1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56 
57 #include "rcu.h"
58 
59 /* Data structures. */
60 
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62 
63 #define RCU_STATE_INITIALIZER(structname) { \
64 	.level = { &structname##_state.node[0] }, \
65 	.levelcnt = { \
66 		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
67 		NUM_RCU_LVL_1, \
68 		NUM_RCU_LVL_2, \
69 		NUM_RCU_LVL_3, \
70 		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 	}, \
72 	.fqs_state = RCU_GP_IDLE, \
73 	.gpnum = -300, \
74 	.completed = -300, \
75 	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 	.n_force_qs = 0, \
78 	.n_force_qs_ngp = 0, \
79 	.name = #structname, \
80 }
81 
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84 
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87 
88 static struct rcu_state *rcu_state;
89 
90 /*
91  * The rcu_scheduler_active variable transitions from zero to one just
92  * before the first task is spawned.  So when this variable is zero, RCU
93  * can assume that there is but one task, allowing RCU to (for example)
94  * optimized synchronize_sched() to a simple barrier().  When this variable
95  * is one, RCU must actually do all the hard work required to detect real
96  * grace periods.  This variable is also used to suppress boot-time false
97  * positives from lockdep-RCU error checking.
98  */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101 
102 /*
103  * The rcu_scheduler_fully_active variable transitions from zero to one
104  * during the early_initcall() processing, which is after the scheduler
105  * is capable of creating new tasks.  So RCU processing (for example,
106  * creating tasks for RCU priority boosting) must be delayed until after
107  * rcu_scheduler_fully_active transitions from zero to one.  We also
108  * currently delay invocation of any RCU callbacks until after this point.
109  *
110  * It might later prove better for people registering RCU callbacks during
111  * early boot to take responsibility for these callbacks, but one step at
112  * a time.
113  */
114 static int rcu_scheduler_fully_active __read_mostly;
115 
116 #ifdef CONFIG_RCU_BOOST
117 
118 /*
119  * Control variables for per-CPU and per-rcu_node kthreads.  These
120  * handle all flavors of RCU.
121  */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127 
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129 
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133 
134 /*
135  * Track the rcutorture test sequence number and the update version
136  * number within a given test.  The rcutorture_testseq is incremented
137  * on every rcutorture module load and unload, so has an odd value
138  * when a test is running.  The rcutorture_vernum is set to zero
139  * when rcutorture starts and is incremented on each rcutorture update.
140  * These variables enable correlating rcutorture output with the
141  * RCU tracing information.
142  */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145 
146 /*
147  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
148  * permit this function to be invoked without holding the root rcu_node
149  * structure's ->lock, but of course results can be subject to change.
150  */
rcu_gp_in_progress(struct rcu_state * rsp)151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155 
156 /*
157  * Note a quiescent state.  Because we do not need to know
158  * how many quiescent states passed, just if there was at least
159  * one since the start of the grace period, this just sets a flag.
160  * The caller must have disabled preemption.
161  */
rcu_sched_qs(int cpu)162 void rcu_sched_qs(int cpu)
163 {
164 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165 
166 	rdp->passed_quiesce_gpnum = rdp->gpnum;
167 	barrier();
168 	if (rdp->passed_quiesce == 0)
169 		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 	rdp->passed_quiesce = 1;
171 }
172 
rcu_bh_qs(int cpu)173 void rcu_bh_qs(int cpu)
174 {
175 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176 
177 	rdp->passed_quiesce_gpnum = rdp->gpnum;
178 	barrier();
179 	if (rdp->passed_quiesce == 0)
180 		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 	rdp->passed_quiesce = 1;
182 }
183 
184 /*
185  * Note a context switch.  This is a quiescent state for RCU-sched,
186  * and requires special handling for preemptible RCU.
187  * The caller must have disabled preemption.
188  */
rcu_note_context_switch(int cpu)189 void rcu_note_context_switch(int cpu)
190 {
191 	trace_rcu_utilization("Start context switch");
192 	rcu_sched_qs(cpu);
193 	rcu_preempt_note_context_switch(cpu);
194 	trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197 
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 	.dynticks_nesting = DYNTICK_TASK_NESTING,
200 	.dynticks = ATOMIC_INIT(1),
201 };
202 
203 static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000;	/* If this many pending, ignore blimit. */
205 static int qlowmark = 100;	/* Once only this many pending, use blimit. */
206 
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210 
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213 
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216 
217 /*
218  * Return the number of RCU-sched batches processed thus far for debug & stats.
219  */
rcu_batches_completed_sched(void)220 long rcu_batches_completed_sched(void)
221 {
222 	return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225 
226 /*
227  * Return the number of RCU BH batches processed thus far for debug & stats.
228  */
rcu_batches_completed_bh(void)229 long rcu_batches_completed_bh(void)
230 {
231 	return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234 
235 /*
236  * Force a quiescent state for RCU BH.
237  */
rcu_bh_force_quiescent_state(void)238 void rcu_bh_force_quiescent_state(void)
239 {
240 	force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243 
244 /*
245  * Record the number of times rcutorture tests have been initiated and
246  * terminated.  This information allows the debugfs tracing stats to be
247  * correlated to the rcutorture messages, even when the rcutorture module
248  * is being repeatedly loaded and unloaded.  In other words, we cannot
249  * store this state in rcutorture itself.
250  */
rcutorture_record_test_transition(void)251 void rcutorture_record_test_transition(void)
252 {
253 	rcutorture_testseq++;
254 	rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257 
258 /*
259  * Record the number of writer passes through the current rcutorture test.
260  * This is also used to correlate debugfs tracing stats with the rcutorture
261  * messages.
262  */
rcutorture_record_progress(unsigned long vernum)263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 	rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268 
269 /*
270  * Force a quiescent state for RCU-sched.
271  */
rcu_sched_force_quiescent_state(void)272 void rcu_sched_force_quiescent_state(void)
273 {
274 	force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277 
278 /*
279  * Does the CPU have callbacks ready to be invoked?
280  */
281 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286 
287 /*
288  * Does the current CPU require a yet-as-unscheduled grace period?
289  */
290 static int
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295 
296 /*
297  * Return the root node of the specified rcu_state structure.
298  */
rcu_get_root(struct rcu_state * rsp)299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 	return &rsp->node[0];
302 }
303 
304 #ifdef CONFIG_SMP
305 
306 /*
307  * If the specified CPU is offline, tell the caller that it is in
308  * a quiescent state.  Otherwise, whack it with a reschedule IPI.
309  * Grace periods can end up waiting on an offline CPU when that
310  * CPU is in the process of coming online -- it will be added to the
311  * rcu_node bitmasks before it actually makes it online.  The same thing
312  * can happen while a CPU is in the process of coming online.  Because this
313  * race is quite rare, we check for it after detecting that the grace
314  * period has been delayed rather than checking each and every CPU
315  * each and every time we start a new grace period.
316  */
rcu_implicit_offline_qs(struct rcu_data * rdp)317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 	/*
320 	 * If the CPU is offline, it is in a quiescent state.  We can
321 	 * trust its state not to change because interrupts are disabled.
322 	 */
323 	if (cpu_is_offline(rdp->cpu)) {
324 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 		rdp->offline_fqs++;
326 		return 1;
327 	}
328 
329 	/*
330 	 * The CPU is online, so send it a reschedule IPI.  This forces
331 	 * it through the scheduler, and (inefficiently) also handles cases
332 	 * where idle loops fail to inform RCU about the CPU being idle.
333 	 */
334 	if (rdp->cpu != smp_processor_id())
335 		smp_send_reschedule(rdp->cpu);
336 	else
337 		set_need_resched();
338 	rdp->resched_ipi++;
339 	return 0;
340 }
341 
342 #endif /* #ifdef CONFIG_SMP */
343 
344 /*
345  * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346  *
347  * If the new value of the ->dynticks_nesting counter now is zero,
348  * we really have entered idle, and must do the appropriate accounting.
349  * The caller must have disabled interrupts.
350  */
rcu_idle_enter_common(struct rcu_dynticks * rdtp,long long oldval)351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352 {
353 	trace_rcu_dyntick("Start", oldval, 0);
354 	if (!is_idle_task(current)) {
355 		struct task_struct *idle = idle_task(smp_processor_id());
356 
357 		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
358 		ftrace_dump(DUMP_ALL);
359 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
360 			  current->pid, current->comm,
361 			  idle->pid, idle->comm); /* must be idle task! */
362 	}
363 	rcu_prepare_for_idle(smp_processor_id());
364 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 	smp_mb__before_atomic_inc();  /* See above. */
366 	atomic_inc(&rdtp->dynticks);
367 	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
368 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369 }
370 
371 /**
372  * rcu_idle_enter - inform RCU that current CPU is entering idle
373  *
374  * Enter idle mode, in other words, -leave- the mode in which RCU
375  * read-side critical sections can occur.  (Though RCU read-side
376  * critical sections can occur in irq handlers in idle, a possibility
377  * handled by irq_enter() and irq_exit().)
378  *
379  * We crowbar the ->dynticks_nesting field to zero to allow for
380  * the possibility of usermode upcalls having messed up our count
381  * of interrupt nesting level during the prior busy period.
