1 /*
2  * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  *
20  * Copyright (c) 2010 Linaro
21  *
22  * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23  */
24 
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/debugfs.h>
28 #include <linux/seq_file.h>
29 
30 /* Global control variables for rcupdate callback mechanism. */
31 struct rcu_ctrlblk {
32 	struct rcu_head *rcucblist;	/* List of pending callbacks (CBs). */
33 	struct rcu_head **donetail;	/* ->next pointer of last "done" CB. */
34 	struct rcu_head **curtail;	/* ->next pointer of last CB. */
35 	RCU_TRACE(long qlen);		/* Number of pending CBs. */
36 	RCU_TRACE(char *name);		/* Name of RCU type. */
37 };
38 
39 /* Definition for rcupdate control block. */
40 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
41 	.donetail	= &rcu_sched_ctrlblk.rcucblist,
42 	.curtail	= &rcu_sched_ctrlblk.rcucblist,
43 	RCU_TRACE(.name = "rcu_sched")
44 };
45 
46 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
47 	.donetail	= &rcu_bh_ctrlblk.rcucblist,
48 	.curtail	= &rcu_bh_ctrlblk.rcucblist,
49 	RCU_TRACE(.name = "rcu_bh")
50 };
51 
52 #ifdef CONFIG_DEBUG_LOCK_ALLOC
53 int rcu_scheduler_active __read_mostly;
54 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
55 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
56 
57 #ifdef CONFIG_TINY_PREEMPT_RCU
58 
59 #include <linux/delay.h>
60 
61 /* Global control variables for preemptible RCU. */
62 struct rcu_preempt_ctrlblk {
63 	struct rcu_ctrlblk rcb;	/* curtail: ->next ptr of last CB for GP. */
64 	struct rcu_head **nexttail;
65 				/* Tasks blocked in a preemptible RCU */
66 				/*  read-side critical section while an */
67 				/*  preemptible-RCU grace period is in */
68 				/*  progress must wait for a later grace */
69 				/*  period.  This pointer points to the */
70 				/*  ->next pointer of the last task that */
71 				/*  must wait for a later grace period, or */
72 				/*  to &->rcb.rcucblist if there is no */
73 				/*  such task. */
74 	struct list_head blkd_tasks;
75 				/* Tasks blocked in RCU read-side critical */
76 				/*  section.  Tasks are placed at the head */
77 				/*  of this list and age towards the tail. */
78 	struct list_head *gp_tasks;
79 				/* Pointer to the first task blocking the */
80 				/*  current grace period, or NULL if there */
81 				/*  is no such task. */
82 	struct list_head *exp_tasks;
83 				/* Pointer to first task blocking the */
84 				/*  current expedited grace period, or NULL */
85 				/*  if there is no such task.  If there */
86 				/*  is no current expedited grace period, */
87 				/*  then there cannot be any such task. */
88 #ifdef CONFIG_RCU_BOOST
89 	struct list_head *boost_tasks;
90 				/* Pointer to first task that needs to be */
91 				/*  priority-boosted, or NULL if no priority */
92 				/*  boosting is needed.  If there is no */
93 				/*  current or expedited grace period, there */
94 				/*  can be no such task. */
95 #endif /* #ifdef CONFIG_RCU_BOOST */
96 	u8 gpnum;		/* Current grace period. */
97 	u8 gpcpu;		/* Last grace period blocked by the CPU. */
98 	u8 completed;		/* Last grace period completed. */
99 				/*  If all three are equal, RCU is idle. */
100 #ifdef CONFIG_RCU_BOOST
101 	unsigned long boost_time; /* When to start boosting (jiffies) */
102 #endif /* #ifdef CONFIG_RCU_BOOST */
103 #ifdef CONFIG_RCU_TRACE
104 	unsigned long n_grace_periods;
105 #ifdef CONFIG_RCU_BOOST
106 	unsigned long n_tasks_boosted;
107 				/* Total number of tasks boosted. */
108 	unsigned long n_exp_boosts;
109 				/* Number of tasks boosted for expedited GP. */
110 	unsigned long n_normal_boosts;
111 				/* Number of tasks boosted for normal GP. */
112 	unsigned long n_balk_blkd_tasks;
113 				/* Refused to boost: no blocked tasks. */
114 	unsigned long n_balk_exp_gp_tasks;
115 				/* Refused to boost: nothing blocking GP. */
116 	unsigned long n_balk_boost_tasks;
117 				/* Refused to boost: already boosting. */
118 	unsigned long n_balk_notyet;
119 				/* Refused to boost: not yet time. */
120 	unsigned long n_balk_nos;
121 				/* Refused to boost: not sure why, though. */
122 				/*  This can happen due to race conditions. */
123 #endif /* #ifdef CONFIG_RCU_BOOST */
124 #endif /* #ifdef CONFIG_RCU_TRACE */
125 };
126 
127 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
128 	.rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
129 	.rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
130 	.nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131 	.blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
132 	RCU_TRACE(.rcb.name = "rcu_preempt")
133 };
134 
135 static int rcu_preempted_readers_exp(void);
136 static void rcu_report_exp_done(void);
137 
138 /*
139  * Return true if the CPU has not yet responded to the current grace period.
