1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(struct log	*log,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_tail(struct log *log);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 static void
xlog_grant_sub_space(struct log * log,atomic64_t * head,int bytes)99 xlog_grant_sub_space(
100 	struct log	*log,
101 	atomic64_t	*head,
102 	int		bytes)
103 {
104 	int64_t	head_val = atomic64_read(head);
105 	int64_t new, old;
106 
107 	do {
108 		int	cycle, space;
109 
110 		xlog_crack_grant_head_val(head_val, &cycle, &space);
111 
112 		space -= bytes;
113 		if (space < 0) {
114 			space += log->l_logsize;
115 			cycle--;
116 		}
117 
118 		old = head_val;
119 		new = xlog_assign_grant_head_val(cycle, space);
120 		head_val = atomic64_cmpxchg(head, old, new);
121 	} while (head_val != old);
122 }
123 
124 static void
xlog_grant_add_space(struct log * log,atomic64_t * head,int bytes)125 xlog_grant_add_space(
126 	struct log	*log,
127 	atomic64_t	*head,
128 	int		bytes)
129 {
130 	int64_t	head_val = atomic64_read(head);
131 	int64_t new, old;
132 
133 	do {
134 		int		tmp;
135 		int		cycle, space;
136 
137 		xlog_crack_grant_head_val(head_val, &cycle, &space);
138 
139 		tmp = log->l_logsize - space;
140 		if (tmp > bytes)
141 			space += bytes;
142 		else {
143 			space = bytes - tmp;
144 			cycle++;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 STATIC bool
xlog_reserveq_wake(struct log * log,int * free_bytes)154 xlog_reserveq_wake(
155 	struct log		*log,
156 	int			*free_bytes)
157 {
158 	struct xlog_ticket	*tic;
159 	int			need_bytes;
160 
161 	list_for_each_entry(tic, &log->l_reserveq, t_queue) {
162 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
163 			need_bytes = tic->t_unit_res * tic->t_cnt;
164 		else
165 			need_bytes = tic->t_unit_res;
166 
167 		if (*free_bytes < need_bytes)
168 			return false;
169 		*free_bytes -= need_bytes;
170 
171 		trace_xfs_log_grant_wake_up(log, tic);
172 		wake_up(&tic->t_wait);
173 	}
174 
175 	return true;
176 }
177 
178 STATIC bool
xlog_writeq_wake(struct log * log,int * free_bytes)179 xlog_writeq_wake(
180 	struct log		*log,
181 	int			*free_bytes)
182 {
183 	struct xlog_ticket	*tic;
184 	int			need_bytes;
185 
186 	list_for_each_entry(tic, &log->l_writeq, t_queue) {
187 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
188 
189 		need_bytes = tic->t_unit_res;
190 
191 		if (*free_bytes < need_bytes)
192 			return false;
193 		*free_bytes -= need_bytes;
194 
195 		trace_xfs_log_regrant_write_wake_up(log, tic);
196 		wake_up(&tic->t_wait);
197 	}
198 
199 	return true;
200 }
201 
202 STATIC int
xlog_reserveq_wait(struct log * log,struct xlog_ticket * tic,int need_bytes)203 xlog_reserveq_wait(
204 	struct log		*log,
205 	struct xlog_ticket	*tic,
206 	int			need_bytes)
207 {
208 	list_add_tail(&tic->t_queue, &log->l_reserveq);
209 
210 	do {
211 		if (XLOG_FORCED_SHUTDOWN(log))
212 			goto shutdown;
213 		xlog_grant_push_ail(log, need_bytes);
214 
215 		XFS_STATS_INC(xs_sleep_logspace);
216 		trace_xfs_log_grant_sleep(log, tic);
217 
218 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
219 		trace_xfs_log_grant_wake(log, tic);
220 
221 		spin_lock(&log->l_grant_reserve_lock);
222 		if (XLOG_FORCED_SHUTDOWN(log))
223 			goto shutdown;
224 	} while (xlog_space_left(log, &log->l_grant_reserve_head) < need_bytes);
225 
226 	list_del_init(&tic->t_queue);
227 	return 0;
228 shutdown:
229 	list_del_init(&tic->t_queue);
230 	return XFS_ERROR(EIO);
231 }
232 
233 STATIC int
xlog_writeq_wait(struct log * log,struct xlog_ticket * tic,int need_bytes)234 xlog_writeq_wait(
235 	struct log		*log,
236 	struct xlog_ticket	*tic,
237 	int			need_bytes)
238 {
239 	list_add_tail(&tic->t_queue, &log->l_writeq);
240 
241 	do {
242 		if (XLOG_FORCED_SHUTDOWN(log))
243 			goto shutdown;
244 		xlog_grant_push_ail(log, need_bytes);
245 
246 		XFS_STATS_INC(xs_sleep_logspace);
247 		trace_xfs_log_regrant_write_sleep(log, tic);
248 
249 		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
250 		trace_xfs_log_regrant_write_wake(log, tic);
251 
252 		spin_lock(&log->l_grant_write_lock);
253 		if (XLOG_FORCED_SHUTDOWN(log))
254 			goto shutdown;
255 	} while (xlog_space_left(log, &log->l_grant_write_head) < need_bytes);
256 
257 	list_del_init(&tic->t_queue);
258 	return 0;
259 shutdown:
260 	list_del_init(&tic->t_queue);
261 	return XFS_ERROR(EIO);
262 }
263 
264 static void
xlog_tic_reset_res(xlog_ticket_t * tic)265 xlog_tic_reset_res(xlog_ticket_t *tic)
266 {
267 	tic->t_res_num = 0;
268 	tic->t_res_arr_sum = 0;
269 	tic->t_res_num_ophdrs = 0;
270 }
271 
272 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)273 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
274 {
275 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
276 		/* add to overflow and start again */
277 		tic->t_res_o_flow += tic->t_res_arr_sum;
278 		tic->t_res_num = 0;
279 		tic->t_res_arr_sum = 0;
280 	}
281 
282 	tic->t_res_arr[tic->t_res_num].r_len = len;
283 	tic->t_res_arr[tic->t_res_num].r_type = type;
284 	tic->t_res_arr_sum += len;
285 	tic->t_res_num++;
286 }
287 
288 /*
289  * NOTES:
290  *
291  *	1. currblock field gets updated at startup and after in-core logs
292  *		marked as with WANT_SYNC.
293  */
294 
295 /*
296  * This routine is called when a user of a log manager ticket is done with
297  * the reservation.  If the ticket was ever used, then a commit record for
298  * the associated transaction is written out as a log operation header with
299  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
300  * a given ticket.  If the ticket was one with a permanent reservation, then
301  * a few operations are done differently.  Permanent reservation tickets by
302  * default don't release the reservation.  They just commit the current
303  * transaction with the belief that the reservation is still needed.  A flag
304  * must be passed in before permanent reservations are actually released.
305  * When these type of tickets are not released, they need to be set into
306  * the inited state again.  By doing this, a start record will be written
307  * out when the next write occurs.
308  */
309 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,uint flags)310 xfs_log_done(
311 	struct xfs_mount	*mp,
312 	struct xlog_ticket	*ticket,
313 	struct xlog_in_core	**iclog,
314 	uint			flags)
315 {
316 	struct log		*log = mp->m_log;
317 	xfs_lsn_t		lsn = 0;
318 
319 	if (XLOG_FORCED_SHUTDOWN(log) ||
320 	    /*
321 	     * If nothing was ever written, don't write out commit record.
322 	     * If we get an error, just continue and give back the log ticket.
323 	     */
324 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
325 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
326 		lsn = (xfs_lsn_t) -1;
327 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
328 			flags |= XFS_LOG_REL_PERM_RESERV;
329 		}
330 	}
331 
332 
333 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
334 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
335 		trace_xfs_log_done_nonperm(log, ticket);
336 
337 		/*
338 		 * Release ticket if not permanent reservation or a specific
339 		 * request has been made to release a permanent reservation.
340 		 */
341 		xlog_ungrant_log_space(log, ticket);
342 		xfs_log_ticket_put(ticket);
343 	} else {
344 		trace_xfs_log_done_perm(log, ticket);
345 
346 		xlog_regrant_reserve_log_space(log, ticket);
347 		/* If this ticket was a permanent reservation and we aren't
348 		 * trying to release it, reset the inited flags; so next time
349 		 * we write, a start record will be written out.
350 		 */
351 		ticket->t_flags |= XLOG_TIC_INITED;
352 	}
353 
354 	return lsn;
355 }
356 
357 /*
358  * Attaches a new iclog I/O completion callback routine during
359  * transaction commit.  If the log is in error state, a non-zero
360  * return code is handed back and the caller is responsible for
361  * executing the callback at an appropriate time.
362  */
363 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)364 xfs_log_notify(
365 	struct xfs_mount	*mp,
366 	struct xlog_in_core	*iclog,
367 	xfs_log_callback_t	*cb)
368 {
369 	int	abortflg;
370 
371 	spin_lock(&iclog->ic_callback_lock);
372 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
373 	if (!abortflg) {
374 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
375 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
376 		cb->cb_next = NULL;
377 		*(iclog->ic_callback_tail) = cb;
378 		iclog->ic_callback_tail = &(cb->cb_next);
379 	}
380 	spin_unlock(&iclog->ic_callback_lock);
381 	return abortflg;
382 }
383 
384 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)385 xfs_log_release_iclog(
386 	struct xfs_mount	*mp,
387 	struct xlog_in_core	*iclog)
388 {
389 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
390 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
391 		return EIO;
392 	}
393 
394 	return 0;
395 }
396 
397 /*
398  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
399  *	to the reservation.
400  *  2. Potentially, push buffers at tail of log to disk.
401  *
402  * Each reservation is going to reserve extra space for a log record header.
403  * When writes happen to the on-disk log, we don't subtract the length of the
404  * log record header from any reservation.  By wasting space in each
405  * reservation, we prevent over allocation problems.
406  */
407 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticket,__uint8_t client,uint flags,uint t_type)408 xfs_log_reserve(
409 	struct xfs_mount	*mp,
410 	int		 	unit_bytes,
411 	int		 	cnt,
412 	struct xlog_ticket	**ticket,
413 	__uint8_t	 	client,
414 	uint		 	flags,
415 	uint		 	t_type)
416 {
417 	struct log		*log = mp->m_log;
418 	struct xlog_ticket	*internal_ticket;
419 	int			retval = 0;
420 
421 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
422 
423 	if (XLOG_FORCED_SHUTDOWN(log))
424 		return XFS_ERROR(EIO);
425 
426 	XFS_STATS_INC(xs_try_logspace);
427 
428 
429 	if (*ticket != NULL) {
430 		ASSERT(flags & XFS_LOG_PERM_RESERV);
431 		internal_ticket = *ticket;
432 
433 		/*
434 		 * this is a new transaction on the ticket, so we need to
435 		 * change the transaction ID so that the next transaction has a
436 		 * different TID in the log. Just add one to the existing tid
437 		 * so that we can see chains of rolling transactions in the log
438 		 * easily.
439 		 */
440 		internal_ticket->t_tid++;
441 
442 		trace_xfs_log_reserve(log, internal_ticket);
443 
444 		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
445 		retval = xlog_regrant_write_log_space(log, internal_ticket);
446 	} else {
447 		/* may sleep if need to allocate more tickets */
448 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
449 						  client, flags,
450 						  KM_SLEEP|KM_MAYFAIL);
451 		if (!internal_ticket)
452 			return XFS_ERROR(ENOMEM);
453 		internal_ticket->t_trans_type = t_type;
454 		*ticket = internal_ticket;
455 
456 		trace_xfs_log_reserve(log, internal_ticket);
457 
458 		xlog_grant_push_ail(log,
459 				    (internal_ticket->t_unit_res *
460 				     internal_ticket->t_cnt));
461 		retval = xlog_grant_log_space(log, internal_ticket);
462 	}
463 
464 	if (unlikely(retval)) {
465 		/*
466 		 * If we are failing, make sure the ticket doesn't have any
467 		 * current reservations.  We don't want to add this back
468 		 * when the ticket/ transaction gets cancelled.
469 		 */
470 		internal_ticket->t_curr_res = 0;
471 		/* ungrant will give back unit_res * t_cnt. */
472 		internal_ticket->t_cnt = 0;
473 	}
474 
475 	return retval;
476 }
477 
478 
479 /*
480  * Mount a log filesystem
481  *
482  * mp		- ubiquitous xfs mount point structure
483  * log_target	- buftarg of on-disk log device
484  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
485  * num_bblocks	- Number of BBSIZE blocks in on-disk log
486  *
487  * Return error or zero.
488  */
489 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)490 xfs_log_mount(
491 	xfs_mount_t	*mp,
492 	xfs_buftarg_t	*log_target,
493 	xfs_daddr_t	blk_offset,
494 	int		num_bblks)
495 {
496 	int		error;
497 
498 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
499 		xfs_notice(mp, "Mounting Filesystem");
500 	else {
501 		xfs_notice(mp,
502 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
503 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
504 	}
505 
506 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
507 	if (IS_ERR(mp->m_log)) {
508 		error = -PTR_ERR(mp->m_log);
509 		goto out;
510 	}
511 
512 	/*
513 	 * Initialize the AIL now we have a log.
514 	 */
515 	error = xfs_trans_ail_init(mp);
516 	if (error) {
517 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
518 		goto out_free_log;
519 	}
520 	mp->m_log->l_ailp = mp->m_ail;
521 
522 	/*
523 	 * skip log recovery on a norecovery mount.  pretend it all
524 	 * just worked.
525 	 */
526 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
527 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
528 
529 		if (readonly)
530 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
531 
532 		error = xlog_recover(mp->m_log);
533 
534 		if (readonly)
535 			mp->m_flags |= XFS_MOUNT_RDONLY;
536 		if (error) {
537 			xfs_warn(mp, "log mount/recovery failed: error %d",
538 				error);
539 			goto out_destroy_ail;
540 		}
541 	}
542 
543 	/* Normal transactions can now occur */
544 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
545 
546 	/*
547 	 * Now the log has been fully initialised and we know were our
548 	 * space grant counters are, we can initialise the permanent ticket
549 	 * needed for delayed logging to work.
550 	 */
551 	xlog_cil_init_post_recovery(mp->m_log);
552 
553 	return 0;
554 
555 out_destroy_ail:
556 	xfs_trans_ail_destroy(mp);
557 out_free_log:
558 	xlog_dealloc_log(mp->m_log);
559 out:
560 	return error;
561 }
562 
563 /*
564  * Finish the recovery of the file system.  This is separate from
565  * the xfs_log_mount() call, because it depends on the code in
566  * xfs_mountfs() to read in the root and real-time bitmap inodes
567  * between calling xfs_log_mount() and here.
568  *
569  * mp		- ubiquitous xfs mount point structure
570  */
571 int
xfs_log_mount_finish(xfs_mount_t * mp)572 xfs_log_mount_finish(xfs_mount_t *mp)
573 {
574 	int	error;
575 
576 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
577 		error = xlog_recover_finish(mp->m_log);
578 	else {
579 		error = 0;
580 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
581 	}
582 
583 	return error;
584 }
585 
586 /*
587  * Final log writes as part of unmount.