382  */
rcu_idle_enter(void)383 void rcu_idle_enter(void)
384 {
385 	unsigned long flags;
386 	long long oldval;
387 	struct rcu_dynticks *rdtp;
388 
389 	local_irq_save(flags);
390 	rdtp = &__get_cpu_var(rcu_dynticks);
391 	oldval = rdtp->dynticks_nesting;
392 	rdtp->dynticks_nesting = 0;
393 	rcu_idle_enter_common(rdtp, oldval);
394 	local_irq_restore(flags);
395 }
396 
397 /**
398  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399  *
400  * Exit from an interrupt handler, which might possibly result in entering
401  * idle mode, in other words, leaving the mode in which read-side critical
402  * sections can occur.
403  *
404  * This code assumes that the idle loop never does anything that might
405  * result in unbalanced calls to irq_enter() and irq_exit().  If your
406  * architecture violates this assumption, RCU will give you what you
407  * deserve, good and hard.  But very infrequently and irreproducibly.
408  *
409  * Use things like work queues to work around this limitation.
410  *
411  * You have been warned.
412  */
rcu_irq_exit(void)413 void rcu_irq_exit(void)
414 {
415 	unsigned long flags;
416 	long long oldval;
417 	struct rcu_dynticks *rdtp;
418 
419 	local_irq_save(flags);
420 	rdtp = &__get_cpu_var(rcu_dynticks);
421 	oldval = rdtp->dynticks_nesting;
422 	rdtp->dynticks_nesting--;
423 	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 	if (rdtp->dynticks_nesting)
425 		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
426 	else
427 		rcu_idle_enter_common(rdtp, oldval);
428 	local_irq_restore(flags);
429 }
430 
431 /*
432  * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
433  *
434  * If the new value of the ->dynticks_nesting counter was previously zero,
435  * we really have exited idle, and must do the appropriate accounting.
436  * The caller must have disabled interrupts.
437  */
rcu_idle_exit_common(struct rcu_dynticks * rdtp,long long oldval)438 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
439 {
440 	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
441 	atomic_inc(&rdtp->dynticks);
442 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
443 	smp_mb__after_atomic_inc();  /* See above. */
444 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
445 	rcu_cleanup_after_idle(smp_processor_id());
446 	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447 	if (!is_idle_task(current)) {
448 		struct task_struct *idle = idle_task(smp_processor_id());
449 
450 		trace_rcu_dyntick("Error on exit: not idle task",
451 				  oldval, rdtp->dynticks_nesting);
452 		ftrace_dump(DUMP_ALL);
453 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
454 			  current->pid, current->comm,
455 			  idle->pid, idle->comm); /* must be idle task! */
456 	}
457 }
458 
459 /**
460  * rcu_idle_exit - inform RCU that current CPU is leaving idle
461  *
462  * Exit idle mode, in other words, -enter- the mode in which RCU
463  * read-side critical sections can occur.
464  *
465  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
466  * allow for the possibility of usermode upcalls messing up our count
467  * of interrupt nesting level during the busy period that is just
468  * now starting.
469  */
rcu_idle_exit(void)470 void rcu_idle_exit(void)
471 {
472 	unsigned long flags;
473 	struct rcu_dynticks *rdtp;
474 	long long oldval;
475 
476 	local_irq_save(flags);
477 	rdtp = &__get_cpu_var(rcu_dynticks);
478 	oldval = rdtp->dynticks_nesting;
479 	WARN_ON_ONCE(oldval != 0);
480 	rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
481 	rcu_idle_exit_common(rdtp, oldval);
482 	local_irq_restore(flags);
483 }
484 
485 /**
486  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
487  *
488  * Enter an interrupt handler, which might possibly result in exiting
489  * idle mode, in other words, entering the mode in which read-side critical
490  * sections can occur.
491  *
492  * Note that the Linux kernel is fully capable of entering an interrupt
493  * handler that it never exits, for example when doing upcalls to
494  * user mode!  This code assumes that the idle loop never does upcalls to
495  * user mode.  If your architecture does do upcalls from the idle loop (or
496  * does anything else that results in unbalanced calls to the irq_enter()
497  * and irq_exit() functions), RCU will give you what you deserve, good
498  * and hard.  But very infrequently and irreproducibly.
499  *
500  * Use things like work queues to work around this limitation.
501  *
502  * You have been warned.
503  */
rcu_irq_enter(void)504 void rcu_irq_enter(void)
505 {
506 	unsigned long flags;
507 	struct rcu_dynticks *rdtp;
508 	long long oldval;
509 
510 	local_irq_save(flags);
511 	rdtp = &__get_cpu_var(rcu_dynticks);
512 	oldval = rdtp->dynticks_nesting;
513 	rdtp->dynticks_nesting++;
514 	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
515 	if (oldval)
516 		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
517 	else
518 		rcu_idle_exit_common(rdtp, oldval);
519 	local_irq_restore(flags);
520 }
521 
522 /**
523  * rcu_nmi_enter - inform RCU of entry to NMI context
524  *
525  * If the CPU was idle with dynamic ticks active, and there is no
526  * irq handler running, this updates rdtp->dynticks_nmi to let the
527  * RCU grace-period handling know that the CPU is active.
528  */
rcu_nmi_enter(void)529 void rcu_nmi_enter(void)
530 {
531 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
532 
533 	if (rdtp->dynticks_nmi_nesting == 0 &&
534 	    (atomic_read(&rdtp->dynticks) & 0x1))
535 		return;
536 	rdtp->dynticks_nmi_nesting++;
537 	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
538 	atomic_inc(&rdtp->dynticks);
539 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
540 	smp_mb__after_atomic_inc();  /* See above. */
541 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
542 }
543 
544 /**
545  * rcu_nmi_exit - inform RCU of exit from NMI context
546  *
547  * If the CPU was idle with dynamic ticks active, and there is no
548  * irq handler running, this updates rdtp->dynticks_nmi to let the
549  * RCU grace-period handling know that the CPU is no longer active.
550  */
rcu_nmi_exit(void)551 void rcu_nmi_exit(void)
552 {
553 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554 
555 	if (rdtp->dynticks_nmi_nesting == 0 ||
556 	    --rdtp->dynticks_nmi_nesting != 0)
557 		return;
558 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
559 	smp_mb__before_atomic_inc();  /* See above. */
560 	atomic_inc(&rdtp->dynticks);
561 	smp_mb__after_atomic_inc();  /* Force delay to next write. */
562 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
563 }
564 
565 #ifdef CONFIG_PROVE_RCU
566 
567 /**
568  * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
569  *
570  * If the current CPU is in its idle loop and is neither in an interrupt
571  * or NMI handler, return true.
572  */
rcu_is_cpu_idle(void)573 int rcu_is_cpu_idle(void)
574 {
575 	int ret;
576 
577 	preempt_disable();
578 	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
579 	preempt_enable();
580 	return ret;
581 }
582 EXPORT_SYMBOL(rcu_is_cpu_idle);
583 
584 #endif /* #ifdef CONFIG_PROVE_RCU */
585 
586 /**
587  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
588  *
589  * If the current CPU is idle or running at a first-level (not nested)
590  * interrupt from idle, return true.  The caller must have at least
591  * disabled preemption.
592  */
rcu_is_cpu_rrupt_from_idle(void)593 int rcu_is_cpu_rrupt_from_idle(void)
594 {
595 	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
596 }
597 
598 #ifdef CONFIG_SMP
599 
600 /*
601  * Snapshot the specified CPU's dynticks counter so that we can later
602  * credit them with an implicit quiescent state.  Return 1 if this CPU
603  * is in dynticks idle mode, which is an extended quiescent state.
604  */
dyntick_save_progress_counter(struct rcu_data * rdp)605 static int dyntick_save_progress_counter(struct rcu_data *rdp)
606 {
607 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
608 	return (rdp->dynticks_snap & 0x1) == 0;
609 }
610 
611 /*
612  * Return true if the specified CPU has passed through a quiescent
613  * state by virtue of being in or having passed through an dynticks
614  * idle state since the last call to dyntick_save_progress_counter()
615  * for this same CPU.
616  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)617 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
618 {
619 	unsigned int curr;
620 	unsigned int snap;
621 
622 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
623 	snap = (unsigned int)rdp->dynticks_snap;
624 
625 	/*
626 	 * If the CPU passed through or entered a dynticks idle phase with
627 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
628 	 * already acknowledged the request to pass through a quiescent
629 	 * state.  Either way, that CPU cannot possibly be in an RCU
630 	 * read-side critical section that started before the beginning
631 	 * of the current RCU grace period.
632 	 */
633 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
634 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
635 		rdp->dynticks_fqs++;
636 		return 1;
637 	}
638 
639 	/* Go check for the CPU being offline. */
640 	return rcu_implicit_offline_qs(rdp);
641 }
642 
643 #endif /* #ifdef CONFIG_SMP */
644 
record_gp_stall_check_time(struct rcu_state * rsp)645 static void record_gp_stall_check_time(struct rcu_state *rsp)
646 {
647 	rsp->gp_start = jiffies;
648 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
649 }
650 
print_other_cpu_stall(struct rcu_state * rsp)651 static void print_other_cpu_stall(struct rcu_state *rsp)
652 {
653 	int cpu;
654 	long delta;
655 	unsigned long flags;
656 	int ndetected;
657 	struct rcu_node *rnp = rcu_get_root(rsp);
658 
659 	/* Only let one CPU complain about others per time interval. */
660 
661 	raw_spin_lock_irqsave(&rnp->lock, flags);
662 	delta = jiffies - rsp->jiffies_stall;
663 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
664 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 		return;
666 	}
667 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
668 
669 	/*
670 	 * Now rat on any tasks that got kicked up to the root rcu_node
671 	 * due to CPU offlining.
