 			add_mm_counter(mm, i, rss[i]);
668 }
669 
670 /*
671  * This function is called to print an error when a bad pte
672  * is found. For example, we might have a PFN-mapped pte in
673  * a region that doesn't allow it.
674  *
675  * The calling function must still handle the error.
676  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 			  pte_t pte, struct page *page)
679 {
680 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 	pud_t *pud = pud_offset(pgd, addr);
682 	pmd_t *pmd = pmd_offset(pud, addr);
683 	struct address_space *mapping;
684 	pgoff_t index;
685 	static unsigned long resume;
686 	static unsigned long nr_shown;
687 	static unsigned long nr_unshown;
688 
689 	/*
690 	 * Allow a burst of 60 reports, then keep quiet for that minute;
691 	 * or allow a steady drip of one report per second.
692 	 */
693 	if (nr_shown == 60) {
694 		if (time_before(jiffies, resume)) {
695 			nr_unshown++;
696 			return;
697 		}
698 		if (nr_unshown) {
699 			printk(KERN_ALERT
700 				"BUG: Bad page map: %lu messages suppressed\n",
701 				nr_unshown);
702 			nr_unshown = 0;
703 		}
704 		nr_shown = 0;
705 	}
706 	if (nr_shown++ == 0)
707 		resume = jiffies + 60 * HZ;
708 
709 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 	index = linear_page_index(vma, addr);
711 
712 	printk(KERN_ALERT
713 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
714 		current->comm,
715 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
716 	if (page)
717 		dump_page(page);
718 	printk(KERN_ALERT
719 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
721 	/*
722 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
723 	 */
724 	if (vma->vm_ops)
725 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726 				(unsigned long)vma->vm_ops->fault);
727 	if (vma->vm_file && vma->vm_file->f_op)
728 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729 				(unsigned long)vma->vm_file->f_op->mmap);
730 	dump_stack();
731 	add_taint(TAINT_BAD_PAGE);
732 }
733 
is_cow_mapping(vm_flags_t flags)734 static inline int is_cow_mapping(vm_flags_t flags)
735 {
736 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
737 }
738 
739 #ifndef is_zero_pfn
is_zero_pfn(unsigned long pfn)740 static inline int is_zero_pfn(unsigned long pfn)
741 {
742 	return pfn == zero_pfn;
743 }
744 #endif
745 
746 #ifndef my_zero_pfn
my_zero_pfn(unsigned long addr)747 static inline unsigned long my_zero_pfn(unsigned long addr)
748 {
749 	return zero_pfn;
750 }
751 #endif
752 
753 /*
754  * vm_normal_page -- This function gets the "struct page" associated with a pte.
755  *
756  * "Special" mappings do not wish to be associated with a "struct page" (either
757  * it doesn't exist, or it exists but they don't want to touch it). In this
758  * case, NULL is returned here. "Normal" mappings do have a struct page.
759  *
760  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761  * pte bit, in which case this function is trivial. Secondly, an architecture
762  * may not have a spare pte bit, which requires a more complicated scheme,
763  * described below.
764  *
765  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766  * special mapping (even if there are underlying and valid "struct pages").
767  * COWed pages of a VM_PFNMAP are always normal.
768  *
769  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772  * mapping will always honor the rule
773  *
774  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
775  *
776  * And for normal mappings this is false.
777  *
778  * This restricts such mappings to be a linear translation from virtual address
779  * to pfn. To get around this restriction, we allow arbitrary mappings so long
780  * as the vma is not a COW mapping; in that case, we know that all ptes are
781  * special (because none can have been COWed).
782  *
783  *
784  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
785  *
786  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787  * page" backing, however the difference is that _all_ pages with a struct
788  * page (that is, those where pfn_valid is true) are refcounted and considered
789  * normal pages by the VM. The disadvantage is that pages are refcounted
790  * (which can be slower and simply not an option for some PFNMAP users). The
791  * advantage is that we don't have to follow the strict linearity rule of
792  * PFNMAP mappings in order to support COWable mappings.
793  *
794  */
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 				pte_t pte)
802 {
803 	unsigned long pfn = pte_pfn(pte);
804 
805 	if (HAVE_PTE_SPECIAL) {
806 		if (likely(!pte_special(pte)))
807 			goto check_pfn;
808 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 			return NULL;
810 		if (!is_zero_pfn(pfn))
811 			print_bad_pte(vma, addr, pte, NULL);
812 		return NULL;
813 	}
814 
815 	/* !HAVE_PTE_SPECIAL case follows: */
816 
817 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 		if (vma->vm_flags & VM_MIXEDMAP) {
819 			if (!pfn_valid(pfn))
820 				return NULL;
821 			goto out;
822 		} else {
823 			unsigned long off;
824 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 			if (pfn == vma->vm_pgoff + off)
826 				return NULL;
827 			if (!is_cow_mapping(vma->vm_flags))
828 				return NULL;
829 		}
830 	}
831 
832 	if (is_zero_pfn(pfn))
833 		return NULL;
834 check_pfn:
835 	if (unlikely(pfn > highest_memmap_pfn)) {
836 		print_bad_pte(vma, addr, pte, NULL);
837 		return NULL;
838 	}
839 
840 	/*
841 	 * NOTE! We still have PageReserved() pages in the page tables.
842 	 * eg. VDSO mappings can cause them to exist.
843 	 */
844 out:
845 	return pfn_to_page(pfn);
846 }
847 
848 /*
849  * copy one vm_area from one task to the other. Assumes the page tables
850  * already present in the new task to be cleared in the whole range
851  * covered by this vma.
852  */
853 
854 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857 		unsigned long addr, int *rss)
858 {
859 	unsigned long vm_flags = vma->vm_flags;
860 	pte_t pte = *src_pte;
861 	struct page *page;
862 
863 	/* pte contains position in swap or file, so copy. */
864 	if (unlikely(!pte_present(pte))) {
865 		if (!pte_file(pte)) {
866 			swp_entry_t entry = pte_to_swp_entry(pte);
867 
868 			if (swap_duplicate(entry) < 0)
869 				return entry.val;
870 
871 			/* make sure dst_mm is on swapoff's mmlist. */
872 			if (unlikely(list_empty(&dst_mm->mmlist))) {
873 				spin_lock(&mmlist_lock);
874 				if (list_empty(&dst_mm->mmlist))
875 					list_add(&dst_mm->mmlist,
876 						 &src_mm->mmlist);
877 				spin_unlock(&mmlist_lock);
878 			}
879 			if (likely(!non_swap_entry(entry)))
880 				rss[MM_SWAPENTS]++;
881 			else if (is_migration_entry(entry)) {
882 				page = migration_entry_to_page(entry);
883 
884 				if (PageAnon(page))
885 					rss[MM_ANONPAGES]++;
886 				else
887 					rss[MM_FILEPAGES]++;
888 
889 				if (is_write_migration_entry(entry) &&
890 				    is_cow_mapping(vm_flags)) {
891 					/*
892 					 * COW mappings require pages in both
893 					 * parent and child to be set to read.
894 					 */
895 					make_migration_entry_read(&entry);
896 					pte = swp_entry_to_pte(entry);
897 					set_pte_at(src_mm, addr, src_pte, pte);
898 				}
899 			}
900 		}
901 		goto out_set_pte;
902 	}
903 
904 	/*
905 	 * If it's a COW mapping, write protect it both
906 	 * in the parent and the child
907 	 */
908 	if (is_cow_mapping(vm_flags)) {
909 		ptep_set_wrprotect(src_mm, addr, src_pte);
910 		pte = pte_wrprotect(pte);
911 	}
912 
913 	/*
914 	 * If it's a shared mapping, mark it clean in
915 	 * the child
916 	 */
917 	if (vm_flags & VM_SHARED)
918 		pte = pte_mkclean(pte);
919 	pte = pte_mkold(pte);
920 
921 	page = vm_normal_page(vma, addr, pte);
922 	if (page) {
923 		get_page(page);
924 		page_dup_rmap(page);
925 		if (PageAnon(page))
926 			rss[MM_ANONPAGES]++;
927 		else
928 			rss[MM_FILEPAGES]++;
929 	}
930 
931 out_set_pte:
932 	set_pte_at(dst_mm, addr, dst_pte, pte);
933 	return 0;
934 }
935 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)936 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
938 		   unsigned long addr, unsigned long end)
939 {
940 	pte_t *orig_src_pte, *orig_dst_pte;
941 	pte_t *src_pte, *dst_pte;
942 	spinlock_t *src_ptl, *dst_ptl;
943 	int progress = 0;
944 	int rss[NR_MM_COUNTERS];
945 	swp_entry_t entry = (swp_entry_t){0};
946 
947 again:
948 	init_rss_vec(rss);
949 
950 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
951 	if (!dst_pte)
952 		return -ENOMEM;
953 	src_pte = pte_offset_map(src_pmd, addr);
954 	src_ptl = pte_lockptr(src_mm, src_pmd);
955 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
956 	orig_src_pte = src_pte;
957 	orig_dst_pte = dst_pte;
958 	arch_enter_lazy_mmu_mode();
959 
960 	do {
961 		/*
962 		 * We are holding two locks at this point - either of them
963 		 * could generate latencies in another task on another CPU.
964 		 */
965 		if (progress >= 32) {
966 			progress = 0;
967 			if (need_resched() ||
968 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
969 				break;
970 		}
971 		if (pte_none(*src_pte)) {
972 			progress++;
973 			continue;
974 		}
975 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976 							vma, addr, rss);
977 		if (entry.val)
978 			break;
979 		progress += 8;
980 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
981 
982 	arch_leave_lazy_mmu_mode();
983 	spin_unlock(src_ptl);
984 	pte_unmap(orig_src_pte);
985 	add_mm_rss_vec(dst_mm, rss);
986 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
987 	cond_resched();
988 
989 	if (entry.val) {
990 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
991 			return -ENOMEM;
992 		progress = 0;
993 	}
994 	if (addr != end)
995 		goto again;
996 	return 0;
997 }
998 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)999 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1001 		unsigned long addr, unsigned long end)
1002 {
1003 	pmd_t *src_pmd, *dst_pmd;
1004 	unsigned long next;
1005 
1006 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1007 	if (!dst_pmd)
1008 		return -ENOMEM;
1009 	src_pmd = pmd_offset(src_pud, addr);
1010 	do {
1011 		next = pmd_addr_end(addr, end);
1012 		if (pmd_trans_huge(*src_pmd)) {
1013 			int err;
1014 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1015 			err = copy_huge_pmd(dst_mm, src_mm,
1016 					    dst_pmd, src_pmd, addr, vma);
1017 			if (err == -ENOMEM)
1018 				return -ENOMEM;
1019 			if (!err)
1020 				continue;
1021 			/* fall through */
1022 		}
1023 		if (pmd_none_or_clear_bad(src_pmd))
1024 			continue;
1025 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1026 						vma, addr, next))
1027 			return -ENOMEM;
1028 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1029 	return 0;
1030 }
1031 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1032 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1034 		unsigned long addr, unsigned long end)
1035 {
1036 	pud_t *src_pud, *dst_pud;
1037 	unsigned long next;
1038 
1039 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1040 	if (!dst_pud)
1041 		return -ENOMEM;
1042 	src_pud = pud_offset(src_pgd, addr);
1043 	do {
1044 		next = pud_addr_end(addr, end);
1045 		if (pud_none_or_clear_bad(src_pud))
1046 			continue;
1047 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1048 						vma, addr, next))
1049 			return -ENOMEM;
1050 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1051 	return 0;
1052 }
1053 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1054 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 		struct vm_area_struct *vma)
1056 {
1057 	pgd_t *src_pgd, *dst_pgd;
1058 	unsigned long next;
1059 	unsigned long addr = vma->vm_start;
1060 	unsigned long end = vma->vm_end;
1061 	int ret;
1062 
1063 	/*
1064 	 * Don't copy ptes where a page fault will fill them correctly.
1065 	 * Fork becomes much lighter when there are big shared or private
1066 	 * readonly mappings. The tradeoff is that copy_page_range is more
1067 	 * efficient than faulting.
1068 	 */
1069 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1070 		if (!vma->anon_vma)
1071 			return 0;
1072 	}
1073 
1074 	if (is_vm_hugetlb_page(vma))
1075 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1076 
1077 	if (unlikely(is_pfn_mapping(vma))) {
1078 		/*
1079 		 * We do not free on error cases below as remove_vma
1080 		 * gets called on error from higher level routine
1081 		 */
1082 		ret = track_pfn_vma_copy(vma);
1083 		if (ret)
1084 			return ret;
1085 	}
1086 
1087 	/*
1088 	 * We need to invalidate the secondary MMU mappings only when
1089 	 * there could be a permission downgrade on the ptes of the
1090 	 * parent mm. And a permission downgrade will only happen if
1091 	 * is_cow_mapping() returns true.
1092 	 */
1093 	if (is_cow_mapping(vma->vm_flags))
1094 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1095 
1096 	ret = 0;
1097 	dst_pgd = pgd_offset(dst_mm, addr);
1098 	src_pgd = pgd_offset(src_mm, addr);
1099 	do {
1100 		next = pgd_addr_end(addr, end);
1101 		if (pgd_none_or_clear_bad(src_pgd))
1102 			continue;
1103 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1104 					    vma, addr, next))) {
1105 			ret = -ENOMEM;
1106 			break;
1107 		}
1108 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1109 
1110 	if (is_cow_mapping(vma->vm_flags))
1111 		mmu_notifier_invalidate_range_end(src_mm,
1112 						  vma->vm_start, end);
1113 	return ret;
1114 }
1115 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1116 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1117 				struct vm_area_struct *vma, pmd_t *pmd,
1118 				unsigned long addr, unsigned long end,
1119 				struct zap_details *details)
1120 {
1121 	struct mm_struct *mm = tlb->mm;
1122 	int force_flush = 0;
1123 	int rss[NR_MM_COUNTERS];
1124 	spinlock_t *ptl;
1125 	pte_t *start_pte;
1126 	pte_t *pte;
1127 
1128 again:
1129 	init_rss_vec(rss);
1130 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1131 	pte = start_pte;
1132 	arch_enter_lazy_mmu_mode();
1133 	do {
1134 		pte_t ptent = *pte;
1135 		if (pte_none(ptent)) {
1136 			continue;
1137 		}
1138 
1139 		if (pte_present(ptent)) {
1140 			struct page *page;
1141 
1142 			page = vm_normal_page(vma, addr, ptent);
1143 			if (unlikely(details) && page) {
1144 				/*
1145 				 * unmap_shared_mapping_pages() wants to
1146 				 * invalidate cache without truncating:
1147 				 * unmap shared but keep private pages.
