1 /*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27
28 #include <mtd/mtd-abi.h>
29
30 #include <asm/div64.h>
31
32 #define MTD_CHAR_MAJOR 90
33 #define MTD_BLOCK_MAJOR 31
34
35 #define MTD_ERASE_PENDING 0x01
36 #define MTD_ERASING 0x02
37 #define MTD_ERASE_SUSPEND 0x04
38 #define MTD_ERASE_DONE 0x08
39 #define MTD_ERASE_FAILED 0x10
40
41 #define MTD_FAIL_ADDR_UNKNOWN -1LL
42
43 /*
44 * If the erase fails, fail_addr might indicate exactly which block failed. If
45 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
46 * or was not specific to any particular block.
47 */
48 struct erase_info {
49 struct mtd_info *mtd;
50 uint64_t addr;
51 uint64_t len;
52 uint64_t fail_addr;
53 u_long time;
54 u_long retries;
55 unsigned dev;
56 unsigned cell;
57 void (*callback) (struct erase_info *self);
58 u_long priv;
59 u_char state;
60 struct erase_info *next;
61 };
62
63 struct mtd_erase_region_info {
64 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
65 uint32_t erasesize; /* For this region */
66 uint32_t numblocks; /* Number of blocks of erasesize in this region */
67 unsigned long *lockmap; /* If keeping bitmap of locks */
68 };
69
70 /**
71 * struct mtd_oob_ops - oob operation operands
72 * @mode: operation mode
73 *
74 * @len: number of data bytes to write/read
75 *
76 * @retlen: number of data bytes written/read
77 *
78 * @ooblen: number of oob bytes to write/read
79 * @oobretlen: number of oob bytes written/read
80 * @ooboffs: offset of oob data in the oob area (only relevant when
81 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
82 * @datbuf: data buffer - if NULL only oob data are read/written
83 * @oobbuf: oob data buffer
84 *
85 * Note, it is allowed to read more than one OOB area at one go, but not write.
86 * The interface assumes that the OOB write requests program only one page's
87 * OOB area.
88 */
89 struct mtd_oob_ops {
90 unsigned int mode;
91 size_t len;
92 size_t retlen;
93 size_t ooblen;
94 size_t oobretlen;
95 uint32_t ooboffs;
96 uint8_t *datbuf;
97 uint8_t *oobbuf;
98 };
99
100 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 448
102 /*
103 * Internal ECC layout control structure. For historical reasons, there is a
104 * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
105 * for export to user-space via the ECCGETLAYOUT ioctl.
106 * nand_ecclayout should be expandable in the future simply by the above macros.
107 */
108 struct nand_ecclayout {
109 __u32 eccbytes;
110 __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
111 __u32 oobavail;
112 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
113 };
114
115 struct module; /* only needed for owner field in mtd_info */
116
117 struct mtd_info {
118 u_char type;
119 uint32_t flags;
120 uint64_t size; // Total size of the MTD
121
122 /* "Major" erase size for the device. Naïve users may take this
123 * to be the only erase size available, or may use the more detailed
124 * information below if they desire
125 */
126 uint32_t erasesize;
127 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
128 * though individual bits can be cleared), in case of NAND flash it is
129 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
130 * it is of ECC block size, etc. It is illegal to have writesize = 0.
131 * Any driver registering a struct mtd_info must ensure a writesize of
132 * 1 or larger.
133 */
134 uint32_t writesize;
135
136 /*
137 * Size of the write buffer used by the MTD. MTD devices having a write
138 * buffer can write multiple writesize chunks at a time. E.g. while
139 * writing 4 * writesize bytes to a device with 2 * writesize bytes
140 * buffer the MTD driver can (but doesn't have to) do 2 writesize
141 * operations, but not 4. Currently, all NANDs have writebufsize
142 * equivalent to writesize (NAND page size). Some NOR flashes do have
143 * writebufsize greater than writesize.
