1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 
63 #include <asm/futex.h>
64 
65 #include "rtmutex_common.h"
66 
67 int __read_mostly futex_cmpxchg_enabled;
68 
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70 
71 /*
72  * Futex flags used to encode options to functions and preserve them across
73  * restarts.
74  */
75 #define FLAGS_SHARED		0x01
76 #define FLAGS_CLOCKRT		0x02
77 #define FLAGS_HAS_TIMEOUT	0x04
78 
79 /*
80  * Priority Inheritance state:
81  */
82 struct futex_pi_state {
83 	/*
84 	 * list of 'owned' pi_state instances - these have to be
85 	 * cleaned up in do_exit() if the task exits prematurely:
86 	 */
87 	struct list_head list;
88 
89 	/*
90 	 * The PI object:
91 	 */
92 	struct rt_mutex pi_mutex;
93 
94 	struct task_struct *owner;
95 	atomic_t refcount;
96 
97 	union futex_key key;
98 };
99 
100 /**
101  * struct futex_q - The hashed futex queue entry, one per waiting task
102  * @list:		priority-sorted list of tasks waiting on this futex
103  * @task:		the task waiting on the futex
104  * @lock_ptr:		the hash bucket lock
105  * @key:		the key the futex is hashed on
106  * @pi_state:		optional priority inheritance state
107  * @rt_waiter:		rt_waiter storage for use with requeue_pi
108  * @requeue_pi_key:	the requeue_pi target futex key
109  * @bitset:		bitset for the optional bitmasked wakeup
110  *
111  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112  * we can wake only the relevant ones (hashed queues may be shared).
113  *
114  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116  * The order of wakeup is always to make the first condition true, then
117  * the second.
118  *
119  * PI futexes are typically woken before they are removed from the hash list via
120  * the rt_mutex code. See unqueue_me_pi().
121  */
122 struct futex_q {
123 	struct plist_node list;
124 
125 	struct task_struct *task;
126 	spinlock_t *lock_ptr;
127 	union futex_key key;
128 	struct futex_pi_state *pi_state;
129 	struct rt_mutex_waiter *rt_waiter;
130 	union futex_key *requeue_pi_key;
131 	u32 bitset;
132 };
133 
134 static const struct futex_q futex_q_init = {
135 	/* list gets initialized in queue_me()*/
136 	.key = FUTEX_KEY_INIT,
137 	.bitset = FUTEX_BITSET_MATCH_ANY
138 };
139 
140 /*
141  * Hash buckets are shared by all the futex_keys that hash to the same
142  * location.  Each key may have multiple futex_q structures, one for each task
143  * waiting on a futex.
144  */
145 struct futex_hash_bucket {
146 	spinlock_t lock;
147 	struct plist_head chain;
148 };
149 
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151 
152 /*
153  * We hash on the keys returned from get_futex_key (see below).
154  */
hash_futex(union futex_key * key)155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
156 {
157 	u32 hash = jhash2((u32*)&key->both.word,
158 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 			  key->both.offset);
160 	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161 }
162 
163 /*
164  * Return 1 if two futex_keys are equal, 0 otherwise.
165  */
match_futex(union futex_key * key1,union futex_key * key2)166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
167 {
168 	return (key1 && key2
169 		&& key1->both.word == key2->both.word
170 		&& key1->both.ptr == key2->both.ptr
171 		&& key1->both.offset == key2->both.offset);
172 }
173 
174 /*
175  * Take a reference to the resource addressed by a key.
176  * Can be called while holding spinlocks.
177  *
178  */
get_futex_key_refs(union futex_key * key)179 static void get_futex_key_refs(union futex_key *key)
180 {
181 	if (!key->both.ptr)
182 		return;
183 
184 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 	case FUT_OFF_INODE:
186 		ihold(key->shared.inode);
187 		break;
188 	case FUT_OFF_MMSHARED:
189 		atomic_inc(&key->private.mm->mm_count);
190 		break;
191 	}
192 }
193 
194 /*
195  * Drop a reference to the resource addressed by a key.
196  * The hash bucket spinlock must not be held.
197  */
drop_futex_key_refs(union futex_key * key)198 static void drop_futex_key_refs(union futex_key *key)
199 {
200 	if (!key->both.ptr) {
201 		/* If we're here then we tried to put a key we failed to get */
202 		WARN_ON_ONCE(1);
203 		return;
204 	}
205 
206 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 	case FUT_OFF_INODE:
208 		iput(key->shared.inode);
209 		break;
210 	case FUT_OFF_MMSHARED:
211 		mmdrop(key->private.mm);
212 		break;
213 	}
214 }
215 
216 /**
217  * get_futex_key() - Get parameters which are the keys for a futex
218  * @uaddr:	virtual address of the futex
219  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220  * @key:	address where result is stored.
221  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
222  *              VERIFY_WRITE)
223  *
224  * Returns a negative error code or 0
225  * The key words are stored in *key on success.
226  *
227  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
228  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
229  * We can usually work out the index without swapping in the page.
230  *
231  * lock_page() might sleep, the caller should not hold a spinlock.
232  */
233 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)234 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
235 {
236 	unsigned long address = (unsigned long)uaddr;
237 	struct mm_struct *mm = current->mm;
238 	struct page *page, *page_head;
239 	int err, ro = 0;
240 
241 	/*
242 	 * The futex address must be "naturally" aligned.
243 	 */
244 	key->both.offset = address % PAGE_SIZE;
245 	if (unlikely((address % sizeof(u32)) != 0))
246 		return -EINVAL;
247 	address -= key->both.offset;
248 
249 	/*
250 	 * PROCESS_PRIVATE futexes are fast.
251 	 * As the mm cannot disappear under us and the 'key' only needs
252 	 * virtual address, we dont even have to find the underlying vma.
253 	 * Note : We do have to check 'uaddr' is a valid user address,
254 	 *        but access_ok() should be faster than find_vma()
255 	 */
256 	if (!fshared) {
257 		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
258 			return -EFAULT;
259 		key->private.mm = mm;
260 		key->private.address = address;
261 		get_futex_key_refs(key);
262 		return 0;
263 	}
264 
265 again:
266 	err = get_user_pages_fast(address, 1, 1, &page);
267 	/*
268 	 * If write access is not required (eg. FUTEX_WAIT), try
269 	 * and get read-only access.
270 	 */
271 	if (err == -EFAULT && rw == VERIFY_READ) {
272 		err = get_user_pages_fast(address, 1, 0, &page);
273 		ro = 1;
274 	}
275 	if (err < 0)
276 		return err;
277 	else
278 		err = 0;
279 
280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
281 	page_head = page;
282 	if (unlikely(PageTail(page))) {
283 		put_page(page);
284 		/* serialize against __split_huge_page_splitting() */
285 		local_irq_disable();
286 		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
287 			page_head = compound_head(page);
288 			/*
289 			 * page_head is valid pointer but we must pin
290 			 * it before taking the PG_lock and/or
291 			 * PG_compound_lock. The moment we re-enable
292 			 * irqs __split_huge_page_splitting() can
293 			 * return and the head page can be freed from
294 			 * under us. We can't take the PG_lock and/or
295 			 * PG_compound_lock on a page that could be
296 			 * freed from under us.
297 			 */
298 			if (page != page_head) {
299 				get_page(page_head);
300 				put_page(page);
301 			}
302 			local_irq_enable();
303 		} else {
304 			local_irq_enable();
305 			goto again;
306 		}
307 	}
308 #else
309 	page_head = compound_head(page);
310 	if (page != page_head) {
311 		get_page(page_head);
312 		put_page(page);
313 	}
314 #endif
315 
316 	lock_page(page_head);
317 
318 	/*
319 	 * If page_head->mapping is NULL, then it cannot be a PageAnon
320 	 * page; but it might be the ZERO_PAGE or in the gate area or
321 	 * in a special mapping (all cases which we are happy to fail);
322 	 * or it may have been a good file page when get_user_pages_fast
323 	 * found it, but truncated or holepunched or subjected to
324 	 * invalidate_complete_page2 before we got the page lock (also
325 	 * cases which we are happy to fail).  And we hold a reference,
326 	 * so refcount care in invalidate_complete_page's remove_mapping
327 	 * prevents drop_caches from setting mapping to NULL beneath us.
328 	 *
329 	 * The case we do have to guard against is when memory pressure made
330 	 * shmem_writepage move it from filecache to swapcache beneath us:
331 	 * an unlikely race, but we do need to retry for page_head->mapping.
332 	 */
333 	if (!page_head->mapping) {
334 		int shmem_swizzled = PageSwapCache(page_head);
335 		unlock_page(page_head);
336 		put_page(page_head);
337 		if (shmem_swizzled)
338 			goto again;
339 		return -EFAULT;
340 	}
341 
342 	/*
343 	 * Private mappings are handled in a simple way.
344 	 *
345 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
346 	 * it's a read-only handle, it's expected that futexes attach to
347 	 * the object not the particular process.
348 	 */
349 	if (PageAnon(page_head)) {
350 		/*
351 		 * A RO anonymous page will never change and thus doesn't make
352 		 * sense for futex operations.
353 		 */
354 		if (ro) {
355 			err = -EFAULT;
356 			goto out;
357 		}
358 
359 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
360 		key->private.mm = mm;
361 		key->private.address = address;
362 	} else {
363 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
364 		key->shared.inode = page_head->mapping->host;
365 		key->shared.pgoff = page_head->index;
366 	}
367 
368 	get_futex_key_refs(key);
369 
370 out:
371 	unlock_page(page_head);
372 	put_page(page_head);
373 	return err;
374 }
375 
put_futex_key(union futex_key * key)376 static inline void put_futex_key(union futex_key *key)
377 {
378 	drop_futex_key_refs(key);
379 }
380 
381 /**
382  * fault_in_user_writeable() - Fault in user address and verify RW access
383  * @uaddr:	pointer to faulting user space address
384  *
385  * Slow path to fixup the fault we just took in the atomic write
386  * access to @uaddr.
387  *
388  * We have no generic implementation of a non-destructive write to the
389  * user address. We know that we faulted in the atomic pagefault
390  * disabled section so we can as well avoid the #PF overhead by
391  * calling get_user_pages() right away.
392  */
fault_in_user_writeable(u32 __user * uaddr)393 static int fault_in_user_writeable(u32 __user *uaddr)
394 {
395 	struct mm_struct *mm = current->mm;
396 	int ret;
397 
398 	down_read(&mm->mmap_sem);
399 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
400 			       FAULT_FLAG_WRITE);
401 	up_read(&mm->mmap_sem);
402 
403 	return ret < 0 ? ret : 0;
404 }
405 
406 /**
407  * futex_top_waiter() - Return the highest priority waiter on a futex
408  * @hb:		the hash bucket the futex_q's reside in
409  * @key:	the futex key (to distinguish it from other futex futex_q's)
410  *
411  * Must be called with the hb lock held.