1148 				 */
1149 				if (details->check_mapping &&
1150 				    details->check_mapping != page->mapping)
1151 					continue;
1152 				/*
1153 				 * Each page->index must be checked when
1154 				 * invalidating or truncating nonlinear.
1155 				 */
1156 				if (details->nonlinear_vma &&
1157 				    (page->index < details->first_index ||
1158 				     page->index > details->last_index))
1159 					continue;
1160 			}
1161 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1162 							tlb->fullmm);
1163 			tlb_remove_tlb_entry(tlb, pte, addr);
1164 			if (unlikely(!page))
1165 				continue;
1166 			if (unlikely(details) && details->nonlinear_vma
1167 			    && linear_page_index(details->nonlinear_vma,
1168 						addr) != page->index)
1169 				set_pte_at(mm, addr, pte,
1170 					   pgoff_to_pte(page->index));
1171 			if (PageAnon(page))
1172 				rss[MM_ANONPAGES]--;
1173 			else {
1174 				if (pte_dirty(ptent))
1175 					set_page_dirty(page);
1176 				if (pte_young(ptent) &&
1177 				    likely(!VM_SequentialReadHint(vma)))
1178 					mark_page_accessed(page);
1179 				rss[MM_FILEPAGES]--;
1180 			}
1181 			page_remove_rmap(page);
1182 			if (unlikely(page_mapcount(page) < 0))
1183 				print_bad_pte(vma, addr, ptent, page);
1184 			force_flush = !__tlb_remove_page(tlb, page);
1185 			if (force_flush)
1186 				break;
1187 			continue;
1188 		}
1189 		/*
1190 		 * If details->check_mapping, we leave swap entries;
1191 		 * if details->nonlinear_vma, we leave file entries.
1192 		 */
1193 		if (unlikely(details))
1194 			continue;
1195 		if (pte_file(ptent)) {
1196 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1197 				print_bad_pte(vma, addr, ptent, NULL);
1198 		} else {
1199 			swp_entry_t entry = pte_to_swp_entry(ptent);
1200 
1201 			if (!non_swap_entry(entry))
1202 				rss[MM_SWAPENTS]--;
1203 			else if (is_migration_entry(entry)) {
1204 				struct page *page;
1205 
1206 				page = migration_entry_to_page(entry);
1207 
1208 				if (PageAnon(page))
1209 					rss[MM_ANONPAGES]--;
1210 				else
1211 					rss[MM_FILEPAGES]--;
1212 			}
1213 			if (unlikely(!free_swap_and_cache(entry)))
1214 				print_bad_pte(vma, addr, ptent, NULL);
1215 		}
1216 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1217 	} while (pte++, addr += PAGE_SIZE, addr != end);
1218 
1219 	add_mm_rss_vec(mm, rss);
1220 	arch_leave_lazy_mmu_mode();
1221 	pte_unmap_unlock(start_pte, ptl);
1222 
1223 	/*
1224 	 * mmu_gather ran out of room to batch pages, we break out of
1225 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1226 	 * and page-free while holding it.
1227 	 */
1228 	if (force_flush) {
1229 		force_flush = 0;
1230 		tlb_flush_mmu(tlb);
1231 		if (addr != end)
1232 			goto again;
1233 	}
1234 
1235 	return addr;
1236 }
1237 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1239 				struct vm_area_struct *vma, pud_t *pud,
1240 				unsigned long addr, unsigned long end,
1241 				struct zap_details *details)
1242 {
1243 	pmd_t *pmd;
1244 	unsigned long next;
1245 
1246 	pmd = pmd_offset(pud, addr);
1247 	do {
1248 		next = pmd_addr_end(addr, end);
1249 		if (pmd_trans_huge(*pmd)) {
1250 			if (next-addr != HPAGE_PMD_SIZE) {
1251 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1252 				split_huge_page_pmd(vma->vm_mm, pmd);
1253 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254 				continue;
1255 			/* fall through */
1256 		}
1257 		if (pmd_none_or_clear_bad(pmd))
1258 			continue;
1259 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 		cond_resched();
1261 	} while (pmd++, addr = next, addr != end);
1262 
1263 	return addr;
1264 }
1265 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1267 				struct vm_area_struct *vma, pgd_t *pgd,
1268 				unsigned long addr, unsigned long end,
1269 				struct zap_details *details)
1270 {
1271 	pud_t *pud;
1272 	unsigned long next;
1273 
1274 	pud = pud_offset(pgd, addr);
1275 	do {
1276 		next = pud_addr_end(addr, end);
1277 		if (pud_none_or_clear_bad(pud))
1278 			continue;
1279 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 	} while (pud++, addr = next, addr != end);
1281 
1282 	return addr;
1283 }
1284 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1285 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1286 				struct vm_area_struct *vma,
1287 				unsigned long addr, unsigned long end,
1288 				struct zap_details *details)
1289 {
1290 	pgd_t *pgd;
1291 	unsigned long next;
1292 
1293 	if (details && !details->check_mapping && !details->nonlinear_vma)
1294 		details = NULL;
1295 
1296 	BUG_ON(addr >= end);
1297 	mem_cgroup_uncharge_start();
1298 	tlb_start_vma(tlb, vma);
1299 	pgd = pgd_offset(vma->vm_mm, addr);
1300 	do {
1301 		next = pgd_addr_end(addr, end);
1302 		if (pgd_none_or_clear_bad(pgd))
1303 			continue;
1304 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305 	} while (pgd++, addr = next, addr != end);
1306 	tlb_end_vma(tlb, vma);
1307 	mem_cgroup_uncharge_end();
1308 
1309 	return addr;
1310 }
1311 
1312 /**
1313  * unmap_vmas - unmap a range of memory covered by a list of vma's
1314  * @tlb: address of the caller's struct mmu_gather
1315  * @vma: the starting vma
1316  * @start_addr: virtual address at which to start unmapping
1317  * @end_addr: virtual address at which to end unmapping
1318  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1319  * @details: details of nonlinear truncation or shared cache invalidation
1320  *
1321  * Returns the end address of the unmapping (restart addr if interrupted).
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)1334 unsigned long unmap_vmas(struct mmu_gather *tlb,
1335 		struct vm_area_struct *vma, unsigned long start_addr,
1336 		unsigned long end_addr, unsigned long *nr_accounted,
1337 		struct zap_details *details)
1338 {
1339 	unsigned long start = start_addr;
1340 	struct mm_struct *mm = vma->vm_mm;
1341 
1342 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1343 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1344 		unsigned long end;
1345 
1346 		start = max(vma->vm_start, start_addr);
1347 		if (start >= vma->vm_end)
1348 			continue;
1349 		end = min(vma->vm_end, end_addr);
1350 		if (end <= vma->vm_start)
1351 			continue;
1352 
1353 		if (vma->vm_flags & VM_ACCOUNT)
1354 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1355 
1356 		if (unlikely(is_pfn_mapping(vma)))
1357 			untrack_pfn_vma(vma, 0, 0);
1358 
1359 		while (start != end) {
1360 			if (unlikely(is_vm_hugetlb_page(vma))) {
1361 				/*
1362 				 * It is undesirable to test vma->vm_file as it
1363 				 * should be non-null for valid hugetlb area.
1364 				 * However, vm_file will be NULL in the error
1365 				 * cleanup path of do_mmap_pgoff. When
1366 				 * hugetlbfs ->mmap method fails,
1367 				 * do_mmap_pgoff() nullifies vma->vm_file
1368 				 * before calling this function to clean up.
1369 				 * Since no pte has actually been setup, it is
1370 				 * safe to do nothing in this case.
1371 				 */
1372 				if (vma->vm_file)
1373 					unmap_hugepage_range(vma, start, end, NULL);
1374 
1375 				start = end;
1376 			} else
1377 				start = unmap_page_range(tlb, vma, start, end, details);
1378 		}
1379 	}
1380 
1381 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1382 	return start;	/* which is now the end (or restart) address */
1383 }
1384 
1385 /**
1386  * zap_page_range - remove user pages in a given range
1387  * @vma: vm_area_struct holding the applicable pages
1388  * @address: starting address of pages to zap
1389  * @size: number of bytes to zap
1390  * @details: details of nonlinear truncation or shared cache invalidation
1391  */
zap_page_range(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1392 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1393 		unsigned long size, struct zap_details *details)
1394 {
1395 	struct mm_struct *mm = vma->vm_mm;
1396 	struct mmu_gather tlb;
1397 	unsigned long end = address + size;
1398 	unsigned long nr_accounted = 0;
1399 
1400 	lru_add_drain();
1401 	tlb_gather_mmu(&tlb, mm, 0);
1402 	update_hiwater_rss(mm);
1403 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1404 	tlb_finish_mmu(&tlb, address, end);
1405 	return end;
1406 }
1407 
1408 /**
1409  * zap_vma_ptes - remove ptes mapping the vma
1410  * @vma: vm_area_struct holding ptes to be zapped
1411  * @address: starting address of pages to zap
1412  * @size: number of bytes to zap
1413  *
1414  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1415  *
1416  * The entire address range must be fully contained within the vma.
1417  *
1418  * Returns 0 if successful.
1419  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1420 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1421 		unsigned long size)
1422 {
1423 	if (address < vma->vm_start || address + size > vma->vm_end ||
1424 	    		!(vma->vm_flags & VM_PFNMAP))
1425 		return -1;
1426 	zap_page_range(vma, address, size, NULL);
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1430 
1431 /**
1432  * follow_page - look up a page descriptor from a user-virtual address
1433  * @vma: vm_area_struct mapping @address
1434  * @address: virtual address to look up
1435  * @flags: flags modifying lookup behaviour
1436  *
1437  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1438  *
1439  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1440  * an error pointer if there is a mapping to something not represented
1441  * by a page descriptor (see also vm_normal_page()).
1442  */
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1443 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1444 			unsigned int flags)
1445 {
1446 	pgd_t *pgd;
1447 	pud_t *pud;
1448 	pmd_t *pmd;
1449 	pte_t *ptep, pte;
1450 	spinlock_t *ptl;
1451 	struct page *page;
1452 	struct mm_struct *mm = vma->vm_mm;
1453 
1454 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1455 	if (!IS_ERR(page)) {
1456 		BUG_ON(flags & FOLL_GET);
1457 		goto out;
1458 	}
1459 
1460 	page = NULL;
1461 	pgd = pgd_offset(mm, address);
1462 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1463 		goto no_page_table;
1464 
1465 	pud = pud_offset(pgd, address);
1466 	if (pud_none(*pud))
1467 		goto no_page_table;
1468 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1469 		BUG_ON(flags & FOLL_GET);
1470 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1471 		goto out;
1472 	}
1473 	if (unlikely(pud_bad(*pud)))
1474 		goto no_page_table;
1475 
1476 	pmd = pmd_offset(pud, address);
1477 	if (pmd_none(*pmd))
1478 		goto no_page_table;
1479 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1480 		BUG_ON(flags & FOLL_GET);
1481 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1482 		goto out;
1483 	}
1484 	if (pmd_trans_huge(*pmd)) {
1485 		if (flags & FOLL_SPLIT) {
1486 			split_huge_page_pmd(mm, pmd);
1487 			goto split_fallthrough;
1488 		}
1489 		spin_lock(&mm->page_table_lock);
1490 		if (likely(pmd_trans_huge(*pmd))) {
1491 			if (unlikely(pmd_trans_splitting(*pmd))) {
1492 				spin_unlock(&mm->page_table_lock);
1493 				wait_split_huge_page(vma->anon_vma, pmd);
1494 			} else {
1495 				page = follow_trans_huge_pmd(mm, address,
1496 							     pmd, flags);
1497 				spin_unlock(&mm->page_table_lock);
1498 				goto out;
1499 			}
1500 		} else
1501 			spin_unlock(&mm->page_table_lock);
1502 		/* fall through */
1503 	}
1504 split_fallthrough:
1505 	if (unlikely(pmd_bad(*pmd)))
1506 		goto no_page_table;
1507 
1508 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1509 
1510 	pte = *ptep;
1511 	if (!pte_present(pte))
1512 		goto no_page;
1513 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1514 		goto unlock;
1515 
1516 	page = vm_normal_page(vma, address, pte);
1517 	if (unlikely(!page)) {
1518 		if ((flags & FOLL_DUMP) ||
1519 		    !is_zero_pfn(pte_pfn(pte)))
1520 			goto bad_page;
1521 		page = pte_page(pte);
1522 	}
1523 
1524 	if (flags & FOLL_GET)
1525 		get_page_foll(page);
1526 	if (flags & FOLL_TOUCH) {
1527 		if ((flags & FOLL_WRITE) &&
1528 		    !pte_dirty(pte) && !PageDirty(page))
1529 			set_page_dirty(page);
1530 		/*
1531 		 * pte_mkyoung() would be more correct here, but atomic care
1532 		 * is needed to avoid losing the dirty bit: it is easier to use
1533 		 * mark_page_accessed().