672 	 */
673 	ndetected = rcu_print_task_stall(rnp);
674 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
675 
676 	/*
677 	 * OK, time to rat on our buddy...
678 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
679 	 * RCU CPU stall warnings.
680 	 */
681 	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
682 	       rsp->name);
683 	rcu_for_each_leaf_node(rsp, rnp) {
684 		raw_spin_lock_irqsave(&rnp->lock, flags);
685 		ndetected += rcu_print_task_stall(rnp);
686 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
687 		if (rnp->qsmask == 0)
688 			continue;
689 		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
690 			if (rnp->qsmask & (1UL << cpu)) {
691 				printk(" %d", rnp->grplo + cpu);
692 				ndetected++;
693 			}
694 	}
695 	printk("} (detected by %d, t=%ld jiffies)\n",
696 	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
697 	if (ndetected == 0)
698 		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
699 	else if (!trigger_all_cpu_backtrace())
700 		dump_stack();
701 
702 	/* If so configured, complain about tasks blocking the grace period. */
703 
704 	rcu_print_detail_task_stall(rsp);
705 
706 	force_quiescent_state(rsp, 0);  /* Kick them all. */
707 }
708 
print_cpu_stall(struct rcu_state * rsp)709 static void print_cpu_stall(struct rcu_state *rsp)
710 {
711 	unsigned long flags;
712 	struct rcu_node *rnp = rcu_get_root(rsp);
713 
714 	/*
715 	 * OK, time to rat on ourselves...
716 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
717 	 * RCU CPU stall warnings.
718 	 */
719 	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
720 	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
721 	if (!trigger_all_cpu_backtrace())
722 		dump_stack();
723 
724 	raw_spin_lock_irqsave(&rnp->lock, flags);
725 	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
726 		rsp->jiffies_stall =
727 			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
728 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
729 
730 	set_need_resched();  /* kick ourselves to get things going. */
731 }
732 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)733 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
734 {
735 	unsigned long j;
736 	unsigned long js;
737 	struct rcu_node *rnp;
738 
739 	if (rcu_cpu_stall_suppress)
740 		return;
741 	j = ACCESS_ONCE(jiffies);
742 	js = ACCESS_ONCE(rsp->jiffies_stall);
743 	rnp = rdp->mynode;
744 	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
745 
746 		/* We haven't checked in, so go dump stack. */
747 		print_cpu_stall(rsp);
748 
749 	} else if (rcu_gp_in_progress(rsp) &&
750 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
751 
752 		/* They had a few time units to dump stack, so complain. */
753 		print_other_cpu_stall(rsp);
754 	}
755 }
756 
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)757 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
758 {
759 	rcu_cpu_stall_suppress = 1;
760 	return NOTIFY_DONE;
761 }
762 
763 /**
764  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
765  *
766  * Set the stall-warning timeout way off into the future, thus preventing
767  * any RCU CPU stall-warning messages from appearing in the current set of
768  * RCU grace periods.
769  *
770  * The caller must disable hard irqs.
771  */
rcu_cpu_stall_reset(void)772 void rcu_cpu_stall_reset(void)
773 {
774 	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
775 	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
776 	rcu_preempt_stall_reset();
777 }
778 
779 static struct notifier_block rcu_panic_block = {
780 	.notifier_call = rcu_panic,
781 };
782 
check_cpu_stall_init(void)783 static void __init check_cpu_stall_init(void)
784 {
785 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
786 }
787 
788 /*
789  * Update CPU-local rcu_data state to record the newly noticed grace period.
790  * This is used both when we started the grace period and when we notice
791  * that someone else started the grace period.  The caller must hold the
792  * ->lock of the leaf rcu_node structure corresponding to the current CPU,
793  *  and must have irqs disabled.
794  */
__note_new_gpnum(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)795 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
796 {
797 	if (rdp->gpnum != rnp->gpnum) {
798 		/*
799 		 * If the current grace period is waiting for this CPU,
800 		 * set up to detect a quiescent state, otherwise don't
801 		 * go looking for one.
802 		 */
803 		rdp->gpnum = rnp->gpnum;
804 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
805 		if (rnp->qsmask & rdp->grpmask) {
806 			rdp->qs_pending = 1;
807 			rdp->passed_quiesce = 0;
808 		} else
809 			rdp->qs_pending = 0;
810 	}
811 }
812 
note_new_gpnum(struct rcu_state * rsp,struct rcu_data * rdp)813 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
814 {
815 	unsigned long flags;
816 	struct rcu_node *rnp;
817 
818 	local_irq_save(flags);
819 	rnp = rdp->mynode;
820 	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
821 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
822 		local_irq_restore(flags);
823 		return;
824 	}
825 	__note_new_gpnum(rsp, rnp, rdp);
826 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
827 }
828 
829 /*
830  * Did someone else start a new RCU grace period start since we last
831  * checked?  Update local state appropriately if so.  Must be called
832  * on the CPU corresponding to rdp.
833  */
834 static int
check_for_new_grace_period(struct rcu_state * rsp,struct rcu_data * rdp)835 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
836 {
837 	unsigned long flags;
838 	int ret = 0;
839 
840 	local_irq_save(flags);
841 	if (rdp->gpnum != rsp->gpnum) {
842 		note_new_gpnum(rsp, rdp);
843 		ret = 1;
844 	}
845 	local_irq_restore(flags);
846 	return ret;
847 }
848 
849 /*
850  * Advance this CPU's callbacks, but only if the current grace period
851  * has ended.  This may be called only from the CPU to whom the rdp
852  * belongs.  In addition, the corresponding leaf rcu_node structure's
853  * ->lock must be held by the caller, with irqs disabled.
854  */
855 static void
__rcu_process_gp_end(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)856 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
857 {
858 	/* Did another grace period end? */
859 	if (rdp->completed != rnp->completed) {
860 
861 		/* Advance callbacks.  No harm if list empty. */
862 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
863 		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
864 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
865 
866 		/* Remember that we saw this grace-period completion. */
867 		rdp->completed = rnp->completed;
868 		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
869 
870 		/*
871 		 * If we were in an extended quiescent state, we may have
872 		 * missed some grace periods that others CPUs handled on
873 		 * our behalf. Catch up with this state to avoid noting
874 		 * spurious new grace periods.  If another grace period
875 		 * has started, then rnp->gpnum will have advanced, so
876 		 * we will detect this later on.
877 		 */
878 		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
879 			rdp->gpnum = rdp->completed;
880 
881 		/*
882 		 * If RCU does not need a quiescent state from this CPU,
883 		 * then make sure that this CPU doesn't go looking for one.
884 		 */
885 		if ((rnp->qsmask & rdp->grpmask) == 0)
886 			rdp->qs_pending = 0;
887 	}
888 }
889 
890 /*
891  * Advance this CPU's callbacks, but only if the current grace period
892  * has ended.  This may be called only from the CPU to whom the rdp
893  * belongs.
894  */
895 static void
rcu_process_gp_end(struct rcu_state * rsp,struct rcu_data * rdp)896 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
897 {
898 	unsigned long flags;
899 	struct rcu_node *rnp;
900 
901 	local_irq_save(flags);
902 	rnp = rdp->mynode;
903 	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
904 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 		local_irq_restore(flags);
906 		return;
907 	}
908 	__rcu_process_gp_end(rsp, rnp, rdp);
909 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 }
911 
912 /*
913  * Do per-CPU grace-period initialization for running CPU.  The caller
914  * must hold the lock of the leaf rcu_node structure corresponding to
915  * this CPU.
916  */
917 static void
rcu_start_gp_per_cpu(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)918 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
919 {
920 	/* Prior grace period ended, so advance callbacks for current CPU. */
921 	__rcu_process_gp_end(rsp, rnp, rdp);
922 
923 	/*
924 	 * Because this CPU just now started the new grace period, we know
925 	 * that all of its callbacks will be covered by this upcoming grace
926 	 * period, even the ones that were registered arbitrarily recently.
927 	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
928 	 *
929 	 * Other CPUs cannot be sure exactly when the grace period started.
930 	 * Therefore, their recently registered callbacks must pass through
931 	 * an additional RCU_NEXT_READY stage, so that they will be handled
932 	 * by the next RCU grace period.
933 	 */
934 	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
935 	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
936 
937 	/* Set state so that this CPU will detect the next quiescent state. */
938 	__note_new_gpnum(rsp, rnp, rdp);
939 }
940 
941 /*
942  * Start a new RCU grace period if warranted, re-initializing the hierarchy
943  * in preparation for detecting the next grace period.  The caller must hold
944  * the root node's ->lock, which is released before return.  Hard irqs must
945  * be disabled.
946  */
947 static void
rcu_start_gp(struct rcu_state * rsp,unsigned long flags)948 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
949 	__releases(rcu_get_root(rsp)->lock)
950 {
951 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
952 	struct rcu_node *rnp = rcu_get_root(rsp);
953 
954 	if (!rcu_scheduler_fully_active ||
955 	    !cpu_needs_another_gp(rsp, rdp)) {
956 		/*
957 		 * Either the scheduler hasn't yet spawned the first
958 		 * non-idle task or this CPU does not need another
959 		 * grace period.  Either way, don't start a new grace
960 		 * period.