144 */
145 uint32_t writebufsize;
146
147 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
148 uint32_t oobavail; // Available OOB bytes per block
149
150 /*
151 * If erasesize is a power of 2 then the shift is stored in
152 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
153 */
154 unsigned int erasesize_shift;
155 unsigned int writesize_shift;
156 /* Masks based on erasesize_shift and writesize_shift */
157 unsigned int erasesize_mask;
158 unsigned int writesize_mask;
159
160 // Kernel-only stuff starts here.
161 const char *name;
162 int index;
163
164 /* ECC layout structure pointer - read only! */
165 struct nand_ecclayout *ecclayout;
166
167 /* Data for variable erase regions. If numeraseregions is zero,
168 * it means that the whole device has erasesize as given above.
169 */
170 int numeraseregions;
171 struct mtd_erase_region_info *eraseregions;
172
173 /*
174 * Do not call via these pointers, use corresponding mtd_*()
175 * wrappers instead.
176 */
177 int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
178 int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
179 size_t *retlen, void **virt, resource_size_t *phys);
180 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
181 unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
182 unsigned long len,
183 unsigned long offset,
184 unsigned long flags);
185 int (*read) (struct mtd_info *mtd, loff_t from, size_t len,
186 size_t *retlen, u_char *buf);
187 int (*write) (struct mtd_info *mtd, loff_t to, size_t len,
188 size_t *retlen, const u_char *buf);
189 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
190 size_t *retlen, const u_char *buf);
191 int (*read_oob) (struct mtd_info *mtd, loff_t from,
192 struct mtd_oob_ops *ops);
193 int (*write_oob) (struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops);
195 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
196 size_t len);
197 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
198 size_t len, size_t *retlen, u_char *buf);
199 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
200 size_t len);
201 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
202 size_t len, size_t *retlen, u_char *buf);
203 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len,
204 size_t *retlen, u_char *buf);
205 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
206 size_t len);
207 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs,
208 unsigned long count, loff_t to, size_t *retlen);
209 void (*sync) (struct mtd_info *mtd);
210 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
211 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
212 int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
213 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
214 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
215 int (*suspend) (struct mtd_info *mtd);
216 void (*resume) (struct mtd_info *mtd);
217 /*
218 * If the driver is something smart, like UBI, it may need to maintain
219 * its own reference counting. The below functions are only for driver.
220 */
221 int (*get_device) (struct mtd_info *mtd);
222 void (*put_device) (struct mtd_info *mtd);
223
224 /* Backing device capabilities for this device
225 * - provides mmap capabilities
226 */
227 struct backing_dev_info *backing_dev_info;
228
229 struct notifier_block reboot_notifier; /* default mode before reboot */
230
231 /* ECC status information */
232 struct mtd_ecc_stats ecc_stats;
233 /* Subpage shift (NAND) */
234 int subpage_sft;
235
236 void *priv;
237
238 struct module *owner;
239 struct device dev;
240 int usecount;
241 };
242
243 /*
244 * Erase is an asynchronous operation. Device drivers are supposed
245 * to call instr->callback() whenever the operation completes, even
246 * if it completes with a failure.
247 * Callers are supposed to pass a callback function and wait for it
248 * to be called before writing to the block.
249 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)250 static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
251 {
252 return mtd->erase(mtd, instr);
253 }
254
255 /*
256 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
257 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)258 static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len,
259 size_t *retlen, void **virt, resource_size_t *phys)
260 {
261 *retlen = 0;
262 if (!mtd->point)
263 return -EOPNOTSUPP;
264 return mtd->point(mtd, from, len, retlen, virt, phys);
265 }
266
267 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)268 static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
269 {
270 return mtd->unpoint(mtd, from, len);
271 }
272
273 /*
274 * Allow NOMMU mmap() to directly map the device (if not NULL)
275 * - return the address to which the offset maps
276 * - return -ENOSYS to indicate refusal to do the mapping
277 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)278 static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd,
279 unsigned long len,
280 unsigned long offset,
281 unsigned long flags)
282 {
283 if (!mtd->get_unmapped_area)
284 return -EOPNOTSUPP;
285 return mtd->get_unmapped_area(mtd, len, offset, flags);
286 }
287
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)288 static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
289 size_t *retlen, u_char *buf)
290 {
291 return mtd->read(mtd, from, len, retlen, buf);
292 }
293
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)294 static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
295 size_t *retlen, const u_char *buf)
296 {
297 *retlen = 0;
298 if (!mtd->write)
299 return -EROFS;
300 return mtd->write(mtd, to, len, retlen, buf);
301 }
302
303 /*
304 * In blackbox flight recorder like scenarios we want to make successful writes
305 * in interrupt context. panic_write() is only intended to be called when its
306 * known the kernel is about to panic and we need the write to succeed. Since
307 * the kernel is not going to be running for much longer, this function can
308 * break locks and delay to ensure the write succeeds (but not sleep).