588  *
589  * Mark the filesystem clean as unmount happens.  Note that during relocation
590  * this routine needs to be executed as part of source-bag while the
591  * deallocation must not be done until source-end.
592  */
593 
594 /*
595  * Unmount record used to have a string "Unmount filesystem--" in the
596  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
597  * We just write the magic number now since that particular field isn't
598  * currently architecture converted and "nUmount" is a bit foo.
599  * As far as I know, there weren't any dependencies on the old behaviour.
600  */
601 
602 int
xfs_log_unmount_write(xfs_mount_t * mp)603 xfs_log_unmount_write(xfs_mount_t *mp)
604 {
605 	xlog_t		 *log = mp->m_log;
606 	xlog_in_core_t	 *iclog;
607 #ifdef DEBUG
608 	xlog_in_core_t	 *first_iclog;
609 #endif
610 	xlog_ticket_t	*tic = NULL;
611 	xfs_lsn_t	 lsn;
612 	int		 error;
613 
614 	/*
615 	 * Don't write out unmount record on read-only mounts.
616 	 * Or, if we are doing a forced umount (typically because of IO errors).
617 	 */
618 	if (mp->m_flags & XFS_MOUNT_RDONLY)
619 		return 0;
620 
621 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
622 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
623 
624 #ifdef DEBUG
625 	first_iclog = iclog = log->l_iclog;
626 	do {
627 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
628 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
629 			ASSERT(iclog->ic_offset == 0);
630 		}
631 		iclog = iclog->ic_next;
632 	} while (iclog != first_iclog);
633 #endif
634 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
635 		error = xfs_log_reserve(mp, 600, 1, &tic,
636 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
637 		if (!error) {
638 			/* the data section must be 32 bit size aligned */
639 			struct {
640 			    __uint16_t magic;
641 			    __uint16_t pad1;
642 			    __uint32_t pad2; /* may as well make it 64 bits */
643 			} magic = {
644 				.magic = XLOG_UNMOUNT_TYPE,
645 			};
646 			struct xfs_log_iovec reg = {
647 				.i_addr = &magic,
648 				.i_len = sizeof(magic),
649 				.i_type = XLOG_REG_TYPE_UNMOUNT,
650 			};
651 			struct xfs_log_vec vec = {
652 				.lv_niovecs = 1,
653 				.lv_iovecp = &reg,
654 			};
655 
656 			/* remove inited flag */
657 			tic->t_flags = 0;
658 			error = xlog_write(log, &vec, tic, &lsn,
659 					   NULL, XLOG_UNMOUNT_TRANS);
660 			/*
661 			 * At this point, we're umounting anyway,
662 			 * so there's no point in transitioning log state
663 			 * to IOERROR. Just continue...
664 			 */
665 		}
666 
667 		if (error)
668 			xfs_alert(mp, "%s: unmount record failed", __func__);
669 
670 
671 		spin_lock(&log->l_icloglock);
672 		iclog = log->l_iclog;
673 		atomic_inc(&iclog->ic_refcnt);
674 		xlog_state_want_sync(log, iclog);
675 		spin_unlock(&log->l_icloglock);
676 		error = xlog_state_release_iclog(log, iclog);
677 
678 		spin_lock(&log->l_icloglock);
679 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
680 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
681 			if (!XLOG_FORCED_SHUTDOWN(log)) {
682 				xlog_wait(&iclog->ic_force_wait,
683 							&log->l_icloglock);
684 			} else {
685 				spin_unlock(&log->l_icloglock);
686 			}
687 		} else {
688 			spin_unlock(&log->l_icloglock);
689 		}
690 		if (tic) {
691 			trace_xfs_log_umount_write(log, tic);
692 			xlog_ungrant_log_space(log, tic);
693 			xfs_log_ticket_put(tic);
694 		}
695 	} else {
696 		/*
697 		 * We're already in forced_shutdown mode, couldn't
698 		 * even attempt to write out the unmount transaction.
699 		 *
700 		 * Go through the motions of sync'ing and releasing
701 		 * the iclog, even though no I/O will actually happen,
702 		 * we need to wait for other log I/Os that may already
703 		 * be in progress.  Do this as a separate section of
704 		 * code so we'll know if we ever get stuck here that
705 		 * we're in this odd situation of trying to unmount
706 		 * a file system that went into forced_shutdown as
707 		 * the result of an unmount..
708 		 */
709 		spin_lock(&log->l_icloglock);
710 		iclog = log->l_iclog;
711 		atomic_inc(&iclog->ic_refcnt);
712 
713 		xlog_state_want_sync(log, iclog);
714 		spin_unlock(&log->l_icloglock);
715 		error =  xlog_state_release_iclog(log, iclog);
716 
717 		spin_lock(&log->l_icloglock);
718 
719 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
720 			|| iclog->ic_state == XLOG_STATE_DIRTY
721 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
722 
723 				xlog_wait(&iclog->ic_force_wait,
724 							&log->l_icloglock);
725 		} else {
726 			spin_unlock(&log->l_icloglock);
727 		}
728 	}
729 
730 	return error;
731 }	/* xfs_log_unmount_write */
732 
733 /*
734  * Deallocate log structures for unmount/relocation.
735  *
736  * We need to stop the aild from running before we destroy
737  * and deallocate the log as the aild references the log.
738  */
739 void
xfs_log_unmount(xfs_mount_t * mp)740 xfs_log_unmount(xfs_mount_t *mp)
741 {
742 	xfs_trans_ail_destroy(mp);
743 	xlog_dealloc_log(mp->m_log);
744 }
745 
746 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)747 xfs_log_item_init(
748 	struct xfs_mount	*mp,
749 	struct xfs_log_item	*item,
750 	int			type,
751 	const struct xfs_item_ops *ops)
752 {
753 	item->li_mountp = mp;
754 	item->li_ailp = mp->m_ail;
755 	item->li_type = type;
756 	item->li_ops = ops;
757 	item->li_lv = NULL;
758 
759 	INIT_LIST_HEAD(&item->li_ail);
760 	INIT_LIST_HEAD(&item->li_cil);
761 }
762 
763 void
xfs_log_move_tail(xfs_mount_t * mp,xfs_lsn_t tail_lsn)764 xfs_log_move_tail(xfs_mount_t	*mp,
765 		  xfs_lsn_t	tail_lsn)
766 {
767 	xlog_ticket_t	*tic;
768 	xlog_t		*log = mp->m_log;
769 	int		need_bytes, free_bytes;
770 
771 	if (XLOG_FORCED_SHUTDOWN(log))
772 		return;
773 
774 	if (tail_lsn == 0)
775 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
776 
777 	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
778 	if (tail_lsn != 1)
779 		atomic64_set(&log->l_tail_lsn, tail_lsn);
780 
781 	if (!list_empty_careful(&log->l_writeq)) {
782 #ifdef DEBUG
783 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
784 			panic("Recovery problem");
785 #endif
786 		spin_lock(&log->l_grant_write_lock);
787 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
788 		list_for_each_entry(tic, &log->l_writeq, t_queue) {
789 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
790 
791 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
792 				break;
793 			tail_lsn = 0;
794 			free_bytes -= tic->t_unit_res;
795 			trace_xfs_log_regrant_write_wake_up(log, tic);
796 			wake_up(&tic->t_wait);
797 		}
798 		spin_unlock(&log->l_grant_write_lock);
799 	}
800 
801 	if (!list_empty_careful(&log->l_reserveq)) {
802 #ifdef DEBUG
803 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
804 			panic("Recovery problem");
805 #endif
806 		spin_lock(&log->l_grant_reserve_lock);
807 		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
808 		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
809 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
810 				need_bytes = tic->t_unit_res*tic->t_cnt;
811 			else
812 				need_bytes = tic->t_unit_res;
813 			if (free_bytes < need_bytes && tail_lsn != 1)
814 				break;
815 			tail_lsn = 0;
816 			free_bytes -= need_bytes;
817 			trace_xfs_log_grant_wake_up(log, tic);
818 			wake_up(&tic->t_wait);
819 		}
820 		spin_unlock(&log->l_grant_reserve_lock);
821 	}
822 }
823 
824 /*
825  * Determine if we have a transaction that has gone to disk
826  * that needs to be covered. To begin the transition to the idle state
827  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
828  * If we are then in a state where covering is needed, the caller is informed
829  * that dummy transactions are required to move the log into the idle state.
830  *
831  * Because this is called as part of the sync process, we should also indicate
832  * that dummy transactions should be issued in anything but the covered or
833  * idle states. This ensures that the log tail is accurately reflected in
834  * the log at the end of the sync, hence if a crash occurrs avoids replay
835  * of transactions where the metadata is already on disk.
836  */
837 int
xfs_log_need_covered(xfs_mount_t * mp)838 xfs_log_need_covered(xfs_mount_t *mp)
839 {
840 	int		needed = 0;
841 	xlog_t		*log = mp->m_log;
842 
843 	if (!xfs_fs_writable(mp))
844 		return 0;
845 
846 	spin_lock(&log->l_icloglock);
847 	switch (log->l_covered_state) {
848 	case XLOG_STATE_COVER_DONE:
849 	case XLOG_STATE_COVER_DONE2:
850 	case XLOG_STATE_COVER_IDLE:
851 		break;
852 	case XLOG_STATE_COVER_NEED:
853 	case XLOG_STATE_COVER_NEED2:
854 		if (!xfs_ail_min_lsn(log->l_ailp) &&
855 		    xlog_iclogs_empty(log)) {
856 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
857 				log->l_covered_state = XLOG_STATE_COVER_DONE;
858 			else
859 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
860 		}
861 		/* FALLTHRU */
862 	default:
863 		needed = 1;
864 		break;
865 	}
866 	spin_unlock(&log->l_icloglock);
867 	return needed;
868 }
869 
870 /******************************************************************************
871  *
872  *	local routines
873  *
874  ******************************************************************************
875  */
876 
877 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
878  * The log manager must keep track of the last LR which was committed
879  * to disk.  The lsn of this LR will become the new tail_lsn whenever
880  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
881  * the situation where stuff could be written into the log but nothing
882  * was ever in the AIL when asked.  Eventually, we panic since the
883  * tail hits the head.
884  *
885  * We may be holding the log iclog lock upon entering this routine.
886  */
887 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)888 xlog_assign_tail_lsn(
889 	struct xfs_mount	*mp)
890 {
891 	xfs_lsn_t		tail_lsn;
892 	struct log		*log = mp->m_log;
893 
894 	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
895 	if (!tail_lsn)
896 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
897 
898 	atomic64_set(&log->l_tail_lsn, tail_lsn);
899 	return tail_lsn;
900 }
901 
902 /*
903  * Return the space in the log between the tail and the head.  The head
904  * is passed in the cycle/bytes formal parms.  In the special case where
905  * the reserve head has wrapped passed the tail, this calculation is no
906  * longer valid.  In this case, just return 0 which means there is no space
907  * in the log.  This works for all places where this function is called
908  * with the reserve head.  Of course, if the write head were to ever
909  * wrap the tail, we should blow up.  Rather than catch this case here,
910  * we depend on other ASSERTions in other parts of the code.   XXXmiken
911  *
912  * This code also handles the case where the reservation head is behind
913  * the tail.  The details of this case are described below, but the end
914  * result is that we return the size of the log as the amount of space left.
915  */
916 STATIC int
xlog_space_left(struct log * log,atomic64_t * head)917 xlog_space_left(
918 	struct log	*log,
919 	atomic64_t	*head)
920 {
921 	int		free_bytes;
922 	int		tail_bytes;
923 	int		tail_cycle;
924 	int		head_cycle;
925 	int		head_bytes;
926 
927 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
928 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
929 	tail_bytes = BBTOB(tail_bytes);
930 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
931 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
932 	else if (tail_cycle + 1 < head_cycle)
933 		return 0;
934 	else if (tail_cycle < head_cycle) {
935 		ASSERT(tail_cycle == (head_cycle - 1));
936 		free_bytes = tail_bytes - head_bytes;
937 	} else {
938 		/*
939 		 * The reservation head is behind the tail.
940 		 * In this case we just want to return the size of the
941 		 * log as the amount of space left.
942 		 */
943 		xfs_alert(log->l_mp,
944 			"xlog_space_left: head behind tail\n"
945 			"  tail_cycle = %d, tail_bytes = %d\n"
946 			"  GH   cycle = %d, GH   bytes = %d",
947 			tail_cycle, tail_bytes, head_cycle, head_bytes);
948 		ASSERT(0);
949 		free_bytes = log->l_logsize;
950 	}
951 	return free_bytes;
952 }
953 
954 
955 /*
956  * Log function which is called when an io completes.
957  *
958  * The log manager needs its own routine, in order to control what
959  * happens with the buffer after the write completes.
960  */
961 void
xlog_iodone(xfs_buf_t * bp)962 xlog_iodone(xfs_buf_t *bp)
963 {
964 	xlog_in_core_t	*iclog = bp->b_fspriv;
965 	xlog_t		*l = iclog->ic_log;
966 	int		aborted = 0;
967 
968 	/*
969 	 * Race to shutdown the filesystem if we see an error.
970 	 */
971 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
972 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
973 		xfs_buf_ioerror_alert(bp, __func__);
974 		xfs_buf_stale(bp);
975 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
976 		/*
977 		 * This flag will be propagated to the trans-committed
978 		 * callback routines to let them know that the log-commit
979 		 * didn't succeed.
980 		 */
981 		aborted = XFS_LI_ABORTED;
982 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
983 		aborted = XFS_LI_ABORTED;
984 	}
985 
986 	/* log I/O is always issued ASYNC */
987 	ASSERT(XFS_BUF_ISASYNC(bp));
988 	xlog_state_done_syncing(iclog, aborted);
989 	/*
990 	 * do not reference the buffer (bp) here as we could race
991 	 * with it being freed after writing the unmount record to the
992 	 * log.
993 	 */
994 
995 }	/* xlog_iodone */
996 
997 /*
998  * Return size of each in-core log record buffer.
999  *
1000  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1001  *
1002  * If the filesystem blocksize is too large, we may need to choose a
1003  * larger size since the directory code currently logs entire blocks.
1004  */
1005 
1006 STATIC void
xlog_get_iclog_buffer_size(xfs_mount_t * mp,xlog_t * log)1007 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1008 			   xlog_t	*log)
1009 {
1010 	int size;
1011 	int xhdrs;
1012 
1013 	if (mp->m_logbufs <= 0)
1014 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1015 	else
1016 		log->l_iclog_bufs = mp->m_logbufs;
1017 
1018 	/*
1019 	 * Buffer size passed in from mount system call.