1534 		 */
1535 		mark_page_accessed(page);
1536 	}
1537 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1538 		/*
1539 		 * The preliminary mapping check is mainly to avoid the
1540 		 * pointless overhead of lock_page on the ZERO_PAGE
1541 		 * which might bounce very badly if there is contention.
1542 		 *
1543 		 * If the page is already locked, we don't need to
1544 		 * handle it now - vmscan will handle it later if and
1545 		 * when it attempts to reclaim the page.
1546 		 */
1547 		if (page->mapping && trylock_page(page)) {
1548 			lru_add_drain();  /* push cached pages to LRU */
1549 			/*
1550 			 * Because we lock page here and migration is
1551 			 * blocked by the pte's page reference, we need
1552 			 * only check for file-cache page truncation.
1553 			 */
1554 			if (page->mapping)
1555 				mlock_vma_page(page);
1556 			unlock_page(page);
1557 		}
1558 	}
1559 unlock:
1560 	pte_unmap_unlock(ptep, ptl);
1561 out:
1562 	return page;
1563 
1564 bad_page:
1565 	pte_unmap_unlock(ptep, ptl);
1566 	return ERR_PTR(-EFAULT);
1567 
1568 no_page:
1569 	pte_unmap_unlock(ptep, ptl);
1570 	if (!pte_none(pte))
1571 		return page;
1572 
1573 no_page_table:
1574 	/*
1575 	 * When core dumping an enormous anonymous area that nobody
1576 	 * has touched so far, we don't want to allocate unnecessary pages or
1577 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1578 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1579 	 * But we can only make this optimization where a hole would surely
1580 	 * be zero-filled if handle_mm_fault() actually did handle it.
1581 	 */
1582 	if ((flags & FOLL_DUMP) &&
1583 	    (!vma->vm_ops || !vma->vm_ops->fault))
1584 		return ERR_PTR(-EFAULT);
1585 	return page;
1586 }
1587 
stack_guard_page(struct vm_area_struct * vma,unsigned long addr)1588 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1589 {
1590 	return stack_guard_page_start(vma, addr) ||
1591 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1592 }
1593 
1594 /**
1595  * __get_user_pages() - pin user pages in memory
1596  * @tsk:	task_struct of target task
1597  * @mm:		mm_struct of target mm
1598  * @start:	starting user address
1599  * @nr_pages:	number of pages from start to pin
1600  * @gup_flags:	flags modifying pin behaviour
1601  * @pages:	array that receives pointers to the pages pinned.
1602  *		Should be at least nr_pages long. Or NULL, if caller
1603  *		only intends to ensure the pages are faulted in.
1604  * @vmas:	array of pointers to vmas corresponding to each page.
1605  *		Or NULL if the caller does not require them.
1606  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1607  *
1608  * Returns number of pages pinned. This may be fewer than the number
1609  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1610  * were pinned, returns -errno. Each page returned must be released
1611  * with a put_page() call when it is finished with. vmas will only
1612  * remain valid while mmap_sem is held.
1613  *
1614  * Must be called with mmap_sem held for read or write.
1615  *
1616  * __get_user_pages walks a process's page tables and takes a reference to
1617  * each struct page that each user address corresponds to at a given
1618  * instant. That is, it takes the page that would be accessed if a user
1619  * thread accesses the given user virtual address at that instant.
1620  *
1621  * This does not guarantee that the page exists in the user mappings when
1622  * __get_user_pages returns, and there may even be a completely different
1623  * page there in some cases (eg. if mmapped pagecache has been invalidated
1624  * and subsequently re faulted). However it does guarantee that the page
1625  * won't be freed completely. And mostly callers simply care that the page
1626  * contains data that was valid *at some point in time*. Typically, an IO
1627  * or similar operation cannot guarantee anything stronger anyway because
1628  * locks can't be held over the syscall boundary.
1629  *
1630  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1631  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1632  * appropriate) must be called after the page is finished with, and
1633  * before put_page is called.
1634  *
1635  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1636  * or mmap_sem contention, and if waiting is needed to pin all pages,
1637  * *@nonblocking will be set to 0.
1638  *
1639  * In most cases, get_user_pages or get_user_pages_fast should be used
1640  * instead of __get_user_pages. __get_user_pages should be used only if
1641  * you need some special @gup_flags.
1642  */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)1643 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1644 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1645 		     struct page **pages, struct vm_area_struct **vmas,
1646 		     int *nonblocking)
1647 {
1648 	int i;
1649 	unsigned long vm_flags;
1650 
1651 	if (nr_pages <= 0)
1652 		return 0;
1653 
1654 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1655 
1656 	/*
1657 	 * Require read or write permissions.
1658 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1659 	 */
1660 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1661 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1662 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1663 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1664 	i = 0;
1665 
1666 	do {
1667 		struct vm_area_struct *vma;
1668 
1669 		vma = find_extend_vma(mm, start);
1670 		if (!vma && in_gate_area(mm, start)) {
1671 			unsigned long pg = start & PAGE_MASK;
1672 			pgd_t *pgd;
1673 			pud_t *pud;
1674 			pmd_t *pmd;
1675 			pte_t *pte;
1676 
1677 			/* user gate pages are read-only */
1678 			if (gup_flags & FOLL_WRITE)
1679 				return i ? : -EFAULT;
1680 			if (pg > TASK_SIZE)
1681 				pgd = pgd_offset_k(pg);
1682 			else
1683 				pgd = pgd_offset_gate(mm, pg);
1684 			BUG_ON(pgd_none(*pgd));
1685 			pud = pud_offset(pgd, pg);
1686 			BUG_ON(pud_none(*pud));
1687 			pmd = pmd_offset(pud, pg);
1688 			if (pmd_none(*pmd))
1689 				return i ? : -EFAULT;
1690 			VM_BUG_ON(pmd_trans_huge(*pmd));
1691 			pte = pte_offset_map(pmd, pg);
1692 			if (pte_none(*pte)) {
1693 				pte_unmap(pte);
1694 				return i ? : -EFAULT;
1695 			}
1696 			vma = get_gate_vma(mm);
1697 			if (pages) {
1698 				struct page *page;
1699 
1700 				page = vm_normal_page(vma, start, *pte);
1701 				if (!page) {
1702 					if (!(gup_flags & FOLL_DUMP) &&
1703 					     is_zero_pfn(pte_pfn(*pte)))
1704 						page = pte_page(*pte);
1705 					else {
1706 						pte_unmap(pte);
1707 						return i ? : -EFAULT;
1708 					}
1709 				}
1710 				pages[i] = page;
1711 				get_page(page);
1712 			}
1713 			pte_unmap(pte);
1714 			goto next_page;
1715 		}
1716 
1717 		if (!vma ||
1718 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1719 		    !(vm_flags & vma->vm_flags))
1720 			return i ? : -EFAULT;
1721 
1722 		if (is_vm_hugetlb_page(vma)) {
1723 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1724 					&start, &nr_pages, i, gup_flags);
1725 			continue;
1726 		}
1727 
1728 		do {
1729 			struct page *page;
1730 			unsigned int foll_flags = gup_flags;
1731 
1732 			/*
1733 			 * If we have a pending SIGKILL, don't keep faulting
1734 			 * pages and potentially allocating memory.
1735 			 */
1736 			if (unlikely(fatal_signal_pending(current)))
1737 				return i ? i : -ERESTARTSYS;
1738 
1739 			cond_resched();
1740 			while (!(page = follow_page(vma, start, foll_flags))) {
1741 				int ret;
1742 				unsigned int fault_flags = 0;
1743 
1744 				/* For mlock, just skip the stack guard page. */
1745 				if (foll_flags & FOLL_MLOCK) {
1746 					if (stack_guard_page(vma, start))
1747 						goto next_page;
1748 				}
1749 				if (foll_flags & FOLL_WRITE)
1750 					fault_flags |= FAULT_FLAG_WRITE;
1751 				if (nonblocking)
1752 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1753 				if (foll_flags & FOLL_NOWAIT)
1754 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1755 
1756 				ret = handle_mm_fault(mm, vma, start,
1757 							fault_flags);
1758 
1759 				if (ret & VM_FAULT_ERROR) {
1760 					if (ret & VM_FAULT_OOM)
1761 						return i ? i : -ENOMEM;
1762 					if (ret & (VM_FAULT_HWPOISON |
1763 						   VM_FAULT_HWPOISON_LARGE)) {
1764 						if (i)
1765 							return i;
1766 						else if (gup_flags & FOLL_HWPOISON)
1767 							return -EHWPOISON;
1768 						else
1769 							return -EFAULT;
1770 					}
1771 					if (ret & VM_FAULT_SIGBUS)
1772 						return i ? i : -EFAULT;
1773 					BUG();
1774 				}
1775 
1776 				if (tsk) {
1777 					if (ret & VM_FAULT_MAJOR)
1778 						tsk->maj_flt++;
1779 					else
1780 						tsk->min_flt++;
1781 				}
1782 
1783 				if (ret & VM_FAULT_RETRY) {
1784 					if (nonblocking)
1785 						*nonblocking = 0;
1786 					return i;
1787 				}
1788 
1789 				/*
1790 				 * The VM_FAULT_WRITE bit tells us that
1791 				 * do_wp_page has broken COW when necessary,
1792 				 * even if maybe_mkwrite decided not to set
1793 				 * pte_write. We can thus safely do subsequent
1794 				 * page lookups as if they were reads. But only
1795 				 * do so when looping for pte_write is futile:
1796 				 * in some cases userspace may also be wanting
1797 				 * to write to the gotten user page, which a
1798 				 * read fault here might prevent (a readonly
1799 				 * page might get reCOWed by userspace write).
1800 				 */
1801 				if ((ret & VM_FAULT_WRITE) &&
1802 				    !(vma->vm_flags & VM_WRITE))
1803 					foll_flags &= ~FOLL_WRITE;
1804 
1805 				cond_resched();
1806 			}
1807 			if (IS_ERR(page))
1808 				return i ? i : PTR_ERR(page);
1809 			if (pages) {
1810 				pages[i] = page;
1811 
1812 				flush_anon_page(vma, page, start);
1813 				flush_dcache_page(page);
1814 			}
1815 next_page:
1816 			if (vmas)
1817 				vmas[i] = vma;
1818 			i++;
1819 			start += PAGE_SIZE;
1820 			nr_pages--;
1821 		} while (nr_pages && start < vma->vm_end);
1822 	} while (nr_pages);
1823 	return i;
1824 }
1825 EXPORT_SYMBOL(__get_user_pages);
1826 
1827 /*
1828  * fixup_user_fault() - manually resolve a user page fault
1829  * @tsk:	the task_struct to use for page fault accounting, or
1830  *		NULL if faults are not to be recorded.
1831  * @mm:		mm_struct of target mm
1832  * @address:	user address
1833  * @fault_flags:flags to pass down to handle_mm_fault()
1834  *
1835  * This is meant to be called in the specific scenario where for locking reasons
1836  * we try to access user memory in atomic context (within a pagefault_disable()
1837  * section), this returns -EFAULT, and we want to resolve the user fault before
1838  * trying again.
1839  *
1840  * Typically this is meant to be used by the futex code.
1841  *
1842  * The main difference with get_user_pages() is that this function will
1843  * unconditionally call handle_mm_fault() which will in turn perform all the
1844  * necessary SW fixup of the dirty and young bits in the PTE, while
1845  * handle_mm_fault() only guarantees to update these in the struct page.
1846  *
1847  * This is important for some architectures where those bits also gate the
1848  * access permission to the page because they are maintained in software.  On
1849  * such architectures, gup() will not be enough to make a subsequent access
1850  * succeed.
1851  *
1852  * This should be called with the mm_sem held for read.
1853  */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1854 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1855 		     unsigned long address, unsigned int fault_flags)
1856 {
1857 	struct vm_area_struct *vma;
1858 	int ret;
1859 
1860 	vma = find_extend_vma(mm, address);
1861 	if (!vma || address < vma->vm_start)
1862 		return -EFAULT;
1863 
1864 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1865 	if (ret & VM_FAULT_ERROR) {
1866 		if (ret & VM_FAULT_OOM)
1867 			return -ENOMEM;
1868 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1869 			return -EHWPOISON;
1870 		if (ret & VM_FAULT_SIGBUS)
1871 			return -EFAULT;
1872 		BUG();
1873 	}
1874 	if (tsk) {
1875 		if (ret & VM_FAULT_MAJOR)
1876 			tsk->maj_flt++;
1877 		else
1878 			tsk->min_flt++;
1879 	}
1880 	return 0;
1881 }
1882 
1883 /*
1884  * get_user_pages() - pin user pages in memory
1885  * @tsk:	the task_struct to use for page fault accounting, or
1886  *		NULL if faults are not to be recorded.
1887  * @mm:		mm_struct of target mm
1888  * @start:	starting user address
1889  * @nr_pages:	number of pages from start to pin
1890  * @write:	whether pages will be written to by the caller
1891  * @force:	whether to force write access even if user mapping is
1892  *		readonly. This will result in the page being COWed even
1893  *		in MAP_SHARED mappings. You do not want this.
1894  * @pages:	array that receives pointers to the pages pinned.
1895  *		Should be at least nr_pages long. Or NULL, if caller
1896  *		only intends to ensure the pages are faulted in.
1897  * @vmas:	array of pointers to vmas corresponding to each page.
1898  *		Or NULL if the caller does not require them.
1899  *
1900  * Returns number of pages pinned. This may be fewer than the number
1901  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1902  * were pinned, returns -errno. Each page returned must be released
1903  * with a put_page() call when it is finished with. vmas will only
1904  * remain valid while mmap_sem is held.
1905  *
1906  * Must be called with mmap_sem held for read or write.
1907  *
1908  * get_user_pages walks a process's page tables and takes a reference to
1909  * each struct page that each user address corresponds to at a given
1910  * instant. That is, it takes the page that would be accessed if a user
1911  * thread accesses the given user virtual address at that instant.