961 		 */
962 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
963 		return;
964 	}
965 
966 	if (rsp->fqs_active) {
967 		/*
968 		 * This CPU needs a grace period, but force_quiescent_state()
969 		 * is running.  Tell it to start one on this CPU's behalf.
970 		 */
971 		rsp->fqs_need_gp = 1;
972 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
973 		return;
974 	}
975 
976 	/* Advance to a new grace period and initialize state. */
977 	rsp->gpnum++;
978 	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
979 	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
980 	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
981 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
982 	record_gp_stall_check_time(rsp);
983 
984 	/* Special-case the common single-level case. */
985 	if (NUM_RCU_NODES == 1) {
986 		rcu_preempt_check_blocked_tasks(rnp);
987 		rnp->qsmask = rnp->qsmaskinit;
988 		rnp->gpnum = rsp->gpnum;
989 		rnp->completed = rsp->completed;
990 		rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
991 		rcu_start_gp_per_cpu(rsp, rnp, rdp);
992 		rcu_preempt_boost_start_gp(rnp);
993 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
994 					    rnp->level, rnp->grplo,
995 					    rnp->grphi, rnp->qsmask);
996 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 		return;
998 	}
999 
1000 	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1001 
1002 
1003 	/* Exclude any concurrent CPU-hotplug operations. */
1004 	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1005 
1006 	/*
1007 	 * Set the quiescent-state-needed bits in all the rcu_node
1008 	 * structures for all currently online CPUs in breadth-first
1009 	 * order, starting from the root rcu_node structure.  This
1010 	 * operation relies on the layout of the hierarchy within the
1011 	 * rsp->node[] array.  Note that other CPUs will access only
1012 	 * the leaves of the hierarchy, which still indicate that no
1013 	 * grace period is in progress, at least until the corresponding
1014 	 * leaf node has been initialized.  In addition, we have excluded
1015 	 * CPU-hotplug operations.
1016 	 *
1017 	 * Note that the grace period cannot complete until we finish
1018 	 * the initialization process, as there will be at least one
1019 	 * qsmask bit set in the root node until that time, namely the
1020 	 * one corresponding to this CPU, due to the fact that we have
1021 	 * irqs disabled.
1022 	 */
1023 	rcu_for_each_node_breadth_first(rsp, rnp) {
1024 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1025 		rcu_preempt_check_blocked_tasks(rnp);
1026 		rnp->qsmask = rnp->qsmaskinit;
1027 		rnp->gpnum = rsp->gpnum;
1028 		rnp->completed = rsp->completed;
1029 		if (rnp == rdp->mynode)
1030 			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1031 		rcu_preempt_boost_start_gp(rnp);
1032 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1033 					    rnp->level, rnp->grplo,
1034 					    rnp->grphi, rnp->qsmask);
1035 		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1036 	}
1037 
1038 	rnp = rcu_get_root(rsp);
1039 	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1040 	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1041 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1042 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1043 }
1044 
1045 /*
1046  * Report a full set of quiescent states to the specified rcu_state
1047  * data structure.  This involves cleaning up after the prior grace
1048  * period and letting rcu_start_gp() start up the next grace period
1049  * if one is needed.  Note that the caller must hold rnp->lock, as
1050  * required by rcu_start_gp(), which will release it.
1051  */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)1052 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1053 	__releases(rcu_get_root(rsp)->lock)
1054 {
1055 	unsigned long gp_duration;
1056 	struct rcu_node *rnp = rcu_get_root(rsp);
1057 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1058 
1059 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1060 
1061 	/*
1062 	 * Ensure that all grace-period and pre-grace-period activity
1063 	 * is seen before the assignment to rsp->completed.
1064 	 */
1065 	smp_mb(); /* See above block comment. */
1066 	gp_duration = jiffies - rsp->gp_start;
1067 	if (gp_duration > rsp->gp_max)
1068 		rsp->gp_max = gp_duration;
1069 
1070 	/*
1071 	 * We know the grace period is complete, but to everyone else
1072 	 * it appears to still be ongoing.  But it is also the case
1073 	 * that to everyone else it looks like there is nothing that
1074 	 * they can do to advance the grace period.  It is therefore
1075 	 * safe for us to drop the lock in order to mark the grace
1076 	 * period as completed in all of the rcu_node structures.
1077 	 *
1078 	 * But if this CPU needs another grace period, it will take
1079 	 * care of this while initializing the next grace period.
1080 	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1081 	 * because the callbacks have not yet been advanced: Those
1082 	 * callbacks are waiting on the grace period that just now
1083 	 * completed.
1084 	 */
1085 	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1086 		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
1087 
1088 		/*
1089 		 * Propagate new ->completed value to rcu_node structures
1090 		 * so that other CPUs don't have to wait until the start
1091 		 * of the next grace period to process their callbacks.
1092 		 */
1093 		rcu_for_each_node_breadth_first(rsp, rnp) {
1094 			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1095 			rnp->completed = rsp->gpnum;
1096 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1097 		}
1098 		rnp = rcu_get_root(rsp);
1099 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1100 	}
1101 
1102 	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1103 	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1104 	rsp->fqs_state = RCU_GP_IDLE;
1105 	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
1106 }
1107 
1108 /*
1109  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1110  * Allows quiescent states for a group of CPUs to be reported at one go
1111  * to the specified rcu_node structure, though all the CPUs in the group
1112  * must be represented by the same rcu_node structure (which need not be
1113  * a leaf rcu_node structure, though it often will be).  That structure's
1114  * lock must be held upon entry, and it is released before return.
1115  */
1116 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)1117 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1118 		  struct rcu_node *rnp, unsigned long flags)
1119 	__releases(rnp->lock)
1120 {
1121 	struct rcu_node *rnp_c;
1122 
1123 	/* Walk up the rcu_node hierarchy. */
1124 	for (;;) {
1125 		if (!(rnp->qsmask & mask)) {
1126 
1127 			/* Our bit has already been cleared, so done. */
1128 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 			return;
1130 		}
1131 		rnp->qsmask &= ~mask;
1132 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1133 						 mask, rnp->qsmask, rnp->level,
1134 						 rnp->grplo, rnp->grphi,
1135 						 !!rnp->gp_tasks);
1136 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1137 
1138 			/* Other bits still set at this level, so done. */
1139 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1140 			return;
1141 		}
1142 		mask = rnp->grpmask;
1143 		if (rnp->parent == NULL) {
1144 
1145 			/* No more levels.  Exit loop holding root lock. */
1146 
1147 			break;
1148 		}
1149 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150 		rnp_c = rnp;
1151 		rnp = rnp->parent;
1152 		raw_spin_lock_irqsave(&rnp->lock, flags);
1153 		WARN_ON_ONCE(rnp_c->qsmask);
1154 	}
1155 
1156 	/*
1157 	 * Get here if we are the last CPU to pass through a quiescent
1158 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1159 	 * to clean up and start the next grace period if one is needed.
1160 	 */
1161 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1162 }
1163 
1164 /*
1165  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1166  * structure.  This must be either called from the specified CPU, or
1167  * called when the specified CPU is known to be offline (and when it is
1168  * also known that no other CPU is concurrently trying to help the offline
1169  * CPU).  The lastcomp argument is used to make sure we are still in the
1170  * grace period of interest.  We don't want to end the current grace period
1171  * based on quiescent states detected in an earlier grace period!
1172  */
1173 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp,long lastgp)1174 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1175 {
1176 	unsigned long flags;
1177 	unsigned long mask;
1178 	struct rcu_node *rnp;
1179 
1180 	rnp = rdp->mynode;
1181 	raw_spin_lock_irqsave(&rnp->lock, flags);
1182 	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1183 
1184 		/*
1185 		 * The grace period in which this quiescent state was
1186 		 * recorded has ended, so don't report it upwards.
1187 		 * We will instead need a new quiescent state that lies
1188 		 * within the current grace period.
1189 		 */
1190 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1191 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 		return;
1193 	}
1194 	mask = rdp->grpmask;
1195 	if ((rnp->qsmask & mask) == 0) {
1196 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197 	} else {
1198 		rdp->qs_pending = 0;
1199 
1200 		/*
1201 		 * This GP can't end until cpu checks in, so all of our
1202 		 * callbacks can be processed during the next GP.
1203 		 */
1204 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1205 
1206 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1207 	}
1208 }
1209 
1210 /*
1211  * Check to see if there is a new grace period of which this CPU
1212  * is not yet aware, and if so, set up local rcu_data state for it.
1213  * Otherwise, see if this CPU has just passed through its first
1214  * quiescent state for this grace period, and record that fact if so.
1215  */
1216 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)1217 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1218 {
1219 	/* If there is now a new grace period, record and return. */
1220 	if (check_for_new_grace_period(rsp, rdp))
1221 		return;
1222 
1223 	/*
1224 	 * Does this CPU still need to do its part for current grace period?
1225 	 * If no, return and let the other CPUs do their part as well.