140  */
rcu_cpu_blocking_cur_gp(void)141 static int rcu_cpu_blocking_cur_gp(void)
142 {
143 	return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
144 }
145 
146 /*
147  * Check for a running RCU reader.  Because there is only one CPU,
148  * there can be but one running RCU reader at a time.  ;-)
149  */
rcu_preempt_running_reader(void)150 static int rcu_preempt_running_reader(void)
151 {
152 	return current->rcu_read_lock_nesting;
153 }
154 
155 /*
156  * Check for preempted RCU readers blocking any grace period.
157  * If the caller needs a reliable answer, it must disable hard irqs.
158  */
rcu_preempt_blocked_readers_any(void)159 static int rcu_preempt_blocked_readers_any(void)
160 {
161 	return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
162 }
163 
164 /*
165  * Check for preempted RCU readers blocking the current grace period.
166  * If the caller needs a reliable answer, it must disable hard irqs.
167  */
rcu_preempt_blocked_readers_cgp(void)168 static int rcu_preempt_blocked_readers_cgp(void)
169 {
170 	return rcu_preempt_ctrlblk.gp_tasks != NULL;
171 }
172 
173 /*
174  * Return true if another preemptible-RCU grace period is needed.
175  */
rcu_preempt_needs_another_gp(void)176 static int rcu_preempt_needs_another_gp(void)
177 {
178 	return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
179 }
180 
181 /*
182  * Return true if a preemptible-RCU grace period is in progress.
183  * The caller must disable hardirqs.
184  */
rcu_preempt_gp_in_progress(void)185 static int rcu_preempt_gp_in_progress(void)
186 {
187 	return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
188 }
189 
190 /*
191  * Advance a ->blkd_tasks-list pointer to the next entry, instead
192  * returning NULL if at the end of the list.
193  */
rcu_next_node_entry(struct task_struct * t)194 static struct list_head *rcu_next_node_entry(struct task_struct *t)
195 {
196 	struct list_head *np;
197 
198 	np = t->rcu_node_entry.next;
199 	if (np == &rcu_preempt_ctrlblk.blkd_tasks)
200 		np = NULL;
201 	return np;
202 }
203 
204 #ifdef CONFIG_RCU_TRACE
205 
206 #ifdef CONFIG_RCU_BOOST
207 static void rcu_initiate_boost_trace(void);
208 #endif /* #ifdef CONFIG_RCU_BOOST */
209 
210 /*
211  * Dump additional statistice for TINY_PREEMPT_RCU.
212  */
show_tiny_preempt_stats(struct seq_file * m)213 static void show_tiny_preempt_stats(struct seq_file *m)
214 {
215 	seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
216 		   rcu_preempt_ctrlblk.rcb.qlen,
217 		   rcu_preempt_ctrlblk.n_grace_periods,
218 		   rcu_preempt_ctrlblk.gpnum,
219 		   rcu_preempt_ctrlblk.gpcpu,
220 		   rcu_preempt_ctrlblk.completed,
221 		   "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
222 		   "N."[!rcu_preempt_ctrlblk.gp_tasks],
223 		   "E."[!rcu_preempt_ctrlblk.exp_tasks]);
224 #ifdef CONFIG_RCU_BOOST
225 	seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
226 		   "             ",
227 		   "B."[!rcu_preempt_ctrlblk.boost_tasks],
228 		   rcu_preempt_ctrlblk.n_tasks_boosted,
229 		   rcu_preempt_ctrlblk.n_exp_boosts,
230 		   rcu_preempt_ctrlblk.n_normal_boosts,
231 		   (int)(jiffies & 0xffff),
232 		   (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
233 	seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
234 		   "             balk",
235 		   rcu_preempt_ctrlblk.n_balk_blkd_tasks,
236 		   rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
237 		   rcu_preempt_ctrlblk.n_balk_boost_tasks,
238 		   rcu_preempt_ctrlblk.n_balk_notyet,
239 		   rcu_preempt_ctrlblk.n_balk_nos);
240 #endif /* #ifdef CONFIG_RCU_BOOST */
241 }
242 
243 #endif /* #ifdef CONFIG_RCU_TRACE */
244 
245 #ifdef CONFIG_RCU_BOOST
246 
247 #include "rtmutex_common.h"
248 
249 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
250 
251 /* Controls for rcu_kthread() kthread. */
252 static struct task_struct *rcu_kthread_task;
253 static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
254 static unsigned long have_rcu_kthread_work;
255 
256 /*
257  * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
258  * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
259  */
rcu_boost(void)260 static int rcu_boost(void)
261 {
262 	unsigned long flags;
263 	struct rt_mutex mtx;
264 	struct task_struct *t;
265 	struct list_head *tb;
266 
267 	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
268 	    rcu_preempt_ctrlblk.exp_tasks == NULL)
269 		return 0;  /* Nothing to boost. */
270 
271 	raw_local_irq_save(flags);
272 
273 	/*
274 	 * Recheck with irqs disabled: all tasks in need of boosting
275 	 * might exit their RCU read-side critical sections on their own
276 	 * if we are preempted just before disabling irqs.