1912  *
1913  * This does not guarantee that the page exists in the user mappings when
1914  * get_user_pages returns, and there may even be a completely different
1915  * page there in some cases (eg. if mmapped pagecache has been invalidated
1916  * and subsequently re faulted). However it does guarantee that the page
1917  * won't be freed completely. And mostly callers simply care that the page
1918  * contains data that was valid *at some point in time*. Typically, an IO
1919  * or similar operation cannot guarantee anything stronger anyway because
1920  * locks can't be held over the syscall boundary.
1921  *
1922  * If write=0, the page must not be written to. If the page is written to,
1923  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1924  * after the page is finished with, and before put_page is called.
1925  *
1926  * get_user_pages is typically used for fewer-copy IO operations, to get a
1927  * handle on the memory by some means other than accesses via the user virtual
1928  * addresses. The pages may be submitted for DMA to devices or accessed via
1929  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1930  * use the correct cache flushing APIs.
1931  *
1932  * See also get_user_pages_fast, for performance critical applications.
1933  */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)1934 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1935 		unsigned long start, int nr_pages, int write, int force,
1936 		struct page **pages, struct vm_area_struct **vmas)
1937 {
1938 	int flags = FOLL_TOUCH;
1939 
1940 	if (pages)
1941 		flags |= FOLL_GET;
1942 	if (write)
1943 		flags |= FOLL_WRITE;
1944 	if (force)
1945 		flags |= FOLL_FORCE;
1946 
1947 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1948 				NULL);
1949 }
1950 EXPORT_SYMBOL(get_user_pages);
1951 
1952 /**
1953  * get_dump_page() - pin user page in memory while writing it to core dump
1954  * @addr: user address
1955  *
1956  * Returns struct page pointer of user page pinned for dump,
1957  * to be freed afterwards by page_cache_release() or put_page().
1958  *
1959  * Returns NULL on any kind of failure - a hole must then be inserted into
1960  * the corefile, to preserve alignment with its headers; and also returns
1961  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1962  * allowing a hole to be left in the corefile to save diskspace.
1963  *
1964  * Called without mmap_sem, but after all other threads have been killed.
1965  */
1966 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1967 struct page *get_dump_page(unsigned long addr)
1968 {
1969 	struct vm_area_struct *vma;
1970 	struct page *page;
1971 
1972 	if (__get_user_pages(current, current->mm, addr, 1,
1973 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1974 			     NULL) < 1)
1975 		return NULL;
1976 	flush_cache_page(vma, addr, page_to_pfn(page));
1977 	return page;
1978 }
1979 #endif /* CONFIG_ELF_CORE */
1980 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1981 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1982 			spinlock_t **ptl)
1983 {
1984 	pgd_t * pgd = pgd_offset(mm, addr);
1985 	pud_t * pud = pud_alloc(mm, pgd, addr);
1986 	if (pud) {
1987 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1988 		if (pmd) {
1989 			VM_BUG_ON(pmd_trans_huge(*pmd));
1990 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1991 		}
1992 	}
1993 	return NULL;
1994 }
1995 
1996 /*
1997  * This is the old fallback for page remapping.
1998  *
1999  * For historical reasons, it only allows reserved pages. Only
2000  * old drivers should use this, and they needed to mark their
2001  * pages reserved for the old functions anyway.
2002  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2003 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2004 			struct page *page, pgprot_t prot)
2005 {
2006 	struct mm_struct *mm = vma->vm_mm;
2007 	int retval;
2008 	pte_t *pte;
2009 	spinlock_t *ptl;
2010 
2011 	retval = -EINVAL;
2012 	if (PageAnon(page))
2013 		goto out;
2014 	retval = -ENOMEM;
2015 	flush_dcache_page(page);
2016 	pte = get_locked_pte(mm, addr, &ptl);
2017 	if (!pte)
2018 		goto out;
2019 	retval = -EBUSY;
2020 	if (!pte_none(*pte))
2021 		goto out_unlock;
2022 
2023 	/* Ok, finally just insert the thing.. */
2024 	get_page(page);
2025 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2026 	page_add_file_rmap(page);
2027 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2028 
2029 	retval = 0;
2030 	pte_unmap_unlock(pte, ptl);
2031 	return retval;
2032 out_unlock:
2033 	pte_unmap_unlock(pte, ptl);
2034 out:
2035 	return retval;
2036 }
2037 
2038 /**
2039  * vm_insert_page - insert single page into user vma
2040  * @vma: user vma to map to
2041  * @addr: target user address of this page
2042  * @page: source kernel page
2043  *
2044  * This allows drivers to insert individual pages they've allocated
2045  * into a user vma.
2046  *
2047  * The page has to be a nice clean _individual_ kernel allocation.
2048  * If you allocate a compound page, you need to have marked it as
2049  * such (__GFP_COMP), or manually just split the page up yourself
2050  * (see split_page()).
2051  *
2052  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2053  * took an arbitrary page protection parameter. This doesn't allow
2054  * that. Your vma protection will have to be set up correctly, which
2055  * means that if you want a shared writable mapping, you'd better
2056  * ask for a shared writable mapping!
2057  *
2058  * The page does not need to be reserved.
2059  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2060 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2061 			struct page *page)
2062 {
2063 	if (addr < vma->vm_start || addr >= vma->vm_end)
2064 		return -EFAULT;
2065 	if (!page_count(page))
2066 		return -EINVAL;
2067 	vma->vm_flags |= VM_INSERTPAGE;
2068 	return insert_page(vma, addr, page, vma->vm_page_prot);
2069 }
2070 EXPORT_SYMBOL(vm_insert_page);
2071 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)2072 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2073 			unsigned long pfn, pgprot_t prot)
2074 {
2075 	struct mm_struct *mm = vma->vm_mm;
2076 	int retval;
2077 	pte_t *pte, entry;
2078 	spinlock_t *ptl;
2079 
2080 	retval = -ENOMEM;
2081 	pte = get_locked_pte(mm, addr, &ptl);
2082 	if (!pte)
2083 		goto out;
2084 	retval = -EBUSY;
2085 	if (!pte_none(*pte))
2086 		goto out_unlock;
2087 
2088 	/* Ok, finally just insert the thing.. */
2089 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2090 	set_pte_at(mm, addr, pte, entry);
2091 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2092 
2093 	retval = 0;
2094 out_unlock:
2095 	pte_unmap_unlock(pte, ptl);
2096 out:
2097 	return retval;
2098 }
2099 
2100 /**
2101  * vm_insert_pfn - insert single pfn into user vma
2102  * @vma: user vma to map to
2103  * @addr: target user address of this page
2104  * @pfn: source kernel pfn
2105  *
2106  * Similar to vm_inert_page, this allows drivers to insert individual pages
2107  * they've allocated into a user vma. Same comments apply.
2108  *
2109  * This function should only be called from a vm_ops->fault handler, and
2110  * in that case the handler should return NULL.
2111  *
2112  * vma cannot be a COW mapping.
2113  *
2114  * As this is called only for pages that do not currently exist, we
2115  * do not need to flush old virtual caches or the TLB.
2116  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2117 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 			unsigned long pfn)
2119 {
2120 	int ret;
2121 	pgprot_t pgprot = vma->vm_page_prot;
2122 	/*
2123 	 * Technically, architectures with pte_special can avoid all these
2124 	 * restrictions (same for remap_pfn_range).  However we would like
2125 	 * consistency in testing and feature parity among all, so we should
2126 	 * try to keep these invariants in place for everybody.
2127 	 */
2128 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2129 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2130 						(VM_PFNMAP|VM_MIXEDMAP));
2131 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2132 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2133 
2134 	if (addr < vma->vm_start || addr >= vma->vm_end)
2135 		return -EFAULT;
2136 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2137 		return -EINVAL;
2138 
2139 	ret = insert_pfn(vma, addr, pfn, pgprot);
2140 
2141 	if (ret)
2142 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2143 
2144 	return ret;
2145 }
2146 EXPORT_SYMBOL(vm_insert_pfn);
2147 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2148 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2149 			unsigned long pfn)
2150 {
2151 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2152 
2153 	if (addr < vma->vm_start || addr >= vma->vm_end)
2154 		return -EFAULT;
2155 
2156 	/*
2157 	 * If we don't have pte special, then we have to use the pfn_valid()
2158 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2159 	 * refcount the page if pfn_valid is true (hence insert_page rather
2160 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2161 	 * without pte special, it would there be refcounted as a normal page.
2162 	 */
2163 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2164 		struct page *page;
2165 
2166 		page = pfn_to_page(pfn);
2167 		return insert_page(vma, addr, page, vma->vm_page_prot);
2168 	}
2169 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2170 }
2171 EXPORT_SYMBOL(vm_insert_mixed);
2172 
2173 /*
2174  * maps a range of physical memory into the requested pages. the old
2175  * mappings are removed. any references to nonexistent pages results
2176  * in null mappings (currently treated as "copy-on-access")
2177  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2178 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2179 			unsigned long addr, unsigned long end,
2180 			unsigned long pfn, pgprot_t prot)
2181 {
2182 	pte_t *pte;
2183 	spinlock_t *ptl;
2184 
2185 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2186 	if (!pte)
2187 		return -ENOMEM;
2188 	arch_enter_lazy_mmu_mode();
2189 	do {
2190 		BUG_ON(!pte_none(*pte));
2191 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2192 		pfn++;
2193 	} while (pte++, addr += PAGE_SIZE, addr != end);
2194 	arch_leave_lazy_mmu_mode();
2195 	pte_unmap_unlock(pte - 1, ptl);
2196 	return 0;
2197 }
2198 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2199 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2200 			unsigned long addr, unsigned long end,
2201 			unsigned long pfn, pgprot_t prot)
2202 {
2203 	pmd_t *pmd;
2204 	unsigned long next;
2205 
2206 	pfn -= addr >> PAGE_SHIFT;
2207 	pmd = pmd_alloc(mm, pud, addr);
2208 	if (!pmd)
2209 		return -ENOMEM;
2210 	VM_BUG_ON(pmd_trans_huge(*pmd));
2211 	do {
2212 		next = pmd_addr_end(addr, end);
2213 		if (remap_pte_range(mm, pmd, addr, next,
2214 				pfn + (addr >> PAGE_SHIFT), prot))
2215 			return -ENOMEM;
2216 	} while (pmd++, addr = next, addr != end);
2217 	return 0;
2218 }
2219 
remap_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2220 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2221 			unsigned long addr, unsigned long end,
2222 			unsigned long pfn, pgprot_t prot)
2223 {
2224 	pud_t *pud;
2225 	unsigned long next;
2226 
2227 	pfn -= addr >> PAGE_SHIFT;
2228 	pud = pud_alloc(mm, pgd, addr);
2229 	if (!pud)
2230 		return -ENOMEM;
2231 	do {
2232 		next = pud_addr_end(addr, end);
2233 		if (remap_pmd_range(mm, pud, addr, next,
2234 				pfn + (addr >> PAGE_SHIFT), prot))
2235 			return -ENOMEM;
2236 	} while (pud++, addr = next, addr != end);
2237 	return 0;
2238 }
2239 
2240 /**
2241  * remap_pfn_range - remap kernel memory to userspace
2242  * @vma: user vma to map to
2243  * @addr: target user address to start at
2244  * @pfn: physical address of kernel memory
2245  * @size: size of map area
2246  * @prot: page protection flags for this mapping
2247  *
2248  *  Note: this is only safe if the mm semaphore is held when called.
2249  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2250 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2251 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2252 {
2253 	pgd_t *pgd;
2254 	unsigned long next;
2255 	unsigned long end = addr + PAGE_ALIGN(size);
2256 	struct mm_struct *mm = vma->vm_mm;
2257 	int err;
2258 
2259 	/*
2260 	 * Physically remapped pages are special. Tell the
2261 	 * rest of the world about it:
2262 	 *   VM_IO tells people not to look at these pages
2263 	 *	(accesses can have side effects).
2264 	 *   VM_RESERVED is specified all over the place, because
2265 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2266 	 *	in 2.6 the LRU scan won't even find its pages, so this
2267 	 *	flag means no more than count its pages in reserved_vm,
2268 	 * 	and omit it from core dump, even when VM_IO turned off.
2269 	 *   VM_PFNMAP tells the core MM that the base pages are just
2270 	 *	raw PFN mappings, and do not have a "struct page" associated
2271 	 *	with them.
2272 	 *
2273 	 * There's a horrible special case to handle copy-on-write
2274 	 * behaviour that some programs depend on. We mark the "original"
2275 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2276 	 */
2277 	if (addr == vma->vm_start && end == vma->vm_end) {
2278 		vma->vm_pgoff = pfn;
2279 		vma->vm_flags |= VM_PFN_AT_MMAP;
2280 	} else if (is_cow_mapping(vma->vm_flags))
2281 		return -EINVAL;
2282 
2283 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2284 
2285 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2286 	if (err) {
2287 		/*
2288 		 * To indicate that track_pfn related cleanup is not
2289 		 * needed from higher level routine calling unmap_vmas
2290 		 */
2291 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2292 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2293 		return -EINVAL;
2294 	}
2295 
2296 	BUG_ON(addr >= end);
2297 	pfn -= addr >> PAGE_SHIFT;
2298 	pgd = pgd_offset(mm, addr);
2299 	flush_cache_range(vma, addr, end);
2300 	do {
2301 		next = pgd_addr_end(addr, end);
2302 		err = remap_pud_range(mm, pgd, addr, next,
2303 				pfn + (addr >> PAGE_SHIFT), prot);
2304 		if (err)
2305 			break;
2306 	} while (pgd++, addr = next, addr != end);
2307 
2308 	if (err)
2309 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2310 
2311 	return err;
2312 }
2313 EXPORT_SYMBOL(remap_pfn_range);
2314 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2315 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2316 				     unsigned long addr, unsigned long end,
2317 				     pte_fn_t fn, void *data)
2318 {
2319 	pte_t *pte;
2320 	int err;
2321 	pgtable_t token;
2322 	spinlock_t *uninitialized_var(ptl);
2323 
2324 	pte = (mm == &init_mm) ?
