1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6 
7 #include <linux/mm_types.h>
8 
9 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
10 extern int ptep_set_access_flags(struct vm_area_struct *vma,
11 				 unsigned long address, pte_t *ptep,
12 				 pte_t entry, int dirty);
13 #endif
14 
15 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
16 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
17 				 unsigned long address, pmd_t *pmdp,
18 				 pmd_t entry, int dirty);
19 #endif
20 
21 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)22 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
23 					    unsigned long address,
24 					    pte_t *ptep)
25 {
26 	pte_t pte = *ptep;
27 	int r = 1;
28 	if (!pte_young(pte))
29 		r = 0;
30 	else
31 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
32 	return r;
33 }
34 #endif
35 
36 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)38 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
39 					    unsigned long address,
40 					    pmd_t *pmdp)
41 {
42 	pmd_t pmd = *pmdp;
43 	int r = 1;
44 	if (!pmd_young(pmd))
45 		r = 0;
46 	else
47 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
48 	return r;
49 }
50 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)51 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
52 					    unsigned long address,
53 					    pmd_t *pmdp)
54 {
55 	BUG();
56 	return 0;
57 }
58 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
59 #endif
60 
61 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
62 int ptep_clear_flush_young(struct vm_area_struct *vma,
63 			   unsigned long address, pte_t *ptep);
64 #endif
65 
66 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
67 int pmdp_clear_flush_young(struct vm_area_struct *vma,
68 			   unsigned long address, pmd_t *pmdp);
69 #endif
70 
71 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)72 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
73 				       unsigned long address,
74 				       pte_t *ptep)
75 {
76 	pte_t pte = *ptep;
77 	pte_clear(mm, address, ptep);
78 	return pte;
79 }
80 #endif
81 
82 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
83 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)84 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
85 				       unsigned long address,
86 				       pmd_t *pmdp)
87 {
88 	pmd_t pmd = *pmdp;
89 	pmd_clear(mm, address, pmdp);
90 	return pmd;
91 }
92 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
93 #endif
94 
95 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)96 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
97 					    unsigned long address, pte_t *ptep,
98 					    int full)
99 {
100 	pte_t pte;
101 	pte = ptep_get_and_clear(mm, address, ptep);
102 	return pte;
103 }
104 #endif
105 
106 /*
107  * Some architectures may be able to avoid expensive synchronization
108  * primitives when modifications are made to PTE's which are already
109  * not present, or in the process of an address space destruction.
110  */
111 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)112 static inline void pte_clear_not_present_full(struct mm_struct *mm,
113 					      unsigned long address,
114 					      pte_t *ptep,
115 					      int full)
116 {
117 	pte_clear(mm, address, ptep);
118 }
119 #endif
120 
121 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
122 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
123 			      unsigned long address,
124 			      pte_t *ptep);
125 #endif
126 
127 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
128 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
129 			      unsigned long address,
130 			      pmd_t *pmdp);
131 #endif
132 
133 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
134 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)135 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
136 {
137 	pte_t old_pte = *ptep;
138 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
139 }
140 #endif
141 
142 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)144 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
145 				      unsigned long address, pmd_t *pmdp)
146 {
147 	pmd_t old_pmd = *pmdp;
148 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
149 }
150 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)151 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
152 				      unsigned long address, pmd_t *pmdp)
153 {
154 	BUG();
155 }
156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
157 #endif
158 
159 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
160 extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
161 				  unsigned long address,
162 				  pmd_t *pmdp);
163 #endif
164 
165 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)166 static inline int pte_same(pte_t pte_a, pte_t pte_b)
167 {
168 	return pte_val(pte_a) == pte_val(pte_b);
169 }
170 #endif