277 	 */
278 	if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
279 	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
280 		raw_local_irq_restore(flags);
281 		return 0;
282 	}
283 
284 	/*
285 	 * Preferentially boost tasks blocking expedited grace periods.
286 	 * This cannot starve the normal grace periods because a second
287 	 * expedited grace period must boost all blocked tasks, including
288 	 * those blocking the pre-existing normal grace period.
289 	 */
290 	if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
291 		tb = rcu_preempt_ctrlblk.exp_tasks;
292 		RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
293 	} else {
294 		tb = rcu_preempt_ctrlblk.boost_tasks;
295 		RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
296 	}
297 	RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
298 
299 	/*
300 	 * We boost task t by manufacturing an rt_mutex that appears to
301 	 * be held by task t.  We leave a pointer to that rt_mutex where
302 	 * task t can find it, and task t will release the mutex when it
303 	 * exits its outermost RCU read-side critical section.  Then
304 	 * simply acquiring this artificial rt_mutex will boost task
305 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
306 	 */
307 	t = container_of(tb, struct task_struct, rcu_node_entry);
308 	rt_mutex_init_proxy_locked(&mtx, t);
309 	t->rcu_boost_mutex = &mtx;
310 	t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
311 	raw_local_irq_restore(flags);
312 	rt_mutex_lock(&mtx);
313 	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
314 
315 	return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
316 	       ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
317 }
318 
319 /*
320  * Check to see if it is now time to start boosting RCU readers blocking
321  * the current grace period, and, if so, tell the rcu_kthread_task to
322  * start boosting them.  If there is an expedited boost in progress,
323  * we wait for it to complete.
324  *
325  * If there are no blocked readers blocking the current grace period,
326  * return 0 to let the caller know, otherwise return 1.  Note that this
327  * return value is independent of whether or not boosting was done.
328  */
rcu_initiate_boost(void)329 static int rcu_initiate_boost(void)
330 {
331 	if (!rcu_preempt_blocked_readers_cgp() &&
332 	    rcu_preempt_ctrlblk.exp_tasks == NULL) {
333 		RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
334 		return 0;
335 	}
336 	if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
337 	    (rcu_preempt_ctrlblk.gp_tasks != NULL &&
338 	     rcu_preempt_ctrlblk.boost_tasks == NULL &&
339 	     ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
340 		if (rcu_preempt_ctrlblk.exp_tasks == NULL)
341 			rcu_preempt_ctrlblk.boost_tasks =
342 				rcu_preempt_ctrlblk.gp_tasks;
343 		invoke_rcu_callbacks();
344 	} else
345 		RCU_TRACE(rcu_initiate_boost_trace());
346 	return 1;
347 }
348 
349 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
350 
351 /*
352  * Do priority-boost accounting for the start of a new grace period.
353  */
rcu_preempt_boost_start_gp(void)354 static void rcu_preempt_boost_start_gp(void)
355 {
356 	rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
357 }
358 
359 #else /* #ifdef CONFIG_RCU_BOOST */
360 
361 /*
362  * If there is no RCU priority boosting, we don't initiate boosting,
363  * but we do indicate whether there are blocked readers blocking the
364  * current grace period.
365  */
rcu_initiate_boost(void)366 static int rcu_initiate_boost(void)
367 {
368 	return rcu_preempt_blocked_readers_cgp();
369 }
370 
371 /*
372  * If there is no RCU priority boosting, nothing to do at grace-period start.
373  */
rcu_preempt_boost_start_gp(void)374 static void rcu_preempt_boost_start_gp(void)
375 {
376 }
377 
378 #endif /* else #ifdef CONFIG_RCU_BOOST */
379 
380 /*
381  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
382  * that this just means that the task currently running on the CPU is
383  * in a quiescent state.  There might be any number of tasks blocked
384  * while in an RCU read-side critical section.
385  *
386  * Unlike the other rcu_*_qs() functions, callers to this function
387  * must disable irqs in order to protect the assignment to
388  * ->rcu_read_unlock_special.