2325 		pte_alloc_kernel(pmd, addr) :
2326 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2327 	if (!pte)
2328 		return -ENOMEM;
2329 
2330 	BUG_ON(pmd_huge(*pmd));
2331 
2332 	arch_enter_lazy_mmu_mode();
2333 
2334 	token = pmd_pgtable(*pmd);
2335 
2336 	do {
2337 		err = fn(pte++, token, addr, data);
2338 		if (err)
2339 			break;
2340 	} while (addr += PAGE_SIZE, addr != end);
2341 
2342 	arch_leave_lazy_mmu_mode();
2343 
2344 	if (mm != &init_mm)
2345 		pte_unmap_unlock(pte-1, ptl);
2346 	return err;
2347 }
2348 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2349 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2350 				     unsigned long addr, unsigned long end,
2351 				     pte_fn_t fn, void *data)
2352 {
2353 	pmd_t *pmd;
2354 	unsigned long next;
2355 	int err;
2356 
2357 	BUG_ON(pud_huge(*pud));
2358 
2359 	pmd = pmd_alloc(mm, pud, addr);
2360 	if (!pmd)
2361 		return -ENOMEM;
2362 	do {
2363 		next = pmd_addr_end(addr, end);
2364 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2365 		if (err)
2366 			break;
2367 	} while (pmd++, addr = next, addr != end);
2368 	return err;
2369 }
2370 
apply_to_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2371 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2372 				     unsigned long addr, unsigned long end,
2373 				     pte_fn_t fn, void *data)
2374 {
2375 	pud_t *pud;
2376 	unsigned long next;
2377 	int err;
2378 
2379 	pud = pud_alloc(mm, pgd, addr);
2380 	if (!pud)
2381 		return -ENOMEM;
2382 	do {
2383 		next = pud_addr_end(addr, end);
2384 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2385 		if (err)
2386 			break;
2387 	} while (pud++, addr = next, addr != end);
2388 	return err;
2389 }
2390 
2391 /*
2392  * Scan a region of virtual memory, filling in page tables as necessary
2393  * and calling a provided function on each leaf page table.
2394  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2395 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2396 			unsigned long size, pte_fn_t fn, void *data)
2397 {
2398 	pgd_t *pgd;
2399 	unsigned long next;
2400 	unsigned long end = addr + size;
2401 	int err;
2402 
2403 	BUG_ON(addr >= end);
2404 	pgd = pgd_offset(mm, addr);
2405 	do {
2406 		next = pgd_addr_end(addr, end);
2407 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2408 		if (err)
2409 			break;
2410 	} while (pgd++, addr = next, addr != end);
2411 
2412 	return err;
2413 }
2414 EXPORT_SYMBOL_GPL(apply_to_page_range);
2415 
2416 /*
2417  * handle_pte_fault chooses page fault handler according to an entry
2418  * which was read non-atomically.  Before making any commitment, on
2419  * those architectures or configurations (e.g. i386 with PAE) which
2420  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2421  * must check under lock before unmapping the pte and proceeding
2422  * (but do_wp_page is only called after already making such a check;
2423  * and do_anonymous_page can safely check later on).
2424  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2425 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2426 				pte_t *page_table, pte_t orig_pte)
2427 {
2428 	int same = 1;
2429 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2430 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2431 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2432 		spin_lock(ptl);
2433 		same = pte_same(*page_table, orig_pte);
2434 		spin_unlock(ptl);
2435 	}
2436 #endif
2437 	pte_unmap(page_table);
2438 	return same;
2439 }
2440 
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2441 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2442 {
2443 	/*
2444 	 * If the source page was a PFN mapping, we don't have
2445 	 * a "struct page" for it. We do a best-effort copy by
2446 	 * just copying from the original user address. If that
2447 	 * fails, we just zero-fill it. Live with it.
2448 	 */
2449 	if (unlikely(!src)) {
2450 		void *kaddr = kmap_atomic(dst, KM_USER0);
2451 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2452 
2453 		/*
2454 		 * This really shouldn't fail, because the page is there
2455 		 * in the page tables. But it might just be unreadable,
2456 		 * in which case we just give up and fill the result with
2457 		 * zeroes.
2458 		 */
2459 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2460 			clear_page(kaddr);
2461 		kunmap_atomic(kaddr, KM_USER0);
2462 		flush_dcache_page(dst);
2463 	} else
2464 		copy_user_highpage(dst, src, va, vma);
2465 }
2466 
2467 /*
2468  * This routine handles present pages, when users try to write
2469  * to a shared page. It is done by copying the page to a new address
2470  * and decrementing the shared-page counter for the old page.
2471  *
2472  * Note that this routine assumes that the protection checks have been
2473  * done by the caller (the low-level page fault routine in most cases).
2474  * Thus we can safely just mark it writable once we've done any necessary
2475  * COW.
2476  *
2477  * We also mark the page dirty at this point even though the page will
2478  * change only once the write actually happens. This avoids a few races,
2479  * and potentially makes it more efficient.
2480  *
2481  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2482  * but allow concurrent faults), with pte both mapped and locked.
2483  * We return with mmap_sem still held, but pte unmapped and unlocked.
2484  */
do_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte)2485 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2486 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2487 		spinlock_t *ptl, pte_t orig_pte)
2488 	__releases(ptl)
2489 {
2490 	struct page *old_page, *new_page;
2491 	pte_t entry;
2492 	int ret = 0;
2493 	int page_mkwrite = 0;
2494 	struct page *dirty_page = NULL;
2495 
2496 	old_page = vm_normal_page(vma, address, orig_pte);
2497 	if (!old_page) {
2498 		/*
2499 		 * VM_MIXEDMAP !pfn_valid() case
2500 		 *
2501 		 * We should not cow pages in a shared writeable mapping.
2502 		 * Just mark the pages writable as we can't do any dirty
2503 		 * accounting on raw pfn maps.
2504 		 */
2505 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2506 				     (VM_WRITE|VM_SHARED))
2507 			goto reuse;
2508 		goto gotten;
2509 	}
2510 
2511 	/*
2512 	 * Take out anonymous pages first, anonymous shared vmas are
2513 	 * not dirty accountable.
2514 	 */
2515 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2516 		if (!trylock_page(old_page)) {
2517 			page_cache_get(old_page);
2518 			pte_unmap_unlock(page_table, ptl);
2519 			lock_page(old_page);
2520 			page_table = pte_offset_map_lock(mm, pmd, address,
2521 							 &ptl);
2522 			if (!pte_same(*page_table, orig_pte)) {
2523 				unlock_page(old_page);
2524 				goto unlock;
2525 			}
2526 			page_cache_release(old_page);
2527 		}
2528 		if (reuse_swap_page(old_page)) {
2529 			/*
2530 			 * The page is all ours.  Move it to our anon_vma so
2531 			 * the rmap code will not search our parent or siblings.
2532 			 * Protected against the rmap code by the page lock.
2533 			 */
2534 			page_move_anon_rmap(old_page, vma, address);
2535 			unlock_page(old_page);
2536 			goto reuse;
2537 		}
2538 		unlock_page(old_page);
2539 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2540 					(VM_WRITE|VM_SHARED))) {
2541 		/*
2542 		 * Only catch write-faults on shared writable pages,
2543 		 * read-only shared pages can get COWed by
2544 		 * get_user_pages(.write=1, .force=1).
2545 		 */
2546 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2547 			struct vm_fault vmf;
2548 			int tmp;
2549 
2550 			vmf.virtual_address = (void __user *)(address &
2551 								PAGE_MASK);
2552 			vmf.pgoff = old_page->index;
2553 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2554 			vmf.page = old_page;
2555 
2556 			/*
2557 			 * Notify the address space that the page is about to
2558 			 * become writable so that it can prohibit this or wait
2559 			 * for the page to get into an appropriate state.
2560 			 *
2561 			 * We do this without the lock held, so that it can
2562 			 * sleep if it needs to.
2563 			 */
2564 			page_cache_get(old_page);
2565 			pte_unmap_unlock(page_table, ptl);
2566 
2567 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2568 			if (unlikely(tmp &
2569 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2570 				ret = tmp;
2571 				goto unwritable_page;
2572 			}
2573 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2574 				lock_page(old_page);
2575 				if (!old_page->mapping) {
2576 					ret = 0; /* retry the fault */
2577 					unlock_page(old_page);
2578 					goto unwritable_page;
2579 				}
2580 			} else
2581 				VM_BUG_ON(!PageLocked(old_page));
2582 
2583 			/*
2584 			 * Since we dropped the lock we need to revalidate
2585 			 * the PTE as someone else may have changed it.  If
2586 			 * they did, we just return, as we can count on the
2587 			 * MMU to tell us if they didn't also make it writable.
2588 			 */
2589 			page_table = pte_offset_map_lock(mm, pmd, address,
2590 							 &ptl);
2591 			if (!pte_same(*page_table, orig_pte)) {
2592 				unlock_page(old_page);
2593 				goto unlock;
2594 			}
2595 
2596 			page_mkwrite = 1;
2597 		}
2598 		dirty_page = old_page;
2599 		get_page(dirty_page);
2600 
2601 reuse:
2602 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2603 		entry = pte_mkyoung(orig_pte);
2604 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2605 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2606 			update_mmu_cache(vma, address, page_table);
2607 		pte_unmap_unlock(page_table, ptl);
2608 		ret |= VM_FAULT_WRITE;
2609 
2610 		if (!dirty_page)
2611 			return ret;
2612 
2613 		/*
2614 		 * Yes, Virginia, this is actually required to prevent a race
2615 		 * with clear_page_dirty_for_io() from clearing the page dirty
2616 		 * bit after it clear all dirty ptes, but before a racing
2617 		 * do_wp_page installs a dirty pte.
2618 		 *
2619 		 * __do_fault is protected similarly.
2620 		 */
2621 		if (!page_mkwrite) {
2622 			wait_on_page_locked(dirty_page);
2623 			set_page_dirty_balance(dirty_page, page_mkwrite);
2624 		}
2625 		put_page(dirty_page);
2626 		if (page_mkwrite) {
2627 			struct address_space *mapping = dirty_page->mapping;
2628 
2629 			set_page_dirty(dirty_page);
2630 			unlock_page(dirty_page);
2631 			page_cache_release(dirty_page);
2632 			if (mapping)	{
2633 				/*
2634 				 * Some device drivers do not set page.mapping
2635 				 * but still dirty their pages
2636 				 */
2637 				balance_dirty_pages_ratelimited(mapping);
2638 			}
2639 		}
2640 
2641 		/* file_update_time outside page_lock */
2642 		if (vma->vm_file)
2643 			file_update_time(vma->vm_file);
2644 
2645 		return ret;
2646 	}
2647 
2648 	/*
2649 	 * Ok, we need to copy. Oh, well..
2650 	 */
2651 	page_cache_get(old_page);
2652 gotten:
2653 	pte_unmap_unlock(page_table, ptl);
2654 
2655 	if (unlikely(anon_vma_prepare(vma)))
2656 		goto oom;
2657 
2658 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2659 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2660 		if (!new_page)
2661 			goto oom;
2662 	} else {
2663 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2664 		if (!new_page)
2665 			goto oom;
2666 		cow_user_page(new_page, old_page, address, vma);
2667 	}
2668 	__SetPageUptodate(new_page);
2669 
2670 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2671 		goto oom_free_new;
2672 
2673 	/*
2674 	 * Re-check the pte - we dropped the lock
2675 	 */
2676 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2677 	if (likely(pte_same(*page_table, orig_pte))) {
2678 		if (old_page) {
2679 			if (!PageAnon(old_page)) {
2680 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2681 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2682 			}
2683 		} else
2684 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2685 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2686 		entry = mk_pte(new_page, vma->vm_page_prot);
2687 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2688 		/*
2689 		 * Clear the pte entry and flush it first, before updating the
2690 		 * pte with the new entry. This will avoid a race condition
2691 		 * seen in the presence of one thread doing SMC and another
2692 		 * thread doing COW.
2693 		 */
2694 		ptep_clear_flush(vma, address, page_table);
2695 		page_add_new_anon_rmap(new_page, vma, address);
2696 		/*
2697 		 * We call the notify macro here because, when using secondary
2698 		 * mmu page tables (such as kvm shadow page tables), we want the
2699 		 * new page to be mapped directly into the secondary page table.
2700 		 */
2701 		set_pte_at_notify(mm, address, page_table, entry);
2702 		update_mmu_cache(vma, address, page_table);
2703 		if (old_page) {
2704 			/*
2705 			 * Only after switching the pte to the new page may
2706 			 * we remove the mapcount here. Otherwise another
2707 			 * process may come and find the rmap count decremented
2708 			 * before the pte is switched to the new page, and
2709 			 * "reuse" the old page writing into it while our pte
2710 			 * here still points into it and can be read by other
2711 			 * threads.
2712 			 *
2713 			 * The critical issue is to order this
2714 			 * page_remove_rmap with the ptp_clear_flush above.
2715 			 * Those stores are ordered by (if nothing else,)
2716 			 * the barrier present in the atomic_add_negative
2717 			 * in page_remove_rmap.
2718 			 *
2719 			 * Then the TLB flush in ptep_clear_flush ensures that
2720 			 * no process can access the old page before the
2721 			 * decremented mapcount is visible. And the old page
2722 			 * cannot be reused until after the decremented
2723 			 * mapcount is visible. So transitively, TLBs to
2724 			 * old page will be flushed before it can be reused.