412  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)413 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
414 					union futex_key *key)
415 {
416 	struct futex_q *this;
417 
418 	plist_for_each_entry(this, &hb->chain, list) {
419 		if (match_futex(&this->key, key))
420 			return this;
421 	}
422 	return NULL;
423 }
424 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)425 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
426 				      u32 uval, u32 newval)
427 {
428 	int ret;
429 
430 	pagefault_disable();
431 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
432 	pagefault_enable();
433 
434 	return ret;
435 }
436 
get_futex_value_locked(u32 * dest,u32 __user * from)437 static int get_futex_value_locked(u32 *dest, u32 __user *from)
438 {
439 	int ret;
440 
441 	pagefault_disable();
442 	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
443 	pagefault_enable();
444 
445 	return ret ? -EFAULT : 0;
446 }
447 
448 
449 /*
450  * PI code:
451  */
refill_pi_state_cache(void)452 static int refill_pi_state_cache(void)
453 {
454 	struct futex_pi_state *pi_state;
455 
456 	if (likely(current->pi_state_cache))
457 		return 0;
458 
459 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
460 
461 	if (!pi_state)
462 		return -ENOMEM;
463 
464 	INIT_LIST_HEAD(&pi_state->list);
465 	/* pi_mutex gets initialized later */
466 	pi_state->owner = NULL;
467 	atomic_set(&pi_state->refcount, 1);
468 	pi_state->key = FUTEX_KEY_INIT;
469 
470 	current->pi_state_cache = pi_state;
471 
472 	return 0;
473 }
474 
alloc_pi_state(void)475 static struct futex_pi_state * alloc_pi_state(void)
476 {
477 	struct futex_pi_state *pi_state = current->pi_state_cache;
478 
479 	WARN_ON(!pi_state);
480 	current->pi_state_cache = NULL;
481 
482 	return pi_state;
483 }
484 
free_pi_state(struct futex_pi_state * pi_state)485 static void free_pi_state(struct futex_pi_state *pi_state)
486 {
487 	if (!atomic_dec_and_test(&pi_state->refcount))
488 		return;
489 
490 	/*
491 	 * If pi_state->owner is NULL, the owner is most probably dying
492 	 * and has cleaned up the pi_state already
493 	 */
494 	if (pi_state->owner) {
495 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
496 		list_del_init(&pi_state->list);
497 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
498 
499 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
500 	}
501 
502 	if (current->pi_state_cache)
503 		kfree(pi_state);
504 	else {
505 		/*
506 		 * pi_state->list is already empty.
507 		 * clear pi_state->owner.
508 		 * refcount is at 0 - put it back to 1.
509 		 */
510 		pi_state->owner = NULL;
511 		atomic_set(&pi_state->refcount, 1);
512 		current->pi_state_cache = pi_state;
513 	}
514 }
515 
516 /*
517  * Look up the task based on what TID userspace gave us.
518  * We dont trust it.
519  */
futex_find_get_task(pid_t pid)520 static struct task_struct * futex_find_get_task(pid_t pid)
521 {
522 	struct task_struct *p;
523 
524 	rcu_read_lock();
525 	p = find_task_by_vpid(pid);
526 	if (p)
527 		get_task_struct(p);
528 
529 	rcu_read_unlock();
530 
531 	return p;
532 }
533 
534 /*
535  * This task is holding PI mutexes at exit time => bad.
536  * Kernel cleans up PI-state, but userspace is likely hosed.
537  * (Robust-futex cleanup is separate and might save the day for userspace.)
538  */
exit_pi_state_list(struct task_struct * curr)539 void exit_pi_state_list(struct task_struct *curr)
540 {
541 	struct list_head *next, *head = &curr->pi_state_list;
542 	struct futex_pi_state *pi_state;
543 	struct futex_hash_bucket *hb;
544 	union futex_key key = FUTEX_KEY_INIT;
545 
546 	if (!futex_cmpxchg_enabled)
547 		return;
548 	/*
549 	 * We are a ZOMBIE and nobody can enqueue itself on
550 	 * pi_state_list anymore, but we have to be careful
551 	 * versus waiters unqueueing themselves:
552 	 */
553 	raw_spin_lock_irq(&curr->pi_lock);
554 	while (!list_empty(head)) {
555 
556 		next = head->next;
557 		pi_state = list_entry(next, struct futex_pi_state, list);
558 		key = pi_state->key;
559 		hb = hash_futex(&key);
560 		raw_spin_unlock_irq(&curr->pi_lock);
561 
562 		spin_lock(&hb->lock);
563 
564 		raw_spin_lock_irq(&curr->pi_lock);
565 		/*
566 		 * We dropped the pi-lock, so re-check whether this
567 		 * task still owns the PI-state:
568 		 */
569 		if (head->next != next) {
570 			spin_unlock(&hb->lock);
571 			continue;
572 		}
573 
574 		WARN_ON(pi_state->owner != curr);
575 		WARN_ON(list_empty(&pi_state->list));
576 		list_del_init(&pi_state->list);
577 		pi_state->owner = NULL;
578 		raw_spin_unlock_irq(&curr->pi_lock);
579 
580 		rt_mutex_unlock(&pi_state->pi_mutex);
581 
582 		spin_unlock(&hb->lock);
583 
584 		raw_spin_lock_irq(&curr->pi_lock);
585 	}
586 	raw_spin_unlock_irq(&curr->pi_lock);
587 }
588 
589 static int
lookup_pi_state(u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)590 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
591 		union futex_key *key, struct futex_pi_state **ps)
592 {
593 	struct futex_pi_state *pi_state = NULL;
594 	struct futex_q *this, *next;
595 	struct plist_head *head;
596 	struct task_struct *p;
597 	pid_t pid = uval & FUTEX_TID_MASK;
598 
599 	head = &hb->chain;
600 
601 	plist_for_each_entry_safe(this, next, head, list) {
602 		if (match_futex(&this->key, key)) {
603 			/*
604 			 * Another waiter already exists - bump up
605 			 * the refcount and return its pi_state:
606 			 */
607 			pi_state = this->pi_state;
608 			/*
609 			 * Userspace might have messed up non-PI and PI futexes
610 			 */
611 			if (unlikely(!pi_state))
612 				return -EINVAL;
613 
614 			WARN_ON(!atomic_read(&pi_state->refcount));
615 
616 			/*
617 			 * When pi_state->owner is NULL then the owner died
618 			 * and another waiter is on the fly. pi_state->owner
619 			 * is fixed up by the task which acquires
620 			 * pi_state->rt_mutex.
621 			 *
622 			 * We do not check for pid == 0 which can happen when
623 			 * the owner died and robust_list_exit() cleared the
624 			 * TID.
625 			 */
626 			if (pid && pi_state->owner) {
627 				/*
628 				 * Bail out if user space manipulated the
629 				 * futex value.
630 				 */
631 				if (pid != task_pid_vnr(pi_state->owner))
632 					return -EINVAL;
633 			}
634 
635 			atomic_inc(&pi_state->refcount);
636 			*ps = pi_state;
637 
638 			return 0;
639 		}
640 	}
641 
642 	/*
643 	 * We are the first waiter - try to look up the real owner and attach
644 	 * the new pi_state to it, but bail out when TID = 0
645 	 */
646 	if (!pid)
647 		return -ESRCH;
648 	p = futex_find_get_task(pid);
649 	if (!p)
650 		return -ESRCH;
651 
652 	/*
653 	 * We need to look at the task state flags to figure out,
654 	 * whether the task is exiting. To protect against the do_exit
655 	 * change of the task flags, we do this protected by
656 	 * p->pi_lock:
657 	 */
658 	raw_spin_lock_irq(&p->pi_lock);
659 	if (unlikely(p->flags & PF_EXITING)) {
660 		/*
661 		 * The task is on the way out. When PF_EXITPIDONE is
662 		 * set, we know that the task has finished the
663 		 * cleanup:
664 		 */
665 		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
666 
667 		raw_spin_unlock_irq(&p->pi_lock);
668 		put_task_struct(p);
669 		return ret;
670 	}
671 
672 	pi_state = alloc_pi_state();
673 
674 	/*
675 	 * Initialize the pi_mutex in locked state and make 'p'
676 	 * the owner of it:
677 	 */
678 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
679 
680 	/* Store the key for possible exit cleanups: */
681 	pi_state->key = *key;
682 
683 	WARN_ON(!list_empty(&pi_state->list));
684 	list_add(&pi_state->list, &p->pi_state_list);
685 	pi_state->owner = p;
686 	raw_spin_unlock_irq(&p->pi_lock);
687 
688 	put_task_struct(p);
689 
690 	*ps = pi_state;
691 
692 	return 0;
693 }
694 
695 /**
696  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
697  * @uaddr:		the pi futex user address
698  * @hb:			the pi futex hash bucket
699  * @key:		the futex key associated with uaddr and hb
700  * @ps:			the pi_state pointer where we store the result of the
701  *			lookup
702  * @task:		the task to perform the atomic lock work for.  This will
703  *			be "current" except in the case of requeue pi.
704  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
705  *
706  * Returns:
707  *  0 - ready to wait
708  *  1 - acquired the lock
709  * <0 - error
710  *
711  * The hb->lock and futex_key refs shall be held by the caller.
712  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)713 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
714 				union futex_key *key,
715 				struct futex_pi_state **ps,
716 				struct task_struct *task, int set_waiters)
717 {
718 	int lock_taken, ret, ownerdied = 0;
719 	u32 uval, newval, curval, vpid = task_pid_vnr(task);
720 
721 retry:
722 	ret = lock_taken = 0;
723 
724 	/*
725 	 * To avoid races, we attempt to take the lock here again
726 	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
727 	 * the locks. It will most likely not succeed.
728 	 */
729 	newval = vpid;
730 	if (set_waiters)
731 		newval |= FUTEX_WAITERS;
732 
733 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
734 		return -EFAULT;
735 
736 	/*
737 	 * Detect deadlocks.
738 	 */
739 	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
740 		return -EDEADLK;
741 
742 	/*
743 	 * Surprise - we got the lock. Just return to userspace:
744 	 */
745 	if (unlikely(!curval))
746 		return 1;
747 
748 	uval = curval;
749 
750 	/*
751 	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
752 	 * to wake at the next unlock.