389  *
390  * Because this is a single-CPU implementation, the only way a grace
391  * period can end is if the CPU is in a quiescent state.  The reason is
392  * that a blocked preemptible-RCU reader can exit its critical section
393  * only if the CPU is running it at the time.  Therefore, when the
394  * last task blocking the current grace period exits its RCU read-side
395  * critical section, neither the CPU nor blocked tasks will be stopping
396  * the current grace period.  (In contrast, SMP implementations
397  * might have CPUs running in RCU read-side critical sections that
398  * block later grace periods -- but this is not possible given only
399  * one CPU.)
400  */
rcu_preempt_cpu_qs(void)401 static void rcu_preempt_cpu_qs(void)
402 {
403 	/* Record both CPU and task as having responded to current GP. */
404 	rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
405 	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
406 
407 	/* If there is no GP then there is nothing more to do.  */
408 	if (!rcu_preempt_gp_in_progress())
409 		return;
410 	/*
411 	 * Check up on boosting.  If there are readers blocking the
412 	 * current grace period, leave.
413 	 */
414 	if (rcu_initiate_boost())
415 		return;
416 
417 	/* Advance callbacks. */
418 	rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
419 	rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
420 	rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
421 
422 	/* If there are no blocked readers, next GP is done instantly. */
423 	if (!rcu_preempt_blocked_readers_any())
424 		rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
425 
426 	/* If there are done callbacks, cause them to be invoked. */
427 	if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
428 		invoke_rcu_callbacks();
429 }
430 
431 /*
432  * Start a new RCU grace period if warranted.  Hard irqs must be disabled.
433  */
rcu_preempt_start_gp(void)434 static void rcu_preempt_start_gp(void)
435 {
436 	if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
437 
438 		/* Official start of GP. */
439 		rcu_preempt_ctrlblk.gpnum++;
440 		RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
441 
442 		/* Any blocked RCU readers block new GP. */
443 		if (rcu_preempt_blocked_readers_any())
444 			rcu_preempt_ctrlblk.gp_tasks =
445 				rcu_preempt_ctrlblk.blkd_tasks.next;
446 
447 		/* Set up for RCU priority boosting. */
448 		rcu_preempt_boost_start_gp();
449 
450 		/* If there is no running reader, CPU is done with GP. */
451 		if (!rcu_preempt_running_reader())
452 			rcu_preempt_cpu_qs();
453 	}
454 }
455 
456 /*
457  * We have entered the scheduler, and the current task might soon be
458  * context-switched away from.  If this task is in an RCU read-side
459  * critical section, we will no longer be able to rely on the CPU to
460  * record that fact, so we enqueue the task on the blkd_tasks list.
461  * If the task started after the current grace period began, as recorded
462  * by ->gpcpu, we enqueue at the beginning of the list.  Otherwise
463  * before the element referenced by ->gp_tasks (or at the tail if
464  * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
465  * The task will dequeue itself when it exits the outermost enclosing
466  * RCU read-side critical section.  Therefore, the current grace period
467  * cannot be permitted to complete until the ->gp_tasks pointer becomes
468  * NULL.
469  *
470  * Caller must disable preemption.
471  */
rcu_preempt_note_context_switch(void)472 void rcu_preempt_note_context_switch(void)
473 {
474 	struct task_struct *t = current;
475 	unsigned long flags;
476 
477 	local_irq_save(flags); /* must exclude scheduler_tick(). */
478 	if (rcu_preempt_running_reader() &&
479 	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
480 
481 		/* Possibly blocking in an RCU read-side critical section. */
482 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
483 
484 		/*
485 		 * If this CPU has already checked in, then this task
486 		 * will hold up the next grace period rather than the
487 		 * current grace period.  Queue the task accordingly.
488 		 * If the task is queued for the current grace period
489 		 * (i.e., this CPU has not yet passed through a quiescent
490 		 * state for the current grace period), then as long
491 		 * as that task remains queued, the current grace period
492 		 * cannot end.
493 		 */
494 		list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
495 		if (rcu_cpu_blocking_cur_gp())
496 			rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
497 	}
498 
499 	/*
500 	 * Either we were not in an RCU read-side critical section to
501 	 * begin with, or we have now recorded that critical section
502 	 * globally.  Either way, we can now note a quiescent state
503 	 * for this CPU.  Again, if we were in an RCU read-side critical
504 	 * section, and if that critical section was blocking the current
505 	 * grace period, then the fact that the task has been enqueued
506 	 * means that current grace period continues to be blocked.
507 	 */
508 	rcu_preempt_cpu_qs();
509 	local_irq_restore(flags);
510 }
511 
512 /*
513  * Tiny-preemptible RCU implementation for rcu_read_lock().
514  * Just increment ->rcu_read_lock_nesting, shared state will be updated
515  * if we block.
516  */
__rcu_read_lock(void)517 void __rcu_read_lock(void)
518 {
519 	current->rcu_read_lock_nesting++;
520 	barrier();  /* needed if we ever invoke rcu_read_lock in rcutiny.c */
521 }
522 EXPORT_SYMBOL_GPL(__rcu_read_lock);
523 
524 /*
525  * Handle special cases during rcu_read_unlock(), such as needing to
526  * notify RCU core processing or task having blocked during the RCU
527  * read-side critical section.