309 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)310 static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
311 size_t *retlen, const u_char *buf)
312 {
313 *retlen = 0;
314 if (!mtd->panic_write)
315 return -EOPNOTSUPP;
316 return mtd->panic_write(mtd, to, len, retlen, buf);
317 }
318
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)319 static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from,
320 struct mtd_oob_ops *ops)
321 {
322 ops->retlen = ops->oobretlen = 0;
323 if (!mtd->read_oob)
324 return -EOPNOTSUPP;
325 return mtd->read_oob(mtd, from, ops);
326 }
327
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)328 static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to,
329 struct mtd_oob_ops *ops)
330 {
331 ops->retlen = ops->oobretlen = 0;
332 if (!mtd->write_oob)
333 return -EOPNOTSUPP;
334 return mtd->write_oob(mtd, to, ops);
335 }
336
337 /*
338 * Method to access the protection register area, present in some flash
339 * devices. The user data is one time programmable but the factory data is read
340 * only.
341 */
mtd_get_fact_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)342 static inline int mtd_get_fact_prot_info(struct mtd_info *mtd,
343 struct otp_info *buf, size_t len)
344 {
345 if (!mtd->get_fact_prot_info)
346 return -EOPNOTSUPP;
347 return mtd->get_fact_prot_info(mtd, buf, len);
348 }
349
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)350 static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
351 size_t len, size_t *retlen,
352 u_char *buf)
353 {
354 *retlen = 0;
355 if (!mtd->read_fact_prot_reg)
356 return -EOPNOTSUPP;
357 return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf);
358 }
359
mtd_get_user_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)360 static inline int mtd_get_user_prot_info(struct mtd_info *mtd,
361 struct otp_info *buf,
362 size_t len)
363 {
364 if (!mtd->get_user_prot_info)
365 return -EOPNOTSUPP;
366 return mtd->get_user_prot_info(mtd, buf, len);
367 }
368
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)369 static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
370 size_t len, size_t *retlen,
371 u_char *buf)
372 {
373 *retlen = 0;
374 if (!mtd->read_user_prot_reg)
375 return -EOPNOTSUPP;
376 return mtd->read_user_prot_reg(mtd, from, len, retlen, buf);
377 }
378
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)379 static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to,
380 size_t len, size_t *retlen,
381 u_char *buf)
382 {
383 *retlen = 0;
384 if (!mtd->write_user_prot_reg)
385 return -EOPNOTSUPP;
386 return mtd->write_user_prot_reg(mtd, to, len, retlen, buf);
387 }
388
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)389 static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
390 size_t len)
391 {
392 if (!mtd->lock_user_prot_reg)
393 return -EOPNOTSUPP;
394 return mtd->lock_user_prot_reg(mtd, from, len);
395 }
396
397 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
398 unsigned long count, loff_t to, size_t *retlen);
399
mtd_sync(struct mtd_info * mtd)400 static inline void mtd_sync(struct mtd_info *mtd)
401 {
402 if (mtd->sync)
403 mtd->sync(mtd);
404 }
405
406 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)407 static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
408 {
409 if (!mtd->lock)
410 return -EOPNOTSUPP;
411 return mtd->lock(mtd, ofs, len);
412 }
413
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)414 static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
415 {
416 if (!mtd->unlock)
417 return -EOPNOTSUPP;
418 return mtd->unlock(mtd, ofs, len);
419 }
420
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)421 static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