753 	 */
754 	newval = curval | FUTEX_WAITERS;
755 
756 	/*
757 	 * There are two cases, where a futex might have no owner (the
758 	 * owner TID is 0): OWNER_DIED. We take over the futex in this
759 	 * case. We also do an unconditional take over, when the owner
760 	 * of the futex died.
761 	 *
762 	 * This is safe as we are protected by the hash bucket lock !
763 	 */
764 	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
765 		/* Keep the OWNER_DIED bit */
766 		newval = (curval & ~FUTEX_TID_MASK) | vpid;
767 		ownerdied = 0;
768 		lock_taken = 1;
769 	}
770 
771 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
772 		return -EFAULT;
773 	if (unlikely(curval != uval))
774 		goto retry;
775 
776 	/*
777 	 * We took the lock due to owner died take over.
778 	 */
779 	if (unlikely(lock_taken))
780 		return 1;
781 
782 	/*
783 	 * We dont have the lock. Look up the PI state (or create it if
784 	 * we are the first waiter):
785 	 */
786 	ret = lookup_pi_state(uval, hb, key, ps);
787 
788 	if (unlikely(ret)) {
789 		switch (ret) {
790 		case -ESRCH:
791 			/*
792 			 * No owner found for this futex. Check if the
793 			 * OWNER_DIED bit is set to figure out whether
794 			 * this is a robust futex or not.
795 			 */
796 			if (get_futex_value_locked(&curval, uaddr))
797 				return -EFAULT;
798 
799 			/*
800 			 * We simply start over in case of a robust
801 			 * futex. The code above will take the futex
802 			 * and return happy.
803 			 */
804 			if (curval & FUTEX_OWNER_DIED) {
805 				ownerdied = 1;
806 				goto retry;
807 			}
808 		default:
809 			break;
810 		}
811 	}
812 
813 	return ret;
814 }
815 
816 /**
817  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
818  * @q:	The futex_q to unqueue
819  *
820  * The q->lock_ptr must not be NULL and must be held by the caller.
821  */
__unqueue_futex(struct futex_q * q)822 static void __unqueue_futex(struct futex_q *q)
823 {
824 	struct futex_hash_bucket *hb;
825 
826 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
827 	    || WARN_ON(plist_node_empty(&q->list)))
828 		return;
829 
830 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
831 	plist_del(&q->list, &hb->chain);
832 }
833 
834 /*
835  * The hash bucket lock must be held when this is called.
836  * Afterwards, the futex_q must not be accessed.
837  */
wake_futex(struct futex_q * q)838 static void wake_futex(struct futex_q *q)
839 {
840 	struct task_struct *p = q->task;
841 
842 	/*
843 	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
844 	 * a non-futex wake up happens on another CPU then the task
845 	 * might exit and p would dereference a non-existing task
846 	 * struct. Prevent this by holding a reference on p across the
847 	 * wake up.
848 	 */
849 	get_task_struct(p);
850 
851 	__unqueue_futex(q);
852 	/*
853 	 * The waiting task can free the futex_q as soon as
854 	 * q->lock_ptr = NULL is written, without taking any locks. A
855 	 * memory barrier is required here to prevent the following
856 	 * store to lock_ptr from getting ahead of the plist_del.
857 	 */
858 	smp_wmb();
859 	q->lock_ptr = NULL;
860 
861 	wake_up_state(p, TASK_NORMAL);
862 	put_task_struct(p);
863 }
864 
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_q * this)865 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
866 {
867 	struct task_struct *new_owner;
868 	struct futex_pi_state *pi_state = this->pi_state;
869 	u32 uninitialized_var(curval), newval;
870 
871 	if (!pi_state)
872 		return -EINVAL;
873 
874 	/*
875 	 * If current does not own the pi_state then the futex is
876 	 * inconsistent and user space fiddled with the futex value.
877 	 */
878 	if (pi_state->owner != current)
879 		return -EINVAL;
880 
881 	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
882 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
883 
884 	/*
885 	 * It is possible that the next waiter (the one that brought
886 	 * this owner to the kernel) timed out and is no longer
887 	 * waiting on the lock.
888 	 */
889 	if (!new_owner)
890 		new_owner = this->task;
891 
892 	/*
893 	 * We pass it to the next owner. (The WAITERS bit is always
894 	 * kept enabled while there is PI state around. We must also
895 	 * preserve the owner died bit.)
896 	 */
897 	if (!(uval & FUTEX_OWNER_DIED)) {
898 		int ret = 0;
899 
900 		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
901 
902 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
903 			ret = -EFAULT;
904 		else if (curval != uval)
905 			ret = -EINVAL;
906 		if (ret) {
907 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
908 			return ret;
909 		}
910 	}
911 
912 	raw_spin_lock_irq(&pi_state->owner->pi_lock);
913 	WARN_ON(list_empty(&pi_state->list));
914 	list_del_init(&pi_state->list);
915 	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
916 
917 	raw_spin_lock_irq(&new_owner->pi_lock);
918 	WARN_ON(!list_empty(&pi_state->list));
919 	list_add(&pi_state->list, &new_owner->pi_state_list);
920 	pi_state->owner = new_owner;
921 	raw_spin_unlock_irq(&new_owner->pi_lock);
922 
923 	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
924 	rt_mutex_unlock(&pi_state->pi_mutex);
925 
926 	return 0;
927 }
928 
unlock_futex_pi(u32 __user * uaddr,u32 uval)929 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
930 {
931 	u32 uninitialized_var(oldval);
932 
933 	/*
934 	 * There is no waiter, so we unlock the futex. The owner died
935 	 * bit has not to be preserved here. We are the owner:
936 	 */
937 	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
938 		return -EFAULT;
939 	if (oldval != uval)
940 		return -EAGAIN;
941 
942 	return 0;
943 }
944 
945 /*
946  * Express the locking dependencies for lockdep:
947  */
948 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)949 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
950 {
951 	if (hb1 <= hb2) {
952 		spin_lock(&hb1->lock);
953 		if (hb1 < hb2)
954 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
955 	} else { /* hb1 > hb2 */
956 		spin_lock(&hb2->lock);
957 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
958 	}
959 }
960 
961 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)962 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
963 {
964 	spin_unlock(&hb1->lock);
965 	if (hb1 != hb2)
966 		spin_unlock(&hb2->lock);
967 }
968 
969 /*
970  * Wake up waiters matching bitset queued on this futex (uaddr).
971  */
972 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)973 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
974 {
975 	struct futex_hash_bucket *hb;
976 	struct futex_q *this, *next;
977 	struct plist_head *head;
978 	union futex_key key = FUTEX_KEY_INIT;
979 	int ret;
980 
981 	if (!bitset)
982 		return -EINVAL;
983 
984 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
985 	if (unlikely(ret != 0))
986 		goto out;
987 
988 	hb = hash_futex(&key);
989 	spin_lock(&hb->lock);
990 	head = &hb->chain;
991 
992 	plist_for_each_entry_safe(this, next, head, list) {
993 		if (match_futex (&this->key, &key)) {
994 			if (this->pi_state || this->rt_waiter) {
995 				ret = -EINVAL;
996 				break;
997 			}
998 
999 			/* Check if one of the bits is set in both bitsets */
1000 			if (!(this->bitset & bitset))
1001 				continue;
1002 
1003 			wake_futex(this);
1004 			if (++ret >= nr_wake)
1005 				break;
1006 		}
1007 	}
1008 
1009 	spin_unlock(&hb->lock);
1010 	put_futex_key(&key);
1011 out:
1012 	return ret;
1013 }
1014 
1015 /*
1016  * Wake up all waiters hashed on the physical page that is mapped
1017  * to this virtual address:
1018  */
1019 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1020 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1021 	      int nr_wake, int nr_wake2, int op)
1022 {
1023 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1024 	struct futex_hash_bucket *hb1, *hb2;
1025 	struct plist_head *head;
1026 	struct futex_q *this, *next;
1027 	int ret, op_ret;
1028 
1029 retry:
1030 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1031 	if (unlikely(ret != 0))
1032 		goto out;
1033 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1034 	if (unlikely(ret != 0))
1035 		goto out_put_key1;
1036 
1037 	hb1 = hash_futex(&key1);
1038 	hb2 = hash_futex(&key2);
1039 
1040 retry_private:
1041 	double_lock_hb(hb1, hb2);
1042 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1043 	if (unlikely(op_ret < 0)) {
1044 
1045 		double_unlock_hb(hb1, hb2);
1046 
1047 #ifndef CONFIG_MMU
1048 		/*
1049 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1050 		 * but we might get them from range checking
1051 		 */
1052 		ret = op_ret;
1053 		goto out_put_keys;
1054 #endif
1055 
1056 		if (unlikely(op_ret != -EFAULT)) {
1057 			ret = op_ret;
1058 			goto out_put_keys;
1059 		}
1060 
1061 		ret = fault_in_user_writeable(uaddr2);
1062 		if (ret)
1063 			goto out_put_keys;
1064 
1065 		if (!(flags & FLAGS_SHARED))
1066 			goto retry_private;
1067 
1068 		put_futex_key(&key2);
1069 		put_futex_key(&key1);
1070 		goto retry;
1071 	}
1072 
1073 	head = &hb1->chain;
1074 
1075 	plist_for_each_entry_safe(this, next, head, list) {
1076 		if (match_futex (&this->key, &key1)) {
1077 			wake_futex(this);
1078 			if (++ret >= nr_wake)
1079 				break;
1080 		}
1081 	}
1082 
1083 	if (op_ret > 0) {
1084 		head = &hb2->chain;
1085 
1086 		op_ret = 0;
1087 		plist_for_each_entry_safe(this, next, head, list) {
1088 			if (match_futex (&this->key, &key2)) {
1089 				wake_futex(this);
1090 				if (++op_ret >= nr_wake2)
1091 					break;
1092 			}
1093 		}
1094 		ret += op_ret;
1095 	}
1096 
1097 	double_unlock_hb(hb1, hb2);
1098 out_put_keys:
1099 	put_futex_key(&key2);
1100 out_put_key1:
1101 	put_futex_key(&key1);
1102 out:
1103 	return ret;
1104 }
1105 
1106 /**
1107  * requeue_futex() - Requeue a futex_q from one hb to another
1108  * @q:		the futex_q to requeue
1109  * @hb1:	the source hash_bucket
1110  * @hb2:	the target hash_bucket
1111  * @key2:	the new key for the requeued futex_q
1112  */
1113 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1114 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1115 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1116 {
1117 
1118 	/*
1119 	 * If key1 and key2 hash to the same bucket, no need to
1120 	 * requeue.
