1 /*
2  * rational fractions
3  *
4  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com>
5  *
6  * helper functions when coping with rational numbers
7  */
8 
9 #include <linux/rational.h>
10 #include <linux/module.h>
11 
12 /*
13  * calculate best rational approximation for a given fraction
14  * taking into account restricted register size, e.g. to find
15  * appropriate values for a pll with 5 bit denominator and
16  * 8 bit numerator register fields, trying to set up with a
17  * frequency ratio of 3.1415, one would say:
18  *
19  * rational_best_approximation(31415, 10000,
20  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
21  *
22  * you may look at given_numerator as a fixed point number,
23  * with the fractional part size described in given_denominator.
24  *
25  * for theoretical background, see:
26  * http://en.wikipedia.org/wiki/Continued_fraction
27  */
28 
rational_best_approximation(unsigned long given_numerator,unsigned long given_denominator,unsigned long max_numerator,unsigned long max_denominator,unsigned long * best_numerator,unsigned long * best_denominator)29 void rational_best_approximation(
30 	unsigned long given_numerator, unsigned long given_denominator,
31 	unsigned long max_numerator, unsigned long max_denominator,
32 	unsigned long *best_numerator, unsigned long *best_denominator)
33 {
34 	unsigned long n, d, n0, d0, n1, d1;
35 	n = given_numerator;
36 	d = given_denominator;
37 	n0 = d1 = 0;
38 	n1 = d0 = 1;
39 	for (;;) {
40 		unsigned long t, a;
41 		if ((n1 > max_numerator) || (d1 > max_denominator)) {
42 			n1 = n0;
43 			d1 = d0;
44 			break;
45 		}
46 		if (d == 0)
47 			break;
48 		t = d;
49 		a = n / d;
50 		d = n % d;
51 		n = t;
52 		t = n0 + a * n1;
53 		n0 = n1;
54 		n1 = t;
55 		t = d0 + a * d1;
56 		d0 = d1;
57 		d1 = t;
58 	}
59 	*best_numerator = n1;
60 	*best_denominator = d1;
61 }
62 
63 EXPORT_SYMBOL(rational_best_approximation);
64