1020 	 */
1021 	if (mp->m_logbsize > 0) {
1022 		size = log->l_iclog_size = mp->m_logbsize;
1023 		log->l_iclog_size_log = 0;
1024 		while (size != 1) {
1025 			log->l_iclog_size_log++;
1026 			size >>= 1;
1027 		}
1028 
1029 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1030 			/* # headers = size / 32k
1031 			 * one header holds cycles from 32k of data
1032 			 */
1033 
1034 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1035 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1036 				xhdrs++;
1037 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1038 			log->l_iclog_heads = xhdrs;
1039 		} else {
1040 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1041 			log->l_iclog_hsize = BBSIZE;
1042 			log->l_iclog_heads = 1;
1043 		}
1044 		goto done;
1045 	}
1046 
1047 	/* All machines use 32kB buffers by default. */
1048 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1049 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1050 
1051 	/* the default log size is 16k or 32k which is one header sector */
1052 	log->l_iclog_hsize = BBSIZE;
1053 	log->l_iclog_heads = 1;
1054 
1055 done:
1056 	/* are we being asked to make the sizes selected above visible? */
1057 	if (mp->m_logbufs == 0)
1058 		mp->m_logbufs = log->l_iclog_bufs;
1059 	if (mp->m_logbsize == 0)
1060 		mp->m_logbsize = log->l_iclog_size;
1061 }	/* xlog_get_iclog_buffer_size */
1062 
1063 
1064 /*
1065  * This routine initializes some of the log structure for a given mount point.
1066  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1067  * some other stuff may be filled in too.
1068  */
1069 STATIC xlog_t *
xlog_alloc_log(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)1070 xlog_alloc_log(xfs_mount_t	*mp,
1071 	       xfs_buftarg_t	*log_target,
1072 	       xfs_daddr_t	blk_offset,
1073 	       int		num_bblks)
1074 {
1075 	xlog_t			*log;
1076 	xlog_rec_header_t	*head;
1077 	xlog_in_core_t		**iclogp;
1078 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1079 	xfs_buf_t		*bp;
1080 	int			i;
1081 	int			error = ENOMEM;
1082 	uint			log2_size = 0;
1083 
1084 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1085 	if (!log) {
1086 		xfs_warn(mp, "Log allocation failed: No memory!");
1087 		goto out;
1088 	}
1089 
1090 	log->l_mp	   = mp;
1091 	log->l_targ	   = log_target;
1092 	log->l_logsize     = BBTOB(num_bblks);
1093 	log->l_logBBstart  = blk_offset;
1094 	log->l_logBBsize   = num_bblks;
1095 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1096 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1097 
1098 	log->l_prev_block  = -1;
1099 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1100 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1101 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1102 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1103 	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1104 	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1105 	INIT_LIST_HEAD(&log->l_reserveq);
1106 	INIT_LIST_HEAD(&log->l_writeq);
1107 	spin_lock_init(&log->l_grant_reserve_lock);
1108 	spin_lock_init(&log->l_grant_write_lock);
1109 
1110 	error = EFSCORRUPTED;
1111 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1112 	        log2_size = mp->m_sb.sb_logsectlog;
1113 		if (log2_size < BBSHIFT) {
1114 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1115 				log2_size, BBSHIFT);
1116 			goto out_free_log;
1117 		}
1118 
1119 	        log2_size -= BBSHIFT;
1120 		if (log2_size > mp->m_sectbb_log) {
1121 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1122 				log2_size, mp->m_sectbb_log);
1123 			goto out_free_log;
1124 		}
1125 
1126 		/* for larger sector sizes, must have v2 or external log */
1127 		if (log2_size && log->l_logBBstart > 0 &&
1128 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1129 			xfs_warn(mp,
1130 		"log sector size (0x%x) invalid for configuration.",
1131 				log2_size);
1132 			goto out_free_log;
1133 		}
1134 	}
1135 	log->l_sectBBsize = 1 << log2_size;
1136 
1137 	xlog_get_iclog_buffer_size(mp, log);
1138 
1139 	error = ENOMEM;
1140 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1141 	if (!bp)
1142 		goto out_free_log;
1143 	bp->b_iodone = xlog_iodone;
1144 	ASSERT(xfs_buf_islocked(bp));
1145 	log->l_xbuf = bp;
1146 
1147 	spin_lock_init(&log->l_icloglock);
1148 	init_waitqueue_head(&log->l_flush_wait);
1149 
1150 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1151 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1152 
1153 	iclogp = &log->l_iclog;
1154 	/*
1155 	 * The amount of memory to allocate for the iclog structure is
1156 	 * rather funky due to the way the structure is defined.  It is
1157 	 * done this way so that we can use different sizes for machines
1158 	 * with different amounts of memory.  See the definition of
1159 	 * xlog_in_core_t in xfs_log_priv.h for details.
1160 	 */
1161 	ASSERT(log->l_iclog_size >= 4096);
1162 	for (i=0; i < log->l_iclog_bufs; i++) {
1163 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1164 		if (!*iclogp)
1165 			goto out_free_iclog;
1166 
1167 		iclog = *iclogp;
1168 		iclog->ic_prev = prev_iclog;
1169 		prev_iclog = iclog;
1170 
1171 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1172 						log->l_iclog_size, 0);
1173 		if (!bp)
1174 			goto out_free_iclog;
1175 
1176 		bp->b_iodone = xlog_iodone;
1177 		iclog->ic_bp = bp;
1178 		iclog->ic_data = bp->b_addr;
1179 #ifdef DEBUG
1180 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1181 #endif
1182 		head = &iclog->ic_header;
1183 		memset(head, 0, sizeof(xlog_rec_header_t));
1184 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1185 		head->h_version = cpu_to_be32(
1186 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1187 		head->h_size = cpu_to_be32(log->l_iclog_size);
1188 		/* new fields */
1189 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1190 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1191 
1192 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1193 		iclog->ic_state = XLOG_STATE_ACTIVE;
1194 		iclog->ic_log = log;
1195 		atomic_set(&iclog->ic_refcnt, 0);
1196 		spin_lock_init(&iclog->ic_callback_lock);
1197 		iclog->ic_callback_tail = &(iclog->ic_callback);
1198 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1199 
1200 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1201 		init_waitqueue_head(&iclog->ic_force_wait);
1202 		init_waitqueue_head(&iclog->ic_write_wait);
1203 
1204 		iclogp = &iclog->ic_next;
1205 	}
1206 	*iclogp = log->l_iclog;			/* complete ring */
1207 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1208 
1209 	error = xlog_cil_init(log);
1210 	if (error)
1211 		goto out_free_iclog;
1212 	return log;
1213 
1214 out_free_iclog:
1215 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1216 		prev_iclog = iclog->ic_next;
1217 		if (iclog->ic_bp)
1218 			xfs_buf_free(iclog->ic_bp);
1219 		kmem_free(iclog);
1220 	}
1221 	spinlock_destroy(&log->l_icloglock);
1222 	xfs_buf_free(log->l_xbuf);
1223 out_free_log:
1224 	kmem_free(log);
1225 out:
1226 	return ERR_PTR(-error);
1227 }	/* xlog_alloc_log */
1228 
1229 
1230 /*
1231  * Write out the commit record of a transaction associated with the given
1232  * ticket.  Return the lsn of the commit record.
1233  */
1234 STATIC int
xlog_commit_record(struct log * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1235 xlog_commit_record(
1236 	struct log		*log,
1237 	struct xlog_ticket	*ticket,
1238 	struct xlog_in_core	**iclog,
1239 	xfs_lsn_t		*commitlsnp)
1240 {
1241 	struct xfs_mount *mp = log->l_mp;
1242 	int	error;
1243 	struct xfs_log_iovec reg = {
1244 		.i_addr = NULL,
1245 		.i_len = 0,
1246 		.i_type = XLOG_REG_TYPE_COMMIT,
1247 	};
1248 	struct xfs_log_vec vec = {
1249 		.lv_niovecs = 1,
1250 		.lv_iovecp = &reg,
1251 	};
1252 
1253 	ASSERT_ALWAYS(iclog);
1254 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1255 					XLOG_COMMIT_TRANS);
1256 	if (error)
1257 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1258 	return error;
1259 }
1260 
1261 /*
1262  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1263  * log space.  This code pushes on the lsn which would supposedly free up
1264  * the 25% which we want to leave free.  We may need to adopt a policy which
1265  * pushes on an lsn which is further along in the log once we reach the high
1266  * water mark.  In this manner, we would be creating a low water mark.
1267  */
1268 STATIC void
xlog_grant_push_ail(struct log * log,int need_bytes)1269 xlog_grant_push_ail(
1270 	struct log	*log,
1271 	int		need_bytes)
1272 {
1273 	xfs_lsn_t	threshold_lsn = 0;
1274 	xfs_lsn_t	last_sync_lsn;
1275 	int		free_blocks;
1276 	int		free_bytes;
1277 	int		threshold_block;
1278 	int		threshold_cycle;
1279 	int		free_threshold;
1280 
1281 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1282 
1283 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1284 	free_blocks = BTOBBT(free_bytes);
1285 
1286 	/*
1287 	 * Set the threshold for the minimum number of free blocks in the
1288 	 * log to the maximum of what the caller needs, one quarter of the
1289 	 * log, and 256 blocks.
1290 	 */
1291 	free_threshold = BTOBB(need_bytes);
1292 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1293 	free_threshold = MAX(free_threshold, 256);
1294 	if (free_blocks >= free_threshold)
1295 		return;
1296 
1297 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1298 						&threshold_block);
1299 	threshold_block += free_threshold;
1300 	if (threshold_block >= log->l_logBBsize) {
1301 		threshold_block -= log->l_logBBsize;
1302 		threshold_cycle += 1;
1303 	}
1304 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1305 					threshold_block);
1306 	/*
1307 	 * Don't pass in an lsn greater than the lsn of the last
1308 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1309 	 * so that it doesn't change between the compare and the set.
1310 	 */
1311 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1312 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1313 		threshold_lsn = last_sync_lsn;
1314 
1315 	/*
1316 	 * Get the transaction layer to kick the dirty buffers out to
1317 	 * disk asynchronously. No point in trying to do this if
1318 	 * the filesystem is shutting down.
1319 	 */
1320 	if (!XLOG_FORCED_SHUTDOWN(log))
1321 		xfs_ail_push(log->l_ailp, threshold_lsn);
1322 }
1323 
1324 /*
1325  * The bdstrat callback function for log bufs. This gives us a central
1326  * place to trap bufs in case we get hit by a log I/O error and need to
1327  * shutdown. Actually, in practice, even when we didn't get a log error,
1328  * we transition the iclogs to IOERROR state *after* flushing all existing
1329  * iclogs to disk. This is because we don't want anymore new transactions to be
1330  * started or completed afterwards.
1331  */
1332 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1333 xlog_bdstrat(
1334 	struct xfs_buf		*bp)
1335 {
1336 	struct xlog_in_core	*iclog = bp->b_fspriv;
1337 
1338 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1339 		xfs_buf_ioerror(bp, EIO);
1340 		xfs_buf_stale(bp);
1341 		xfs_buf_ioend(bp, 0);
1342 		/*
1343 		 * It would seem logical to return EIO here, but we rely on
1344 		 * the log state machine to propagate I/O errors instead of
1345 		 * doing it here.
1346 		 */
1347 		return 0;
1348 	}
1349 
1350 	xfs_buf_iorequest(bp);
1351 	return 0;
1352 }
1353 
1354 /*
1355  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1356  * fashion.  Previously, we should have moved the current iclog
1357  * ptr in the log to point to the next available iclog.  This allows further
1358  * write to continue while this code syncs out an iclog ready to go.
1359  * Before an in-core log can be written out, the data section must be scanned
1360  * to save away the 1st word of each BBSIZE block into the header.  We replace
1361  * it with the current cycle count.  Each BBSIZE block is tagged with the
1362  * cycle count because there in an implicit assumption that drives will
1363  * guarantee that entire 512 byte blocks get written at once.  In other words,
1364  * we can't have part of a 512 byte block written and part not written.  By
1365  * tagging each block, we will know which blocks are valid when recovering
1366  * after an unclean shutdown.
1367  *
1368  * This routine is single threaded on the iclog.  No other thread can be in
1369  * this routine with the same iclog.  Changing contents of iclog can there-
1370  * fore be done without grabbing the state machine lock.  Updating the global
1371  * log will require grabbing the lock though.
1372  *
1373  * The entire log manager uses a logical block numbering scheme.  Only
1374  * log_sync (and then only bwrite()) know about the fact that the log may
1375  * not start with block zero on a given device.  The log block start offset
1376  * is added immediately before calling bwrite().
1377  */
1378 
1379 STATIC int
xlog_sync(xlog_t * log,xlog_in_core_t * iclog)1380 xlog_sync(xlog_t		*log,
1381 	  xlog_in_core_t	*iclog)
1382 {
1383 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1384 	xfs_buf_t	*bp;
1385 	int		i;
1386 	uint		count;		/* byte count of bwrite */
1387 	uint		count_init;	/* initial count before roundup */
1388 	int		roundoff;       /* roundoff to BB or stripe */
1389 	int		split = 0;	/* split write into two regions */
1390 	int		error;
1391 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1392 
1393 	XFS_STATS_INC(xs_log_writes);
1394 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1395 
1396 	/* Add for LR header */
1397 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1398 
1399 	/* Round out the log write size */
1400 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1401 		/* we have a v2 stripe unit to use */
1402 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1403 	} else {
1404 		count = BBTOB(BTOBB(count_init));
1405 	}
1406 	roundoff = count - count_init;
1407 	ASSERT(roundoff >= 0);
1408 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1409                 roundoff < log->l_mp->m_sb.sb_logsunit)
1410 		||
1411 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1412 		 roundoff < BBTOB(1)));
1413 
1414 	/* move grant heads by roundoff in sync */
1415 	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1416 	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1417 
1418 	/* put cycle number in every block */
1419 	xlog_pack_data(log, iclog, roundoff);
1420 
1421 	/* real byte length */
1422 	if (v2) {
1423 		iclog->ic_header.h_len =
1424 			cpu_to_be32(iclog->ic_offset + roundoff);
1425 	} else {
1426 		iclog->ic_header.h_len =
1427 			cpu_to_be32(iclog->ic_offset);
1428 	}
1429 
1430 	bp = iclog->ic_bp;
1431 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1432 
1433 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1434 
1435 	/* Do we need to split this write into 2 parts? */
1436 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1437 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1438 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1439 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1440 	} else {
1441 		iclog->ic_bwritecnt = 1;
1442 	}
1443 	XFS_BUF_SET_COUNT(bp, count);
1444 	bp->b_fspriv = iclog;
1445 	XFS_BUF_ZEROFLAGS(bp);
1446 	XFS_BUF_ASYNC(bp);
1447 	bp->b_flags |= XBF_SYNCIO;
1448 
1449 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1450 		bp->b_flags |= XBF_FUA;
1451 
1452 		/*
1453 		 * Flush the data device before flushing the log to make
1454 		 * sure all meta data written back from the AIL actually made
1455 		 * it to disk before stamping the new log tail LSN into the
1456 		 * log buffer.  For an external log we need to issue the
1457 		 * flush explicitly, and unfortunately synchronously here;
1458 		 * for an internal log we can simply use the block layer
1459 		 * state machine for preflushes.
1460 		 */
1461 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1462 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1463 		else
1464 			bp->b_flags |= XBF_FLUSH;
1465 	}
1466 
1467 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1468 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1469 
1470 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1471 
1472 	/* account for log which doesn't start at block #0 */
1473 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1474 	/*
1475 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1476 	 * is shutting down.