1121 	 */
1122 	if (likely(&hb1->chain != &hb2->chain)) {
1123 		plist_del(&q->list, &hb1->chain);
1124 		plist_add(&q->list, &hb2->chain);
1125 		q->lock_ptr = &hb2->lock;
1126 	}
1127 	get_futex_key_refs(key2);
1128 	q->key = *key2;
1129 }
1130 
1131 /**
1132  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1133  * @q:		the futex_q
1134  * @key:	the key of the requeue target futex
1135  * @hb:		the hash_bucket of the requeue target futex
1136  *
1137  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1138  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1139  * to the requeue target futex so the waiter can detect the wakeup on the right
1140  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1141  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1142  * to protect access to the pi_state to fixup the owner later.  Must be called
1143  * with both q->lock_ptr and hb->lock held.
1144  */
1145 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1146 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1147 			   struct futex_hash_bucket *hb)
1148 {
1149 	get_futex_key_refs(key);
1150 	q->key = *key;
1151 
1152 	__unqueue_futex(q);
1153 
1154 	WARN_ON(!q->rt_waiter);
1155 	q->rt_waiter = NULL;
1156 
1157 	q->lock_ptr = &hb->lock;
1158 
1159 	wake_up_state(q->task, TASK_NORMAL);
1160 }
1161 
1162 /**
1163  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1164  * @pifutex:		the user address of the to futex
1165  * @hb1:		the from futex hash bucket, must be locked by the caller
1166  * @hb2:		the to futex hash bucket, must be locked by the caller
1167  * @key1:		the from futex key
1168  * @key2:		the to futex key
1169  * @ps:			address to store the pi_state pointer
1170  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1171  *
1172  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1173  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1174  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1175  * hb1 and hb2 must be held by the caller.
1176  *
1177  * Returns:
1178  *  0 - failed to acquire the lock atomicly
1179  *  1 - acquired the lock
1180  * <0 - error
1181  */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1182 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1183 				 struct futex_hash_bucket *hb1,
1184 				 struct futex_hash_bucket *hb2,
1185 				 union futex_key *key1, union futex_key *key2,
1186 				 struct futex_pi_state **ps, int set_waiters)
1187 {
1188 	struct futex_q *top_waiter = NULL;
1189 	u32 curval;
1190 	int ret;
1191 
1192 	if (get_futex_value_locked(&curval, pifutex))
1193 		return -EFAULT;
1194 
1195 	/*
1196 	 * Find the top_waiter and determine if there are additional waiters.
1197 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1198 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1199 	 * as we have means to handle the possible fault.  If not, don't set
1200 	 * the bit unecessarily as it will force the subsequent unlock to enter
1201 	 * the kernel.
1202 	 */
1203 	top_waiter = futex_top_waiter(hb1, key1);
1204 
1205 	/* There are no waiters, nothing for us to do. */
1206 	if (!top_waiter)
1207 		return 0;
1208 
1209 	/* Ensure we requeue to the expected futex. */
1210 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1211 		return -EINVAL;
1212 
1213 	/*
1214 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1215 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1216 	 * in ps in contended cases.
1217 	 */
1218 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1219 				   set_waiters);
1220 	if (ret == 1)
1221 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1222 
1223 	return ret;
1224 }
1225 
1226 /**
1227  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1228  * @uaddr1:	source futex user address
1229  * @flags:	futex flags (FLAGS_SHARED, etc.)
1230  * @uaddr2:	target futex user address
1231  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1232  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1233  * @cmpval:	@uaddr1 expected value (or %NULL)
1234  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1235  *		pi futex (pi to pi requeue is not supported)
1236  *
1237  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1238  * uaddr2 atomically on behalf of the top waiter.
1239  *
1240  * Returns:
1241  * >=0 - on success, the number of tasks requeued or woken
1242  *  <0 - on error
1243  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1244 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1245 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1246 			 u32 *cmpval, int requeue_pi)
1247 {
1248 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1249 	int drop_count = 0, task_count = 0, ret;
1250 	struct futex_pi_state *pi_state = NULL;
1251 	struct futex_hash_bucket *hb1, *hb2;
1252 	struct plist_head *head1;
1253 	struct futex_q *this, *next;
1254 	u32 curval2;
1255 
1256 	if (requeue_pi) {
1257 		/*
1258 		 * requeue_pi requires a pi_state, try to allocate it now
1259 		 * without any locks in case it fails.
1260 		 */
1261 		if (refill_pi_state_cache())
1262 			return -ENOMEM;
1263 		/*
1264 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1265 		 * + nr_requeue, since it acquires the rt_mutex prior to
1266 		 * returning to userspace, so as to not leave the rt_mutex with
1267 		 * waiters and no owner.  However, second and third wake-ups
1268 		 * cannot be predicted as they involve race conditions with the
1269 		 * first wake and a fault while looking up the pi_state.  Both
1270 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1271 		 * use nr_wake=1.
1272 		 */
1273 		if (nr_wake != 1)
1274 			return -EINVAL;
1275 	}
1276 
1277 retry:
1278 	if (pi_state != NULL) {
1279 		/*
1280 		 * We will have to lookup the pi_state again, so free this one
1281 		 * to keep the accounting correct.
1282 		 */
1283 		free_pi_state(pi_state);
1284 		pi_state = NULL;
1285 	}
1286 
1287 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1288 	if (unlikely(ret != 0))
1289 		goto out;
1290 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1291 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1292 	if (unlikely(ret != 0))
1293 		goto out_put_key1;
1294 
1295 	hb1 = hash_futex(&key1);
1296 	hb2 = hash_futex(&key2);
1297 
1298 retry_private:
1299 	double_lock_hb(hb1, hb2);
1300 
1301 	if (likely(cmpval != NULL)) {
1302 		u32 curval;
1303 
1304 		ret = get_futex_value_locked(&curval, uaddr1);
1305 
1306 		if (unlikely(ret)) {
1307 			double_unlock_hb(hb1, hb2);
1308 
1309 			ret = get_user(curval, uaddr1);
1310 			if (ret)
1311 				goto out_put_keys;
1312 
1313 			if (!(flags & FLAGS_SHARED))
1314 				goto retry_private;
1315 
1316 			put_futex_key(&key2);
1317 			put_futex_key(&key1);
1318 			goto retry;
1319 		}
1320 		if (curval != *cmpval) {
1321 			ret = -EAGAIN;
1322 			goto out_unlock;
1323 		}
1324 	}
1325 
1326 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1327 		/*
1328 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1329 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1330 		 * bit.  We force this here where we are able to easily handle
1331 		 * faults rather in the requeue loop below.
1332 		 */
1333 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1334 						 &key2, &pi_state, nr_requeue);
1335 
1336 		/*
1337 		 * At this point the top_waiter has either taken uaddr2 or is
1338 		 * waiting on it.  If the former, then the pi_state will not
1339 		 * exist yet, look it up one more time to ensure we have a
1340 		 * reference to it.
1341 		 */
1342 		if (ret == 1) {
1343 			WARN_ON(pi_state);
1344 			drop_count++;
1345 			task_count++;
1346 			ret = get_futex_value_locked(&curval2, uaddr2);
1347 			if (!ret)
1348 				ret = lookup_pi_state(curval2, hb2, &key2,
1349 						      &pi_state);
1350 		}
1351 
1352 		switch (ret) {
1353 		case 0:
1354 			break;
1355 		case -EFAULT:
1356 			double_unlock_hb(hb1, hb2);
1357 			put_futex_key(&key2);
1358 			put_futex_key(&key1);
1359 			ret = fault_in_user_writeable(uaddr2);
1360 			if (!ret)
1361 				goto retry;
1362 			goto out;
1363 		case -EAGAIN:
1364 			/* The owner was exiting, try again. */
1365 			double_unlock_hb(hb1, hb2);
1366 			put_futex_key(&key2);
1367 			put_futex_key(&key1);
1368 			cond_resched();
1369 			goto retry;
1370 		default:
1371 			goto out_unlock;
1372 		}
1373 	}
1374 
1375 	head1 = &hb1->chain;
1376 	plist_for_each_entry_safe(this, next, head1, list) {
1377 		if (task_count - nr_wake >= nr_requeue)
1378 			break;
1379 
1380 		if (!match_futex(&this->key, &key1))
1381 			continue;
1382 
1383 		/*
1384 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1385 		 * be paired with each other and no other futex ops.
1386 		 */
1387 		if ((requeue_pi && !this->rt_waiter) ||
1388 		    (!requeue_pi && this->rt_waiter)) {
1389 			ret = -EINVAL;
1390 			break;
1391 		}
1392 
1393 		/*
1394 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1395 		 * lock, we already woke the top_waiter.  If not, it will be
1396 		 * woken by futex_unlock_pi().
1397 		 */
1398 		if (++task_count <= nr_wake && !requeue_pi) {
1399 			wake_futex(this);
1400 			continue;
1401 		}
1402 
1403 		/* Ensure we requeue to the expected futex for requeue_pi. */
1404 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1405 			ret = -EINVAL;
1406 			break;
1407 		}
1408 
1409 		/*
1410 		 * Requeue nr_requeue waiters and possibly one more in the case
1411 		 * of requeue_pi if we couldn't acquire the lock atomically.
1412 		 */
1413 		if (requeue_pi) {
1414 			/* Prepare the waiter to take the rt_mutex. */
1415 			atomic_inc(&pi_state->refcount);
1416 			this->pi_state = pi_state;
1417 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1418 							this->rt_waiter,
1419 							this->task, 1);
1420 			if (ret == 1) {
1421 				/* We got the lock. */
1422 				requeue_pi_wake_futex(this, &key2, hb2);
1423 				drop_count++;
1424 				continue;
1425 			} else if (ret) {
1426 				/* -EDEADLK */
1427 				this->pi_state = NULL;
1428 				free_pi_state(pi_state);
1429 				goto out_unlock;
1430 			}
1431 		}
1432 		requeue_futex(this, hb1, hb2, &key2);
1433 		drop_count++;
1434 	}
1435 
1436 out_unlock:
1437 	double_unlock_hb(hb1, hb2);
1438 
1439 	/*
1440 	 * drop_futex_key_refs() must be called outside the spinlocks. During
1441 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1442 	 * one at key2 and updated their key pointer.  We no longer need to
1443 	 * hold the references to key1.