1226 	 */
1227 	if (!rdp->qs_pending)
1228 		return;
1229 
1230 	/*
1231 	 * Was there a quiescent state since the beginning of the grace
1232 	 * period? If no, then exit and wait for the next call.
1233 	 */
1234 	if (!rdp->passed_quiesce)
1235 		return;
1236 
1237 	/*
1238 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1239 	 * judge of that).
1240 	 */
1241 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1242 }
1243 
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 
1246 /*
1247  * Move a dying CPU's RCU callbacks to online CPU's callback list.
1248  * Synchronization is not required because this function executes
1249  * in stop_machine() context.
1250  */
rcu_send_cbs_to_online(struct rcu_state * rsp)1251 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1252 {
1253 	int i;
1254 	/* current DYING CPU is cleared in the cpu_online_mask */
1255 	int receive_cpu = cpumask_any(cpu_online_mask);
1256 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1257 	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1258 
1259 	if (rdp->nxtlist == NULL)
1260 		return;  /* irqs disabled, so comparison is stable. */
1261 
1262 	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1263 	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1264 	receive_rdp->qlen += rdp->qlen;
1265 	receive_rdp->n_cbs_adopted += rdp->qlen;
1266 	rdp->n_cbs_orphaned += rdp->qlen;
1267 
1268 	rdp->nxtlist = NULL;
1269 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1270 		rdp->nxttail[i] = &rdp->nxtlist;
1271 	rdp->qlen = 0;
1272 }
1273 
1274 /*
1275  * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1276  * and move all callbacks from the outgoing CPU to the current one.
1277  * There can only be one CPU hotplug operation at a time, so no other
1278  * CPU can be attempting to update rcu_cpu_kthread_task.
1279  */
__rcu_offline_cpu(int cpu,struct rcu_state * rsp)1280 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1281 {
1282 	unsigned long flags;
1283 	unsigned long mask;
1284 	int need_report = 0;
1285 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1286 	struct rcu_node *rnp;
1287 
1288 	rcu_stop_cpu_kthread(cpu);
1289 
1290 	/* Exclude any attempts to start a new grace period. */
1291 	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1292 
1293 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1294 	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1295 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1296 	do {
1297 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1298 		rnp->qsmaskinit &= ~mask;
1299 		if (rnp->qsmaskinit != 0) {
1300 			if (rnp != rdp->mynode)
1301 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1302 			else
1303 				trace_rcu_grace_period(rsp->name,
1304 						       rnp->gpnum + 1 -
1305 						       !!(rnp->qsmask & mask),
1306 						       "cpuofl");
1307 			break;
1308 		}
1309 		if (rnp == rdp->mynode) {
1310 			trace_rcu_grace_period(rsp->name,
1311 					       rnp->gpnum + 1 -
1312 					       !!(rnp->qsmask & mask),
1313 					       "cpuofl");
1314 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1315 		} else
1316 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1317 		mask = rnp->grpmask;
1318 		rnp = rnp->parent;
1319 	} while (rnp != NULL);
1320 
1321 	/*
1322 	 * We still hold the leaf rcu_node structure lock here, and
1323 	 * irqs are still disabled.  The reason for this subterfuge is
1324 	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1325 	 * held leads to deadlock.
1326 	 */
1327 	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1328 	rnp = rdp->mynode;
1329 	if (need_report & RCU_OFL_TASKS_NORM_GP)
1330 		rcu_report_unblock_qs_rnp(rnp, flags);
1331 	else
1332 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1333 	if (need_report & RCU_OFL_TASKS_EXP_GP)
1334 		rcu_report_exp_rnp(rsp, rnp, true);
1335 	rcu_node_kthread_setaffinity(rnp, -1);
1336 }
1337 
1338 /*
1339  * Remove the specified CPU from the RCU hierarchy and move any pending
1340  * callbacks that it might have to the current CPU.  This code assumes
1341  * that at least one CPU in the system will remain running at all times.
1342  * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1343  */
rcu_offline_cpu(int cpu)1344 static void rcu_offline_cpu(int cpu)
1345 {
1346 	__rcu_offline_cpu(cpu, &rcu_sched_state);
1347 	__rcu_offline_cpu(cpu, &rcu_bh_state);
1348 	rcu_preempt_offline_cpu(cpu);
1349 }
1350 
1351 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1352 
rcu_send_cbs_to_online(struct rcu_state * rsp)1353 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1354 {
1355 }
1356 
rcu_offline_cpu(int cpu)1357 static void rcu_offline_cpu(int cpu)
1358 {
1359 }
1360 
1361 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1362 
1363 /*
1364  * Invoke any RCU callbacks that have made it to the end of their grace
1365  * period.  Thottle as specified by rdp->blimit.
1366  */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)1367 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1368 {
1369 	unsigned long flags;
1370 	struct rcu_head *next, *list, **tail;
1371 	int bl, count;
1372 
1373 	/* If no callbacks are ready, just return.*/
1374 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1375 		trace_rcu_batch_start(rsp->name, 0, 0);
1376 		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1377 				    need_resched(), is_idle_task(current),
1378 				    rcu_is_callbacks_kthread());
1379 		return;
1380 	}
1381 
1382 	/*
1383 	 * Extract the list of ready callbacks, disabling to prevent
1384 	 * races with call_rcu() from interrupt handlers.
1385 	 */
1386 	local_irq_save(flags);
1387 	bl = rdp->blimit;
1388 	trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1389 	list = rdp->nxtlist;
1390 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1391 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1392 	tail = rdp->nxttail[RCU_DONE_TAIL];
1393 	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1394 		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1395 			rdp->nxttail[count] = &rdp->nxtlist;
1396 	local_irq_restore(flags);
1397 
1398 	/* Invoke callbacks. */
1399 	count = 0;
1400 	while (list) {
1401 		next = list->next;
1402 		prefetch(next);
1403 		debug_rcu_head_unqueue(list);
1404 		__rcu_reclaim(rsp->name, list);
1405 		list = next;
1406 		/* Stop only if limit reached and CPU has something to do. */
1407 		if (++count >= bl &&
1408 		    (need_resched() ||
1409 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1410 			break;
1411 	}
1412 
1413 	local_irq_save(flags);
1414 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1415 			    is_idle_task(current),
1416 			    rcu_is_callbacks_kthread());
1417 
1418 	/* Update count, and requeue any remaining callbacks. */
1419 	rdp->qlen -= count;
1420 	rdp->n_cbs_invoked += count;
1421 	if (list != NULL) {
1422 		*tail = rdp->nxtlist;
1423 		rdp->nxtlist = list;
1424 		for (count = 0; count < RCU_NEXT_SIZE; count++)
1425 			if (&rdp->nxtlist == rdp->nxttail[count])
1426 				rdp->nxttail[count] = tail;
1427 			else
1428 				break;
1429 	}
1430 
1431 	/* Reinstate batch limit if we have worked down the excess. */
1432 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1433 		rdp->blimit = blimit;
1434 
1435 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1436 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1437 		rdp->qlen_last_fqs_check = 0;
1438 		rdp->n_force_qs_snap = rsp->n_force_qs;
1439 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1440 		rdp->qlen_last_fqs_check = rdp->qlen;
1441 
1442 	local_irq_restore(flags);
1443 
1444 	/* Re-invoke RCU core processing if there are callbacks remaining. */
1445 	if (cpu_has_callbacks_ready_to_invoke(rdp))
1446 		invoke_rcu_core();
1447 }
1448 
1449 /*
1450  * Check to see if this CPU is in a non-context-switch quiescent state
1451  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1452  * Also schedule RCU core processing.
1453  *
1454  * This function must be called from hardirq context.  It is normally
1455  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
1456  * false, there is no point in invoking rcu_check_callbacks().
1457  */
rcu_check_callbacks(int cpu,int user)1458 void rcu_check_callbacks(int cpu, int user)
1459 {
1460 	trace_rcu_utilization("Start scheduler-tick");
1461 	if (user || rcu_is_cpu_rrupt_from_idle()) {
1462 
1463 		/*
1464 		 * Get here if this CPU took its interrupt from user
1465 		 * mode or from the idle loop, and if this is not a
1466 		 * nested interrupt.  In this case, the CPU is in
1467 		 * a quiescent state, so note it.
1468 		 *
1469 		 * No memory barrier is required here because both
1470 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1471 		 * variables that other CPUs neither access nor modify,
1472 		 * at least not while the corresponding CPU is online.
1473 		 */
1474 
1475 		rcu_sched_qs(cpu);
1476 		rcu_bh_qs(cpu);
1477 
1478 	} else if (!in_softirq()) {
1479 
1480 		/*
1481 		 * Get here if this CPU did not take its interrupt from
1482 		 * softirq, in other words, if it is not interrupting
1483 		 * a rcu_bh read-side critical section.  This is an _bh
1484 		 * critical section, so note it.
1485 		 */
1486 
1487 		rcu_bh_qs(cpu);
1488 	}
1489 	rcu_preempt_check_callbacks(cpu);
1490 	if (rcu_pending(cpu))
1491 		invoke_rcu_core();
1492 	trace_rcu_utilization("End scheduler-tick");
1493 }
1494 
1495 #ifdef CONFIG_SMP
1496 
1497 /*
1498  * Scan the leaf rcu_node structures, processing dyntick state for any that
1499  * have not yet encountered a quiescent state, using the function specified.