1477 	 */
1478 	XFS_BUF_WRITE(bp);
1479 
1480 	error = xlog_bdstrat(bp);
1481 	if (error) {
1482 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1483 		return error;
1484 	}
1485 	if (split) {
1486 		bp = iclog->ic_log->l_xbuf;
1487 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1488 		xfs_buf_associate_memory(bp,
1489 				(char *)&iclog->ic_header + count, split);
1490 		bp->b_fspriv = iclog;
1491 		XFS_BUF_ZEROFLAGS(bp);
1492 		XFS_BUF_ASYNC(bp);
1493 		bp->b_flags |= XBF_SYNCIO;
1494 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1495 			bp->b_flags |= XBF_FUA;
1496 		dptr = bp->b_addr;
1497 		/*
1498 		 * Bump the cycle numbers at the start of each block
1499 		 * since this part of the buffer is at the start of
1500 		 * a new cycle.  Watch out for the header magic number
1501 		 * case, though.
1502 		 */
1503 		for (i = 0; i < split; i += BBSIZE) {
1504 			be32_add_cpu((__be32 *)dptr, 1);
1505 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1506 				be32_add_cpu((__be32 *)dptr, 1);
1507 			dptr += BBSIZE;
1508 		}
1509 
1510 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1511 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1512 
1513 		/* account for internal log which doesn't start at block #0 */
1514 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1515 		XFS_BUF_WRITE(bp);
1516 		error = xlog_bdstrat(bp);
1517 		if (error) {
1518 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1519 			return error;
1520 		}
1521 	}
1522 	return 0;
1523 }	/* xlog_sync */
1524 
1525 
1526 /*
1527  * Deallocate a log structure
1528  */
1529 STATIC void
xlog_dealloc_log(xlog_t * log)1530 xlog_dealloc_log(xlog_t *log)
1531 {
1532 	xlog_in_core_t	*iclog, *next_iclog;
1533 	int		i;
1534 
1535 	xlog_cil_destroy(log);
1536 
1537 	/*
1538 	 * always need to ensure that the extra buffer does not point to memory
1539 	 * owned by another log buffer before we free it.
1540 	 */
1541 	xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1542 	xfs_buf_free(log->l_xbuf);
1543 
1544 	iclog = log->l_iclog;
1545 	for (i=0; i<log->l_iclog_bufs; i++) {
1546 		xfs_buf_free(iclog->ic_bp);
1547 		next_iclog = iclog->ic_next;
1548 		kmem_free(iclog);
1549 		iclog = next_iclog;
1550 	}
1551 	spinlock_destroy(&log->l_icloglock);
1552 
1553 	log->l_mp->m_log = NULL;
1554 	kmem_free(log);
1555 }	/* xlog_dealloc_log */
1556 
1557 /*
1558  * Update counters atomically now that memcpy is done.
1559  */
1560 /* ARGSUSED */
1561 static inline void
xlog_state_finish_copy(xlog_t * log,xlog_in_core_t * iclog,int record_cnt,int copy_bytes)1562 xlog_state_finish_copy(xlog_t		*log,
1563 		       xlog_in_core_t	*iclog,
1564 		       int		record_cnt,
1565 		       int		copy_bytes)
1566 {
1567 	spin_lock(&log->l_icloglock);
1568 
1569 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1570 	iclog->ic_offset += copy_bytes;
1571 
1572 	spin_unlock(&log->l_icloglock);
1573 }	/* xlog_state_finish_copy */
1574 
1575 
1576 
1577 
1578 /*
1579  * print out info relating to regions written which consume
1580  * the reservation
1581  */
1582 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1583 xlog_print_tic_res(
1584 	struct xfs_mount	*mp,
1585 	struct xlog_ticket	*ticket)
1586 {
1587 	uint i;
1588 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1589 
1590 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1591 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1592 	    "bformat",
1593 	    "bchunk",
1594 	    "efi_format",
1595 	    "efd_format",
1596 	    "iformat",
1597 	    "icore",
1598 	    "iext",
1599 	    "ibroot",
1600 	    "ilocal",
1601 	    "iattr_ext",
1602 	    "iattr_broot",
1603 	    "iattr_local",
1604 	    "qformat",
1605 	    "dquot",
1606 	    "quotaoff",
1607 	    "LR header",
1608 	    "unmount",
1609 	    "commit",
1610 	    "trans header"
1611 	};
1612 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1613 	    "SETATTR_NOT_SIZE",
1614 	    "SETATTR_SIZE",
1615 	    "INACTIVE",
1616 	    "CREATE",
1617 	    "CREATE_TRUNC",
1618 	    "TRUNCATE_FILE",
1619 	    "REMOVE",
1620 	    "LINK",
1621 	    "RENAME",
1622 	    "MKDIR",
1623 	    "RMDIR",
1624 	    "SYMLINK",
1625 	    "SET_DMATTRS",
1626 	    "GROWFS",
1627 	    "STRAT_WRITE",
1628 	    "DIOSTRAT",
1629 	    "WRITE_SYNC",
1630 	    "WRITEID",
1631 	    "ADDAFORK",
1632 	    "ATTRINVAL",
1633 	    "ATRUNCATE",
1634 	    "ATTR_SET",
1635 	    "ATTR_RM",
1636 	    "ATTR_FLAG",
1637 	    "CLEAR_AGI_BUCKET",
1638 	    "QM_SBCHANGE",
1639 	    "DUMMY1",
1640 	    "DUMMY2",
1641 	    "QM_QUOTAOFF",
1642 	    "QM_DQALLOC",
1643 	    "QM_SETQLIM",
1644 	    "QM_DQCLUSTER",
1645 	    "QM_QINOCREATE",
1646 	    "QM_QUOTAOFF_END",
1647 	    "SB_UNIT",
1648 	    "FSYNC_TS",
1649 	    "GROWFSRT_ALLOC",
1650 	    "GROWFSRT_ZERO",
1651 	    "GROWFSRT_FREE",
1652 	    "SWAPEXT"
1653 	};
1654 
1655 	xfs_warn(mp,
1656 		"xlog_write: reservation summary:\n"
1657 		"  trans type  = %s (%u)\n"
1658 		"  unit res    = %d bytes\n"
1659 		"  current res = %d bytes\n"
1660 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1661 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1662 		"  ophdr + reg = %u bytes\n"
1663 		"  num regions = %u\n",
1664 		((ticket->t_trans_type <= 0 ||
1665 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1666 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1667 		ticket->t_trans_type,
1668 		ticket->t_unit_res,
1669 		ticket->t_curr_res,
1670 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1671 		ticket->t_res_num_ophdrs, ophdr_spc,
1672 		ticket->t_res_arr_sum +
1673 		ticket->t_res_o_flow + ophdr_spc,
1674 		ticket->t_res_num);
1675 
1676 	for (i = 0; i < ticket->t_res_num; i++) {
1677 		uint r_type = ticket->t_res_arr[i].r_type;
1678 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1679 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1680 			    "bad-rtype" : res_type_str[r_type-1]),
1681 			    ticket->t_res_arr[i].r_len);
1682 	}
1683 
1684 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1685 		"xlog_write: reservation ran out. Need to up reservation");
1686 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1687 }
1688 
1689 /*
1690  * Calculate the potential space needed by the log vector.  Each region gets
1691  * its own xlog_op_header_t and may need to be double word aligned.
1692  */
1693 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)1694 xlog_write_calc_vec_length(
1695 	struct xlog_ticket	*ticket,
1696 	struct xfs_log_vec	*log_vector)
1697 {
1698 	struct xfs_log_vec	*lv;
1699 	int			headers = 0;
1700 	int			len = 0;
1701 	int			i;
1702 
1703 	/* acct for start rec of xact */
1704 	if (ticket->t_flags & XLOG_TIC_INITED)
1705 		headers++;
1706 
1707 	for (lv = log_vector; lv; lv = lv->lv_next) {
1708 		headers += lv->lv_niovecs;
1709 
1710 		for (i = 0; i < lv->lv_niovecs; i++) {
1711 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1712 
1713 			len += vecp->i_len;
1714 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1715 		}
1716 	}
1717 
1718 	ticket->t_res_num_ophdrs += headers;
1719 	len += headers * sizeof(struct xlog_op_header);
1720 
1721 	return len;
1722 }
1723 
1724 /*
1725  * If first write for transaction, insert start record  We can't be trying to
1726  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1727  */
1728 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)1729 xlog_write_start_rec(
1730 	struct xlog_op_header	*ophdr,
1731 	struct xlog_ticket	*ticket)
1732 {
1733 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1734 		return 0;
1735 
1736 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1737 	ophdr->oh_clientid = ticket->t_clientid;
1738 	ophdr->oh_len = 0;
1739 	ophdr->oh_flags = XLOG_START_TRANS;
1740 	ophdr->oh_res2 = 0;
1741 
1742 	ticket->t_flags &= ~XLOG_TIC_INITED;
1743 
1744 	return sizeof(struct xlog_op_header);
1745 }
1746 
1747 static xlog_op_header_t *
xlog_write_setup_ophdr(struct log * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)1748 xlog_write_setup_ophdr(
1749 	struct log		*log,
1750 	struct xlog_op_header	*ophdr,
1751 	struct xlog_ticket	*ticket,
1752 	uint			flags)
1753 {
1754 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1755 	ophdr->oh_clientid = ticket->t_clientid;
1756 	ophdr->oh_res2 = 0;
1757 
1758 	/* are we copying a commit or unmount record? */
1759 	ophdr->oh_flags = flags;
1760 
1761 	/*
1762 	 * We've seen logs corrupted with bad transaction client ids.  This
1763 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1764 	 * and shut down the filesystem.
1765 	 */
1766 	switch (ophdr->oh_clientid)  {
1767 	case XFS_TRANSACTION:
1768 	case XFS_VOLUME:
1769 	case XFS_LOG:
1770 		break;
1771 	default:
1772 		xfs_warn(log->l_mp,
1773 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1774 			ophdr->oh_clientid, ticket);
1775 		return NULL;
1776 	}
1777 
1778 	return ophdr;
1779 }
1780 
1781 /*
1782  * Set up the parameters of the region copy into the log. This has
1783  * to handle region write split across multiple log buffers - this
1784  * state is kept external to this function so that this code can
1785  * can be written in an obvious, self documenting manner.
1786  */
1787 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)1788 xlog_write_setup_copy(
1789 	struct xlog_ticket	*ticket,
1790 	struct xlog_op_header	*ophdr,
1791 	int			space_available,
1792 	int			space_required,
1793 	int			*copy_off,
1794 	int			*copy_len,
1795 	int			*last_was_partial_copy,
1796 	int			*bytes_consumed)
1797 {
1798 	int			still_to_copy;
1799 
1800 	still_to_copy = space_required - *bytes_consumed;
1801 	*copy_off = *bytes_consumed;
1802 
1803 	if (still_to_copy <= space_available) {
1804 		/* write of region completes here */
1805 		*copy_len = still_to_copy;
1806 		ophdr->oh_len = cpu_to_be32(*copy_len);
1807 		if (*last_was_partial_copy)
1808 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1809 		*last_was_partial_copy = 0;
1810 		*bytes_consumed = 0;
1811 		return 0;
1812 	}
1813 
1814 	/* partial write of region, needs extra log op header reservation */
1815 	*copy_len = space_available;
1816 	ophdr->oh_len = cpu_to_be32(*copy_len);
1817 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1818 	if (*last_was_partial_copy)
1819 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1820 	*bytes_consumed += *copy_len;
1821 	(*last_was_partial_copy)++;
1822 
1823 	/* account for new log op header */
1824 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1825 	ticket->t_res_num_ophdrs++;
1826 
1827 	return sizeof(struct xlog_op_header);
1828 }
1829 
1830 static int
xlog_write_copy_finish(struct log * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)1831 xlog_write_copy_finish(
1832 	struct log		*log,
1833 	struct xlog_in_core	*iclog,
1834 	uint			flags,
1835 	int			*record_cnt,
1836 	int			*data_cnt,
1837 	int			*partial_copy,
1838 	int			*partial_copy_len,
1839 	int			log_offset,
1840 	struct xlog_in_core	**commit_iclog)
1841 {
1842 	if (*partial_copy) {
1843 		/*
1844 		 * This iclog has already been marked WANT_SYNC by
1845 		 * xlog_state_get_iclog_space.
1846 		 */
1847 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1848 		*record_cnt = 0;
1849 		*data_cnt = 0;
1850 		return xlog_state_release_iclog(log, iclog);
1851 	}
1852 
1853 	*partial_copy = 0;
1854 	*partial_copy_len = 0;
1855 
1856 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1857 		/* no more space in this iclog - push it. */
1858 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1859 		*record_cnt = 0;
1860 		*data_cnt = 0;
1861 
1862 		spin_lock(&log->l_icloglock);
1863 		xlog_state_want_sync(log, iclog);
1864 		spin_unlock(&log->l_icloglock);
1865 
1866 		if (!commit_iclog)
1867 			return xlog_state_release_iclog(log, iclog);
1868 		ASSERT(flags & XLOG_COMMIT_TRANS);
1869 		*commit_iclog = iclog;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * Write some region out to in-core log
1877  *
1878  * This will be called when writing externally provided regions or when
1879  * writing out a commit record for a given transaction.
1880  *
1881  * General algorithm:
1882  *	1. Find total length of this write.  This may include adding to the
1883  *		lengths passed in.
1884  *	2. Check whether we violate the tickets reservation.
1885  *	3. While writing to this iclog
1886  *	    A. Reserve as much space in this iclog as can get
1887  *	    B. If this is first write, save away start lsn
1888  *	    C. While writing this region:
1889  *		1. If first write of transaction, write start record
1890  *		2. Write log operation header (header per region)
1891  *		3. Find out if we can fit entire region into this iclog
1892  *		4. Potentially, verify destination memcpy ptr
1893  *		5. Memcpy (partial) region
1894  *		6. If partial copy, release iclog; otherwise, continue
1895  *			copying more regions into current iclog
1896  *	4. Mark want sync bit (in simulation mode)
1897  *	5. Release iclog for potential flush to on-disk log.
1898  *
1899  * ERRORS:
1900  * 1.	Panic if reservation is overrun.  This should never happen since
1901  *	reservation amounts are generated internal to the filesystem.
1902  * NOTES:
1903  * 1. Tickets are single threaded data structures.
1904  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1905  *	syncing routine.  When a single log_write region needs to span
1906  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1907  *	on all log operation writes which don't contain the end of the
1908  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1909  *	operation which contains the end of the continued log_write region.
1910  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1911  *	we don't really know exactly how much space will be used.  As a result,
1912  *	we don't update ic_offset until the end when we know exactly how many
1913  *	bytes have been written out.
1914  */
1915 int
xlog_write(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)1916 xlog_write(
1917 	struct log		*log,
1918 	struct xfs_log_vec	*log_vector,
1919 	struct xlog_ticket	*ticket,
1920 	xfs_lsn_t		*start_lsn,
1921 	struct xlog_in_core	**commit_iclog,
1922 	uint			flags)
1923 {
1924 	struct xlog_in_core	*iclog = NULL;
1925 	struct xfs_log_iovec	*vecp;
1926 	struct xfs_log_vec	*lv;
1927 	int			len;
1928 	int			index;
1929 	int			partial_copy = 0;
1930 	int			partial_copy_len = 0;
1931 	int			contwr = 0;
1932 	int			record_cnt = 0;
1933 	int			data_cnt = 0;
1934 	int			error;
1935 
1936 	*start_lsn = 0;
1937 
1938 	len = xlog_write_calc_vec_length(ticket, log_vector);
1939 
1940 	/*
1941 	 * Region headers and bytes are already accounted for.