528  */
rcu_read_unlock_special(struct task_struct * t)529 static void rcu_read_unlock_special(struct task_struct *t)
530 {
531 	int empty;
532 	int empty_exp;
533 	unsigned long flags;
534 	struct list_head *np;
535 	int special;
536 
537 	/*
538 	 * NMI handlers cannot block and cannot safely manipulate state.
539 	 * They therefore cannot possibly be special, so just leave.
540 	 */
541 	if (in_nmi())
542 		return;
543 
544 	local_irq_save(flags);
545 
546 	/*
547 	 * If RCU core is waiting for this CPU to exit critical section,
548 	 * let it know that we have done so.
549 	 */
550 	special = t->rcu_read_unlock_special;
551 	if (special & RCU_READ_UNLOCK_NEED_QS)
552 		rcu_preempt_cpu_qs();
553 
554 	/* Hardware IRQ handlers cannot block. */
555 	if (in_irq()) {
556 		local_irq_restore(flags);
557 		return;
558 	}
559 
560 	/* Clean up if blocked during RCU read-side critical section. */
561 	if (special & RCU_READ_UNLOCK_BLOCKED) {
562 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
563 
564 		/*
565 		 * Remove this task from the ->blkd_tasks list and adjust
566 		 * any pointers that might have been referencing it.
567 		 */
568 		empty = !rcu_preempt_blocked_readers_cgp();
569 		empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
570 		np = rcu_next_node_entry(t);
571 		list_del_init(&t->rcu_node_entry);
572 		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
573 			rcu_preempt_ctrlblk.gp_tasks = np;
574 		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
575 			rcu_preempt_ctrlblk.exp_tasks = np;
576 #ifdef CONFIG_RCU_BOOST
577 		if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
578 			rcu_preempt_ctrlblk.boost_tasks = np;
579 #endif /* #ifdef CONFIG_RCU_BOOST */
580 
581 		/*
582 		 * If this was the last task on the current list, and if
583 		 * we aren't waiting on the CPU, report the quiescent state
584 		 * and start a new grace period if needed.
585 		 */
586 		if (!empty && !rcu_preempt_blocked_readers_cgp()) {
587 			rcu_preempt_cpu_qs();
588 			rcu_preempt_start_gp();
589 		}
590 
591 		/*
592 		 * If this was the last task on the expedited lists,
593 		 * then we need wake up the waiting task.
594 		 */
595 		if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
596 			rcu_report_exp_done();
597 	}
598 #ifdef CONFIG_RCU_BOOST
599 	/* Unboost self if was boosted. */
600 	if (special & RCU_READ_UNLOCK_BOOSTED) {
601 		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
602 		rt_mutex_unlock(t->rcu_boost_mutex);
603 		t->rcu_boost_mutex = NULL;
604 	}
605 #endif /* #ifdef CONFIG_RCU_BOOST */
606 	local_irq_restore(flags);
607 }
608 
609 /*
610  * Tiny-preemptible RCU implementation for rcu_read_unlock().
611  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
612  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
613  * invoke rcu_read_unlock_special() to clean up after a context switch
614  * in an RCU read-side critical section and other special cases.
615  */
__rcu_read_unlock(void)616 void __rcu_read_unlock(void)
617 {
618 	struct task_struct *t = current;
619 
620 	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
621 	--t->rcu_read_lock_nesting;
622 	barrier();  /* decrement before load of ->rcu_read_unlock_special */
623 	if (t->rcu_read_lock_nesting == 0 &&
624 	    unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
625 		rcu_read_unlock_special(t);
626 #ifdef CONFIG_PROVE_LOCKING
627 	WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
628 #endif /* #ifdef CONFIG_PROVE_LOCKING */
629 }
630 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
631 
632 /*
633  * Check for a quiescent state from the current CPU.  When a task blocks,
634  * the task is recorded in the rcu_preempt_ctrlblk structure, which is
635  * checked elsewhere.  This is called from the scheduling-clock interrupt.
636  *
637  * Caller must disable hard irqs.
638  */
rcu_preempt_check_callbacks(void)639 static void rcu_preempt_check_callbacks(void)
640 {
641 	struct task_struct *t = current;
642 
643 	if (rcu_preempt_gp_in_progress() &&
644 	    (!rcu_preempt_running_reader() ||
645 	     !rcu_cpu_blocking_cur_gp()))
646 		rcu_preempt_cpu_qs();
647 	if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
648 	    rcu_preempt_ctrlblk.rcb.donetail)
649 		invoke_rcu_callbacks();
650 	if (rcu_preempt_gp_in_progress() &&
651 	    rcu_cpu_blocking_cur_gp() &&
652 	    rcu_preempt_running_reader())
653 		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
654 }
655 
656 /*
657  * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
658  * update, so this is invoked from rcu_process_callbacks() to
659  * handle that case.  Of course, it is invoked for all flavors of
660  * RCU, but RCU callbacks can appear only on one of the lists, and
661  * neither ->nexttail nor ->donetail can possibly be NULL, so there
662  * is no need for an explicit check.