2725 			 */
2726 			page_remove_rmap(old_page);
2727 		}
2728 
2729 		/* Free the old page.. */
2730 		new_page = old_page;
2731 		ret |= VM_FAULT_WRITE;
2732 	} else
2733 		mem_cgroup_uncharge_page(new_page);
2734 
2735 	if (new_page)
2736 		page_cache_release(new_page);
2737 unlock:
2738 	pte_unmap_unlock(page_table, ptl);
2739 	if (old_page) {
2740 		/*
2741 		 * Don't let another task, with possibly unlocked vma,
2742 		 * keep the mlocked page.
2743 		 */
2744 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2745 			lock_page(old_page);	/* LRU manipulation */
2746 			munlock_vma_page(old_page);
2747 			unlock_page(old_page);
2748 		}
2749 		page_cache_release(old_page);
2750 	}
2751 	return ret;
2752 oom_free_new:
2753 	page_cache_release(new_page);
2754 oom:
2755 	if (old_page) {
2756 		if (page_mkwrite) {
2757 			unlock_page(old_page);
2758 			page_cache_release(old_page);
2759 		}
2760 		page_cache_release(old_page);
2761 	}
2762 	return VM_FAULT_OOM;
2763 
2764 unwritable_page:
2765 	page_cache_release(old_page);
2766 	return ret;
2767 }
2768 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2769 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2770 		unsigned long start_addr, unsigned long end_addr,
2771 		struct zap_details *details)
2772 {
2773 	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2774 }
2775 
unmap_mapping_range_tree(struct prio_tree_root * root,struct zap_details * details)2776 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2777 					    struct zap_details *details)
2778 {
2779 	struct vm_area_struct *vma;
2780 	struct prio_tree_iter iter;
2781 	pgoff_t vba, vea, zba, zea;
2782 
2783 	vma_prio_tree_foreach(vma, &iter, root,
2784 			details->first_index, details->last_index) {
2785 
2786 		vba = vma->vm_pgoff;
2787 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2788 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2789 		zba = details->first_index;
2790 		if (zba < vba)
2791 			zba = vba;
2792 		zea = details->last_index;
2793 		if (zea > vea)
2794 			zea = vea;
2795 
2796 		unmap_mapping_range_vma(vma,
2797 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2798 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2799 				details);
2800 	}
2801 }
2802 
unmap_mapping_range_list(struct list_head * head,struct zap_details * details)2803 static inline void unmap_mapping_range_list(struct list_head *head,
2804 					    struct zap_details *details)
2805 {
2806 	struct vm_area_struct *vma;
2807 
2808 	/*
2809 	 * In nonlinear VMAs there is no correspondence between virtual address
2810 	 * offset and file offset.  So we must perform an exhaustive search
2811 	 * across *all* the pages in each nonlinear VMA, not just the pages
2812 	 * whose virtual address lies outside the file truncation point.
2813 	 */
2814 	list_for_each_entry(vma, head, shared.vm_set.list) {
2815 		details->nonlinear_vma = vma;
2816 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2817 	}
2818 }
2819 
2820 /**
2821  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2822  * @mapping: the address space containing mmaps to be unmapped.
2823  * @holebegin: byte in first page to unmap, relative to the start of
2824  * the underlying file.  This will be rounded down to a PAGE_SIZE
2825  * boundary.  Note that this is different from truncate_pagecache(), which
2826  * must keep the partial page.  In contrast, we must get rid of
2827  * partial pages.
2828  * @holelen: size of prospective hole in bytes.  This will be rounded
2829  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2830  * end of the file.
2831  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2832  * but 0 when invalidating pagecache, don't throw away private data.
2833  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2834 void unmap_mapping_range(struct address_space *mapping,
2835 		loff_t const holebegin, loff_t const holelen, int even_cows)
2836 {
2837 	struct zap_details details;
2838 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2839 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2840 
2841 	/* Check for overflow. */
2842 	if (sizeof(holelen) > sizeof(hlen)) {
2843 		long long holeend =
2844 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2845 		if (holeend & ~(long long)ULONG_MAX)
2846 			hlen = ULONG_MAX - hba + 1;
2847 	}
2848 
2849 	details.check_mapping = even_cows? NULL: mapping;
2850 	details.nonlinear_vma = NULL;
2851 	details.first_index = hba;
2852 	details.last_index = hba + hlen - 1;
2853 	if (details.last_index < details.first_index)
2854 		details.last_index = ULONG_MAX;
2855 
2856 
2857 	mutex_lock(&mapping->i_mmap_mutex);
2858 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2859 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2860 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2861 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2862 	mutex_unlock(&mapping->i_mmap_mutex);
2863 }
2864 EXPORT_SYMBOL(unmap_mapping_range);
2865 
2866 /*
2867  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868  * but allow concurrent faults), and pte mapped but not yet locked.
2869  * We return with mmap_sem still held, but pte unmapped and unlocked.
2870  */
do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)2871 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2872 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2873 		unsigned int flags, pte_t orig_pte)
2874 {
2875 	spinlock_t *ptl;
2876 	struct page *page, *swapcache = NULL;
2877 	swp_entry_t entry;
2878 	pte_t pte;
2879 	int locked;
2880 	struct mem_cgroup *ptr;
2881 	int exclusive = 0;
2882 	int ret = 0;
2883 
2884 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2885 		goto out;
2886 
2887 	entry = pte_to_swp_entry(orig_pte);
2888 	if (unlikely(non_swap_entry(entry))) {
2889 		if (is_migration_entry(entry)) {
2890 			migration_entry_wait(mm, pmd, address);
2891 		} else if (is_hwpoison_entry(entry)) {
2892 			ret = VM_FAULT_HWPOISON;
2893 		} else {
2894 			print_bad_pte(vma, address, orig_pte, NULL);
2895 			ret = VM_FAULT_SIGBUS;
2896 		}
2897 		goto out;
2898 	}
2899 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2900 	page = lookup_swap_cache(entry);
2901 	if (!page) {
2902 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2903 		page = swapin_readahead(entry,
2904 					GFP_HIGHUSER_MOVABLE, vma, address);
2905 		if (!page) {
2906 			/*
2907 			 * Back out if somebody else faulted in this pte
2908 			 * while we released the pte lock.
2909 			 */
2910 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2911 			if (likely(pte_same(*page_table, orig_pte)))
2912 				ret = VM_FAULT_OOM;
2913 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914 			goto unlock;
2915 		}
2916 
2917 		/* Had to read the page from swap area: Major fault */
2918 		ret = VM_FAULT_MAJOR;
2919 		count_vm_event(PGMAJFAULT);
2920 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2921 	} else if (PageHWPoison(page)) {
2922 		/*
2923 		 * hwpoisoned dirty swapcache pages are kept for killing
2924 		 * owner processes (which may be unknown at hwpoison time)
2925 		 */
2926 		ret = VM_FAULT_HWPOISON;
2927 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2928 		goto out_release;
2929 	}
2930 
2931 	locked = lock_page_or_retry(page, mm, flags);
2932 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2933 	if (!locked) {
2934 		ret |= VM_FAULT_RETRY;
2935 		goto out_release;
2936 	}
2937 
2938 	/*
2939 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2940 	 * release the swapcache from under us.  The page pin, and pte_same
2941 	 * test below, are not enough to exclude that.  Even if it is still
2942 	 * swapcache, we need to check that the page's swap has not changed.
2943 	 */
2944 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2945 		goto out_page;
2946 
2947 	if (ksm_might_need_to_copy(page, vma, address)) {
2948 		swapcache = page;
2949 		page = ksm_does_need_to_copy(page, vma, address);
2950 
2951 		if (unlikely(!page)) {
2952 			ret = VM_FAULT_OOM;
2953 			page = swapcache;
2954 			swapcache = NULL;
2955 			goto out_page;
2956 		}
2957 	}
2958 
2959 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2960 		ret = VM_FAULT_OOM;
2961 		goto out_page;
2962 	}
2963 
2964 	/*
2965 	 * Back out if somebody else already faulted in this pte.
2966 	 */
2967 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2968 	if (unlikely(!pte_same(*page_table, orig_pte)))
2969 		goto out_nomap;
2970 
2971 	if (unlikely(!PageUptodate(page))) {
2972 		ret = VM_FAULT_SIGBUS;
2973 		goto out_nomap;
2974 	}
2975 
2976 	/*
2977 	 * The page isn't present yet, go ahead with the fault.
2978 	 *
2979 	 * Be careful about the sequence of operations here.
2980 	 * To get its accounting right, reuse_swap_page() must be called
2981 	 * while the page is counted on swap but not yet in mapcount i.e.
2982 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2983 	 * must be called after the swap_free(), or it will never succeed.
2984 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2985 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2986 	 * in page->private. In this case, a record in swap_cgroup  is silently
2987 	 * discarded at swap_free().
2988 	 */
2989 
2990 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2991 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2992 	pte = mk_pte(page, vma->vm_page_prot);
2993 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2994 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2995 		flags &= ~FAULT_FLAG_WRITE;
2996 		ret |= VM_FAULT_WRITE;
2997 		exclusive = 1;
2998 	}
2999 	flush_icache_page(vma, page);
3000 	set_pte_at(mm, address, page_table, pte);
3001 	do_page_add_anon_rmap(page, vma, address, exclusive);
3002 	/* It's better to call commit-charge after rmap is established */
3003 	mem_cgroup_commit_charge_swapin(page, ptr);
3004 
3005 	swap_free(entry);
3006 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3007 		try_to_free_swap(page);
3008 	unlock_page(page);
3009 	if (swapcache) {
3010 		/*
3011 		 * Hold the lock to avoid the swap entry to be reused
3012 		 * until we take the PT lock for the pte_same() check
3013 		 * (to avoid false positives from pte_same). For
3014 		 * further safety release the lock after the swap_free
3015 		 * so that the swap count won't change under a
3016 		 * parallel locked swapcache.
3017 		 */
3018 		unlock_page(swapcache);
3019 		page_cache_release(swapcache);
3020 	}
3021 
3022 	if (flags & FAULT_FLAG_WRITE) {
3023 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3024 		if (ret & VM_FAULT_ERROR)
3025 			ret &= VM_FAULT_ERROR;
3026 		goto out;
3027 	}
3028 
3029 	/* No need to invalidate - it was non-present before */
3030 	update_mmu_cache(vma, address, page_table);
3031 unlock:
3032 	pte_unmap_unlock(page_table, ptl);
3033 out:
3034 	return ret;
3035 out_nomap:
3036 	mem_cgroup_cancel_charge_swapin(ptr);
3037 	pte_unmap_unlock(page_table, ptl);
3038 out_page:
3039 	unlock_page(page);
3040 out_release:
3041 	page_cache_release(page);
3042 	if (swapcache) {
3043 		unlock_page(swapcache);
3044 		page_cache_release(swapcache);
3045 	}
3046 	return ret;
3047 }
3048 
3049 /*
3050  * This is like a special single-page "expand_{down|up}wards()",
3051  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3052  * doesn't hit another vma.
3053  */
check_stack_guard_page(struct vm_area_struct * vma,unsigned long address)3054 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3055 {
3056 	address &= PAGE_MASK;
3057 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3058 		struct vm_area_struct *prev = vma->vm_prev;
3059 
3060 		/*
3061 		 * Is there a mapping abutting this one below?
3062 		 *
3063 		 * That's only ok if it's the same stack mapping
3064 		 * that has gotten split..
3065 		 */
3066 		if (prev && prev->vm_end == address)
3067 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3068 
3069 		expand_downwards(vma, address - PAGE_SIZE);
3070 	}
3071 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3072 		struct vm_area_struct *next = vma->vm_next;
3073 
3074 		/* As VM_GROWSDOWN but s/below/above/ */
3075 		if (next && next->vm_start == address + PAGE_SIZE)
3076 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3077 
3078 		expand_upwards(vma, address + PAGE_SIZE);
3079 	}
3080 	return 0;
3081 }
3082 
3083 /*
3084  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3085  * but allow concurrent faults), and pte mapped but not yet locked.
3086  * We return with mmap_sem still held, but pte unmapped and unlocked.
3087  */
do_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags)3088 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3089 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3090 		unsigned int flags)
3091 {
3092 	struct page *page;
3093 	spinlock_t *ptl;
3094 	pte_t entry;
3095 
3096 	pte_unmap(page_table);
3097 
3098 	/* Check if we need to add a guard page to the stack */
3099 	if (check_stack_guard_page(vma, address) < 0)
3100 		return VM_FAULT_SIGBUS;
3101 
3102 	/* Use the zero-page for reads */
3103 	if (!(flags & FAULT_FLAG_WRITE)) {
3104 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3105 						vma->vm_page_prot));
3106 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3107 		if (!pte_none(*page_table))
3108 			goto unlock;
3109 		goto setpte;
3110 	}
3111 
3112 	/* Allocate our own private page. */
3113 	if (unlikely(anon_vma_prepare(vma)))
3114 		goto oom;
3115 	page = alloc_zeroed_user_highpage_movable(vma, address);
3116 	if (!page)
3117 		goto oom;
3118 	__SetPageUptodate(page);
3119 
3120 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3121 		goto oom_free_page;
3122 
3123 	entry = mk_pte(page, vma->vm_page_prot);
3124 	if (vma->vm_flags & VM_WRITE)
3125 		entry = pte_mkwrite(pte_mkdirty(entry));
3126 
3127 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3128 	if (!pte_none(*page_table))
3129 		goto release;
3130 
3131 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3132 	page_add_new_anon_rmap(page, vma, address);
3133 setpte:
3134 	set_pte_at(mm, address, page_table, entry);
3135 
3136 	/* No need to invalidate - it was non-present before */
3137 	update_mmu_cache(vma, address, page_table);
3138 unlock:
3139 	pte_unmap_unlock(page_table, ptl);
3140 	return 0;
3141 release:
3142 	mem_cgroup_uncharge_page(page);
3143 	page_cache_release(page);
3144 	goto unlock;
3145 oom_free_page:
3146 	page_cache_release(page);
3147 oom:
3148 	return VM_FAULT_OOM;
3149 }
3150 
3151 /*
3152  * __do_fault() tries to create a new page mapping. It aggressively
3153  * tries to share with existing pages, but makes a separate copy if
3154  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3155  * the next page fault.