1942 	 * We only need to take into account start records and
1943 	 * split regions in this function.
1944 	 */
1945 	if (ticket->t_flags & XLOG_TIC_INITED)
1946 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
1947 
1948 	/*
1949 	 * Commit record headers need to be accounted for. These
1950 	 * come in as separate writes so are easy to detect.
1951 	 */
1952 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1953 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
1954 
1955 	if (ticket->t_curr_res < 0)
1956 		xlog_print_tic_res(log->l_mp, ticket);
1957 
1958 	index = 0;
1959 	lv = log_vector;
1960 	vecp = lv->lv_iovecp;
1961 	while (lv && index < lv->lv_niovecs) {
1962 		void		*ptr;
1963 		int		log_offset;
1964 
1965 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1966 						   &contwr, &log_offset);
1967 		if (error)
1968 			return error;
1969 
1970 		ASSERT(log_offset <= iclog->ic_size - 1);
1971 		ptr = iclog->ic_datap + log_offset;
1972 
1973 		/* start_lsn is the first lsn written to. That's all we need. */
1974 		if (!*start_lsn)
1975 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1976 
1977 		/*
1978 		 * This loop writes out as many regions as can fit in the amount
1979 		 * of space which was allocated by xlog_state_get_iclog_space().
1980 		 */
1981 		while (lv && index < lv->lv_niovecs) {
1982 			struct xfs_log_iovec	*reg = &vecp[index];
1983 			struct xlog_op_header	*ophdr;
1984 			int			start_rec_copy;
1985 			int			copy_len;
1986 			int			copy_off;
1987 
1988 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1989 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1990 
1991 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1992 			if (start_rec_copy) {
1993 				record_cnt++;
1994 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1995 						   start_rec_copy);
1996 			}
1997 
1998 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1999 			if (!ophdr)
2000 				return XFS_ERROR(EIO);
2001 
2002 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2003 					   sizeof(struct xlog_op_header));
2004 
2005 			len += xlog_write_setup_copy(ticket, ophdr,
2006 						     iclog->ic_size-log_offset,
2007 						     reg->i_len,
2008 						     &copy_off, &copy_len,
2009 						     &partial_copy,
2010 						     &partial_copy_len);
2011 			xlog_verify_dest_ptr(log, ptr);
2012 
2013 			/* copy region */
2014 			ASSERT(copy_len >= 0);
2015 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2016 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2017 
2018 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2019 			record_cnt++;
2020 			data_cnt += contwr ? copy_len : 0;
2021 
2022 			error = xlog_write_copy_finish(log, iclog, flags,
2023 						       &record_cnt, &data_cnt,
2024 						       &partial_copy,
2025 						       &partial_copy_len,
2026 						       log_offset,
2027 						       commit_iclog);
2028 			if (error)
2029 				return error;
2030 
2031 			/*
2032 			 * if we had a partial copy, we need to get more iclog
2033 			 * space but we don't want to increment the region
2034 			 * index because there is still more is this region to
2035 			 * write.
2036 			 *
2037 			 * If we completed writing this region, and we flushed
2038 			 * the iclog (indicated by resetting of the record
2039 			 * count), then we also need to get more log space. If
2040 			 * this was the last record, though, we are done and
2041 			 * can just return.
2042 			 */
2043 			if (partial_copy)
2044 				break;
2045 
2046 			if (++index == lv->lv_niovecs) {
2047 				lv = lv->lv_next;
2048 				index = 0;
2049 				if (lv)
2050 					vecp = lv->lv_iovecp;
2051 			}
2052 			if (record_cnt == 0) {
2053 				if (!lv)
2054 					return 0;
2055 				break;
2056 			}
2057 		}
2058 	}
2059 
2060 	ASSERT(len == 0);
2061 
2062 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2063 	if (!commit_iclog)
2064 		return xlog_state_release_iclog(log, iclog);
2065 
2066 	ASSERT(flags & XLOG_COMMIT_TRANS);
2067 	*commit_iclog = iclog;
2068 	return 0;
2069 }
2070 
2071 
2072 /*****************************************************************************
2073  *
2074  *		State Machine functions
2075  *
2076  *****************************************************************************
2077  */
2078 
2079 /* Clean iclogs starting from the head.  This ordering must be
2080  * maintained, so an iclog doesn't become ACTIVE beyond one that
2081  * is SYNCING.  This is also required to maintain the notion that we use
2082  * a ordered wait queue to hold off would be writers to the log when every
2083  * iclog is trying to sync to disk.
2084  *
2085  * State Change: DIRTY -> ACTIVE
2086  */
2087 STATIC void
xlog_state_clean_log(xlog_t * log)2088 xlog_state_clean_log(xlog_t *log)
2089 {
2090 	xlog_in_core_t	*iclog;
2091 	int changed = 0;
2092 
2093 	iclog = log->l_iclog;
2094 	do {
2095 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2096 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2097 			iclog->ic_offset       = 0;
2098 			ASSERT(iclog->ic_callback == NULL);
2099 			/*
2100 			 * If the number of ops in this iclog indicate it just
2101 			 * contains the dummy transaction, we can
2102 			 * change state into IDLE (the second time around).
2103 			 * Otherwise we should change the state into
2104 			 * NEED a dummy.
2105 			 * We don't need to cover the dummy.
2106 			 */
2107 			if (!changed &&
2108 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2109 			   		XLOG_COVER_OPS)) {
2110 				changed = 1;
2111 			} else {
2112 				/*
2113 				 * We have two dirty iclogs so start over
2114 				 * This could also be num of ops indicates
2115 				 * this is not the dummy going out.
2116 				 */
2117 				changed = 2;
2118 			}
2119 			iclog->ic_header.h_num_logops = 0;
2120 			memset(iclog->ic_header.h_cycle_data, 0,
2121 			      sizeof(iclog->ic_header.h_cycle_data));
2122 			iclog->ic_header.h_lsn = 0;
2123 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2124 			/* do nothing */;
2125 		else
2126 			break;	/* stop cleaning */
2127 		iclog = iclog->ic_next;
2128 	} while (iclog != log->l_iclog);
2129 
2130 	/* log is locked when we are called */
2131 	/*
2132 	 * Change state for the dummy log recording.
2133 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2134 	 * we are done writing the dummy record.
2135 	 * If we are done with the second dummy recored (DONE2), then
2136 	 * we go to IDLE.
2137 	 */
2138 	if (changed) {
2139 		switch (log->l_covered_state) {
2140 		case XLOG_STATE_COVER_IDLE:
2141 		case XLOG_STATE_COVER_NEED:
2142 		case XLOG_STATE_COVER_NEED2:
2143 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2144 			break;
2145 
2146 		case XLOG_STATE_COVER_DONE:
2147 			if (changed == 1)
2148 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2149 			else
2150 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2151 			break;
2152 
2153 		case XLOG_STATE_COVER_DONE2:
2154 			if (changed == 1)
2155 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2156 			else
2157 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2158 			break;
2159 
2160 		default:
2161 			ASSERT(0);
2162 		}
2163 	}
2164 }	/* xlog_state_clean_log */
2165 
2166 STATIC xfs_lsn_t
xlog_get_lowest_lsn(xlog_t * log)2167 xlog_get_lowest_lsn(
2168 	xlog_t		*log)
2169 {
2170 	xlog_in_core_t  *lsn_log;
2171 	xfs_lsn_t	lowest_lsn, lsn;
2172 
2173 	lsn_log = log->l_iclog;
2174 	lowest_lsn = 0;
2175 	do {
2176 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2177 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2178 		if ((lsn && !lowest_lsn) ||
2179 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2180 			lowest_lsn = lsn;
2181 		}
2182 	    }
2183 	    lsn_log = lsn_log->ic_next;
2184 	} while (lsn_log != log->l_iclog);
2185 	return lowest_lsn;
2186 }
2187 
2188 
2189 STATIC void
xlog_state_do_callback(xlog_t * log,int aborted,xlog_in_core_t * ciclog)2190 xlog_state_do_callback(
2191 	xlog_t		*log,
2192 	int		aborted,
2193 	xlog_in_core_t	*ciclog)
2194 {
2195 	xlog_in_core_t	   *iclog;
2196 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2197 						 * processed all iclogs once */
2198 	xfs_log_callback_t *cb, *cb_next;
2199 	int		   flushcnt = 0;
2200 	xfs_lsn_t	   lowest_lsn;
2201 	int		   ioerrors;	/* counter: iclogs with errors */
2202 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2203 	int		   funcdidcallbacks; /* flag: function did callbacks */
2204 	int		   repeats;	/* for issuing console warnings if
2205 					 * looping too many times */
2206 	int		   wake = 0;
2207 
2208 	spin_lock(&log->l_icloglock);
2209 	first_iclog = iclog = log->l_iclog;
2210 	ioerrors = 0;
2211 	funcdidcallbacks = 0;
2212 	repeats = 0;
2213 
2214 	do {
2215 		/*
2216 		 * Scan all iclogs starting with the one pointed to by the
2217 		 * log.  Reset this starting point each time the log is
2218 		 * unlocked (during callbacks).
2219 		 *
2220 		 * Keep looping through iclogs until one full pass is made
2221 		 * without running any callbacks.
2222 		 */
2223 		first_iclog = log->l_iclog;
2224 		iclog = log->l_iclog;
2225 		loopdidcallbacks = 0;
2226 		repeats++;
2227 
2228 		do {
2229 
2230 			/* skip all iclogs in the ACTIVE & DIRTY states */
2231 			if (iclog->ic_state &
2232 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2233 				iclog = iclog->ic_next;
2234 				continue;
2235 			}
2236 
2237 			/*
2238 			 * Between marking a filesystem SHUTDOWN and stopping
2239 			 * the log, we do flush all iclogs to disk (if there
2240 			 * wasn't a log I/O error). So, we do want things to
2241 			 * go smoothly in case of just a SHUTDOWN  w/o a
2242 			 * LOG_IO_ERROR.
2243 			 */
2244 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2245 				/*
2246 				 * Can only perform callbacks in order.  Since
2247 				 * this iclog is not in the DONE_SYNC/
2248 				 * DO_CALLBACK state, we skip the rest and
2249 				 * just try to clean up.  If we set our iclog
2250 				 * to DO_CALLBACK, we will not process it when
2251 				 * we retry since a previous iclog is in the
2252 				 * CALLBACK and the state cannot change since
2253 				 * we are holding the l_icloglock.
2254 				 */
2255 				if (!(iclog->ic_state &
2256 					(XLOG_STATE_DONE_SYNC |
2257 						 XLOG_STATE_DO_CALLBACK))) {
2258 					if (ciclog && (ciclog->ic_state ==
2259 							XLOG_STATE_DONE_SYNC)) {
2260 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2261 					}
2262 					break;
2263 				}
2264 				/*
2265 				 * We now have an iclog that is in either the
2266 				 * DO_CALLBACK or DONE_SYNC states. The other
2267 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2268 				 * caught by the above if and are going to
2269 				 * clean (i.e. we aren't doing their callbacks)
2270 				 * see the above if.
2271 				 */
2272 
2273 				/*
2274 				 * We will do one more check here to see if we
2275 				 * have chased our tail around.
2276 				 */
2277 
2278 				lowest_lsn = xlog_get_lowest_lsn(log);
2279 				if (lowest_lsn &&
2280 				    XFS_LSN_CMP(lowest_lsn,
2281 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2282 					iclog = iclog->ic_next;
2283 					continue; /* Leave this iclog for
2284 						   * another thread */
2285 				}
2286 
2287 				iclog->ic_state = XLOG_STATE_CALLBACK;
2288 
2289 
2290 				/*
2291 				 * update the last_sync_lsn before we drop the
2292 				 * icloglock to ensure we are the only one that
2293 				 * can update it.
2294 				 */
2295 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2296 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2297 				atomic64_set(&log->l_last_sync_lsn,
2298 					be64_to_cpu(iclog->ic_header.h_lsn));
2299 
2300 			} else
2301 				ioerrors++;
2302 
2303 			spin_unlock(&log->l_icloglock);
2304 
2305 			/*
2306 			 * Keep processing entries in the callback list until
2307 			 * we come around and it is empty.  We need to
2308 			 * atomically see that the list is empty and change the
2309 			 * state to DIRTY so that we don't miss any more
2310 			 * callbacks being added.
2311 			 */
2312 			spin_lock(&iclog->ic_callback_lock);
2313 			cb = iclog->ic_callback;
2314 			while (cb) {
2315 				iclog->ic_callback_tail = &(iclog->ic_callback);
2316 				iclog->ic_callback = NULL;
2317 				spin_unlock(&iclog->ic_callback_lock);
2318 
2319 				/* perform callbacks in the order given */
2320 				for (; cb; cb = cb_next) {
2321 					cb_next = cb->cb_next;
2322 					cb->cb_func(cb->cb_arg, aborted);
2323 				}
2324 				spin_lock(&iclog->ic_callback_lock);
2325 				cb = iclog->ic_callback;
2326 			}
2327 
2328 			loopdidcallbacks++;
2329 			funcdidcallbacks++;
2330 
2331 			spin_lock(&log->l_icloglock);
2332 			ASSERT(iclog->ic_callback == NULL);
2333 			spin_unlock(&iclog->ic_callback_lock);
2334 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2335 				iclog->ic_state = XLOG_STATE_DIRTY;
2336 
2337 			/*
2338 			 * Transition from DIRTY to ACTIVE if applicable.
2339 			 * NOP if STATE_IOERROR.
2340 			 */
2341 			xlog_state_clean_log(log);
2342 
2343 			/* wake up threads waiting in xfs_log_force() */
2344 			wake_up_all(&iclog->ic_force_wait);
2345 
2346 			iclog = iclog->ic_next;
2347 		} while (first_iclog != iclog);
2348 
2349 		if (repeats > 5000) {
2350 			flushcnt += repeats;
2351 			repeats = 0;
2352 			xfs_warn(log->l_mp,
2353 				"%s: possible infinite loop (%d iterations)",
2354 				__func__, flushcnt);
2355 		}
2356 	} while (!ioerrors && loopdidcallbacks);
2357 
2358 	/*
2359 	 * make one last gasp attempt to see if iclogs are being left in
2360 	 * limbo..
2361 	 */
2362 #ifdef DEBUG
2363 	if (funcdidcallbacks) {
2364 		first_iclog = iclog = log->l_iclog;
2365 		do {
2366 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2367 			/*
2368 			 * Terminate the loop if iclogs are found in states
2369 			 * which will cause other threads to clean up iclogs.
2370 			 *
2371 			 * SYNCING - i/o completion will go through logs
2372 			 * DONE_SYNC - interrupt thread should be waiting for
2373 			 *              l_icloglock
2374 			 * IOERROR - give up hope all ye who enter here
2375 			 */
2376 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2377 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2378 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2379 			    iclog->ic_state == XLOG_STATE_IOERROR )
2380 				break;
2381 			iclog = iclog->ic_next;
2382 		} while (first_iclog != iclog);
2383 	}
2384 #endif
2385 
2386 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2387 		wake = 1;
2388 	spin_unlock(&log->l_icloglock);
2389 
2390 	if (wake)
2391 		wake_up_all(&log->l_flush_wait);
2392 }
2393 
2394 
2395 /*
2396  * Finish transitioning this iclog to the dirty state.