663  */
rcu_preempt_remove_callbacks(struct rcu_ctrlblk * rcp)664 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
665 {
666 	if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
667 		rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
668 }
669 
670 /*
671  * Process callbacks for preemptible RCU.
672  */
rcu_preempt_process_callbacks(void)673 static void rcu_preempt_process_callbacks(void)
674 {
675 	__rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
676 }
677 
678 /*
679  * Queue a preemptible -RCU callback for invocation after a grace period.
680  */
call_rcu(struct rcu_head * head,void (* func)(struct rcu_head * rcu))681 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
682 {
683 	unsigned long flags;
684 
685 	debug_rcu_head_queue(head);
686 	head->func = func;
687 	head->next = NULL;
688 
689 	local_irq_save(flags);
690 	*rcu_preempt_ctrlblk.nexttail = head;
691 	rcu_preempt_ctrlblk.nexttail = &head->next;
692 	RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
693 	rcu_preempt_start_gp();  /* checks to see if GP needed. */
694 	local_irq_restore(flags);
695 }
696 EXPORT_SYMBOL_GPL(call_rcu);
697 
698 /*
699  * synchronize_rcu - wait until a grace period has elapsed.
700  *
701  * Control will return to the caller some time after a full grace
702  * period has elapsed, in other words after all currently executing RCU
703  * read-side critical sections have completed.  RCU read-side critical
704  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
705  * and may be nested.
706  */
synchronize_rcu(void)707 void synchronize_rcu(void)
708 {
709 #ifdef CONFIG_DEBUG_LOCK_ALLOC
710 	if (!rcu_scheduler_active)
711 		return;
712 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
713 
714 	WARN_ON_ONCE(rcu_preempt_running_reader());
715 	if (!rcu_preempt_blocked_readers_any())
716 		return;
717 
718 	/* Once we get past the fastpath checks, same code as rcu_barrier(). */
719 	rcu_barrier();
720 }
721 EXPORT_SYMBOL_GPL(synchronize_rcu);
722 
723 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
724 static unsigned long sync_rcu_preempt_exp_count;
725 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
726 
727 /*
728  * Return non-zero if there are any tasks in RCU read-side critical
729  * sections blocking the current preemptible-RCU expedited grace period.
730  * If there is no preemptible-RCU expedited grace period currently in
731  * progress, returns zero unconditionally.
732  */
rcu_preempted_readers_exp(void)733 static int rcu_preempted_readers_exp(void)
734 {
735 	return rcu_preempt_ctrlblk.exp_tasks != NULL;
736 }
737 
738 /*
739  * Report the exit from RCU read-side critical section for the last task
740  * that queued itself during or before the current expedited preemptible-RCU
741  * grace period.
742  */
rcu_report_exp_done(void)743 static void rcu_report_exp_done(void)
744 {
745 	wake_up(&sync_rcu_preempt_exp_wq);
746 }
747 
748 /*
749  * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
750  * is to rely in the fact that there is but one CPU, and that it is
751  * illegal for a task to invoke synchronize_rcu_expedited() while in a
752  * preemptible-RCU read-side critical section.  Therefore, any such
753  * critical sections must correspond to blocked tasks, which must therefore
754  * be on the ->blkd_tasks list.  So just record the current head of the
755  * list in the ->exp_tasks pointer, and wait for all tasks including and
756  * after the task pointed to by ->exp_tasks to drain.
757  */
synchronize_rcu_expedited(void)758 void synchronize_rcu_expedited(void)
759 {
760 	unsigned long flags;
761 	struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
762 	unsigned long snap;
763 
764 	barrier(); /* ensure prior action seen before grace period. */
765 
766 	WARN_ON_ONCE(rcu_preempt_running_reader());
767 
768 	/*
769 	 * Acquire lock so that there is only one preemptible RCU grace
770 	 * period in flight.  Of course, if someone does the expedited
771 	 * grace period for us while we are acquiring the lock, just leave.
772 	 */
773 	snap = sync_rcu_preempt_exp_count + 1;
774 	mutex_lock(&sync_rcu_preempt_exp_mutex);
775 	if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
776 		goto unlock_mb_ret; /* Others did our work for us. */
777 
778 	local_irq_save(flags);
779 
780 	/*
781 	 * All RCU readers have to already be on blkd_tasks because
782 	 * we cannot legally be executing in an RCU read-side critical
783 	 * section.