1444 	 */
1445 	while (--drop_count >= 0)
1446 		drop_futex_key_refs(&key1);
1447 
1448 out_put_keys:
1449 	put_futex_key(&key2);
1450 out_put_key1:
1451 	put_futex_key(&key1);
1452 out:
1453 	if (pi_state != NULL)
1454 		free_pi_state(pi_state);
1455 	return ret ? ret : task_count;
1456 }
1457 
1458 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)1459 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1460 	__acquires(&hb->lock)
1461 {
1462 	struct futex_hash_bucket *hb;
1463 
1464 	hb = hash_futex(&q->key);
1465 	q->lock_ptr = &hb->lock;
1466 
1467 	spin_lock(&hb->lock);
1468 	return hb;
1469 }
1470 
1471 static inline void
queue_unlock(struct futex_q * q,struct futex_hash_bucket * hb)1472 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1473 	__releases(&hb->lock)
1474 {
1475 	spin_unlock(&hb->lock);
1476 }
1477 
1478 /**
1479  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1480  * @q:	The futex_q to enqueue
1481  * @hb:	The destination hash bucket
1482  *
1483  * The hb->lock must be held by the caller, and is released here. A call to
1484  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1485  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1486  * or nothing if the unqueue is done as part of the wake process and the unqueue
1487  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1488  * an example).
1489  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)1490 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1491 	__releases(&hb->lock)
1492 {
1493 	int prio;
1494 
1495 	/*
1496 	 * The priority used to register this element is
1497 	 * - either the real thread-priority for the real-time threads
1498 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1499 	 * - or MAX_RT_PRIO for non-RT threads.
1500 	 * Thus, all RT-threads are woken first in priority order, and
1501 	 * the others are woken last, in FIFO order.
1502 	 */
1503 	prio = min(current->normal_prio, MAX_RT_PRIO);
1504 
1505 	plist_node_init(&q->list, prio);
1506 	plist_add(&q->list, &hb->chain);
1507 	q->task = current;
1508 	spin_unlock(&hb->lock);
1509 }
1510 
1511 /**
1512  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1513  * @q:	The futex_q to unqueue
1514  *
1515  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1516  * be paired with exactly one earlier call to queue_me().
1517  *
1518  * Returns:
1519  *   1 - if the futex_q was still queued (and we removed unqueued it)
1520  *   0 - if the futex_q was already removed by the waking thread
1521  */
unqueue_me(struct futex_q * q)1522 static int unqueue_me(struct futex_q *q)
1523 {
1524 	spinlock_t *lock_ptr;
1525 	int ret = 0;
1526 
1527 	/* In the common case we don't take the spinlock, which is nice. */
1528 retry:
1529 	lock_ptr = q->lock_ptr;
1530 	barrier();
1531 	if (lock_ptr != NULL) {
1532 		spin_lock(lock_ptr);
1533 		/*
1534 		 * q->lock_ptr can change between reading it and
1535 		 * spin_lock(), causing us to take the wrong lock.  This
1536 		 * corrects the race condition.
1537 		 *
1538 		 * Reasoning goes like this: if we have the wrong lock,
1539 		 * q->lock_ptr must have changed (maybe several times)
1540 		 * between reading it and the spin_lock().  It can
1541 		 * change again after the spin_lock() but only if it was
1542 		 * already changed before the spin_lock().  It cannot,
1543 		 * however, change back to the original value.  Therefore
1544 		 * we can detect whether we acquired the correct lock.
1545 		 */
1546 		if (unlikely(lock_ptr != q->lock_ptr)) {
1547 			spin_unlock(lock_ptr);
1548 			goto retry;
1549 		}
1550 		__unqueue_futex(q);
1551 
1552 		BUG_ON(q->pi_state);
1553 
1554 		spin_unlock(lock_ptr);
1555 		ret = 1;
1556 	}
1557 
1558 	drop_futex_key_refs(&q->key);
1559 	return ret;
1560 }
1561 
1562 /*
1563  * PI futexes can not be requeued and must remove themself from the
1564  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1565  * and dropped here.
1566  */
unqueue_me_pi(struct futex_q * q)1567 static void unqueue_me_pi(struct futex_q *q)
1568 	__releases(q->lock_ptr)
1569 {
1570 	__unqueue_futex(q);
1571 
1572 	BUG_ON(!q->pi_state);
1573 	free_pi_state(q->pi_state);
1574 	q->pi_state = NULL;
1575 
1576 	spin_unlock(q->lock_ptr);
1577 }
1578 
1579 /*
1580  * Fixup the pi_state owner with the new owner.
1581  *
1582  * Must be called with hash bucket lock held and mm->sem held for non
1583  * private futexes.
1584  */
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * newowner)1585 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1586 				struct task_struct *newowner)
1587 {
1588 	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1589 	struct futex_pi_state *pi_state = q->pi_state;
1590 	struct task_struct *oldowner = pi_state->owner;
1591 	u32 uval, uninitialized_var(curval), newval;
1592 	int ret;
1593 
1594 	/* Owner died? */
1595 	if (!pi_state->owner)
1596 		newtid |= FUTEX_OWNER_DIED;
1597 
1598 	/*
1599 	 * We are here either because we stole the rtmutex from the
1600 	 * previous highest priority waiter or we are the highest priority
1601 	 * waiter but failed to get the rtmutex the first time.
1602 	 * We have to replace the newowner TID in the user space variable.
1603 	 * This must be atomic as we have to preserve the owner died bit here.
1604 	 *
1605 	 * Note: We write the user space value _before_ changing the pi_state
1606 	 * because we can fault here. Imagine swapped out pages or a fork
1607 	 * that marked all the anonymous memory readonly for cow.
1608 	 *
1609 	 * Modifying pi_state _before_ the user space value would
1610 	 * leave the pi_state in an inconsistent state when we fault
1611 	 * here, because we need to drop the hash bucket lock to
1612 	 * handle the fault. This might be observed in the PID check
1613 	 * in lookup_pi_state.
1614 	 */
1615 retry:
1616 	if (get_futex_value_locked(&uval, uaddr))
1617 		goto handle_fault;
1618 
1619 	while (1) {
1620 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1621 
1622 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1623 			goto handle_fault;
1624 		if (curval == uval)
1625 			break;
1626 		uval = curval;
1627 	}
1628 
1629 	/*
1630 	 * We fixed up user space. Now we need to fix the pi_state
1631 	 * itself.
1632 	 */
1633 	if (pi_state->owner != NULL) {
1634 		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1635 		WARN_ON(list_empty(&pi_state->list));
1636 		list_del_init(&pi_state->list);
1637 		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1638 	}
1639 
1640 	pi_state->owner = newowner;
1641 
1642 	raw_spin_lock_irq(&newowner->pi_lock);
1643 	WARN_ON(!list_empty(&pi_state->list));
1644 	list_add(&pi_state->list, &newowner->pi_state_list);
1645 	raw_spin_unlock_irq(&newowner->pi_lock);
1646 	return 0;
1647 
1648 	/*
1649 	 * To handle the page fault we need to drop the hash bucket
1650 	 * lock here. That gives the other task (either the highest priority
1651 	 * waiter itself or the task which stole the rtmutex) the
1652 	 * chance to try the fixup of the pi_state. So once we are
1653 	 * back from handling the fault we need to check the pi_state
1654 	 * after reacquiring the hash bucket lock and before trying to
1655 	 * do another fixup. When the fixup has been done already we
1656 	 * simply return.
1657 	 */
1658 handle_fault:
1659 	spin_unlock(q->lock_ptr);
1660 
1661 	ret = fault_in_user_writeable(uaddr);
1662 
1663 	spin_lock(q->lock_ptr);
1664 
1665 	/*
1666 	 * Check if someone else fixed it for us:
1667 	 */
1668 	if (pi_state->owner != oldowner)
1669 		return 0;
1670 
1671 	if (ret)
1672 		return ret;
1673 
1674 	goto retry;
1675 }
1676 
1677 static long futex_wait_restart(struct restart_block *restart);
1678 
1679 /**
1680  * fixup_owner() - Post lock pi_state and corner case management
1681  * @uaddr:	user address of the futex
1682  * @q:		futex_q (contains pi_state and access to the rt_mutex)
1683  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1684  *
1685  * After attempting to lock an rt_mutex, this function is called to cleanup
1686  * the pi_state owner as well as handle race conditions that may allow us to
1687  * acquire the lock. Must be called with the hb lock held.
1688  *
1689  * Returns:
1690  *  1 - success, lock taken
1691  *  0 - success, lock not taken
1692  * <0 - on error (-EFAULT)
1693  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)1694 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1695 {
1696 	struct task_struct *owner;
1697 	int ret = 0;
1698 
1699 	if (locked) {
1700 		/*
1701 		 * Got the lock. We might not be the anticipated owner if we
1702 		 * did a lock-steal - fix up the PI-state in that case:
1703 		 */
1704 		if (q->pi_state->owner != current)
1705 			ret = fixup_pi_state_owner(uaddr, q, current);
1706 		goto out;
1707 	}
1708 
1709 	/*
1710 	 * Catch the rare case, where the lock was released when we were on the
1711 	 * way back before we locked the hash bucket.
1712 	 */
1713 	if (q->pi_state->owner == current) {
1714 		/*
1715 		 * Try to get the rt_mutex now. This might fail as some other
1716 		 * task acquired the rt_mutex after we removed ourself from the
1717 		 * rt_mutex waiters list.
1718 		 */
1719 		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1720 			locked = 1;
1721 			goto out;
1722 		}
1723 
1724 		/*
1725 		 * pi_state is incorrect, some other task did a lock steal and
1726 		 * we returned due to timeout or signal without taking the
1727 		 * rt_mutex. Too late.
1728 		 */
1729 		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1730 		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1731 		if (!owner)
1732 			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1733 		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1734 		ret = fixup_pi_state_owner(uaddr, q, owner);
1735 		goto out;
1736 	}
1737 
1738 	/*
1739 	 * Paranoia check. If we did not take the lock, then we should not be
1740 	 * the owner of the rt_mutex.
1741 	 */
1742 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1743 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1744 				"pi-state %p\n", ret,
1745 				q->pi_state->pi_mutex.owner,
1746 				q->pi_state->owner);
1747 
1748 out:
1749 	return ret ? ret : locked;
1750 }
1751 
1752 /**
1753  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1754  * @hb:		the futex hash bucket, must be locked by the caller
1755  * @q:		the futex_q to queue up on
1756  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
1757  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)1758 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1759 				struct hrtimer_sleeper *timeout)
1760 {
1761 	/*
1762 	 * The task state is guaranteed to be set before another task can
1763 	 * wake it. set_current_state() is implemented using set_mb() and
1764 	 * queue_me() calls spin_unlock() upon completion, both serializing
1765 	 * access to the hash list and forcing another memory barrier.