2397  *
2398  * Make sure that we completely execute this routine only when this is
2399  * the last call to the iclog.  There is a good chance that iclog flushes,
2400  * when we reach the end of the physical log, get turned into 2 separate
2401  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2402  * routine.  By using the reference count bwritecnt, we guarantee that only
2403  * the second completion goes through.
2404  *
2405  * Callbacks could take time, so they are done outside the scope of the
2406  * global state machine log lock.
2407  */
2408 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2409 xlog_state_done_syncing(
2410 	xlog_in_core_t	*iclog,
2411 	int		aborted)
2412 {
2413 	xlog_t		   *log = iclog->ic_log;
2414 
2415 	spin_lock(&log->l_icloglock);
2416 
2417 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2418 	       iclog->ic_state == XLOG_STATE_IOERROR);
2419 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2420 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2421 
2422 
2423 	/*
2424 	 * If we got an error, either on the first buffer, or in the case of
2425 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2426 	 * and none should ever be attempted to be written to disk
2427 	 * again.
2428 	 */
2429 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2430 		if (--iclog->ic_bwritecnt == 1) {
2431 			spin_unlock(&log->l_icloglock);
2432 			return;
2433 		}
2434 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2435 	}
2436 
2437 	/*
2438 	 * Someone could be sleeping prior to writing out the next
2439 	 * iclog buffer, we wake them all, one will get to do the
2440 	 * I/O, the others get to wait for the result.
2441 	 */
2442 	wake_up_all(&iclog->ic_write_wait);
2443 	spin_unlock(&log->l_icloglock);
2444 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2445 }	/* xlog_state_done_syncing */
2446 
2447 
2448 /*
2449  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2450  * sleep.  We wait on the flush queue on the head iclog as that should be
2451  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2452  * we will wait here and all new writes will sleep until a sync completes.
2453  *
2454  * The in-core logs are used in a circular fashion. They are not used
2455  * out-of-order even when an iclog past the head is free.
2456  *
2457  * return:
2458  *	* log_offset where xlog_write() can start writing into the in-core
2459  *		log's data space.
2460  *	* in-core log pointer to which xlog_write() should write.
2461  *	* boolean indicating this is a continued write to an in-core log.
2462  *		If this is the last write, then the in-core log's offset field
2463  *		needs to be incremented, depending on the amount of data which
2464  *		is copied.
2465  */
2466 STATIC int
xlog_state_get_iclog_space(xlog_t * log,int len,xlog_in_core_t ** iclogp,xlog_ticket_t * ticket,int * continued_write,int * logoffsetp)2467 xlog_state_get_iclog_space(xlog_t	  *log,
2468 			   int		  len,
2469 			   xlog_in_core_t **iclogp,
2470 			   xlog_ticket_t  *ticket,
2471 			   int		  *continued_write,
2472 			   int		  *logoffsetp)
2473 {
2474 	int		  log_offset;
2475 	xlog_rec_header_t *head;
2476 	xlog_in_core_t	  *iclog;
2477 	int		  error;
2478 
2479 restart:
2480 	spin_lock(&log->l_icloglock);
2481 	if (XLOG_FORCED_SHUTDOWN(log)) {
2482 		spin_unlock(&log->l_icloglock);
2483 		return XFS_ERROR(EIO);
2484 	}
2485 
2486 	iclog = log->l_iclog;
2487 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2488 		XFS_STATS_INC(xs_log_noiclogs);
2489 
2490 		/* Wait for log writes to have flushed */
2491 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2492 		goto restart;
2493 	}
2494 
2495 	head = &iclog->ic_header;
2496 
2497 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2498 	log_offset = iclog->ic_offset;
2499 
2500 	/* On the 1st write to an iclog, figure out lsn.  This works
2501 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2502 	 * committing to.  If the offset is set, that's how many blocks
2503 	 * must be written.
2504 	 */
2505 	if (log_offset == 0) {
2506 		ticket->t_curr_res -= log->l_iclog_hsize;
2507 		xlog_tic_add_region(ticket,
2508 				    log->l_iclog_hsize,
2509 				    XLOG_REG_TYPE_LRHEADER);
2510 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2511 		head->h_lsn = cpu_to_be64(
2512 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2513 		ASSERT(log->l_curr_block >= 0);
2514 	}
2515 
2516 	/* If there is enough room to write everything, then do it.  Otherwise,
2517 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2518 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2519 	 * until you know exactly how many bytes get copied.  Therefore, wait
2520 	 * until later to update ic_offset.
2521 	 *
2522 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2523 	 * can fit into remaining data section.
2524 	 */
2525 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2526 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2527 
2528 		/*
2529 		 * If I'm the only one writing to this iclog, sync it to disk.
2530 		 * We need to do an atomic compare and decrement here to avoid
2531 		 * racing with concurrent atomic_dec_and_lock() calls in
2532 		 * xlog_state_release_iclog() when there is more than one
2533 		 * reference to the iclog.
2534 		 */
2535 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2536 			/* we are the only one */
2537 			spin_unlock(&log->l_icloglock);
2538 			error = xlog_state_release_iclog(log, iclog);
2539 			if (error)
2540 				return error;
2541 		} else {
2542 			spin_unlock(&log->l_icloglock);
2543 		}
2544 		goto restart;
2545 	}
2546 
2547 	/* Do we have enough room to write the full amount in the remainder
2548 	 * of this iclog?  Or must we continue a write on the next iclog and
2549 	 * mark this iclog as completely taken?  In the case where we switch
2550 	 * iclogs (to mark it taken), this particular iclog will release/sync
2551 	 * to disk in xlog_write().
2552 	 */
2553 	if (len <= iclog->ic_size - iclog->ic_offset) {
2554 		*continued_write = 0;
2555 		iclog->ic_offset += len;
2556 	} else {
2557 		*continued_write = 1;
2558 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2559 	}
2560 	*iclogp = iclog;
2561 
2562 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2563 	spin_unlock(&log->l_icloglock);
2564 
2565 	*logoffsetp = log_offset;
2566 	return 0;
2567 }	/* xlog_state_get_iclog_space */
2568 
2569 /*
2570  * Atomically get the log space required for a log ticket.
2571  *
2572  * Once a ticket gets put onto the reserveq, it will only return after the
2573  * needed reservation is satisfied.
2574  *
2575  * This function is structured so that it has a lock free fast path. This is
2576  * necessary because every new transaction reservation will come through this
2577  * path. Hence any lock will be globally hot if we take it unconditionally on
2578  * every pass.
2579  *
2580  * As tickets are only ever moved on and off the reserveq under the
2581  * l_grant_reserve_lock, we only need to take that lock if we are going to add
2582  * the ticket to the queue and sleep. We can avoid taking the lock if the ticket
2583  * was never added to the reserveq because the t_queue list head will be empty
2584  * and we hold the only reference to it so it can safely be checked unlocked.
2585  */
2586 STATIC int
xlog_grant_log_space(struct log * log,struct xlog_ticket * tic)2587 xlog_grant_log_space(
2588 	struct log		*log,
2589 	struct xlog_ticket	*tic)
2590 {
2591 	int			free_bytes, need_bytes;
2592 	int			error = 0;
2593 
2594 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2595 
2596 	trace_xfs_log_grant_enter(log, tic);
2597 
2598 	/*
2599 	 * If there are other waiters on the queue then give them a chance at
2600 	 * logspace before us.  Wake up the first waiters, if we do not wake
2601 	 * up all the waiters then go to sleep waiting for more free space,
2602 	 * otherwise try to get some space for this transaction.
2603 	 */
2604 	need_bytes = tic->t_unit_res;
2605 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2606 		need_bytes *= tic->t_ocnt;
2607 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2608 	if (!list_empty_careful(&log->l_reserveq)) {
2609 		spin_lock(&log->l_grant_reserve_lock);
2610 		if (!xlog_reserveq_wake(log, &free_bytes) ||
2611 		    free_bytes < need_bytes)
2612 			error = xlog_reserveq_wait(log, tic, need_bytes);
2613 		spin_unlock(&log->l_grant_reserve_lock);
2614 	} else if (free_bytes < need_bytes) {
2615 		spin_lock(&log->l_grant_reserve_lock);
2616 		error = xlog_reserveq_wait(log, tic, need_bytes);
2617 		spin_unlock(&log->l_grant_reserve_lock);
2618 	}
2619 	if (error)
2620 		return error;
2621 
2622 	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2623 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2624 	trace_xfs_log_grant_exit(log, tic);
2625 	xlog_verify_grant_tail(log);
2626 	return 0;
2627 }
2628 
2629 /*
2630  * Replenish the byte reservation required by moving the grant write head.
2631  *
2632  * Similar to xlog_grant_log_space, the function is structured to have a lock
2633  * free fast path.
2634  */
2635 STATIC int
xlog_regrant_write_log_space(struct log * log,struct xlog_ticket * tic)2636 xlog_regrant_write_log_space(
2637 	struct log		*log,
2638 	struct xlog_ticket	*tic)
2639 {
2640 	int			free_bytes, need_bytes;
2641 	int			error = 0;
2642 
2643 	tic->t_curr_res = tic->t_unit_res;
2644 	xlog_tic_reset_res(tic);
2645 
2646 	if (tic->t_cnt > 0)
2647 		return 0;
2648 
2649 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2650 
2651 	trace_xfs_log_regrant_write_enter(log, tic);
2652 
2653 	/*
2654 	 * If there are other waiters on the queue then give them a chance at
2655 	 * logspace before us.  Wake up the first waiters, if we do not wake
2656 	 * up all the waiters then go to sleep waiting for more free space,
2657 	 * otherwise try to get some space for this transaction.
2658 	 */
2659 	need_bytes = tic->t_unit_res;
2660 	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2661 	if (!list_empty_careful(&log->l_writeq)) {
2662 		spin_lock(&log->l_grant_write_lock);
2663 		if (!xlog_writeq_wake(log, &free_bytes) ||
2664 		    free_bytes < need_bytes)
2665 			error = xlog_writeq_wait(log, tic, need_bytes);
2666 		spin_unlock(&log->l_grant_write_lock);
2667 	} else if (free_bytes < need_bytes) {
2668 		spin_lock(&log->l_grant_write_lock);
2669 		error = xlog_writeq_wait(log, tic, need_bytes);
2670 		spin_unlock(&log->l_grant_write_lock);
2671 	}
2672 
2673 	if (error)
2674 		return error;
2675 
2676 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2677 	trace_xfs_log_regrant_write_exit(log, tic);
2678 	xlog_verify_grant_tail(log);
2679 	return 0;
2680 }
2681 
2682 /* The first cnt-1 times through here we don't need to
2683  * move the grant write head because the permanent
2684  * reservation has reserved cnt times the unit amount.
2685  * Release part of current permanent unit reservation and
2686  * reset current reservation to be one units worth.  Also
2687  * move grant reservation head forward.
2688  */
2689 STATIC void
xlog_regrant_reserve_log_space(xlog_t * log,xlog_ticket_t * ticket)2690 xlog_regrant_reserve_log_space(xlog_t	     *log,
2691 			       xlog_ticket_t *ticket)
2692 {
2693 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2694 
2695 	if (ticket->t_cnt > 0)
2696 		ticket->t_cnt--;
2697 
2698 	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2699 					ticket->t_curr_res);
2700 	xlog_grant_sub_space(log, &log->l_grant_write_head,
2701 					ticket->t_curr_res);
2702 	ticket->t_curr_res = ticket->t_unit_res;
2703 	xlog_tic_reset_res(ticket);
2704 
2705 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2706 
2707 	/* just return if we still have some of the pre-reserved space */
2708 	if (ticket->t_cnt > 0)
2709 		return;
2710 
2711 	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2712 					ticket->t_unit_res);
2713 
2714 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2715 
2716 	ticket->t_curr_res = ticket->t_unit_res;
2717 	xlog_tic_reset_res(ticket);
2718 }	/* xlog_regrant_reserve_log_space */
2719 
2720 
2721 /*
2722  * Give back the space left from a reservation.
2723  *
2724  * All the information we need to make a correct determination of space left
2725  * is present.  For non-permanent reservations, things are quite easy.  The
2726  * count should have been decremented to zero.  We only need to deal with the
2727  * space remaining in the current reservation part of the ticket.  If the
2728  * ticket contains a permanent reservation, there may be left over space which
2729  * needs to be released.  A count of N means that N-1 refills of the current
2730  * reservation can be done before we need to ask for more space.  The first
2731  * one goes to fill up the first current reservation.  Once we run out of
2732  * space, the count will stay at zero and the only space remaining will be
2733  * in the current reservation field.
2734  */
2735 STATIC void
xlog_ungrant_log_space(xlog_t * log,xlog_ticket_t * ticket)2736 xlog_ungrant_log_space(xlog_t	     *log,
2737 		       xlog_ticket_t *ticket)
2738 {
2739 	int	bytes;
2740 
2741 	if (ticket->t_cnt > 0)
2742 		ticket->t_cnt--;
2743 
2744 	trace_xfs_log_ungrant_enter(log, ticket);
2745 	trace_xfs_log_ungrant_sub(log, ticket);
2746 
2747 	/*
2748 	 * If this is a permanent reservation ticket, we may be able to free
2749 	 * up more space based on the remaining count.
2750 	 */
2751 	bytes = ticket->t_curr_res;
2752 	if (ticket->t_cnt > 0) {
2753 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2754 		bytes += ticket->t_unit_res*ticket->t_cnt;
2755 	}
2756 
2757 	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2758 	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2759 
2760 	trace_xfs_log_ungrant_exit(log, ticket);
2761 
2762 	xfs_log_move_tail(log->l_mp, 1);
2763 }	/* xlog_ungrant_log_space */
2764 
2765 
2766 /*
2767  * Flush iclog to disk if this is the last reference to the given iclog and
2768  * the WANT_SYNC bit is set.
2769  *
2770  * When this function is entered, the iclog is not necessarily in the
2771  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2772  *
2773  *
2774  */
2775 STATIC int
xlog_state_release_iclog(xlog_t * log,xlog_in_core_t * iclog)2776 xlog_state_release_iclog(
2777 	xlog_t		*log,
2778 	xlog_in_core_t	*iclog)
2779 {
2780 	int		sync = 0;	/* do we sync? */
2781 
2782 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2783 		return XFS_ERROR(EIO);
2784 
2785 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2786 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2787 		return 0;
2788 
2789 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2790 		spin_unlock(&log->l_icloglock);
2791 		return XFS_ERROR(EIO);
2792 	}
2793 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2794 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2795 
2796 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2797 		/* update tail before writing to iclog */
2798 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2799 		sync++;
2800 		iclog->ic_state = XLOG_STATE_SYNCING;
2801 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2802 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2803 		/* cycle incremented when incrementing curr_block */
2804 	}
2805 	spin_unlock(&log->l_icloglock);
2806 
2807 	/*
2808 	 * We let the log lock go, so it's possible that we hit a log I/O
2809 	 * error or some other SHUTDOWN condition that marks the iclog
2810 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2811 	 * this iclog has consistent data, so we ignore IOERROR
2812 	 * flags after this point.