784 	 */
785 
786 	/* Snapshot current head of ->blkd_tasks list. */
787 	rpcp->exp_tasks = rpcp->blkd_tasks.next;
788 	if (rpcp->exp_tasks == &rpcp->blkd_tasks)
789 		rpcp->exp_tasks = NULL;
790 
791 	/* Wait for tail of ->blkd_tasks list to drain. */
792 	if (!rcu_preempted_readers_exp())
793 		local_irq_restore(flags);
794 	else {
795 		rcu_initiate_boost();
796 		local_irq_restore(flags);
797 		wait_event(sync_rcu_preempt_exp_wq,
798 			   !rcu_preempted_readers_exp());
799 	}
800 
801 	/* Clean up and exit. */
802 	barrier(); /* ensure expedited GP seen before counter increment. */
803 	sync_rcu_preempt_exp_count++;
804 unlock_mb_ret:
805 	mutex_unlock(&sync_rcu_preempt_exp_mutex);
806 	barrier(); /* ensure subsequent action seen after grace period. */
807 }
808 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
809 
810 /*
811  * Does preemptible RCU need the CPU to stay out of dynticks mode?
812  */
rcu_preempt_needs_cpu(void)813 int rcu_preempt_needs_cpu(void)
814 {
815 	if (!rcu_preempt_running_reader())
816 		rcu_preempt_cpu_qs();
817 	return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
818 }
819 
820 /*
821  * Check for a task exiting while in a preemptible -RCU read-side
822  * critical section, clean up if so.  No need to issue warnings,
823  * as debug_check_no_locks_held() already does this if lockdep
824  * is enabled.
825  */
exit_rcu(void)826 void exit_rcu(void)
827 {
828 	struct task_struct *t = current;
829 
830 	if (t->rcu_read_lock_nesting == 0)
831 		return;
832 	t->rcu_read_lock_nesting = 1;
833 	__rcu_read_unlock();
834 }
835 
836 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
837 
838 #ifdef CONFIG_RCU_TRACE
839 
840 /*
841  * Because preemptible RCU does not exist, it is not necessary to
842  * dump out its statistics.
843  */
show_tiny_preempt_stats(struct seq_file * m)844 static void show_tiny_preempt_stats(struct seq_file *m)
845 {
846 }
847 
848 #endif /* #ifdef CONFIG_RCU_TRACE */
849 
850 /*
851  * Because preemptible RCU does not exist, it never has any callbacks
852  * to check.
853  */
rcu_preempt_check_callbacks(void)854 static void rcu_preempt_check_callbacks(void)
855 {
856 }
857 
858 /*
859  * Because preemptible RCU does not exist, it never has any callbacks
860  * to remove.
861  */
rcu_preempt_remove_callbacks(struct rcu_ctrlblk * rcp)862 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
863 {
864 }
865 
866 /*
867  * Because preemptible RCU does not exist, it never has any callbacks
868  * to process.
869  */
rcu_preempt_process_callbacks(void)870 static void rcu_preempt_process_callbacks(void)
871 {
872 }
873 
874 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
875 
876 #ifdef CONFIG_RCU_BOOST
877 
878 /*
879  * Wake up rcu_kthread() to process callbacks now eligible for invocation
880  * or to boost readers.
881  */
invoke_rcu_callbacks(void)882 static void invoke_rcu_callbacks(void)
883 {
884 	have_rcu_kthread_work = 1;
885 	wake_up(&rcu_kthread_wq);
886 }
887 
888 #ifdef CONFIG_RCU_TRACE
889 
890 /*
891  * Is the current CPU running the RCU-callbacks kthread?
892  * Caller must have preemption disabled.
893  */
rcu_is_callbacks_kthread(void)894 static bool rcu_is_callbacks_kthread(void)
895 {
896 	return rcu_kthread_task == current;
897 }
898 
899 #endif /* #ifdef CONFIG_RCU_TRACE */
900 
901 /*
902  * This kthread invokes RCU callbacks whose grace periods have
903  * elapsed.  It is awakened as needed, and takes the place of the
904  * RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
905  * This is a kthread, but it is never stopped, at least not until
906  * the system goes down.
907  */
rcu_kthread(void * arg)908 static int rcu_kthread(void *arg)
909 {
910 	unsigned long work;
911 	unsigned long morework;
912 	unsigned long flags;
913 
914 	for (;;) {
915 		wait_event_interruptible(rcu_kthread_wq,
916 					 have_rcu_kthread_work != 0);
917 		morework = rcu_boost();
918 		local_irq_save(flags);
919 		work = have_rcu_kthread_work;
920 		have_rcu_kthread_work = morework;
921 		local_irq_restore(flags);
922 		if (work)
923 			rcu_process_callbacks(NULL);
924 		schedule_timeout_interruptible(1); /* Leave CPU for others. */
925 	}
926 
927 	return 0;  /* Not reached, but needed to shut gcc up. */
928 }
929 
930 /*
931  * Spawn the kthread that invokes RCU callbacks.