422 {
423 if (!mtd->is_locked)
424 return -EOPNOTSUPP;
425 return mtd->is_locked(mtd, ofs, len);
426 }
427
mtd_suspend(struct mtd_info * mtd)428 static inline int mtd_suspend(struct mtd_info *mtd)
429 {
430 return mtd->suspend ? mtd->suspend(mtd) : 0;
431 }
432
mtd_resume(struct mtd_info * mtd)433 static inline void mtd_resume(struct mtd_info *mtd)
434 {
435 if (mtd->resume)
436 mtd->resume(mtd);
437 }
438
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)439 static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
440 {
441 if (!mtd->block_isbad)
442 return 0;
443 return mtd->block_isbad(mtd, ofs);
444 }
445
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)446 static inline int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
447 {
448 if (!mtd->block_markbad)
449 return -EOPNOTSUPP;
450 return mtd->block_markbad(mtd, ofs);
451 }
452
mtd_div_by_eb(uint64_t sz,struct mtd_info * mtd)453 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
454 {
455 if (mtd->erasesize_shift)
456 return sz >> mtd->erasesize_shift;
457 do_div(sz, mtd->erasesize);
458 return sz;
459 }
460
mtd_mod_by_eb(uint64_t sz,struct mtd_info * mtd)461 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
462 {
463 if (mtd->erasesize_shift)
464 return sz & mtd->erasesize_mask;
465 return do_div(sz, mtd->erasesize);
466 }
467
mtd_div_by_ws(uint64_t sz,struct mtd_info * mtd)468 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
469 {
470 if (mtd->writesize_shift)
471 return sz >> mtd->writesize_shift;
472 do_div(sz, mtd->writesize);
473 return sz;
474 }
475
mtd_mod_by_ws(uint64_t sz,struct mtd_info * mtd)476 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
477 {
478 if (mtd->writesize_shift)
479 return sz & mtd->writesize_mask;
480 return do_div(sz, mtd->writesize);
481 }
482
mtd_has_oob(const struct mtd_info * mtd)483 static inline int mtd_has_oob(const struct mtd_info *mtd)
484 {
485 return mtd->read_oob && mtd->write_oob;
486 }
487
mtd_can_have_bb(const struct mtd_info * mtd)488 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
489 {
490 return !!mtd->block_isbad;
491 }
492
493 /* Kernel-side ioctl definitions */
494
495 struct mtd_partition;
496 struct mtd_part_parser_data;
497
498 extern int mtd_device_parse_register(struct mtd_info *mtd,
499 const char **part_probe_types,
500 struct mtd_part_parser_data *parser_data,
501 const struct mtd_partition *defparts,
502 int defnr_parts);
503 #define mtd_device_register(master, parts, nr_parts) \
504 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
505 extern int mtd_device_unregister(struct mtd_info *master);
506 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
507 extern int __get_mtd_device(struct mtd_info *mtd);
508 extern void __put_mtd_device(struct mtd_info *mtd);
509 extern struct mtd_info *get_mtd_device_nm(const char *name);
510 extern void put_mtd_device(struct mtd_info *mtd);
511
512
513 struct mtd_notifier {
514 void (*add)(struct mtd_info *mtd);
515 void (*remove)(struct mtd_info *mtd);
516 struct list_head list;
517 };
518
519
520 extern void register_mtd_user (struct mtd_notifier *new);
521 extern int unregister_mtd_user (struct mtd_notifier *old);
522 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
523
524 void mtd_erase_callback(struct erase_info *instr);
525
mtd_is_bitflip(int err)526 static inline int mtd_is_bitflip(int err) {
527 return err == -EUCLEAN;
528 }
529
mtd_is_eccerr(int err)530 static inline int mtd_is_eccerr(int err) {
531 return err == -EBADMSG;
532 }
533
mtd_is_bitflip_or_eccerr(int err)534 static inline int mtd_is_bitflip_or_eccerr(int err) {
535 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
536 }
537
538 #endif /* __MTD_MTD_H__ */
539