2813 	 */
2814 	if (sync)
2815 		return xlog_sync(log, iclog);
2816 	return 0;
2817 }	/* xlog_state_release_iclog */
2818 
2819 
2820 /*
2821  * This routine will mark the current iclog in the ring as WANT_SYNC
2822  * and move the current iclog pointer to the next iclog in the ring.
2823  * When this routine is called from xlog_state_get_iclog_space(), the
2824  * exact size of the iclog has not yet been determined.  All we know is
2825  * that every data block.  We have run out of space in this log record.
2826  */
2827 STATIC void
xlog_state_switch_iclogs(xlog_t * log,xlog_in_core_t * iclog,int eventual_size)2828 xlog_state_switch_iclogs(xlog_t		*log,
2829 			 xlog_in_core_t *iclog,
2830 			 int		eventual_size)
2831 {
2832 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2833 	if (!eventual_size)
2834 		eventual_size = iclog->ic_offset;
2835 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2836 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2837 	log->l_prev_block = log->l_curr_block;
2838 	log->l_prev_cycle = log->l_curr_cycle;
2839 
2840 	/* roll log?: ic_offset changed later */
2841 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2842 
2843 	/* Round up to next log-sunit */
2844 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2845 	    log->l_mp->m_sb.sb_logsunit > 1) {
2846 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2847 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2848 	}
2849 
2850 	if (log->l_curr_block >= log->l_logBBsize) {
2851 		log->l_curr_cycle++;
2852 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2853 			log->l_curr_cycle++;
2854 		log->l_curr_block -= log->l_logBBsize;
2855 		ASSERT(log->l_curr_block >= 0);
2856 	}
2857 	ASSERT(iclog == log->l_iclog);
2858 	log->l_iclog = iclog->ic_next;
2859 }	/* xlog_state_switch_iclogs */
2860 
2861 /*
2862  * Write out all data in the in-core log as of this exact moment in time.
2863  *
2864  * Data may be written to the in-core log during this call.  However,
2865  * we don't guarantee this data will be written out.  A change from past
2866  * implementation means this routine will *not* write out zero length LRs.
2867  *
2868  * Basically, we try and perform an intelligent scan of the in-core logs.
2869  * If we determine there is no flushable data, we just return.  There is no
2870  * flushable data if:
2871  *
2872  *	1. the current iclog is active and has no data; the previous iclog
2873  *		is in the active or dirty state.
2874  *	2. the current iclog is drity, and the previous iclog is in the
2875  *		active or dirty state.
2876  *
2877  * We may sleep if:
2878  *
2879  *	1. the current iclog is not in the active nor dirty state.
2880  *	2. the current iclog dirty, and the previous iclog is not in the
2881  *		active nor dirty state.
2882  *	3. the current iclog is active, and there is another thread writing
2883  *		to this particular iclog.
2884  *	4. a) the current iclog is active and has no other writers
2885  *	   b) when we return from flushing out this iclog, it is still
2886  *		not in the active nor dirty state.
2887  */
2888 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)2889 _xfs_log_force(
2890 	struct xfs_mount	*mp,
2891 	uint			flags,
2892 	int			*log_flushed)
2893 {
2894 	struct log		*log = mp->m_log;
2895 	struct xlog_in_core	*iclog;
2896 	xfs_lsn_t		lsn;
2897 
2898 	XFS_STATS_INC(xs_log_force);
2899 
2900 	xlog_cil_force(log);
2901 
2902 	spin_lock(&log->l_icloglock);
2903 
2904 	iclog = log->l_iclog;
2905 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2906 		spin_unlock(&log->l_icloglock);
2907 		return XFS_ERROR(EIO);
2908 	}
2909 
2910 	/* If the head iclog is not active nor dirty, we just attach
2911 	 * ourselves to the head and go to sleep.
2912 	 */
2913 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2914 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2915 		/*
2916 		 * If the head is dirty or (active and empty), then
2917 		 * we need to look at the previous iclog.  If the previous
2918 		 * iclog is active or dirty we are done.  There is nothing
2919 		 * to sync out.  Otherwise, we attach ourselves to the
2920 		 * previous iclog and go to sleep.
2921 		 */
2922 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2923 		    (atomic_read(&iclog->ic_refcnt) == 0
2924 		     && iclog->ic_offset == 0)) {
2925 			iclog = iclog->ic_prev;
2926 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2927 			    iclog->ic_state == XLOG_STATE_DIRTY)
2928 				goto no_sleep;
2929 			else
2930 				goto maybe_sleep;
2931 		} else {
2932 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2933 				/* We are the only one with access to this
2934 				 * iclog.  Flush it out now.  There should
2935 				 * be a roundoff of zero to show that someone
2936 				 * has already taken care of the roundoff from
2937 				 * the previous sync.
2938 				 */
2939 				atomic_inc(&iclog->ic_refcnt);
2940 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2941 				xlog_state_switch_iclogs(log, iclog, 0);
2942 				spin_unlock(&log->l_icloglock);
2943 
2944 				if (xlog_state_release_iclog(log, iclog))
2945 					return XFS_ERROR(EIO);
2946 
2947 				if (log_flushed)
2948 					*log_flushed = 1;
2949 				spin_lock(&log->l_icloglock);
2950 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2951 				    iclog->ic_state != XLOG_STATE_DIRTY)
2952 					goto maybe_sleep;
2953 				else
2954 					goto no_sleep;
2955 			} else {
2956 				/* Someone else is writing to this iclog.
2957 				 * Use its call to flush out the data.  However,
2958 				 * the other thread may not force out this LR,
2959 				 * so we mark it WANT_SYNC.
2960 				 */
2961 				xlog_state_switch_iclogs(log, iclog, 0);
2962 				goto maybe_sleep;
2963 			}
2964 		}
2965 	}
2966 
2967 	/* By the time we come around again, the iclog could've been filled
2968 	 * which would give it another lsn.  If we have a new lsn, just
2969 	 * return because the relevant data has been flushed.
2970 	 */
2971 maybe_sleep:
2972 	if (flags & XFS_LOG_SYNC) {
2973 		/*
2974 		 * We must check if we're shutting down here, before
2975 		 * we wait, while we're holding the l_icloglock.
2976 		 * Then we check again after waking up, in case our
2977 		 * sleep was disturbed by a bad news.
2978 		 */
2979 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2980 			spin_unlock(&log->l_icloglock);
2981 			return XFS_ERROR(EIO);
2982 		}
2983 		XFS_STATS_INC(xs_log_force_sleep);
2984 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2985 		/*
2986 		 * No need to grab the log lock here since we're
2987 		 * only deciding whether or not to return EIO
2988 		 * and the memory read should be atomic.
2989 		 */
2990 		if (iclog->ic_state & XLOG_STATE_IOERROR)
2991 			return XFS_ERROR(EIO);
2992 		if (log_flushed)
2993 			*log_flushed = 1;
2994 	} else {
2995 
2996 no_sleep:
2997 		spin_unlock(&log->l_icloglock);
2998 	}
2999 	return 0;
3000 }
3001 
3002 /*
3003  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3004  * about errors or whether the log was flushed or not. This is the normal
3005  * interface to use when trying to unpin items or move the log forward.
3006  */
3007 void
xfs_log_force(xfs_mount_t * mp,uint flags)3008 xfs_log_force(
3009 	xfs_mount_t	*mp,
3010 	uint		flags)
3011 {
3012 	int	error;
3013 
3014 	error = _xfs_log_force(mp, flags, NULL);
3015 	if (error)
3016 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3017 }
3018 
3019 /*
3020  * Force the in-core log to disk for a specific LSN.
3021  *
3022  * Find in-core log with lsn.
3023  *	If it is in the DIRTY state, just return.
3024  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3025  *		state and go to sleep or return.
3026  *	If it is in any other state, go to sleep or return.
3027  *
3028  * Synchronous forces are implemented with a signal variable. All callers
3029  * to force a given lsn to disk will wait on a the sv attached to the
3030  * specific in-core log.  When given in-core log finally completes its
3031  * write to disk, that thread will wake up all threads waiting on the
3032  * sv.
3033  */
3034 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3035 _xfs_log_force_lsn(
3036 	struct xfs_mount	*mp,
3037 	xfs_lsn_t		lsn,
3038 	uint			flags,
3039 	int			*log_flushed)
3040 {
3041 	struct log		*log = mp->m_log;
3042 	struct xlog_in_core	*iclog;
3043 	int			already_slept = 0;
3044 
3045 	ASSERT(lsn != 0);
3046 
3047 	XFS_STATS_INC(xs_log_force);
3048 
3049 	lsn = xlog_cil_force_lsn(log, lsn);
3050 	if (lsn == NULLCOMMITLSN)
3051 		return 0;
3052 
3053 try_again:
3054 	spin_lock(&log->l_icloglock);
3055 	iclog = log->l_iclog;
3056 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3057 		spin_unlock(&log->l_icloglock);
3058 		return XFS_ERROR(EIO);
3059 	}
3060 
3061 	do {
3062 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3063 			iclog = iclog->ic_next;
3064 			continue;
3065 		}
3066 
3067 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3068 			spin_unlock(&log->l_icloglock);
3069 			return 0;
3070 		}
3071 
3072 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3073 			/*
3074 			 * We sleep here if we haven't already slept (e.g.
3075 			 * this is the first time we've looked at the correct
3076 			 * iclog buf) and the buffer before us is going to
3077 			 * be sync'ed. The reason for this is that if we
3078 			 * are doing sync transactions here, by waiting for
3079 			 * the previous I/O to complete, we can allow a few
3080 			 * more transactions into this iclog before we close
3081 			 * it down.
3082 			 *
3083 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3084 			 * up the refcnt so we can release the log (which
3085 			 * drops the ref count).  The state switch keeps new
3086 			 * transaction commits from using this buffer.  When
3087 			 * the current commits finish writing into the buffer,
3088 			 * the refcount will drop to zero and the buffer will
3089 			 * go out then.
3090 			 */
3091 			if (!already_slept &&
3092 			    (iclog->ic_prev->ic_state &
3093 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3094 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3095 
3096 				XFS_STATS_INC(xs_log_force_sleep);
3097 
3098 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3099 							&log->l_icloglock);
3100 				if (log_flushed)
3101 					*log_flushed = 1;
3102 				already_slept = 1;
3103 				goto try_again;
3104 			}
3105 			atomic_inc(&iclog->ic_refcnt);
3106 			xlog_state_switch_iclogs(log, iclog, 0);
3107 			spin_unlock(&log->l_icloglock);
3108 			if (xlog_state_release_iclog(log, iclog))
3109 				return XFS_ERROR(EIO);
3110 			if (log_flushed)
3111 				*log_flushed = 1;
3112 			spin_lock(&log->l_icloglock);
3113 		}
3114 
3115 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3116 		    !(iclog->ic_state &
3117 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3118 			/*
3119 			 * Don't wait on completion if we know that we've
3120 			 * gotten a log write error.
3121 			 */
3122 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3123 				spin_unlock(&log->l_icloglock);
3124 				return XFS_ERROR(EIO);
3125 			}
3126 			XFS_STATS_INC(xs_log_force_sleep);
3127 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3128 			/*
3129 			 * No need to grab the log lock here since we're
3130 			 * only deciding whether or not to return EIO
3131 			 * and the memory read should be atomic.
3132 			 */
3133 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3134 				return XFS_ERROR(EIO);
3135 
3136 			if (log_flushed)
3137 				*log_flushed = 1;
3138 		} else {		/* just return */
3139 			spin_unlock(&log->l_icloglock);
3140 		}
3141 
3142 		return 0;
3143 	} while (iclog != log->l_iclog);
3144 
3145 	spin_unlock(&log->l_icloglock);
3146 	return 0;
3147 }
3148 
3149 /*
3150  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3151  * about errors or whether the log was flushed or not. This is the normal
3152  * interface to use when trying to unpin items or move the log forward.
3153  */
3154 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3155 xfs_log_force_lsn(
3156 	xfs_mount_t	*mp,
3157 	xfs_lsn_t	lsn,
3158 	uint		flags)
3159 {
3160 	int	error;
3161 
3162 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3163 	if (error)
3164 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3165 }
3166 
3167 /*
3168  * Called when we want to mark the current iclog as being ready to sync to
3169  * disk.
3170  */
3171 STATIC void
xlog_state_want_sync(xlog_t * log,xlog_in_core_t * iclog)3172 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3173 {
3174 	assert_spin_locked(&log->l_icloglock);
3175 
3176 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3177 		xlog_state_switch_iclogs(log, iclog, 0);
3178 	} else {
3179 		ASSERT(iclog->ic_state &
3180 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3181 	}
3182 }
3183 
3184 
3185 /*****************************************************************************
3186  *
3187  *		TICKET functions
3188  *
3189  *****************************************************************************
3190  */
3191 
3192 /*
3193  * Free a used ticket when its refcount falls to zero.
3194  */
3195 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3196 xfs_log_ticket_put(
3197 	xlog_ticket_t	*ticket)
3198 {
3199 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3200 	if (atomic_dec_and_test(&ticket->t_ref))
3201 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3202 }
3203 
3204 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3205 xfs_log_ticket_get(
3206 	xlog_ticket_t	*ticket)
3207 {
3208 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3209 	atomic_inc(&ticket->t_ref);
3210 	return ticket;
3211 }
3212 
3213 /*
3214  * Allocate and initialise a new log ticket.
3215  */
3216 xlog_ticket_t *
xlog_ticket_alloc(struct log * log,int unit_bytes,int cnt,char client,uint xflags,int alloc_flags)3217 xlog_ticket_alloc(
3218 	struct log	*log,
3219 	int		unit_bytes,
3220 	int		cnt,
3221 	char		client,
3222 	uint		xflags,
3223 	int		alloc_flags)
3224 {
3225 	struct xlog_ticket *tic;
3226 	uint		num_headers;
3227 	int		iclog_space;
3228 
3229 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3230 	if (!tic)
3231 		return NULL;
3232 
3233 	/*
3234 	 * Permanent reservations have up to 'cnt'-1 active log operations
3235 	 * in the log.  A unit in this case is the amount of space for one
3236 	 * of these log operations.  Normal reservations have a cnt of 1
3237 	 * and their unit amount is the total amount of space required.
3238 	 *
3239 	 * The following lines of code account for non-transaction data
3240 	 * which occupy space in the on-disk log.
3241 	 *
3242 	 * Normal form of a transaction is:
3243 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3244 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3245 	 *
3246 	 * We need to account for all the leadup data and trailer data
3247 	 * around the transaction data.
3248 	 * And then we need to account for the worst case in terms of using
3249 	 * more space.
3250 	 * The worst case will happen if:
3251 	 * - the placement of the transaction happens to be such that the
3252 	 *   roundoff is at its maximum
3253 	 * - the transaction data is synced before the commit record is synced
3254 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3255 	 *   Therefore the commit record is in its own Log Record.
3256 	 *   This can happen as the commit record is called with its
3257 	 *   own region to xlog_write().
3258 	 *   This then means that in the worst case, roundoff can happen for
3259 	 *   the commit-rec as well.
3260 	 *   The commit-rec is smaller than padding in this scenario and so it is
3261 	 *   not added separately.