932  */
rcu_spawn_kthreads(void)933 static int __init rcu_spawn_kthreads(void)
934 {
935 	struct sched_param sp;
936 
937 	rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
938 	sp.sched_priority = RCU_BOOST_PRIO;
939 	sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
940 	return 0;
941 }
942 early_initcall(rcu_spawn_kthreads);
943 
944 #else /* #ifdef CONFIG_RCU_BOOST */
945 
946 /*
947  * Start up softirq processing of callbacks.
948  */
invoke_rcu_callbacks(void)949 void invoke_rcu_callbacks(void)
950 {
951 	raise_softirq(RCU_SOFTIRQ);
952 }
953 
954 #ifdef CONFIG_RCU_TRACE
955 
956 /*
957  * There is no callback kthread, so this thread is never it.
958  */
rcu_is_callbacks_kthread(void)959 static bool rcu_is_callbacks_kthread(void)
960 {
961 	return false;
962 }
963 
964 #endif /* #ifdef CONFIG_RCU_TRACE */
965 
rcu_init(void)966 void rcu_init(void)
967 {
968 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
969 }
970 
971 #endif /* #else #ifdef CONFIG_RCU_BOOST */
972 
973 #ifdef CONFIG_DEBUG_LOCK_ALLOC
974 #include <linux/kernel_stat.h>
975 
976 /*
977  * During boot, we forgive RCU lockdep issues.  After this function is
978  * invoked, we start taking RCU lockdep issues seriously.
979  */
rcu_scheduler_starting(void)980 void __init rcu_scheduler_starting(void)
981 {
982 	WARN_ON(nr_context_switches() > 0);
983 	rcu_scheduler_active = 1;
984 }
985 
986 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
987 
988 #ifdef CONFIG_RCU_TRACE
989 
990 #ifdef CONFIG_RCU_BOOST
991 
rcu_initiate_boost_trace(void)992 static void rcu_initiate_boost_trace(void)
993 {
994 	if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
995 		rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
996 	else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
997 		 rcu_preempt_ctrlblk.exp_tasks == NULL)
998 		rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
999 	else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
1000 		rcu_preempt_ctrlblk.n_balk_boost_tasks++;
1001 	else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
1002 		rcu_preempt_ctrlblk.n_balk_notyet++;
1003 	else
1004 		rcu_preempt_ctrlblk.n_balk_nos++;
1005 }
1006 
1007 #endif /* #ifdef CONFIG_RCU_BOOST */
1008 
rcu_trace_sub_qlen(struct rcu_ctrlblk * rcp,int n)1009 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
1010 {
1011 	unsigned long flags;
1012 
1013 	raw_local_irq_save(flags);
1014 	rcp->qlen -= n;
1015 	raw_local_irq_restore(flags);
1016 }
1017 
1018 /*
1019  * Dump statistics for TINY_RCU, such as they are.
1020  */
show_tiny_stats(struct seq_file * m,void * unused)1021 static int show_tiny_stats(struct seq_file *m, void *unused)
1022 {
1023 	show_tiny_preempt_stats(m);
1024 	seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
1025 	seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
1026 	return 0;
1027 }
1028 
show_tiny_stats_open(struct inode * inode,struct file * file)1029 static int show_tiny_stats_open(struct inode *inode, struct file *file)
1030 {
1031 	return single_open(file, show_tiny_stats, NULL);
1032 }
1033 
1034 static const struct file_operations show_tiny_stats_fops = {
1035 	.owner = THIS_MODULE,
1036 	.open = show_tiny_stats_open,
1037 	.read = seq_read,
1038 	.llseek = seq_lseek,
1039 	.release = single_release,
1040 };
1041 
1042 static struct dentry *rcudir;
1043 
rcutiny_trace_init(void)1044 static int __init rcutiny_trace_init(void)
1045 {
1046 	struct dentry *retval;
1047 
1048 	rcudir = debugfs_create_dir("rcu", NULL);
1049 	if (!rcudir)
1050 		goto free_out;
1051 	retval = debugfs_create_file("rcudata", 0444, rcudir,
1052 				     NULL, &show_tiny_stats_fops);
1053 	if (!retval)
1054 		goto free_out;
1055 	return 0;
1056 free_out:
1057 	debugfs_remove_recursive(rcudir);
1058 	return 1;
1059 }
1060 
rcutiny_trace_cleanup(void)1061 static void __exit rcutiny_trace_cleanup(void)
1062 {
1063 	debugfs_remove_recursive(rcudir);
1064 }
1065 
1066 module_init(rcutiny_trace_init);
1067 module_exit(rcutiny_trace_cleanup);
1068 
1069 MODULE_AUTHOR("Paul E. McKenney");
1070 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
1071 MODULE_LICENSE("GPL");
1072 
1073 #endif /* #ifdef CONFIG_RCU_TRACE */
1074