1766 	 */
1767 	set_current_state(TASK_INTERRUPTIBLE);
1768 	queue_me(q, hb);
1769 
1770 	/* Arm the timer */
1771 	if (timeout) {
1772 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1773 		if (!hrtimer_active(&timeout->timer))
1774 			timeout->task = NULL;
1775 	}
1776 
1777 	/*
1778 	 * If we have been removed from the hash list, then another task
1779 	 * has tried to wake us, and we can skip the call to schedule().
1780 	 */
1781 	if (likely(!plist_node_empty(&q->list))) {
1782 		/*
1783 		 * If the timer has already expired, current will already be
1784 		 * flagged for rescheduling. Only call schedule if there
1785 		 * is no timeout, or if it has yet to expire.
1786 		 */
1787 		if (!timeout || timeout->task)
1788 			schedule();
1789 	}
1790 	__set_current_state(TASK_RUNNING);
1791 }
1792 
1793 /**
1794  * futex_wait_setup() - Prepare to wait on a futex
1795  * @uaddr:	the futex userspace address
1796  * @val:	the expected value
1797  * @flags:	futex flags (FLAGS_SHARED, etc.)
1798  * @q:		the associated futex_q
1799  * @hb:		storage for hash_bucket pointer to be returned to caller
1800  *
1801  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1802  * compare it with the expected value.  Handle atomic faults internally.
1803  * Return with the hb lock held and a q.key reference on success, and unlocked
1804  * with no q.key reference on failure.
1805  *
1806  * Returns:
1807  *  0 - uaddr contains val and hb has been locked
1808  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1809  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)1810 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1811 			   struct futex_q *q, struct futex_hash_bucket **hb)
1812 {
1813 	u32 uval;
1814 	int ret;
1815 
1816 	/*
1817 	 * Access the page AFTER the hash-bucket is locked.
1818 	 * Order is important:
1819 	 *
1820 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1821 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1822 	 *
1823 	 * The basic logical guarantee of a futex is that it blocks ONLY
1824 	 * if cond(var) is known to be true at the time of blocking, for
1825 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
1826 	 * would open a race condition where we could block indefinitely with
1827 	 * cond(var) false, which would violate the guarantee.
1828 	 *
1829 	 * On the other hand, we insert q and release the hash-bucket only
1830 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
1831 	 * absorb a wakeup if *uaddr does not match the desired values
1832 	 * while the syscall executes.
1833 	 */
1834 retry:
1835 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1836 	if (unlikely(ret != 0))
1837 		return ret;
1838 
1839 retry_private:
1840 	*hb = queue_lock(q);
1841 
1842 	ret = get_futex_value_locked(&uval, uaddr);
1843 
1844 	if (ret) {
1845 		queue_unlock(q, *hb);
1846 
1847 		ret = get_user(uval, uaddr);
1848 		if (ret)
1849 			goto out;
1850 
1851 		if (!(flags & FLAGS_SHARED))
1852 			goto retry_private;
1853 
1854 		put_futex_key(&q->key);
1855 		goto retry;
1856 	}
1857 
1858 	if (uval != val) {
1859 		queue_unlock(q, *hb);
1860 		ret = -EWOULDBLOCK;
1861 	}
1862 
1863 out:
1864 	if (ret)
1865 		put_futex_key(&q->key);
1866 	return ret;
1867 }
1868 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)1869 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1870 		      ktime_t *abs_time, u32 bitset)
1871 {
1872 	struct hrtimer_sleeper timeout, *to = NULL;
1873 	struct restart_block *restart;
1874 	struct futex_hash_bucket *hb;
1875 	struct futex_q q = futex_q_init;
1876 	int ret;
1877 
1878 	if (!bitset)
1879 		return -EINVAL;
1880 	q.bitset = bitset;
1881 
1882 	if (abs_time) {
1883 		to = &timeout;
1884 
1885 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1886 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
1887 				      HRTIMER_MODE_ABS);
1888 		hrtimer_init_sleeper(to, current);
1889 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1890 					     current->timer_slack_ns);
1891 	}
1892 
1893 retry:
1894 	/*
1895 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
1896 	 * q.key refs.
1897 	 */
1898 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1899 	if (ret)
1900 		goto out;
1901 
1902 	/* queue_me and wait for wakeup, timeout, or a signal. */
1903 	futex_wait_queue_me(hb, &q, to);
1904 
1905 	/* If we were woken (and unqueued), we succeeded, whatever. */
1906 	ret = 0;
1907 	/* unqueue_me() drops q.key ref */
1908 	if (!unqueue_me(&q))
1909 		goto out;
1910 	ret = -ETIMEDOUT;
1911 	if (to && !to->task)
1912 		goto out;
1913 
1914 	/*
1915 	 * We expect signal_pending(current), but we might be the
1916 	 * victim of a spurious wakeup as well.
1917 	 */
1918 	if (!signal_pending(current))
1919 		goto retry;
1920 
1921 	ret = -ERESTARTSYS;
1922 	if (!abs_time)
1923 		goto out;
1924 
1925 	restart = &current_thread_info()->restart_block;
1926 	restart->fn = futex_wait_restart;
1927 	restart->futex.uaddr = uaddr;
1928 	restart->futex.val = val;
1929 	restart->futex.time = abs_time->tv64;
1930 	restart->futex.bitset = bitset;
1931 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1932 
1933 	ret = -ERESTART_RESTARTBLOCK;
1934 
1935 out:
1936 	if (to) {
1937 		hrtimer_cancel(&to->timer);
1938 		destroy_hrtimer_on_stack(&to->timer);
1939 	}
1940 	return ret;
1941 }
1942 
1943 
futex_wait_restart(struct restart_block * restart)1944 static long futex_wait_restart(struct restart_block *restart)
1945 {
1946 	u32 __user *uaddr = restart->futex.uaddr;
1947 	ktime_t t, *tp = NULL;
1948 
1949 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1950 		t.tv64 = restart->futex.time;
1951 		tp = &t;
1952 	}
1953 	restart->fn = do_no_restart_syscall;
1954 
1955 	return (long)futex_wait(uaddr, restart->futex.flags,
1956 				restart->futex.val, tp, restart->futex.bitset);
1957 }
1958 
1959 
1960 /*
1961  * Userspace tried a 0 -> TID atomic transition of the futex value
1962  * and failed. The kernel side here does the whole locking operation:
1963  * if there are waiters then it will block, it does PI, etc. (Due to
1964  * races the kernel might see a 0 value of the futex too.)
1965  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,int detect,ktime_t * time,int trylock)1966 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1967 			 ktime_t *time, int trylock)
1968 {
1969 	struct hrtimer_sleeper timeout, *to = NULL;
1970 	struct futex_hash_bucket *hb;
1971 	struct futex_q q = futex_q_init;
1972 	int res, ret;
1973 
1974 	if (refill_pi_state_cache())
1975 		return -ENOMEM;
1976 
1977 	if (time) {
1978 		to = &timeout;
1979 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1980 				      HRTIMER_MODE_ABS);
1981 		hrtimer_init_sleeper(to, current);
1982 		hrtimer_set_expires(&to->timer, *time);
1983 	}
1984 
1985 retry:
1986 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
1987 	if (unlikely(ret != 0))
1988 		goto out;
1989 
1990 retry_private:
1991 	hb = queue_lock(&q);
1992 
1993 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1994 	if (unlikely(ret)) {
1995 		switch (ret) {
1996 		case 1:
1997 			/* We got the lock. */
1998 			ret = 0;
1999 			goto out_unlock_put_key;
2000 		case -EFAULT:
2001 			goto uaddr_faulted;
2002 		case -EAGAIN:
2003 			/*
2004 			 * Task is exiting and we just wait for the
2005 			 * exit to complete.
2006 			 */
2007 			queue_unlock(&q, hb);
2008 			put_futex_key(&q.key);
2009 			cond_resched();
2010 			goto retry;
2011 		default:
2012 			goto out_unlock_put_key;
2013 		}
2014 	}
2015 
2016 	/*
2017 	 * Only actually queue now that the atomic ops are done:
2018 	 */
2019 	queue_me(&q, hb);
2020 
2021 	WARN_ON(!q.pi_state);
2022 	/*
2023 	 * Block on the PI mutex:
2024 	 */
2025 	if (!trylock)
2026 		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2027 	else {
2028 		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2029 		/* Fixup the trylock return value: */
2030 		ret = ret ? 0 : -EWOULDBLOCK;
2031 	}
2032 
2033 	spin_lock(q.lock_ptr);
2034 	/*
2035 	 * Fixup the pi_state owner and possibly acquire the lock if we
2036 	 * haven't already.
2037 	 */
2038 	res = fixup_owner(uaddr, &q, !ret);
2039 	/*
2040 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2041 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2042 	 */
2043 	if (res)
2044 		ret = (res < 0) ? res : 0;
2045 
2046 	/*
2047 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2048 	 * it and return the fault to userspace.
2049 	 */
2050 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2051 		rt_mutex_unlock(&q.pi_state->pi_mutex);
2052 
2053 	/* Unqueue and drop the lock */
2054 	unqueue_me_pi(&q);
2055 
2056 	goto out_put_key;
2057 
2058 out_unlock_put_key:
2059 	queue_unlock(&q, hb);
2060 
2061 out_put_key:
2062 	put_futex_key(&q.key);
2063 out:
2064 	if (to)
2065 		destroy_hrtimer_on_stack(&to->timer);
2066 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2067 
2068 uaddr_faulted:
2069 	queue_unlock(&q, hb);
2070 
2071 	ret = fault_in_user_writeable(uaddr);
2072 	if (ret)
2073 		goto out_put_key;
2074 
2075 	if (!(flags & FLAGS_SHARED))
2076 		goto retry_private;
2077 
2078 	put_futex_key(&q.key);
2079 	goto retry;
2080 }
2081 
2082 /*
2083  * Userspace attempted a TID -> 0 atomic transition, and failed.
2084  * This is the in-kernel slowpath: we look up the PI state (if any),
2085  * and do the rt-mutex unlock.