3262 	 */
3263 
3264 	/* for trans header */
3265 	unit_bytes += sizeof(xlog_op_header_t);
3266 	unit_bytes += sizeof(xfs_trans_header_t);
3267 
3268 	/* for start-rec */
3269 	unit_bytes += sizeof(xlog_op_header_t);
3270 
3271 	/*
3272 	 * for LR headers - the space for data in an iclog is the size minus
3273 	 * the space used for the headers. If we use the iclog size, then we
3274 	 * undercalculate the number of headers required.
3275 	 *
3276 	 * Furthermore - the addition of op headers for split-recs might
3277 	 * increase the space required enough to require more log and op
3278 	 * headers, so take that into account too.
3279 	 *
3280 	 * IMPORTANT: This reservation makes the assumption that if this
3281 	 * transaction is the first in an iclog and hence has the LR headers
3282 	 * accounted to it, then the remaining space in the iclog is
3283 	 * exclusively for this transaction.  i.e. if the transaction is larger
3284 	 * than the iclog, it will be the only thing in that iclog.
3285 	 * Fundamentally, this means we must pass the entire log vector to
3286 	 * xlog_write to guarantee this.
3287 	 */
3288 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3289 	num_headers = howmany(unit_bytes, iclog_space);
3290 
3291 	/* for split-recs - ophdrs added when data split over LRs */
3292 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3293 
3294 	/* add extra header reservations if we overrun */
3295 	while (!num_headers ||
3296 	       howmany(unit_bytes, iclog_space) > num_headers) {
3297 		unit_bytes += sizeof(xlog_op_header_t);
3298 		num_headers++;
3299 	}
3300 	unit_bytes += log->l_iclog_hsize * num_headers;
3301 
3302 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3303 	unit_bytes += log->l_iclog_hsize;
3304 
3305 	/* for roundoff padding for transaction data and one for commit record */
3306 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3307 	    log->l_mp->m_sb.sb_logsunit > 1) {
3308 		/* log su roundoff */
3309 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3310 	} else {
3311 		/* BB roundoff */
3312 		unit_bytes += 2*BBSIZE;
3313         }
3314 
3315 	atomic_set(&tic->t_ref, 1);
3316 	INIT_LIST_HEAD(&tic->t_queue);
3317 	tic->t_unit_res		= unit_bytes;
3318 	tic->t_curr_res		= unit_bytes;
3319 	tic->t_cnt		= cnt;
3320 	tic->t_ocnt		= cnt;
3321 	tic->t_tid		= random32();
3322 	tic->t_clientid		= client;
3323 	tic->t_flags		= XLOG_TIC_INITED;
3324 	tic->t_trans_type	= 0;
3325 	if (xflags & XFS_LOG_PERM_RESERV)
3326 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3327 	init_waitqueue_head(&tic->t_wait);
3328 
3329 	xlog_tic_reset_res(tic);
3330 
3331 	return tic;
3332 }
3333 
3334 
3335 /******************************************************************************
3336  *
3337  *		Log debug routines
3338  *
3339  ******************************************************************************
3340  */
3341 #if defined(DEBUG)
3342 /*
3343  * Make sure that the destination ptr is within the valid data region of
3344  * one of the iclogs.  This uses backup pointers stored in a different
3345  * part of the log in case we trash the log structure.
3346  */
3347 void
xlog_verify_dest_ptr(struct log * log,char * ptr)3348 xlog_verify_dest_ptr(
3349 	struct log	*log,
3350 	char		*ptr)
3351 {
3352 	int i;
3353 	int good_ptr = 0;
3354 
3355 	for (i = 0; i < log->l_iclog_bufs; i++) {
3356 		if (ptr >= log->l_iclog_bak[i] &&
3357 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3358 			good_ptr++;
3359 	}
3360 
3361 	if (!good_ptr)
3362 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3363 }
3364 
3365 /*
3366  * Check to make sure the grant write head didn't just over lap the tail.  If
3367  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3368  * the cycles differ by exactly one and check the byte count.
3369  *
3370  * This check is run unlocked, so can give false positives. Rather than assert
3371  * on failures, use a warn-once flag and a panic tag to allow the admin to
3372  * determine if they want to panic the machine when such an error occurs. For
3373  * debug kernels this will have the same effect as using an assert but, unlinke
3374  * an assert, it can be turned off at runtime.
3375  */
3376 STATIC void
xlog_verify_grant_tail(struct log * log)3377 xlog_verify_grant_tail(
3378 	struct log	*log)
3379 {
3380 	int		tail_cycle, tail_blocks;
3381 	int		cycle, space;
3382 
3383 	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3384 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3385 	if (tail_cycle != cycle) {
3386 		if (cycle - 1 != tail_cycle &&
3387 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3388 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3389 				"%s: cycle - 1 != tail_cycle", __func__);
3390 			log->l_flags |= XLOG_TAIL_WARN;
3391 		}
3392 
3393 		if (space > BBTOB(tail_blocks) &&
3394 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3395 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3396 				"%s: space > BBTOB(tail_blocks)", __func__);
3397 			log->l_flags |= XLOG_TAIL_WARN;
3398 		}
3399 	}
3400 }
3401 
3402 /* check if it will fit */
3403 STATIC void
xlog_verify_tail_lsn(xlog_t * log,xlog_in_core_t * iclog,xfs_lsn_t tail_lsn)3404 xlog_verify_tail_lsn(xlog_t	    *log,
3405 		     xlog_in_core_t *iclog,
3406 		     xfs_lsn_t	    tail_lsn)
3407 {
3408     int blocks;
3409 
3410     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3411 	blocks =
3412 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3413 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3414 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3415     } else {
3416 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3417 
3418 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3419 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3420 
3421 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3422 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3423 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3424     }
3425 }	/* xlog_verify_tail_lsn */
3426 
3427 /*
3428  * Perform a number of checks on the iclog before writing to disk.
3429  *
3430  * 1. Make sure the iclogs are still circular
3431  * 2. Make sure we have a good magic number
3432  * 3. Make sure we don't have magic numbers in the data
3433  * 4. Check fields of each log operation header for:
3434  *	A. Valid client identifier
3435  *	B. tid ptr value falls in valid ptr space (user space code)
3436  *	C. Length in log record header is correct according to the
3437  *		individual operation headers within record.
3438  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3439  *	log, check the preceding blocks of the physical log to make sure all
3440  *	the cycle numbers agree with the current cycle number.
3441  */
3442 STATIC void
xlog_verify_iclog(xlog_t * log,xlog_in_core_t * iclog,int count,boolean_t syncing)3443 xlog_verify_iclog(xlog_t	 *log,
3444 		  xlog_in_core_t *iclog,
3445 		  int		 count,
3446 		  boolean_t	 syncing)
3447 {
3448 	xlog_op_header_t	*ophead;
3449 	xlog_in_core_t		*icptr;
3450 	xlog_in_core_2_t	*xhdr;
3451 	xfs_caddr_t		ptr;
3452 	xfs_caddr_t		base_ptr;
3453 	__psint_t		field_offset;
3454 	__uint8_t		clientid;
3455 	int			len, i, j, k, op_len;
3456 	int			idx;
3457 
3458 	/* check validity of iclog pointers */
3459 	spin_lock(&log->l_icloglock);
3460 	icptr = log->l_iclog;
3461 	for (i=0; i < log->l_iclog_bufs; i++) {
3462 		if (icptr == NULL)
3463 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3464 		icptr = icptr->ic_next;
3465 	}
3466 	if (icptr != log->l_iclog)
3467 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3468 	spin_unlock(&log->l_icloglock);
3469 
3470 	/* check log magic numbers */
3471 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3472 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3473 
3474 	ptr = (xfs_caddr_t) &iclog->ic_header;
3475 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3476 	     ptr += BBSIZE) {
3477 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3478 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3479 				__func__);
3480 	}
3481 
3482 	/* check fields */
3483 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3484 	ptr = iclog->ic_datap;
3485 	base_ptr = ptr;
3486 	ophead = (xlog_op_header_t *)ptr;
3487 	xhdr = iclog->ic_data;
3488 	for (i = 0; i < len; i++) {
3489 		ophead = (xlog_op_header_t *)ptr;
3490 
3491 		/* clientid is only 1 byte */
3492 		field_offset = (__psint_t)
3493 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3494 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3495 			clientid = ophead->oh_clientid;
3496 		} else {
3497 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3498 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3499 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3500 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3501 				clientid = xlog_get_client_id(
3502 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3503 			} else {
3504 				clientid = xlog_get_client_id(
3505 					iclog->ic_header.h_cycle_data[idx]);
3506 			}
3507 		}
3508 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3509 			xfs_warn(log->l_mp,
3510 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3511 				__func__, clientid, ophead,
3512 				(unsigned long)field_offset);
3513 
3514 		/* check length */
3515 		field_offset = (__psint_t)
3516 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3517 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3518 			op_len = be32_to_cpu(ophead->oh_len);
3519 		} else {
3520 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3521 				    (__psint_t)iclog->ic_datap);
3522 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3523 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3524 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3525 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3526 			} else {
3527 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3528 			}
3529 		}
3530 		ptr += sizeof(xlog_op_header_t) + op_len;
3531 	}
3532 }	/* xlog_verify_iclog */
3533 #endif
3534 
3535 /*
3536  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3537  */
3538 STATIC int
xlog_state_ioerror(xlog_t * log)3539 xlog_state_ioerror(
3540 	xlog_t	*log)
3541 {
3542 	xlog_in_core_t	*iclog, *ic;
3543 
3544 	iclog = log->l_iclog;
3545 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3546 		/*
3547 		 * Mark all the incore logs IOERROR.
3548 		 * From now on, no log flushes will result.
3549 		 */
3550 		ic = iclog;
3551 		do {
3552 			ic->ic_state = XLOG_STATE_IOERROR;
3553 			ic = ic->ic_next;
3554 		} while (ic != iclog);
3555 		return 0;
3556 	}
3557 	/*
3558 	 * Return non-zero, if state transition has already happened.
3559 	 */
3560 	return 1;
3561 }
3562 
3563 /*
3564  * This is called from xfs_force_shutdown, when we're forcibly
3565  * shutting down the filesystem, typically because of an IO error.
3566  * Our main objectives here are to make sure that:
3567  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3568  *	   parties to find out, 'atomically'.
3569  *	b. those who're sleeping on log reservations, pinned objects and
3570  *	    other resources get woken up, and be told the bad news.
3571  *	c. nothing new gets queued up after (a) and (b) are done.
3572  *	d. if !logerror, flush the iclogs to disk, then seal them off
3573  *	   for business.
3574  *
3575  * Note: for delayed logging the !logerror case needs to flush the regions
3576  * held in memory out to the iclogs before flushing them to disk. This needs
3577  * to be done before the log is marked as shutdown, otherwise the flush to the
3578  * iclogs will fail.
3579  */
3580 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3581 xfs_log_force_umount(
3582 	struct xfs_mount	*mp,
3583 	int			logerror)
3584 {
3585 	xlog_ticket_t	*tic;
3586 	xlog_t		*log;
3587 	int		retval;
3588 
3589 	log = mp->m_log;
3590 
3591 	/*
3592 	 * If this happens during log recovery, don't worry about
3593 	 * locking; the log isn't open for business yet.
3594 	 */
3595 	if (!log ||
3596 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3597 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3598 		if (mp->m_sb_bp)
3599 			XFS_BUF_DONE(mp->m_sb_bp);
3600 		return 0;
3601 	}
3602 
3603 	/*
3604 	 * Somebody could've already done the hard work for us.
3605 	 * No need to get locks for this.
3606 	 */
3607 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3608 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3609 		return 1;
3610 	}
3611 	retval = 0;
3612 
3613 	/*
3614 	 * Flush the in memory commit item list before marking the log as
3615 	 * being shut down. We need to do it in this order to ensure all the
3616 	 * completed transactions are flushed to disk with the xfs_log_force()
3617 	 * call below.
3618 	 */
3619 	if (!logerror)
3620 		xlog_cil_force(log);
3621 
3622 	/*
3623 	 * mark the filesystem and the as in a shutdown state and wake
3624 	 * everybody up to tell them the bad news.
3625 	 */
3626 	spin_lock(&log->l_icloglock);
3627 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3628 	if (mp->m_sb_bp)
3629 		XFS_BUF_DONE(mp->m_sb_bp);
3630 
3631 	/*
3632 	 * This flag is sort of redundant because of the mount flag, but
3633 	 * it's good to maintain the separation between the log and the rest
3634 	 * of XFS.
3635 	 */
3636 	log->l_flags |= XLOG_IO_ERROR;
3637 
3638 	/*
3639 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3640 	 * while we're still holding the loglock.
3641 	 */
3642 	if (logerror)
3643 		retval = xlog_state_ioerror(log);
3644 	spin_unlock(&log->l_icloglock);
3645 
3646 	/*
3647 	 * We don't want anybody waiting for log reservations after this. That
3648 	 * means we have to wake up everybody queued up on reserveq as well as
3649 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3650 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3651 	 * action is protected by the grant locks.
3652 	 */
3653 	spin_lock(&log->l_grant_reserve_lock);
3654 	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3655 		wake_up(&tic->t_wait);
3656 	spin_unlock(&log->l_grant_reserve_lock);
3657 
3658 	spin_lock(&log->l_grant_write_lock);
3659 	list_for_each_entry(tic, &log->l_writeq, t_queue)
3660 		wake_up(&tic->t_wait);
3661 	spin_unlock(&log->l_grant_write_lock);
3662 
3663 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3664 		ASSERT(!logerror);
3665 		/*
3666 		 * Force the incore logs to disk before shutting the
3667 		 * log down completely.
3668 		 */
3669 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3670 
3671 		spin_lock(&log->l_icloglock);
3672 		retval = xlog_state_ioerror(log);
3673 		spin_unlock(&log->l_icloglock);
3674 	}
3675 	/*
3676 	 * Wake up everybody waiting on xfs_log_force.
3677 	 * Callback all log item committed functions as if the
3678 	 * log writes were completed.
3679 	 */
3680 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3681 
3682 #ifdef XFSERRORDEBUG
3683 	{
3684 		xlog_in_core_t	*iclog;
3685 
3686 		spin_lock(&log->l_icloglock);
3687 		iclog = log->l_iclog;
3688 		do {
3689 			ASSERT(iclog->ic_callback == 0);
3690 			iclog = iclog->ic_next;
3691 		} while (iclog != log->l_iclog);
3692 		spin_unlock(&log->l_icloglock);
3693 	}
3694 #endif
3695 	/* return non-zero if log IOERROR transition had already happened */
3696 	return retval;
3697 }
3698 
3699 STATIC int
xlog_iclogs_empty(xlog_t * log)3700 xlog_iclogs_empty(xlog_t *log)
3701 {
3702 	xlog_in_core_t	*iclog;
3703 
3704 	iclog = log->l_iclog;
3705 	do {
3706 		/* endianness does not matter here, zero is zero in
3707 		 * any language.
3708 		 */
3709 		if (iclog->ic_header.h_num_logops)
3710 			return 0;
3711 		iclog = iclog->ic_next;
3712 	} while (iclog != log->l_iclog);
3713 	return 1;
3714 }
3715