1500  * Also initiate boosting for any threads blocked on the root rcu_node.
1501  *
1502  * The caller must have suppressed start of new grace periods.
1503  */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data *))1504 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1505 {
1506 	unsigned long bit;
1507 	int cpu;
1508 	unsigned long flags;
1509 	unsigned long mask;
1510 	struct rcu_node *rnp;
1511 
1512 	rcu_for_each_leaf_node(rsp, rnp) {
1513 		mask = 0;
1514 		raw_spin_lock_irqsave(&rnp->lock, flags);
1515 		if (!rcu_gp_in_progress(rsp)) {
1516 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1517 			return;
1518 		}
1519 		if (rnp->qsmask == 0) {
1520 			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1521 			continue;
1522 		}
1523 		cpu = rnp->grplo;
1524 		bit = 1;
1525 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1526 			if ((rnp->qsmask & bit) != 0 &&
1527 			    f(per_cpu_ptr(rsp->rda, cpu)))
1528 				mask |= bit;
1529 		}
1530 		if (mask != 0) {
1531 
1532 			/* rcu_report_qs_rnp() releases rnp->lock. */
1533 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1534 			continue;
1535 		}
1536 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1537 	}
1538 	rnp = rcu_get_root(rsp);
1539 	if (rnp->qsmask == 0) {
1540 		raw_spin_lock_irqsave(&rnp->lock, flags);
1541 		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1542 	}
1543 }
1544 
1545 /*
1546  * Force quiescent states on reluctant CPUs, and also detect which
1547  * CPUs are in dyntick-idle mode.
1548  */
force_quiescent_state(struct rcu_state * rsp,int relaxed)1549 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1550 {
1551 	unsigned long flags;
1552 	struct rcu_node *rnp = rcu_get_root(rsp);
1553 
1554 	trace_rcu_utilization("Start fqs");
1555 	if (!rcu_gp_in_progress(rsp)) {
1556 		trace_rcu_utilization("End fqs");
1557 		return;  /* No grace period in progress, nothing to force. */
1558 	}
1559 	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1560 		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1561 		trace_rcu_utilization("End fqs");
1562 		return;	/* Someone else is already on the job. */
1563 	}
1564 	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1565 		goto unlock_fqs_ret; /* no emergency and done recently. */
1566 	rsp->n_force_qs++;
1567 	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1568 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1569 	if(!rcu_gp_in_progress(rsp)) {
1570 		rsp->n_force_qs_ngp++;
1571 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1572 		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1573 	}
1574 	rsp->fqs_active = 1;
1575 	switch (rsp->fqs_state) {
1576 	case RCU_GP_IDLE:
1577 	case RCU_GP_INIT:
1578 
1579 		break; /* grace period idle or initializing, ignore. */
1580 
1581 	case RCU_SAVE_DYNTICK:
1582 		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1583 			break; /* So gcc recognizes the dead code. */
1584 
1585 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1586 
1587 		/* Record dyntick-idle state. */
1588 		force_qs_rnp(rsp, dyntick_save_progress_counter);
1589 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1590 		if (rcu_gp_in_progress(rsp))
1591 			rsp->fqs_state = RCU_FORCE_QS;
1592 		break;
1593 
1594 	case RCU_FORCE_QS:
1595 
1596 		/* Check dyntick-idle state, send IPI to laggarts. */
1597 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1598 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1599 
1600 		/* Leave state in case more forcing is required. */
1601 
1602 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1603 		break;
1604 	}
1605 	rsp->fqs_active = 0;
1606 	if (rsp->fqs_need_gp) {
1607 		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1608 		rsp->fqs_need_gp = 0;
1609 		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1610 		trace_rcu_utilization("End fqs");
1611 		return;
1612 	}
1613 	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1614 unlock_fqs_ret:
1615 	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1616 	trace_rcu_utilization("End fqs");
1617 }
1618 
1619 #else /* #ifdef CONFIG_SMP */
1620 
force_quiescent_state(struct rcu_state * rsp,int relaxed)1621 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1622 {
1623 	set_need_resched();
1624 }
1625 
1626 #endif /* #else #ifdef CONFIG_SMP */
1627 
1628 /*
1629  * This does the RCU core processing work for the specified rcu_state
1630  * and rcu_data structures.  This may be called only from the CPU to
1631  * whom the rdp belongs.
1632  */
1633 static void
__rcu_process_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1634 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1635 {
1636 	unsigned long flags;
1637 
1638 	WARN_ON_ONCE(rdp->beenonline == 0);
1639 
1640 	/*
1641 	 * If an RCU GP has gone long enough, go check for dyntick
1642 	 * idle CPUs and, if needed, send resched IPIs.
1643 	 */
1644 	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1645 		force_quiescent_state(rsp, 1);
1646 
1647 	/*
1648 	 * Advance callbacks in response to end of earlier grace
1649 	 * period that some other CPU ended.
1650 	 */
1651 	rcu_process_gp_end(rsp, rdp);
1652 
1653 	/* Update RCU state based on any recent quiescent states. */
1654 	rcu_check_quiescent_state(rsp, rdp);
1655 
1656 	/* Does this CPU require a not-yet-started grace period? */
1657 	if (cpu_needs_another_gp(rsp, rdp)) {
1658 		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1659 		rcu_start_gp(rsp, flags);  /* releases above lock */
1660 	}
1661 
1662 	/* If there are callbacks ready, invoke them. */
1663 	if (cpu_has_callbacks_ready_to_invoke(rdp))
1664 		invoke_rcu_callbacks(rsp, rdp);
1665 }
1666 
1667 /*
1668  * Do RCU core processing for the current CPU.
1669  */
rcu_process_callbacks(struct softirq_action * unused)1670 static void rcu_process_callbacks(struct softirq_action *unused)
1671 {
1672 	trace_rcu_utilization("Start RCU core");
1673 	__rcu_process_callbacks(&rcu_sched_state,
1674 				&__get_cpu_var(rcu_sched_data));
1675 	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1676 	rcu_preempt_process_callbacks();
1677 	trace_rcu_utilization("End RCU core");
1678 }
1679 
1680 /*
1681  * Schedule RCU callback invocation.  If the specified type of RCU
1682  * does not support RCU priority boosting, just do a direct call,
1683  * otherwise wake up the per-CPU kernel kthread.  Note that because we
1684  * are running on the current CPU with interrupts disabled, the
1685  * rcu_cpu_kthread_task cannot disappear out from under us.
1686  */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)1687 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1688 {
1689 	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1690 		return;
1691 	if (likely(!rsp->boost)) {
1692 		rcu_do_batch(rsp, rdp);
1693 		return;
1694 	}
1695 	invoke_rcu_callbacks_kthread();
1696 }
1697 
invoke_rcu_core(void)1698 static void invoke_rcu_core(void)
1699 {
1700 	raise_softirq(RCU_SOFTIRQ);
1701 }
1702 
1703 static void
__call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu),struct rcu_state * rsp)1704 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1705 	   struct rcu_state *rsp)
1706 {
1707 	unsigned long flags;
1708 	struct rcu_data *rdp;
1709 
1710 	debug_rcu_head_queue(head);
1711 	head->func = func;
1712 	head->next = NULL;
1713 
1714 	smp_mb(); /* Ensure RCU update seen before callback registry. */
1715 
1716 	/*
1717 	 * Opportunistically note grace-period endings and beginnings.
1718 	 * Note that we might see a beginning right after we see an
1719 	 * end, but never vice versa, since this CPU has to pass through
1720 	 * a quiescent state betweentimes.
1721 	 */
1722 	local_irq_save(flags);
1723 	rdp = this_cpu_ptr(rsp->rda);
1724 
1725 	/* Add the callback to our list. */
1726 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
1727 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1728 	rdp->qlen++;
1729 
1730 	if (__is_kfree_rcu_offset((unsigned long)func))
1731 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1732 					 rdp->qlen);
1733 	else
1734 		trace_rcu_callback(rsp->name, head, rdp->qlen);
1735 
1736 	/* If interrupts were disabled, don't dive into RCU core. */
1737 	if (irqs_disabled_flags(flags)) {
1738 		local_irq_restore(flags);
1739 		return;
1740 	}
1741 
1742 	/*
1743 	 * Force the grace period if too many callbacks or too long waiting.
1744 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
1745 	 * if some other CPU has recently done so.  Also, don't bother
1746 	 * invoking force_quiescent_state() if the newly enqueued callback
1747 	 * is the only one waiting for a grace period to complete.
1748 	 */
1749 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1750 
1751 		/* Are we ignoring a completed grace period? */
1752 		rcu_process_gp_end(rsp, rdp);
1753 		check_for_new_grace_period(rsp, rdp);
1754 
1755 		/* Start a new grace period if one not already started. */
1756 		if (!rcu_gp_in_progress(rsp)) {
1757 			unsigned long nestflag;
1758 			struct rcu_node *rnp_root = rcu_get_root(rsp);
1759 
1760 			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1761 			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
1762 		} else {
1763 			/* Give the grace period a kick. */
1764 			rdp->blimit = LONG_MAX;
1765 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1766 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1767 				force_quiescent_state(rsp, 0);
1768 			rdp->n_force_qs_snap = rsp->n_force_qs;
1769 			rdp->qlen_last_fqs_check = rdp->qlen;
1770 		}
1771 	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1772 		force_quiescent_state(rsp, 1);
1773 	local_irq_restore(flags);
1774 }
1775 
1776 /*
1777  * Queue an RCU-sched callback for invocation after a grace period.