171 
172 #ifndef __HAVE_ARCH_PMD_SAME
173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_same(pmd_t pmd_a,pmd_t pmd_b)174 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
175 {
176 	return pmd_val(pmd_a) == pmd_val(pmd_b);
177 }
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmd_same(pmd_t pmd_a,pmd_t pmd_b)179 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
180 {
181 	BUG();
182 	return 0;
183 }
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185 #endif
186 
187 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
188 #define page_test_and_clear_dirty(pfn, mapped)	(0)
189 #endif
190 
191 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
192 #define pte_maybe_dirty(pte)		pte_dirty(pte)
193 #else
194 #define pte_maybe_dirty(pte)		(1)
195 #endif
196 
197 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
198 #define page_test_and_clear_young(pfn) (0)
199 #endif
200 
201 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
202 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
203 #endif
204 
205 #ifndef __HAVE_ARCH_MOVE_PTE
206 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
207 #endif
208 
209 #ifndef flush_tlb_fix_spurious_fault
210 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
211 #endif
212 
213 #ifndef pgprot_noncached
214 #define pgprot_noncached(prot)	(prot)
215 #endif
216 
217 #ifndef pgprot_writecombine
218 #define pgprot_writecombine pgprot_noncached
219 #endif
220 
221 /*
222  * When walking page tables, get the address of the next boundary,
223  * or the end address of the range if that comes earlier.  Although no
224  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
225  */
226 
227 #define pgd_addr_end(addr, end)						\
228 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
229 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
230 })
231 
232 #ifndef pud_addr_end
233 #define pud_addr_end(addr, end)						\
234 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
235 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
236 })
237 #endif
238 
239 #ifndef pmd_addr_end
240 #define pmd_addr_end(addr, end)						\
241 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
242 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
243 })
244 #endif
245 
246 /*
247  * When walking page tables, we usually want to skip any p?d_none entries;
248  * and any p?d_bad entries - reporting the error before resetting to none.
249  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
250  */
251 void pgd_clear_bad(pgd_t *);
252 void pud_clear_bad(pud_t *);
253 void pmd_clear_bad(pmd_t *);
254 
pgd_none_or_clear_bad(pgd_t * pgd)255 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
256 {
257 	if (pgd_none(*pgd))
258 		return 1;
259 	if (unlikely(pgd_bad(*pgd))) {
260 		pgd_clear_bad(pgd);
261 		return 1;
262 	}
263 	return 0;
264 }
265 
pud_none_or_clear_bad(pud_t * pud)266 static inline int pud_none_or_clear_bad(pud_t *pud)
267 {
268 	if (pud_none(*pud))
269 		return 1;
270 	if (unlikely(pud_bad(*pud))) {
271 		pud_clear_bad(pud);
272 		return 1;
273 	}
274 	return 0;
275 }
276 
pmd_none_or_clear_bad(pmd_t * pmd)277 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
278 {
279 	if (pmd_none(*pmd))
280 		return 1;
281 	if (unlikely(pmd_bad(*pmd))) {
282 		pmd_clear_bad(pmd);
283 		return 1;
284 	}
285 	return 0;
286 }
287 
__ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)288 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
289 					     unsigned long addr,
290 					     pte_t *ptep)
291 {
292 	/*
293 	 * Get the current pte state, but zero it out to make it
294 	 * non-present, preventing the hardware from asynchronously
295 	 * updating it.
296 	 */
297 	return ptep_get_and_clear(mm, addr, ptep);
298 }
299 
__ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)300 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
301 					     unsigned long addr,
302 					     pte_t *ptep, pte_t pte)
303 {
304 	/*
305 	 * The pte is non-present, so there's no hardware state to
306 	 * preserve.
307 	 */
308 	set_pte_at(mm, addr, ptep, pte);
309 }
310 
311 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
312 /*
313  * Start a pte protection read-modify-write transaction, which
314  * protects against asynchronous hardware modifications to the pte.
315  * The intention is not to prevent the hardware from making pte
316  * updates, but to prevent any updates it may make from being lost.
317  *
318  * This does not protect against other software modifications of the
319  * pte; the appropriate pte lock must be held over the transation.
320  *
321  * Note that this interface is intended to be batchable, meaning that
322  * ptep_modify_prot_commit may not actually update the pte, but merely
323  * queue the update to be done at some later time.  The update must be
324  * actually committed before the pte lock is released, however.