2086  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2087 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2088 {
2089 	struct futex_hash_bucket *hb;
2090 	struct futex_q *this, *next;
2091 	struct plist_head *head;
2092 	union futex_key key = FUTEX_KEY_INIT;
2093 	u32 uval, vpid = task_pid_vnr(current);
2094 	int ret;
2095 
2096 retry:
2097 	if (get_user(uval, uaddr))
2098 		return -EFAULT;
2099 	/*
2100 	 * We release only a lock we actually own:
2101 	 */
2102 	if ((uval & FUTEX_TID_MASK) != vpid)
2103 		return -EPERM;
2104 
2105 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2106 	if (unlikely(ret != 0))
2107 		goto out;
2108 
2109 	hb = hash_futex(&key);
2110 	spin_lock(&hb->lock);
2111 
2112 	/*
2113 	 * To avoid races, try to do the TID -> 0 atomic transition
2114 	 * again. If it succeeds then we can return without waking
2115 	 * anyone else up:
2116 	 */
2117 	if (!(uval & FUTEX_OWNER_DIED) &&
2118 	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2119 		goto pi_faulted;
2120 	/*
2121 	 * Rare case: we managed to release the lock atomically,
2122 	 * no need to wake anyone else up:
2123 	 */
2124 	if (unlikely(uval == vpid))
2125 		goto out_unlock;
2126 
2127 	/*
2128 	 * Ok, other tasks may need to be woken up - check waiters
2129 	 * and do the wakeup if necessary:
2130 	 */
2131 	head = &hb->chain;
2132 
2133 	plist_for_each_entry_safe(this, next, head, list) {
2134 		if (!match_futex (&this->key, &key))
2135 			continue;
2136 		ret = wake_futex_pi(uaddr, uval, this);
2137 		/*
2138 		 * The atomic access to the futex value
2139 		 * generated a pagefault, so retry the
2140 		 * user-access and the wakeup:
2141 		 */
2142 		if (ret == -EFAULT)
2143 			goto pi_faulted;
2144 		goto out_unlock;
2145 	}
2146 	/*
2147 	 * No waiters - kernel unlocks the futex:
2148 	 */
2149 	if (!(uval & FUTEX_OWNER_DIED)) {
2150 		ret = unlock_futex_pi(uaddr, uval);
2151 		if (ret == -EFAULT)
2152 			goto pi_faulted;
2153 	}
2154 
2155 out_unlock:
2156 	spin_unlock(&hb->lock);
2157 	put_futex_key(&key);
2158 
2159 out:
2160 	return ret;
2161 
2162 pi_faulted:
2163 	spin_unlock(&hb->lock);
2164 	put_futex_key(&key);
2165 
2166 	ret = fault_in_user_writeable(uaddr);
2167 	if (!ret)
2168 		goto retry;
2169 
2170 	return ret;
2171 }
2172 
2173 /**
2174  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2175  * @hb:		the hash_bucket futex_q was original enqueued on
2176  * @q:		the futex_q woken while waiting to be requeued
2177  * @key2:	the futex_key of the requeue target futex
2178  * @timeout:	the timeout associated with the wait (NULL if none)
2179  *
2180  * Detect if the task was woken on the initial futex as opposed to the requeue
2181  * target futex.  If so, determine if it was a timeout or a signal that caused
2182  * the wakeup and return the appropriate error code to the caller.  Must be
2183  * called with the hb lock held.
2184  *
2185  * Returns
2186  *  0 - no early wakeup detected
2187  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2188  */
2189 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)2190 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2191 				   struct futex_q *q, union futex_key *key2,
2192 				   struct hrtimer_sleeper *timeout)
2193 {
2194 	int ret = 0;
2195 
2196 	/*
2197 	 * With the hb lock held, we avoid races while we process the wakeup.
2198 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2199 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2200 	 * It can't be requeued from uaddr2 to something else since we don't
2201 	 * support a PI aware source futex for requeue.
2202 	 */
2203 	if (!match_futex(&q->key, key2)) {
2204 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2205 		/*
2206 		 * We were woken prior to requeue by a timeout or a signal.
2207 		 * Unqueue the futex_q and determine which it was.
2208 		 */
2209 		plist_del(&q->list, &hb->chain);
2210 
2211 		/* Handle spurious wakeups gracefully */
2212 		ret = -EWOULDBLOCK;
2213 		if (timeout && !timeout->task)
2214 			ret = -ETIMEDOUT;
2215 		else if (signal_pending(current))
2216 			ret = -ERESTARTNOINTR;
2217 	}
2218 	return ret;
2219 }
2220 
2221 /**
2222  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2223  * @uaddr:	the futex we initially wait on (non-pi)
2224  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2225  * 		the same type, no requeueing from private to shared, etc.
2226  * @val:	the expected value of uaddr
2227  * @abs_time:	absolute timeout
2228  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2229  * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2230  * @uaddr2:	the pi futex we will take prior to returning to user-space
2231  *
2232  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2233  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2234  * complete the acquisition of the rt_mutex prior to returning to userspace.
2235  * This ensures the rt_mutex maintains an owner when it has waiters; without
2236  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2237  * need to.
2238  *
2239  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2240  * via the following:
2241  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2242  * 2) wakeup on uaddr2 after a requeue
2243  * 3) signal
2244  * 4) timeout
2245  *
2246  * If 3, cleanup and return -ERESTARTNOINTR.
2247  *
2248  * If 2, we may then block on trying to take the rt_mutex and return via:
2249  * 5) successful lock
2250  * 6) signal
2251  * 7) timeout
2252  * 8) other lock acquisition failure
2253  *
2254  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2255  *
2256  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2257  *
2258  * Returns:
2259  *  0 - On success
2260  * <0 - On error
2261  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)2262 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2263 				 u32 val, ktime_t *abs_time, u32 bitset,
2264 				 u32 __user *uaddr2)
2265 {
2266 	struct hrtimer_sleeper timeout, *to = NULL;
2267 	struct rt_mutex_waiter rt_waiter;
2268 	struct rt_mutex *pi_mutex = NULL;
2269 	struct futex_hash_bucket *hb;
2270 	union futex_key key2 = FUTEX_KEY_INIT;
2271 	struct futex_q q = futex_q_init;
2272 	int res, ret;
2273 
2274 	if (!bitset)
2275 		return -EINVAL;
2276 
2277 	if (abs_time) {
2278 		to = &timeout;
2279 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2280 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2281 				      HRTIMER_MODE_ABS);
2282 		hrtimer_init_sleeper(to, current);
2283 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2284 					     current->timer_slack_ns);
2285 	}
2286 
2287 	/*
2288 	 * The waiter is allocated on our stack, manipulated by the requeue
2289 	 * code while we sleep on uaddr.
2290 	 */
2291 	debug_rt_mutex_init_waiter(&rt_waiter);
2292 	rt_waiter.task = NULL;
2293 
2294 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2295 	if (unlikely(ret != 0))
2296 		goto out;
2297 
2298 	q.bitset = bitset;
2299 	q.rt_waiter = &rt_waiter;
2300 	q.requeue_pi_key = &key2;
2301 
2302 	/*
2303 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2304 	 * count.
2305 	 */
2306 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2307 	if (ret)
2308 		goto out_key2;
2309 
2310 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2311 	futex_wait_queue_me(hb, &q, to);
2312 
2313 	spin_lock(&hb->lock);
2314 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2315 	spin_unlock(&hb->lock);
2316 	if (ret)
2317 		goto out_put_keys;
2318 
2319 	/*
2320 	 * In order for us to be here, we know our q.key == key2, and since
2321 	 * we took the hb->lock above, we also know that futex_requeue() has
2322 	 * completed and we no longer have to concern ourselves with a wakeup
2323 	 * race with the atomic proxy lock acquisition by the requeue code. The
2324 	 * futex_requeue dropped our key1 reference and incremented our key2
2325 	 * reference count.
2326 	 */
2327 
2328 	/* Check if the requeue code acquired the second futex for us. */
2329 	if (!q.rt_waiter) {
2330 		/*
2331 		 * Got the lock. We might not be the anticipated owner if we
2332 		 * did a lock-steal - fix up the PI-state in that case.
2333 		 */
2334 		if (q.pi_state && (q.pi_state->owner != current)) {
2335 			spin_lock(q.lock_ptr);
2336 			ret = fixup_pi_state_owner(uaddr2, &q, current);
2337 			spin_unlock(q.lock_ptr);
2338 		}
2339 	} else {
2340 		/*
2341 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2342 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2343 		 * the pi_state.
2344 		 */
2345 		WARN_ON(!&q.pi_state);
2346 		pi_mutex = &q.pi_state->pi_mutex;
2347 		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2348 		debug_rt_mutex_free_waiter(&rt_waiter);
2349 
2350 		spin_lock(q.lock_ptr);
2351 		/*
2352 		 * Fixup the pi_state owner and possibly acquire the lock if we
2353 		 * haven't already.
2354 		 */
2355 		res = fixup_owner(uaddr2, &q, !ret);
2356 		/*
2357 		 * If fixup_owner() returned an error, proprogate that.  If it
2358 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2359 		 */
2360 		if (res)
2361 			ret = (res < 0) ? res : 0;
2362 
2363 		/* Unqueue and drop the lock. */
2364 		unqueue_me_pi(&q);
2365 	}
2366 
2367 	/*
2368 	 * If fixup_pi_state_owner() faulted and was unable to handle the
2369 	 * fault, unlock the rt_mutex and return the fault to userspace.
2370 	 */
2371 	if (ret == -EFAULT) {
2372 		if (rt_mutex_owner(pi_mutex) == current)
2373 			rt_mutex_unlock(pi_mutex);
2374 	} else if (ret == -EINTR) {
2375 		/*
2376 		 * We've already been requeued, but cannot restart by calling
2377 		 * futex_lock_pi() directly. We could restart this syscall, but
2378 		 * it would detect that the user space "val" changed and return
2379 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2380 		 * -EWOULDBLOCK directly.
2381 		 */
2382 		ret = -EWOULDBLOCK;
2383 	}
2384 
2385 out_put_keys:
2386 	put_futex_key(&q.key);
2387 out_key2:
2388 	put_futex_key(&key2);
2389 
2390 out:
2391 	if (to) {
2392 		hrtimer_cancel(&to->timer);
2393 		destroy_hrtimer_on_stack(&to->timer);
2394 	}
2395 	return ret;
2396 }
2397 
2398 /*
2399  * Support for robust futexes: the kernel cleans up held futexes at
2400  * thread exit time.
2401  *
2402  * Implementation: user-space maintains a per-thread list of locks it
2403  * is holding. Upon do_exit(), the kernel carefully walks this list,
2404  * and marks all locks that are owned by this thread with the
2405  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2406  * always manipulated with the lock held, so the list is private and
2407  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2408  * field, to allow the kernel to clean up if the thread dies after
2409  * acquiring the lock, but just before it could have added itself to
2410  * the list. There can only be one such pending lock.