1778  */
call_rcu_sched(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1779 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1780 {
1781 	__call_rcu(head, func, &rcu_sched_state);
1782 }
1783 EXPORT_SYMBOL_GPL(call_rcu_sched);
1784 
1785 /*
1786  * Queue an RCU for invocation after a quicker grace period.
1787  */
call_rcu_bh(struct rcu_head * head,void (* func)(struct rcu_head * rcu))1788 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1789 {
1790 	__call_rcu(head, func, &rcu_bh_state);
1791 }
1792 EXPORT_SYMBOL_GPL(call_rcu_bh);
1793 
1794 /**
1795  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1796  *
1797  * Control will return to the caller some time after a full rcu-sched
1798  * grace period has elapsed, in other words after all currently executing
1799  * rcu-sched read-side critical sections have completed.   These read-side
1800  * critical sections are delimited by rcu_read_lock_sched() and
1801  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
1802  * local_irq_disable(), and so on may be used in place of
1803  * rcu_read_lock_sched().
1804  *
1805  * This means that all preempt_disable code sequences, including NMI and
1806  * hardware-interrupt handlers, in progress on entry will have completed
1807  * before this primitive returns.  However, this does not guarantee that
1808  * softirq handlers will have completed, since in some kernels, these
1809  * handlers can run in process context, and can block.
1810  *
1811  * This primitive provides the guarantees made by the (now removed)
1812  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
1813  * guarantees that rcu_read_lock() sections will have completed.
1814  * In "classic RCU", these two guarantees happen to be one and
1815  * the same, but can differ in realtime RCU implementations.
1816  */
synchronize_sched(void)1817 void synchronize_sched(void)
1818 {
1819 	if (rcu_blocking_is_gp())
1820 		return;
1821 	wait_rcu_gp(call_rcu_sched);
1822 }
1823 EXPORT_SYMBOL_GPL(synchronize_sched);
1824 
1825 /**
1826  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1827  *
1828  * Control will return to the caller some time after a full rcu_bh grace
1829  * period has elapsed, in other words after all currently executing rcu_bh
1830  * read-side critical sections have completed.  RCU read-side critical
1831  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1832  * and may be nested.
1833  */
synchronize_rcu_bh(void)1834 void synchronize_rcu_bh(void)
1835 {
1836 	if (rcu_blocking_is_gp())
1837 		return;
1838 	wait_rcu_gp(call_rcu_bh);
1839 }
1840 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1841 
1842 /*
1843  * Check to see if there is any immediate RCU-related work to be done
1844  * by the current CPU, for the specified type of RCU, returning 1 if so.
1845  * The checks are in order of increasing expense: checks that can be
1846  * carried out against CPU-local state are performed first.  However,
1847  * we must check for CPU stalls first, else we might not get a chance.
1848  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)1849 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1850 {
1851 	struct rcu_node *rnp = rdp->mynode;
1852 
1853 	rdp->n_rcu_pending++;
1854 
1855 	/* Check for CPU stalls, if enabled. */
1856 	check_cpu_stall(rsp, rdp);
1857 
1858 	/* Is the RCU core waiting for a quiescent state from this CPU? */
1859 	if (rcu_scheduler_fully_active &&
1860 	    rdp->qs_pending && !rdp->passed_quiesce) {
1861 
1862 		/*
1863 		 * If force_quiescent_state() coming soon and this CPU
1864 		 * needs a quiescent state, and this is either RCU-sched
1865 		 * or RCU-bh, force a local reschedule.
1866 		 */
1867 		rdp->n_rp_qs_pending++;
1868 		if (!rdp->preemptible &&
1869 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1870 				 jiffies))
1871 			set_need_resched();
1872 	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1873 		rdp->n_rp_report_qs++;
1874 		return 1;
1875 	}
1876 
1877 	/* Does this CPU have callbacks ready to invoke? */
1878 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1879 		rdp->n_rp_cb_ready++;
1880 		return 1;
1881 	}
1882 
1883 	/* Has RCU gone idle with this CPU needing another grace period? */
1884 	if (cpu_needs_another_gp(rsp, rdp)) {
1885 		rdp->n_rp_cpu_needs_gp++;
1886 		return 1;
1887 	}
1888 
1889 	/* Has another RCU grace period completed?  */
1890 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1891 		rdp->n_rp_gp_completed++;
1892 		return 1;
1893 	}
1894 
1895 	/* Has a new RCU grace period started? */
1896 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1897 		rdp->n_rp_gp_started++;
1898 		return 1;
1899 	}
1900 
1901 	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1902 	if (rcu_gp_in_progress(rsp) &&
1903 	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1904 		rdp->n_rp_need_fqs++;
1905 		return 1;
1906 	}
1907 
1908 	/* nothing to do */
1909 	rdp->n_rp_need_nothing++;
1910 	return 0;
1911 }
1912 
1913 /*
1914  * Check to see if there is any immediate RCU-related work to be done
1915  * by the current CPU, returning 1 if so.  This function is part of the
1916  * RCU implementation; it is -not- an exported member of the RCU API.
1917  */
rcu_pending(int cpu)1918 static int rcu_pending(int cpu)
1919 {
1920 	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1921 	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1922 	       rcu_preempt_pending(cpu);
1923 }
1924 
1925 /*
1926  * Check to see if any future RCU-related work will need to be done
1927  * by the current CPU, even if none need be done immediately, returning
1928  * 1 if so.
1929  */
rcu_cpu_has_callbacks(int cpu)1930 static int rcu_cpu_has_callbacks(int cpu)
1931 {
1932 	/* RCU callbacks either ready or pending? */
1933 	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1934 	       per_cpu(rcu_bh_data, cpu).nxtlist ||
1935 	       rcu_preempt_needs_cpu(cpu);
1936 }
1937 
1938 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1939 static atomic_t rcu_barrier_cpu_count;
1940 static DEFINE_MUTEX(rcu_barrier_mutex);
1941 static struct completion rcu_barrier_completion;
1942 
rcu_barrier_callback(struct rcu_head * notused)1943 static void rcu_barrier_callback(struct rcu_head *notused)
1944 {
1945 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1946 		complete(&rcu_barrier_completion);
1947 }
1948 
1949 /*
1950  * Called with preemption disabled, and from cross-cpu IRQ context.
1951  */
rcu_barrier_func(void * type)1952 static void rcu_barrier_func(void *type)
1953 {
1954 	int cpu = smp_processor_id();
1955 	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1956 	void (*call_rcu_func)(struct rcu_head *head,
1957 			      void (*func)(struct rcu_head *head));
1958 
1959 	atomic_inc(&rcu_barrier_cpu_count);
1960 	call_rcu_func = type;
1961 	call_rcu_func(head, rcu_barrier_callback);
1962 }
1963 
1964 /*
1965  * Orchestrate the specified type of RCU barrier, waiting for all
1966  * RCU callbacks of the specified type to complete.
1967  */
_rcu_barrier(struct rcu_state * rsp,void (* call_rcu_func)(struct rcu_head * head,void (* func)(struct rcu_head * head)))1968 static void _rcu_barrier(struct rcu_state *rsp,
1969 			 void (*call_rcu_func)(struct rcu_head *head,
1970 					       void (*func)(struct rcu_head *head)))
1971 {
1972 	BUG_ON(in_interrupt());
1973 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1974 	mutex_lock(&rcu_barrier_mutex);
1975 	init_completion(&rcu_barrier_completion);
1976 	/*
1977 	 * Initialize rcu_barrier_cpu_count to 1, then invoke
1978 	 * rcu_barrier_func() on each CPU, so that each CPU also has
1979 	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
1980 	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1981 	 * might complete its grace period before all of the other CPUs
1982 	 * did their increment, causing this function to return too
1983 	 * early.  Note that on_each_cpu() disables irqs, which prevents
1984 	 * any CPUs from coming online or going offline until each online
1985 	 * CPU has queued its RCU-barrier callback.
1986 	 */
1987 	atomic_set(&rcu_barrier_cpu_count, 1);
1988 	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1989 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1990 		complete(&rcu_barrier_completion);
1991 	wait_for_completion(&rcu_barrier_completion);
1992 	mutex_unlock(&rcu_barrier_mutex);
1993 }
1994 
1995 /**
1996  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1997  */
rcu_barrier_bh(void)1998 void rcu_barrier_bh(void)
1999 {
2000 	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2001 }
2002 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2003 
2004 /**
2005  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2006  */
rcu_barrier_sched(void)2007 void rcu_barrier_sched(void)
2008 {
2009 	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2010 }
2011 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2012 
2013 /*
2014  * Do boot-time initialization of a CPU's per-CPU RCU data.
2015  */
2016 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)2017 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2018 {
2019 	unsigned long flags;
2020 	int i;
2021 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2022 	struct rcu_node *rnp = rcu_get_root(rsp);
2023 
2024 	/* Set up local state, ensuring consistent view of global state. */
2025 	raw_spin_lock_irqsave(&rnp->lock, flags);
2026 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2027 	rdp->nxtlist = NULL;
2028 	for (i = 0; i < RCU_NEXT_SIZE; i++)
2029 		rdp->nxttail[i] = &rdp->nxtlist;
2030 	rdp->qlen = 0;
2031 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2032 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2033 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2034 	rdp->cpu = cpu;
2035 	rdp->rsp = rsp;
2036 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2037 }
2038 
2039 /*
2040  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
2041  * offline event can be happening at a given time.  Note also that we
2042  * can accept some slop in the rsp->completed access due to the fact
2043  * that this CPU cannot possibly have any RCU callbacks in flight yet.