3156  *
3157  * As this is called only for pages that do not currently exist, we
3158  * do not need to flush old virtual caches or the TLB.
3159  *
3160  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161  * but allow concurrent faults), and pte neither mapped nor locked.
3162  * We return with mmap_sem still held, but pte unmapped and unlocked.
3163  */
__do_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)3164 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3165 		unsigned long address, pmd_t *pmd,
3166 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3167 {
3168 	pte_t *page_table;
3169 	spinlock_t *ptl;
3170 	struct page *page;
3171 	struct page *cow_page;
3172 	pte_t entry;
3173 	int anon = 0;
3174 	struct page *dirty_page = NULL;
3175 	struct vm_fault vmf;
3176 	int ret;
3177 	int page_mkwrite = 0;
3178 
3179 	/*
3180 	 * If we do COW later, allocate page befor taking lock_page()
3181 	 * on the file cache page. This will reduce lock holding time.
3182 	 */
3183 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3184 
3185 		if (unlikely(anon_vma_prepare(vma)))
3186 			return VM_FAULT_OOM;
3187 
3188 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3189 		if (!cow_page)
3190 			return VM_FAULT_OOM;
3191 
3192 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3193 			page_cache_release(cow_page);
3194 			return VM_FAULT_OOM;
3195 		}
3196 	} else
3197 		cow_page = NULL;
3198 
3199 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3200 	vmf.pgoff = pgoff;
3201 	vmf.flags = flags;
3202 	vmf.page = NULL;
3203 
3204 	ret = vma->vm_ops->fault(vma, &vmf);
3205 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3206 			    VM_FAULT_RETRY)))
3207 		goto uncharge_out;
3208 
3209 	if (unlikely(PageHWPoison(vmf.page))) {
3210 		if (ret & VM_FAULT_LOCKED)
3211 			unlock_page(vmf.page);
3212 		ret = VM_FAULT_HWPOISON;
3213 		goto uncharge_out;
3214 	}
3215 
3216 	/*
3217 	 * For consistency in subsequent calls, make the faulted page always
3218 	 * locked.
3219 	 */
3220 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3221 		lock_page(vmf.page);
3222 	else
3223 		VM_BUG_ON(!PageLocked(vmf.page));
3224 
3225 	/*
3226 	 * Should we do an early C-O-W break?
3227 	 */
3228 	page = vmf.page;
3229 	if (flags & FAULT_FLAG_WRITE) {
3230 		if (!(vma->vm_flags & VM_SHARED)) {
3231 			page = cow_page;
3232 			anon = 1;
3233 			copy_user_highpage(page, vmf.page, address, vma);
3234 			__SetPageUptodate(page);
3235 		} else {
3236 			/*
3237 			 * If the page will be shareable, see if the backing
3238 			 * address space wants to know that the page is about
3239 			 * to become writable
3240 			 */
3241 			if (vma->vm_ops->page_mkwrite) {
3242 				int tmp;
3243 
3244 				unlock_page(page);
3245 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3246 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3247 				if (unlikely(tmp &
3248 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3249 					ret = tmp;
3250 					goto unwritable_page;
3251 				}
3252 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3253 					lock_page(page);
3254 					if (!page->mapping) {
3255 						ret = 0; /* retry the fault */
3256 						unlock_page(page);
3257 						goto unwritable_page;
3258 					}
3259 				} else
3260 					VM_BUG_ON(!PageLocked(page));
3261 				page_mkwrite = 1;
3262 			}
3263 		}
3264 
3265 	}
3266 
3267 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3268 
3269 	/*
3270 	 * This silly early PAGE_DIRTY setting removes a race
3271 	 * due to the bad i386 page protection. But it's valid
3272 	 * for other architectures too.
3273 	 *
3274 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3275 	 * an exclusive copy of the page, or this is a shared mapping,
3276 	 * so we can make it writable and dirty to avoid having to
3277 	 * handle that later.
3278 	 */
3279 	/* Only go through if we didn't race with anybody else... */
3280 	if (likely(pte_same(*page_table, orig_pte))) {
3281 		flush_icache_page(vma, page);
3282 		entry = mk_pte(page, vma->vm_page_prot);
3283 		if (flags & FAULT_FLAG_WRITE)
3284 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3285 		if (anon) {
3286 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3287 			page_add_new_anon_rmap(page, vma, address);
3288 		} else {
3289 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3290 			page_add_file_rmap(page);
3291 			if (flags & FAULT_FLAG_WRITE) {
3292 				dirty_page = page;
3293 				get_page(dirty_page);
3294 			}
3295 		}
3296 		set_pte_at(mm, address, page_table, entry);
3297 
3298 		/* no need to invalidate: a not-present page won't be cached */
3299 		update_mmu_cache(vma, address, page_table);
3300 	} else {
3301 		if (cow_page)
3302 			mem_cgroup_uncharge_page(cow_page);
3303 		if (anon)
3304 			page_cache_release(page);
3305 		else
3306 			anon = 1; /* no anon but release faulted_page */
3307 	}
3308 
3309 	pte_unmap_unlock(page_table, ptl);
3310 
3311 	if (dirty_page) {
3312 		struct address_space *mapping = page->mapping;
3313 
3314 		if (set_page_dirty(dirty_page))
3315 			page_mkwrite = 1;
3316 		unlock_page(dirty_page);
3317 		put_page(dirty_page);
3318 		if (page_mkwrite && mapping) {
3319 			/*
3320 			 * Some device drivers do not set page.mapping but still
3321 			 * dirty their pages
3322 			 */
3323 			balance_dirty_pages_ratelimited(mapping);
3324 		}
3325 
3326 		/* file_update_time outside page_lock */
3327 		if (vma->vm_file)
3328 			file_update_time(vma->vm_file);
3329 	} else {
3330 		unlock_page(vmf.page);
3331 		if (anon)
3332 			page_cache_release(vmf.page);
3333 	}
3334 
3335 	return ret;
3336 
3337 unwritable_page:
3338 	page_cache_release(page);
3339 	return ret;
3340 uncharge_out:
3341 	/* fs's fault handler get error */
3342 	if (cow_page) {
3343 		mem_cgroup_uncharge_page(cow_page);
3344 		page_cache_release(cow_page);
3345 	}
3346 	return ret;
3347 }
3348 
do_linear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3349 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3350 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3351 		unsigned int flags, pte_t orig_pte)
3352 {
3353 	pgoff_t pgoff = (((address & PAGE_MASK)
3354 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3355 
3356 	pte_unmap(page_table);
3357 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3358 }
3359 
3360 /*
3361  * Fault of a previously existing named mapping. Repopulate the pte
3362  * from the encoded file_pte if possible. This enables swappable
3363  * nonlinear vmas.
3364  *
3365  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3366  * but allow concurrent faults), and pte mapped but not yet locked.
3367  * We return with mmap_sem still held, but pte unmapped and unlocked.
3368  */
do_nonlinear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3369 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3370 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3371 		unsigned int flags, pte_t orig_pte)
3372 {
3373 	pgoff_t pgoff;
3374 
3375 	flags |= FAULT_FLAG_NONLINEAR;
3376 
3377 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3378 		return 0;
3379 
3380 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3381 		/*
3382 		 * Page table corrupted: show pte and kill process.
3383 		 */
3384 		print_bad_pte(vma, address, orig_pte, NULL);
3385 		return VM_FAULT_SIGBUS;
3386 	}
3387 
3388 	pgoff = pte_to_pgoff(orig_pte);
3389 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3390 }
3391 
3392 /*
3393  * These routines also need to handle stuff like marking pages dirty
3394  * and/or accessed for architectures that don't do it in hardware (most
3395  * RISC architectures).  The early dirtying is also good on the i386.
3396  *
3397  * There is also a hook called "update_mmu_cache()" that architectures
3398  * with external mmu caches can use to update those (ie the Sparc or
3399  * PowerPC hashed page tables that act as extended TLBs).
3400  *
3401  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3402  * but allow concurrent faults), and pte mapped but not yet locked.
3403  * We return with mmap_sem still held, but pte unmapped and unlocked.
3404  */
handle_pte_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * pte,pmd_t * pmd,unsigned int flags)3405 int handle_pte_fault(struct mm_struct *mm,
3406 		     struct vm_area_struct *vma, unsigned long address,
3407 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3408 {
3409 	pte_t entry;
3410 	spinlock_t *ptl;
3411 
3412 	entry = *pte;
3413 	if (!pte_present(entry)) {
3414 		if (pte_none(entry)) {
3415 			if (vma->vm_ops) {
3416 				if (likely(vma->vm_ops->fault))
3417 					return do_linear_fault(mm, vma, address,
3418 						pte, pmd, flags, entry);
3419 			}
3420 			return do_anonymous_page(mm, vma, address,
3421 						 pte, pmd, flags);
3422 		}
3423 		if (pte_file(entry))
3424 			return do_nonlinear_fault(mm, vma, address,
3425 					pte, pmd, flags, entry);
3426 		return do_swap_page(mm, vma, address,
3427 					pte, pmd, flags, entry);
3428 	}
3429 
3430 	ptl = pte_lockptr(mm, pmd);
3431 	spin_lock(ptl);
3432 	if (unlikely(!pte_same(*pte, entry)))
3433 		goto unlock;
3434 	if (flags & FAULT_FLAG_WRITE) {
3435 		if (!pte_write(entry))
3436 			return do_wp_page(mm, vma, address,
3437 					pte, pmd, ptl, entry);
3438 		entry = pte_mkdirty(entry);
3439 	}
3440 	entry = pte_mkyoung(entry);
3441 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3442 		update_mmu_cache(vma, address, pte);
3443 	} else {
3444 		/*
3445 		 * This is needed only for protection faults but the arch code
3446 		 * is not yet telling us if this is a protection fault or not.
3447 		 * This still avoids useless tlb flushes for .text page faults
3448 		 * with threads.
3449 		 */
3450 		if (flags & FAULT_FLAG_WRITE)
3451 			flush_tlb_fix_spurious_fault(vma, address);
3452 	}
3453 unlock:
3454 	pte_unmap_unlock(pte, ptl);
3455 	return 0;
3456 }
3457 
3458 /*
3459  * By the time we get here, we already hold the mm semaphore
3460  */
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3461 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3462 		unsigned long address, unsigned int flags)
3463 {
3464 	pgd_t *pgd;
3465 	pud_t *pud;
3466 	pmd_t *pmd;
3467 	pte_t *pte;
3468 
3469 	__set_current_state(TASK_RUNNING);
3470 
3471 	count_vm_event(PGFAULT);
3472 	mem_cgroup_count_vm_event(mm, PGFAULT);
3473 
3474 	/* do counter updates before entering really critical section. */
3475 	check_sync_rss_stat(current);
3476 
3477 	if (unlikely(is_vm_hugetlb_page(vma)))
3478 		return hugetlb_fault(mm, vma, address, flags);
3479 
3480 	pgd = pgd_offset(mm, address);
3481 	pud = pud_alloc(mm, pgd, address);
3482 	if (!pud)
3483 		return VM_FAULT_OOM;
3484 	pmd = pmd_alloc(mm, pud, address);
3485 	if (!pmd)
3486 		return VM_FAULT_OOM;
3487 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3488 		if (!vma->vm_ops)
3489 			return do_huge_pmd_anonymous_page(mm, vma, address,
3490 							  pmd, flags);
3491 	} else {
3492 		pmd_t orig_pmd = *pmd;
3493 		barrier();
3494 		if (pmd_trans_huge(orig_pmd)) {
3495 			if (flags & FAULT_FLAG_WRITE &&
3496 			    !pmd_write(orig_pmd) &&
3497 			    !pmd_trans_splitting(orig_pmd))
3498 				return do_huge_pmd_wp_page(mm, vma, address,
3499 							   pmd, orig_pmd);
3500 			return 0;
3501 		}
3502 	}
3503 
3504 	/*
3505 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3506 	 * run pte_offset_map on the pmd, if an huge pmd could
3507 	 * materialize from under us from a different thread.
3508 	 */
3509 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3510 		return VM_FAULT_OOM;
3511 	/* if an huge pmd materialized from under us just retry later */
3512 	if (unlikely(pmd_trans_huge(*pmd)))
3513 		return 0;
3514 	/*
3515 	 * A regular pmd is established and it can't morph into a huge pmd
3516 	 * from under us anymore at this point because we hold the mmap_sem
3517 	 * read mode and khugepaged takes it in write mode. So now it's
3518 	 * safe to run pte_offset_map().
3519 	 */
3520 	pte = pte_offset_map(pmd, address);
3521 
3522 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3523 }
3524 
3525 #ifndef __PAGETABLE_PUD_FOLDED
3526 /*
3527  * Allocate page upper directory.
3528  * We've already handled the fast-path in-line.
3529  */
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3530 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3531 {
3532 	pud_t *new = pud_alloc_one(mm, address);
3533 	if (!new)
3534 		return -ENOMEM;
3535 
3536 	smp_wmb(); /* See comment in __pte_alloc */
3537 
3538 	spin_lock(&mm->page_table_lock);
3539 	if (pgd_present(*pgd))		/* Another has populated it */
3540 		pud_free(mm, new);
3541 	else
3542 		pgd_populate(mm, pgd, new);
3543 	spin_unlock(&mm->page_table_lock);
3544 	return 0;
3545 }
3546 #endif /* __PAGETABLE_PUD_FOLDED */
3547 
3548 #ifndef __PAGETABLE_PMD_FOLDED
3549 /*
3550  * Allocate page middle directory.
3551  * We've already handled the fast-path in-line.