325  */
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)326 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
327 					   unsigned long addr,
328 					   pte_t *ptep)
329 {
330 	return __ptep_modify_prot_start(mm, addr, ptep);
331 }
332 
333 /*
334  * Commit an update to a pte, leaving any hardware-controlled bits in
335  * the PTE unmodified.
336  */
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)337 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
338 					   unsigned long addr,
339 					   pte_t *ptep, pte_t pte)
340 {
341 	__ptep_modify_prot_commit(mm, addr, ptep, pte);
342 }
343 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
344 #endif /* CONFIG_MMU */
345 
346 /*
347  * A facility to provide lazy MMU batching.  This allows PTE updates and
348  * page invalidations to be delayed until a call to leave lazy MMU mode
349  * is issued.  Some architectures may benefit from doing this, and it is
350  * beneficial for both shadow and direct mode hypervisors, which may batch
351  * the PTE updates which happen during this window.  Note that using this
352  * interface requires that read hazards be removed from the code.  A read
353  * hazard could result in the direct mode hypervisor case, since the actual
354  * write to the page tables may not yet have taken place, so reads though
355  * a raw PTE pointer after it has been modified are not guaranteed to be
356  * up to date.  This mode can only be entered and left under the protection of
357  * the page table locks for all page tables which may be modified.  In the UP
358  * case, this is required so that preemption is disabled, and in the SMP case,
359  * it must synchronize the delayed page table writes properly on other CPUs.
360  */
361 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
362 #define arch_enter_lazy_mmu_mode()	do {} while (0)
363 #define arch_leave_lazy_mmu_mode()	do {} while (0)
364 #define arch_flush_lazy_mmu_mode()	do {} while (0)
365 #endif
366 
367 /*
368  * A facility to provide batching of the reload of page tables and
369  * other process state with the actual context switch code for
370  * paravirtualized guests.  By convention, only one of the batched
371  * update (lazy) modes (CPU, MMU) should be active at any given time,
372  * entry should never be nested, and entry and exits should always be
373  * paired.  This is for sanity of maintaining and reasoning about the
374  * kernel code.  In this case, the exit (end of the context switch) is
375  * in architecture-specific code, and so doesn't need a generic
376  * definition.
377  */
378 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
379 #define arch_start_context_switch(prev)	do {} while (0)
380 #endif
381 
382 #ifndef __HAVE_PFNMAP_TRACKING
383 /*
384  * Interface that can be used by architecture code to keep track of
385  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
386  *
387  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
388  * for physical range indicated by pfn and size.
389  */
track_pfn_vma_new(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long size)390 static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
391 					unsigned long pfn, unsigned long size)
392 {
393 	return 0;
394 }
395 
396 /*
397  * Interface that can be used by architecture code to keep track of
398  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
399  *
400  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
401  * copied through copy_page_range().
402  */
track_pfn_vma_copy(struct vm_area_struct * vma)403 static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
404 {
405 	return 0;
406 }
407 
408 /*
409  * Interface that can be used by architecture code to keep track of
410  * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
411  *
412  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
413  * untrack can be called for a specific region indicated by pfn and size or
414  * can be for the entire vma (in which case size can be zero).
415  */
untrack_pfn_vma(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)416 static inline void untrack_pfn_vma(struct vm_area_struct *vma,
417 					unsigned long pfn, unsigned long size)
418 {
419 }
420 #else
421 extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
422 				unsigned long pfn, unsigned long size);
423 extern int track_pfn_vma_copy(struct vm_area_struct *vma);
424 extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
425 				unsigned long size);
426 #endif
427 
428 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)429 static inline int pmd_trans_huge(pmd_t pmd)
430 {
431 	return 0;
432 }
pmd_trans_splitting(pmd_t pmd)433 static inline int pmd_trans_splitting(pmd_t pmd)
434 {
435 	return 0;
436 }
437 #ifndef __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)438 static inline int pmd_write(pmd_t pmd)
439 {
440 	BUG();
441 	return 0;
442 }
443 #endif /* __HAVE_ARCH_PMD_WRITE */
444 #endif
445 
446 #endif /* !__ASSEMBLY__ */
447 
448 #endif /* _ASM_GENERIC_PGTABLE_H */
449