2044  */
2045 static void __cpuinit
rcu_init_percpu_data(int cpu,struct rcu_state * rsp,int preemptible)2046 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2047 {
2048 	unsigned long flags;
2049 	unsigned long mask;
2050 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2051 	struct rcu_node *rnp = rcu_get_root(rsp);
2052 
2053 	/* Set up local state, ensuring consistent view of global state. */
2054 	raw_spin_lock_irqsave(&rnp->lock, flags);
2055 	rdp->beenonline = 1;	 /* We have now been online. */
2056 	rdp->preemptible = preemptible;
2057 	rdp->qlen_last_fqs_check = 0;
2058 	rdp->n_force_qs_snap = rsp->n_force_qs;
2059 	rdp->blimit = blimit;
2060 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2061 	atomic_set(&rdp->dynticks->dynticks,
2062 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2063 	rcu_prepare_for_idle_init(cpu);
2064 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2065 
2066 	/*
2067 	 * A new grace period might start here.  If so, we won't be part
2068 	 * of it, but that is OK, as we are currently in a quiescent state.
2069 	 */
2070 
2071 	/* Exclude any attempts to start a new GP on large systems. */
2072 	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2073 
2074 	/* Add CPU to rcu_node bitmasks. */
2075 	rnp = rdp->mynode;
2076 	mask = rdp->grpmask;
2077 	do {
2078 		/* Exclude any attempts to start a new GP on small systems. */
2079 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2080 		rnp->qsmaskinit |= mask;
2081 		mask = rnp->grpmask;
2082 		if (rnp == rdp->mynode) {
2083 			/*
2084 			 * If there is a grace period in progress, we will
2085 			 * set up to wait for it next time we run the
2086 			 * RCU core code.
2087 			 */
2088 			rdp->gpnum = rnp->completed;
2089 			rdp->completed = rnp->completed;
2090 			rdp->passed_quiesce = 0;
2091 			rdp->qs_pending = 0;
2092 			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2093 			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2094 		}
2095 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2096 		rnp = rnp->parent;
2097 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2098 
2099 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2100 }
2101 
rcu_prepare_cpu(int cpu)2102 static void __cpuinit rcu_prepare_cpu(int cpu)
2103 {
2104 	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2105 	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2106 	rcu_preempt_init_percpu_data(cpu);
2107 }
2108 
2109 /*
2110  * Handle CPU online/offline notification events.
2111  */
rcu_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2112 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2113 				    unsigned long action, void *hcpu)
2114 {
2115 	long cpu = (long)hcpu;
2116 	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2117 	struct rcu_node *rnp = rdp->mynode;
2118 
2119 	trace_rcu_utilization("Start CPU hotplug");
2120 	switch (action) {
2121 	case CPU_UP_PREPARE:
2122 	case CPU_UP_PREPARE_FROZEN:
2123 		rcu_prepare_cpu(cpu);
2124 		rcu_prepare_kthreads(cpu);
2125 		break;
2126 	case CPU_ONLINE:
2127 	case CPU_DOWN_FAILED:
2128 		rcu_node_kthread_setaffinity(rnp, -1);
2129 		rcu_cpu_kthread_setrt(cpu, 1);
2130 		break;
2131 	case CPU_DOWN_PREPARE:
2132 		rcu_node_kthread_setaffinity(rnp, cpu);
2133 		rcu_cpu_kthread_setrt(cpu, 0);
2134 		break;
2135 	case CPU_DYING:
2136 	case CPU_DYING_FROZEN:
2137 		/*
2138 		 * The whole machine is "stopped" except this CPU, so we can
2139 		 * touch any data without introducing corruption. We send the
2140 		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2141 		 */
2142 		rcu_send_cbs_to_online(&rcu_bh_state);
2143 		rcu_send_cbs_to_online(&rcu_sched_state);
2144 		rcu_preempt_send_cbs_to_online();
2145 		rcu_cleanup_after_idle(cpu);
2146 		break;
2147 	case CPU_DEAD:
2148 	case CPU_DEAD_FROZEN:
2149 	case CPU_UP_CANCELED:
2150 	case CPU_UP_CANCELED_FROZEN:
2151 		rcu_offline_cpu(cpu);
2152 		break;
2153 	default:
2154 		break;
2155 	}
2156 	trace_rcu_utilization("End CPU hotplug");
2157 	return NOTIFY_OK;
2158 }
2159 
2160 /*
2161  * This function is invoked towards the end of the scheduler's initialization
2162  * process.  Before this is called, the idle task might contain
2163  * RCU read-side critical sections (during which time, this idle
2164  * task is booting the system).  After this function is called, the
2165  * idle tasks are prohibited from containing RCU read-side critical
2166  * sections.  This function also enables RCU lockdep checking.
2167  */
rcu_scheduler_starting(void)2168 void rcu_scheduler_starting(void)
2169 {
2170 	WARN_ON(num_online_cpus() != 1);
2171 	WARN_ON(nr_context_switches() > 0);
2172 	rcu_scheduler_active = 1;
2173 }
2174 
2175 /*
2176  * Compute the per-level fanout, either using the exact fanout specified
2177  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2178  */
2179 #ifdef CONFIG_RCU_FANOUT_EXACT
rcu_init_levelspread(struct rcu_state * rsp)2180 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2181 {
2182 	int i;
2183 
2184 	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2185 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2186 	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2187 }
2188 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
rcu_init_levelspread(struct rcu_state * rsp)2189 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2190 {
2191 	int ccur;
2192 	int cprv;
2193 	int i;
2194 
2195 	cprv = NR_CPUS;
2196 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2197 		ccur = rsp->levelcnt[i];
2198 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2199 		cprv = ccur;
2200 	}
2201 }
2202 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2203 
2204 /*
2205  * Helper function for rcu_init() that initializes one rcu_state structure.
2206  */
rcu_init_one(struct rcu_state * rsp,struct rcu_data __percpu * rda)2207 static void __init rcu_init_one(struct rcu_state *rsp,
2208 		struct rcu_data __percpu *rda)
2209 {
2210 	static char *buf[] = { "rcu_node_level_0",
2211 			       "rcu_node_level_1",
2212 			       "rcu_node_level_2",
2213 			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2214 	int cpustride = 1;
2215 	int i;
2216 	int j;
2217 	struct rcu_node *rnp;
2218 
2219 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
2220 
2221 	/* Initialize the level-tracking arrays. */
2222 
2223 	for (i = 1; i < NUM_RCU_LVLS; i++)
2224 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2225 	rcu_init_levelspread(rsp);
2226 
2227 	/* Initialize the elements themselves, starting from the leaves. */
2228 
2229 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2230 		cpustride *= rsp->levelspread[i];
2231 		rnp = rsp->level[i];
2232 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2233 			raw_spin_lock_init(&rnp->lock);
2234 			lockdep_set_class_and_name(&rnp->lock,
2235 						   &rcu_node_class[i], buf[i]);
2236 			rnp->gpnum = 0;
2237 			rnp->qsmask = 0;
2238 			rnp->qsmaskinit = 0;
2239 			rnp->grplo = j * cpustride;
2240 			rnp->grphi = (j + 1) * cpustride - 1;
2241 			if (rnp->grphi >= NR_CPUS)
2242 				rnp->grphi = NR_CPUS - 1;
2243 			if (i == 0) {
2244 				rnp->grpnum = 0;
2245 				rnp->grpmask = 0;
2246 				rnp->parent = NULL;
2247 			} else {
2248 				rnp->grpnum = j % rsp->levelspread[i - 1];
2249 				rnp->grpmask = 1UL << rnp->grpnum;
2250 				rnp->parent = rsp->level[i - 1] +
2251 					      j / rsp->levelspread[i - 1];
2252 			}
2253 			rnp->level = i;
2254 			INIT_LIST_HEAD(&rnp->blkd_tasks);
2255 		}
2256 	}
2257 
2258 	rsp->rda = rda;
2259 	rnp = rsp->level[NUM_RCU_LVLS - 1];
2260 	for_each_possible_cpu(i) {
2261 		while (i > rnp->grphi)
2262 			rnp++;
2263 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2264 		rcu_boot_init_percpu_data(i, rsp);
2265 	}
2266 }
2267 
rcu_init(void)2268 void __init rcu_init(void)
2269 {
2270 	int cpu;
2271 
2272 	rcu_bootup_announce();
2273 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2274 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2275 	__rcu_init_preempt();
2276 	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2277 
2278 	/*
2279 	 * We don't need protection against CPU-hotplug here because
2280 	 * this is called early in boot, before either interrupts
2281 	 * or the scheduler are operational.
2282 	 */
2283 	cpu_notifier(rcu_cpu_notify, 0);
2284 	for_each_online_cpu(cpu)
2285 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2286 	check_cpu_stall_init();
2287 }
2288 
2289 #include "rcutree_plugin.h"
2290