3552  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3553 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3554 {
3555 	pmd_t *new = pmd_alloc_one(mm, address);
3556 	if (!new)
3557 		return -ENOMEM;
3558 
3559 	smp_wmb(); /* See comment in __pte_alloc */
3560 
3561 	spin_lock(&mm->page_table_lock);
3562 #ifndef __ARCH_HAS_4LEVEL_HACK
3563 	if (pud_present(*pud))		/* Another has populated it */
3564 		pmd_free(mm, new);
3565 	else
3566 		pud_populate(mm, pud, new);
3567 #else
3568 	if (pgd_present(*pud))		/* Another has populated it */
3569 		pmd_free(mm, new);
3570 	else
3571 		pgd_populate(mm, pud, new);
3572 #endif /* __ARCH_HAS_4LEVEL_HACK */
3573 	spin_unlock(&mm->page_table_lock);
3574 	return 0;
3575 }
3576 #endif /* __PAGETABLE_PMD_FOLDED */
3577 
make_pages_present(unsigned long addr,unsigned long end)3578 int make_pages_present(unsigned long addr, unsigned long end)
3579 {
3580 	int ret, len, write;
3581 	struct vm_area_struct * vma;
3582 
3583 	vma = find_vma(current->mm, addr);
3584 	if (!vma)
3585 		return -ENOMEM;
3586 	/*
3587 	 * We want to touch writable mappings with a write fault in order
3588 	 * to break COW, except for shared mappings because these don't COW
3589 	 * and we would not want to dirty them for nothing.
3590 	 */
3591 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3592 	BUG_ON(addr >= end);
3593 	BUG_ON(end > vma->vm_end);
3594 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3595 	ret = get_user_pages(current, current->mm, addr,
3596 			len, write, 0, NULL, NULL);
3597 	if (ret < 0)
3598 		return ret;
3599 	return ret == len ? 0 : -EFAULT;
3600 }
3601 
3602 #if !defined(__HAVE_ARCH_GATE_AREA)
3603 
3604 #if defined(AT_SYSINFO_EHDR)
3605 static struct vm_area_struct gate_vma;
3606 
gate_vma_init(void)3607 static int __init gate_vma_init(void)
3608 {
3609 	gate_vma.vm_mm = NULL;
3610 	gate_vma.vm_start = FIXADDR_USER_START;
3611 	gate_vma.vm_end = FIXADDR_USER_END;
3612 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3613 	gate_vma.vm_page_prot = __P101;
3614 	/*
3615 	 * Make sure the vDSO gets into every core dump.
3616 	 * Dumping its contents makes post-mortem fully interpretable later
3617 	 * without matching up the same kernel and hardware config to see
3618 	 * what PC values meant.
3619 	 */
3620 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3621 	return 0;
3622 }
3623 __initcall(gate_vma_init);
3624 #endif
3625 
get_gate_vma(struct mm_struct * mm)3626 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3627 {
3628 #ifdef AT_SYSINFO_EHDR
3629 	return &gate_vma;
3630 #else
3631 	return NULL;
3632 #endif
3633 }
3634 
in_gate_area_no_mm(unsigned long addr)3635 int in_gate_area_no_mm(unsigned long addr)
3636 {
3637 #ifdef AT_SYSINFO_EHDR
3638 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3639 		return 1;
3640 #endif
3641 	return 0;
3642 }
3643 
3644 #endif	/* __HAVE_ARCH_GATE_AREA */
3645 
__follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3646 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3647 		pte_t **ptepp, spinlock_t **ptlp)
3648 {
3649 	pgd_t *pgd;
3650 	pud_t *pud;
3651 	pmd_t *pmd;
3652 	pte_t *ptep;
3653 
3654 	pgd = pgd_offset(mm, address);
3655 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3656 		goto out;
3657 
3658 	pud = pud_offset(pgd, address);
3659 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3660 		goto out;
3661 
3662 	pmd = pmd_offset(pud, address);
3663 	VM_BUG_ON(pmd_trans_huge(*pmd));
3664 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3665 		goto out;
3666 
3667 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3668 	if (pmd_huge(*pmd))
3669 		goto out;
3670 
3671 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3672 	if (!ptep)
3673 		goto out;
3674 	if (!pte_present(*ptep))
3675 		goto unlock;
3676 	*ptepp = ptep;
3677 	return 0;
3678 unlock:
3679 	pte_unmap_unlock(ptep, *ptlp);
3680 out:
3681 	return -EINVAL;
3682 }
3683 
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3684 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3685 			     pte_t **ptepp, spinlock_t **ptlp)
3686 {
3687 	int res;
3688 
3689 	/* (void) is needed to make gcc happy */
3690 	(void) __cond_lock(*ptlp,
3691 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3692 	return res;
3693 }
3694 
3695 /**
3696  * follow_pfn - look up PFN at a user virtual address
3697  * @vma: memory mapping
3698  * @address: user virtual address
3699  * @pfn: location to store found PFN
3700  *
3701  * Only IO mappings and raw PFN mappings are allowed.
3702  *
3703  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3704  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)3705 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3706 	unsigned long *pfn)
3707 {
3708 	int ret = -EINVAL;
3709 	spinlock_t *ptl;
3710 	pte_t *ptep;
3711 
3712 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3713 		return ret;
3714 
3715 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3716 	if (ret)
3717 		return ret;
3718 	*pfn = pte_pfn(*ptep);
3719 	pte_unmap_unlock(ptep, ptl);
3720 	return 0;
3721 }
3722 EXPORT_SYMBOL(follow_pfn);
3723 
3724 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)3725 int follow_phys(struct vm_area_struct *vma,
3726 		unsigned long address, unsigned int flags,
3727 		unsigned long *prot, resource_size_t *phys)
3728 {
3729 	int ret = -EINVAL;
3730 	pte_t *ptep, pte;
3731 	spinlock_t *ptl;
3732 
3733 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3734 		goto out;
3735 
3736 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3737 		goto out;
3738 	pte = *ptep;
3739 
3740 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3741 		goto unlock;
3742 
3743 	*prot = pgprot_val(pte_pgprot(pte));
3744 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3745 
3746 	ret = 0;
3747 unlock:
3748 	pte_unmap_unlock(ptep, ptl);
3749 out:
3750 	return ret;
3751 }
3752 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)3753 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3754 			void *buf, int len, int write)
3755 {
3756 	resource_size_t phys_addr;
3757 	unsigned long prot = 0;
3758 	void __iomem *maddr;
3759 	int offset = addr & (PAGE_SIZE-1);
3760 
3761 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3762 		return -EINVAL;
3763 
3764 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3765 	if (write)
3766 		memcpy_toio(maddr + offset, buf, len);
3767 	else
3768 		memcpy_fromio(buf, maddr + offset, len);
3769 	iounmap(maddr);
3770 
3771 	return len;
3772 }
3773 #endif
3774 
3775 /*
3776  * Access another process' address space as given in mm.  If non-NULL, use the
3777  * given task for page fault accounting.
3778  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3779 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3780 		unsigned long addr, void *buf, int len, int write)
3781 {
3782 	struct vm_area_struct *vma;
3783 	void *old_buf = buf;
3784 
3785 	down_read(&mm->mmap_sem);
3786 	/* ignore errors, just check how much was successfully transferred */
3787 	while (len) {
3788 		int bytes, ret, offset;
3789 		void *maddr;
3790 		struct page *page = NULL;
3791 
3792 		ret = get_user_pages(tsk, mm, addr, 1,
3793 				write, 1, &page, &vma);
3794 		if (ret <= 0) {
3795 			/*
3796 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3797 			 * we can access using slightly different code.
3798 			 */
3799 #ifdef CONFIG_HAVE_IOREMAP_PROT
3800 			vma = find_vma(mm, addr);
3801 			if (!vma || vma->vm_start > addr)
3802 				break;
3803 			if (vma->vm_ops && vma->vm_ops->access)
3804 				ret = vma->vm_ops->access(vma, addr, buf,
3805 							  len, write);
3806 			if (ret <= 0)
3807 #endif
3808 				break;
3809 			bytes = ret;
3810 		} else {
3811 			bytes = len;
3812 			offset = addr & (PAGE_SIZE-1);
3813 			if (bytes > PAGE_SIZE-offset)
3814 				bytes = PAGE_SIZE-offset;
3815 
3816 			maddr = kmap(page);
3817 			if (write) {
3818 				copy_to_user_page(vma, page, addr,
3819 						  maddr + offset, buf, bytes);
3820 				set_page_dirty_lock(page);
3821 			} else {
3822 				copy_from_user_page(vma, page, addr,
3823 						    buf, maddr + offset, bytes);
3824 			}
3825 			kunmap(page);
3826 			page_cache_release(page);
3827 		}
3828 		len -= bytes;
3829 		buf += bytes;
3830 		addr += bytes;
3831 	}
3832 	up_read(&mm->mmap_sem);
3833 
3834 	return buf - old_buf;
3835 }
3836 
3837 /**
3838  * access_remote_vm - access another process' address space
3839  * @mm:		the mm_struct of the target address space
3840  * @addr:	start address to access
3841  * @buf:	source or destination buffer
3842  * @len:	number of bytes to transfer
3843  * @write:	whether the access is a write
3844  *
3845  * The caller must hold a reference on @mm.
3846  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3847 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3848 		void *buf, int len, int write)
3849 {
3850 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3851 }
3852 
3853 /*
3854  * Access another process' address space.
3855  * Source/target buffer must be kernel space,
3856  * Do not walk the page table directly, use get_user_pages
3857  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)3858 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3859 		void *buf, int len, int write)
3860 {
3861 	struct mm_struct *mm;
3862 	int ret;
3863 
3864 	mm = get_task_mm(tsk);
3865 	if (!mm)
3866 		return 0;
3867 
3868 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3869 	mmput(mm);
3870 
3871 	return ret;
3872 }
3873 
3874 /*
3875  * Print the name of a VMA.
3876  */
print_vma_addr(char * prefix,unsigned long ip)3877 void print_vma_addr(char *prefix, unsigned long ip)
3878 {
3879 	struct mm_struct *mm = current->mm;
3880 	struct vm_area_struct *vma;
3881 
3882 	/*
3883 	 * Do not print if we are in atomic
3884 	 * contexts (in exception stacks, etc.):
3885 	 */
3886 	if (preempt_count())
3887 		return;
3888 
3889 	down_read(&mm->mmap_sem);
3890 	vma = find_vma(mm, ip);
3891 	if (vma && vma->vm_file) {
3892 		struct file *f = vma->vm_file;
3893 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3894 		if (buf) {
3895 			char *p, *s;
3896 
3897 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3898 			if (IS_ERR(p))
3899 				p = "?";
3900 			s = strrchr(p, '/');
3901 			if (s)
3902 				p = s+1;
3903 			printk("%s%s[%lx+%lx]", prefix, p,
3904 					vma->vm_start,
3905 					vma->vm_end - vma->vm_start);
3906 			free_page((unsigned long)buf);
3907 		}
3908 	}
3909 	up_read(&current->mm->mmap_sem);
3910 }
3911 
3912 #ifdef CONFIG_PROVE_LOCKING
might_fault(void)3913 void might_fault(void)
3914 {
3915 	/*
3916 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3917 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3918 	 * get paged out, therefore we'll never actually fault, and the
3919 	 * below annotations will generate false positives.
3920 	 */
3921 	if (segment_eq(get_fs(), KERNEL_DS))
3922 		return;
3923 
3924 	might_sleep();
3925 	/*
3926 	 * it would be nicer only to annotate paths which are not under
3927 	 * pagefault_disable, however that requires a larger audit and
3928 	 * providing helpers like get_user_atomic.
3929 	 */
3930 	if (!in_atomic() && current->mm)
3931 		might_lock_read(&current->mm->mmap_sem);
3932 }
3933 EXPORT_SYMBOL(might_fault);
3934 #endif
3935 
3936 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)3937 static void clear_gigantic_page(struct page *page,
3938 				unsigned long addr,
3939 				unsigned int pages_per_huge_page)
3940 {
3941 	int i;
3942 	struct page *p = page;
3943 
3944 	might_sleep();
3945 	for (i = 0; i < pages_per_huge_page;
3946 	     i++, p = mem_map_next(p, page, i)) {
3947 		cond_resched();
3948 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3949 	}
3950 }
clear_huge_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)3951 void clear_huge_page(struct page *page,
3952 		     unsigned long addr, unsigned int pages_per_huge_page)
3953 {
3954 	int i;
3955 
3956 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3957 		clear_gigantic_page(page, addr, pages_per_huge_page);
3958 		return;
3959 	}
3960 
3961 	might_sleep();
3962 	for (i = 0; i < pages_per_huge_page; i++) {
3963 		cond_resched();
3964 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3965 	}
3966 }
3967 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)3968 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3969 				    unsigned long addr,
3970 				    struct vm_area_struct *vma,
3971 				    unsigned int pages_per_huge_page)
3972 {
3973 	int i;
3974 	struct page *dst_base = dst;
3975 	struct page *src_base = src;
3976 
3977 	for (i = 0; i < pages_per_huge_page; ) {
3978 		cond_resched();
3979 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3980 
3981 		i++;
3982 		dst = mem_map_next(dst, dst_base, i);
3983 		src = mem_map_next(src, src_base, i);
3984 	}
3985 }
3986 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)3987 void copy_user_huge_page(struct page *dst, struct page *src,
3988 			 unsigned long addr, struct vm_area_struct *vma,
3989 			 unsigned int pages_per_huge_page)
3990 {
3991 	int i;
3992 
3993 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3994 		copy_user_gigantic_page(dst, src, addr, vma,
3995 					pages_per_huge_page);
3996 		return;
3997 	}
3998 
3999 	might_sleep();
4000 	for (i = 0; i < pages_per_huge_page; i++) {
4001 		cond_resched();
4002 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4003 	}
4004 }
4005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4006