2411  */
2412 
2413 /**
2414  * sys_set_robust_list() - Set the robust-futex list head of a task
2415  * @head:	pointer to the list-head
2416  * @len:	length of the list-head, as userspace expects
2417  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)2418 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2419 		size_t, len)
2420 {
2421 	if (!futex_cmpxchg_enabled)
2422 		return -ENOSYS;
2423 	/*
2424 	 * The kernel knows only one size for now:
2425 	 */
2426 	if (unlikely(len != sizeof(*head)))
2427 		return -EINVAL;
2428 
2429 	current->robust_list = head;
2430 
2431 	return 0;
2432 }
2433 
2434 /**
2435  * sys_get_robust_list() - Get the robust-futex list head of a task
2436  * @pid:	pid of the process [zero for current task]
2437  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2438  * @len_ptr:	pointer to a length field, the kernel fills in the header size
2439  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)2440 SYSCALL_DEFINE3(get_robust_list, int, pid,
2441 		struct robust_list_head __user * __user *, head_ptr,
2442 		size_t __user *, len_ptr)
2443 {
2444 	struct robust_list_head __user *head;
2445 	unsigned long ret;
2446 	const struct cred *cred = current_cred(), *pcred;
2447 
2448 	if (!futex_cmpxchg_enabled)
2449 		return -ENOSYS;
2450 
2451 	if (!pid)
2452 		head = current->robust_list;
2453 	else {
2454 		struct task_struct *p;
2455 
2456 		ret = -ESRCH;
2457 		rcu_read_lock();
2458 		p = find_task_by_vpid(pid);
2459 		if (!p)
2460 			goto err_unlock;
2461 		ret = -EPERM;
2462 		pcred = __task_cred(p);
2463 		/* If victim is in different user_ns, then uids are not
2464 		   comparable, so we must have CAP_SYS_PTRACE */
2465 		if (cred->user->user_ns != pcred->user->user_ns) {
2466 			if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2467 				goto err_unlock;
2468 			goto ok;
2469 		}
2470 		/* If victim is in same user_ns, then uids are comparable */
2471 		if (cred->euid != pcred->euid &&
2472 		    cred->euid != pcred->uid &&
2473 		    !ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE))
2474 			goto err_unlock;
2475 ok:
2476 		head = p->robust_list;
2477 		rcu_read_unlock();
2478 	}
2479 
2480 	if (put_user(sizeof(*head), len_ptr))
2481 		return -EFAULT;
2482 	return put_user(head, head_ptr);
2483 
2484 err_unlock:
2485 	rcu_read_unlock();
2486 
2487 	return ret;
2488 }
2489 
2490 /*
2491  * Process a futex-list entry, check whether it's owned by the
2492  * dying task, and do notification if so:
2493  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)2494 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2495 {
2496 	u32 uval, uninitialized_var(nval), mval;
2497 
2498 retry:
2499 	if (get_user(uval, uaddr))
2500 		return -1;
2501 
2502 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2503 		/*
2504 		 * Ok, this dying thread is truly holding a futex
2505 		 * of interest. Set the OWNER_DIED bit atomically
2506 		 * via cmpxchg, and if the value had FUTEX_WAITERS
2507 		 * set, wake up a waiter (if any). (We have to do a
2508 		 * futex_wake() even if OWNER_DIED is already set -
2509 		 * to handle the rare but possible case of recursive
2510 		 * thread-death.) The rest of the cleanup is done in
2511 		 * userspace.
2512 		 */
2513 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2514 		/*
2515 		 * We are not holding a lock here, but we want to have
2516 		 * the pagefault_disable/enable() protection because
2517 		 * we want to handle the fault gracefully. If the
2518 		 * access fails we try to fault in the futex with R/W
2519 		 * verification via get_user_pages. get_user() above
2520 		 * does not guarantee R/W access. If that fails we
2521 		 * give up and leave the futex locked.
2522 		 */
2523 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2524 			if (fault_in_user_writeable(uaddr))
2525 				return -1;
2526 			goto retry;
2527 		}
2528 		if (nval != uval)
2529 			goto retry;
2530 
2531 		/*
2532 		 * Wake robust non-PI futexes here. The wakeup of
2533 		 * PI futexes happens in exit_pi_state():
2534 		 */
2535 		if (!pi && (uval & FUTEX_WAITERS))
2536 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2537 	}
2538 	return 0;
2539 }
2540 
2541 /*
2542  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2543  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)2544 static inline int fetch_robust_entry(struct robust_list __user **entry,
2545 				     struct robust_list __user * __user *head,
2546 				     unsigned int *pi)
2547 {
2548 	unsigned long uentry;
2549 
2550 	if (get_user(uentry, (unsigned long __user *)head))
2551 		return -EFAULT;
2552 
2553 	*entry = (void __user *)(uentry & ~1UL);
2554 	*pi = uentry & 1;
2555 
2556 	return 0;
2557 }
2558 
2559 /*
2560  * Walk curr->robust_list (very carefully, it's a userspace list!)
2561  * and mark any locks found there dead, and notify any waiters.
2562  *
2563  * We silently return on any sign of list-walking problem.
2564  */
exit_robust_list(struct task_struct * curr)2565 void exit_robust_list(struct task_struct *curr)
2566 {
2567 	struct robust_list_head __user *head = curr->robust_list;
2568 	struct robust_list __user *entry, *next_entry, *pending;
2569 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2570 	unsigned int uninitialized_var(next_pi);
2571 	unsigned long futex_offset;
2572 	int rc;
2573 
2574 	if (!futex_cmpxchg_enabled)
2575 		return;
2576 
2577 	/*
2578 	 * Fetch the list head (which was registered earlier, via
2579 	 * sys_set_robust_list()):
2580 	 */
2581 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2582 		return;
2583 	/*
2584 	 * Fetch the relative futex offset:
2585 	 */
2586 	if (get_user(futex_offset, &head->futex_offset))
2587 		return;
2588 	/*
2589 	 * Fetch any possibly pending lock-add first, and handle it
2590 	 * if it exists:
2591 	 */
2592 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2593 		return;
2594 
2595 	next_entry = NULL;	/* avoid warning with gcc */
2596 	while (entry != &head->list) {
2597 		/*
2598 		 * Fetch the next entry in the list before calling
2599 		 * handle_futex_death:
2600 		 */
2601 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2602 		/*
2603 		 * A pending lock might already be on the list, so
2604 		 * don't process it twice:
2605 		 */
2606 		if (entry != pending)
2607 			if (handle_futex_death((void __user *)entry + futex_offset,
2608 						curr, pi))
2609 				return;
2610 		if (rc)
2611 			return;
2612 		entry = next_entry;
2613 		pi = next_pi;
2614 		/*
2615 		 * Avoid excessively long or circular lists:
2616 		 */
2617 		if (!--limit)
2618 			break;
2619 
2620 		cond_resched();
2621 	}
2622 
2623 	if (pending)
2624 		handle_futex_death((void __user *)pending + futex_offset,
2625 				   curr, pip);
2626 }
2627 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)2628 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2629 		u32 __user *uaddr2, u32 val2, u32 val3)
2630 {
2631 	int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2632 	unsigned int flags = 0;
2633 
2634 	if (!(op & FUTEX_PRIVATE_FLAG))
2635 		flags |= FLAGS_SHARED;
2636 
2637 	if (op & FUTEX_CLOCK_REALTIME) {
2638 		flags |= FLAGS_CLOCKRT;
2639 		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2640 			return -ENOSYS;
2641 	}
2642 
2643 	switch (cmd) {
2644 	case FUTEX_WAIT:
2645 		val3 = FUTEX_BITSET_MATCH_ANY;
2646 	case FUTEX_WAIT_BITSET:
2647 		ret = futex_wait(uaddr, flags, val, timeout, val3);
2648 		break;
2649 	case FUTEX_WAKE:
2650 		val3 = FUTEX_BITSET_MATCH_ANY;
2651 	case FUTEX_WAKE_BITSET:
2652 		ret = futex_wake(uaddr, flags, val, val3);
2653 		break;
2654 	case FUTEX_REQUEUE:
2655 		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2656 		break;
2657 	case FUTEX_CMP_REQUEUE:
2658 		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2659 		break;
2660 	case FUTEX_WAKE_OP:
2661 		ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2662 		break;
2663 	case FUTEX_LOCK_PI:
2664 		if (futex_cmpxchg_enabled)
2665 			ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2666 		break;
2667 	case FUTEX_UNLOCK_PI:
2668 		if (futex_cmpxchg_enabled)
2669 			ret = futex_unlock_pi(uaddr, flags);
2670 		break;
2671 	case FUTEX_TRYLOCK_PI:
2672 		if (futex_cmpxchg_enabled)
2673 			ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2674 		break;
2675 	case FUTEX_WAIT_REQUEUE_PI:
2676 		val3 = FUTEX_BITSET_MATCH_ANY;
2677 		ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2678 					    uaddr2);
2679 		break;
2680 	case FUTEX_CMP_REQUEUE_PI:
2681 		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2682 		break;
2683 	default:
2684 		ret = -ENOSYS;
2685 	}
2686 	return ret;
2687 }
2688 
2689 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)2690 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2691 		struct timespec __user *, utime, u32 __user *, uaddr2,
2692 		u32, val3)
2693 {
2694 	struct timespec ts;
2695 	ktime_t t, *tp = NULL;
2696 	u32 val2 = 0;
2697 	int cmd = op & FUTEX_CMD_MASK;
2698 
2699 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2700 		      cmd == FUTEX_WAIT_BITSET ||
2701 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2702 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2703 			return -EFAULT;
2704 		if (!timespec_valid(&ts))
2705 			return -EINVAL;
2706 
2707 		t = timespec_to_ktime(ts);
2708 		if (cmd == FUTEX_WAIT)
2709 			t = ktime_add_safe(ktime_get(), t);
2710 		tp = &t;
2711 	}
2712 	/*
2713 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2714 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2715 	 */
2716 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2717 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2718 		val2 = (u32) (unsigned long) utime;
2719 
2720 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2721 }
2722 
futex_init(void)2723 static int __init futex_init(void)
2724 {
2725 	u32 curval;
2726 	int i;
2727 
2728 	/*
2729 	 * This will fail and we want it. Some arch implementations do
2730 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2731 	 * functionality. We want to know that before we call in any
2732 	 * of the complex code paths. Also we want to prevent
2733 	 * registration of robust lists in that case. NULL is
2734 	 * guaranteed to fault and we get -EFAULT on functional
2735 	 * implementation, the non-functional ones will return
2736 	 * -ENOSYS.
2737 	 */
2738 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2739 		futex_cmpxchg_enabled = 1;
2740 
2741 	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2742 		plist_head_init(&futex_queues[i].chain);
2743 		spin_lock_init(&futex_queues[i].lock);
2744 	}
2745 
2746 	return 0;
2747 }
2748 __initcall(futex_init);
2749