1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
do_getname(const char __user * filename,char * page)119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
getname_flags(const char __user * filename,int flags,int * empty)141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *result = __getname();
144 	int retval;
145 
146 	if (!result)
147 		return ERR_PTR(-ENOMEM);
148 
149 	retval = do_getname(filename, result);
150 	if (retval < 0) {
151 		if (retval == -ENOENT && empty)
152 			*empty = 1;
153 		if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 			__putname(result);
155 			return ERR_PTR(retval);
156 		}
157 	}
158 	audit_getname(result);
159 	return result;
160 }
161 
getname(const char __user * filename)162 char *getname(const char __user * filename)
163 {
164 	return getname_flags(filename, 0, 0);
165 }
166 
167 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)168 void putname(const char *name)
169 {
170 	if (unlikely(!audit_dummy_context()))
171 		audit_putname(name);
172 	else
173 		__putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177 
check_acl(struct inode * inode,int mask)178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 	struct posix_acl *acl;
182 
183 	if (mask & MAY_NOT_BLOCK) {
184 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 	        if (!acl)
186 	                return -EAGAIN;
187 		/* no ->get_acl() calls in RCU mode... */
188 		if (acl == ACL_NOT_CACHED)
189 			return -ECHILD;
190 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 	}
192 
193 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194 
195 	/*
196 	 * A filesystem can force a ACL callback by just never filling the
197 	 * ACL cache. But normally you'd fill the cache either at inode
198 	 * instantiation time, or on the first ->get_acl call.
199 	 *
200 	 * If the filesystem doesn't have a get_acl() function at all, we'll
201 	 * just create the negative cache entry.
202 	 */
203 	if (acl == ACL_NOT_CACHED) {
204 	        if (inode->i_op->get_acl) {
205 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 			if (IS_ERR(acl))
207 				return PTR_ERR(acl);
208 		} else {
209 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 		        return -EAGAIN;
211 		}
212 	}
213 
214 	if (acl) {
215 	        int error = posix_acl_permission(inode, acl, mask);
216 	        posix_acl_release(acl);
217 	        return error;
218 	}
219 #endif
220 
221 	return -EAGAIN;
222 }
223 
224 /*
225  * This does the basic permission checking
226  */
acl_permission_check(struct inode * inode,int mask)227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 	unsigned int mode = inode->i_mode;
230 
231 	if (current_user_ns() != inode_userns(inode))
232 		goto other_perms;
233 
234 	if (likely(current_fsuid() == inode->i_uid))
235 		mode >>= 6;
236 	else {
237 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 			int error = check_acl(inode, mask);
239 			if (error != -EAGAIN)
240 				return error;
241 		}
242 
243 		if (in_group_p(inode->i_gid))
244 			mode >>= 3;
245 	}
246 
247 other_perms:
248 	/*
249 	 * If the DACs are ok we don't need any capability check.
250 	 */
251 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 		return 0;
253 	return -EACCES;
254 }
255 
256 /**
257  * generic_permission -  check for access rights on a Posix-like filesystem
258  * @inode:	inode to check access rights for
259  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260  *
261  * Used to check for read/write/execute permissions on a file.
262  * We use "fsuid" for this, letting us set arbitrary permissions
263  * for filesystem access without changing the "normal" uids which
264  * are used for other things.
265  *
266  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267  * request cannot be satisfied (eg. requires blocking or too much complexity).
268  * It would then be called again in ref-walk mode.
269  */
generic_permission(struct inode * inode,int mask)270 int generic_permission(struct inode *inode, int mask)
271 {
272 	int ret;
273 
274 	/*
275 	 * Do the basic permission checks.
276 	 */
277 	ret = acl_permission_check(inode, mask);
278 	if (ret != -EACCES)
279 		return ret;
280 
281 	if (S_ISDIR(inode->i_mode)) {
282 		/* DACs are overridable for directories */
283 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 			return 0;
285 		if (!(mask & MAY_WRITE))
286 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 				return 0;
288 		return -EACCES;
289 	}
290 	/*
291 	 * Read/write DACs are always overridable.
292 	 * Executable DACs are overridable when there is
293 	 * at least one exec bit set.
294 	 */
295 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 			return 0;
298 
299 	/*
300 	 * Searching includes executable on directories, else just read.
301 	 */
302 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 	if (mask == MAY_READ)
304 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 			return 0;
306 
307 	return -EACCES;
308 }
309 
310 /*
311  * We _really_ want to just do "generic_permission()" without
312  * even looking at the inode->i_op values. So we keep a cache
313  * flag in inode->i_opflags, that says "this has not special
314  * permission function, use the fast case".
315  */
do_inode_permission(struct inode * inode,int mask)316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 		if (likely(inode->i_op->permission))
320 			return inode->i_op->permission(inode, mask);
321 
322 		/* This gets set once for the inode lifetime */
323 		spin_lock(&inode->i_lock);
324 		inode->i_opflags |= IOP_FASTPERM;
325 		spin_unlock(&inode->i_lock);
326 	}
327 	return generic_permission(inode, mask);
328 }
329 
330 /**
331  * inode_permission  -  check for access rights to a given inode
332  * @inode:	inode to check permission on
333  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334  *
335  * Used to check for read/write/execute permissions on an inode.
336  * We use "fsuid" for this, letting us set arbitrary permissions
337  * for filesystem access without changing the "normal" uids which
338  * are used for other things.
339  *
340  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341  */
inode_permission(struct inode * inode,int mask)342 int inode_permission(struct inode *inode, int mask)
343 {
344 	int retval;
345 
346 	if (unlikely(mask & MAY_WRITE)) {
347 		umode_t mode = inode->i_mode;
348 
349 		/*
350 		 * Nobody gets write access to a read-only fs.
351 		 */
352 		if (IS_RDONLY(inode) &&
353 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 			return -EROFS;
355 
356 		/*
357 		 * Nobody gets write access to an immutable file.
358 		 */
359 		if (IS_IMMUTABLE(inode))
360 			return -EACCES;
361 	}
362 
363 	retval = do_inode_permission(inode, mask);
364 	if (retval)
365 		return retval;
366 
367 	retval = devcgroup_inode_permission(inode, mask);
368 	if (retval)
369 		return retval;
370 
371 	return security_inode_permission(inode, mask);
372 }
373 
374 /**
375  * path_get - get a reference to a path
376  * @path: path to get the reference to
377  *
378  * Given a path increment the reference count to the dentry and the vfsmount.
379  */
path_get(struct path * path)380 void path_get(struct path *path)
381 {
382 	mntget(path->mnt);
383 	dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386 
387 /**
388  * path_put - put a reference to a path
389  * @path: path to put the reference to
390  *
391  * Given a path decrement the reference count to the dentry and the vfsmount.
392  */
path_put(struct path * path)393 void path_put(struct path *path)
394 {
395 	dput(path->dentry);
396 	mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399 
400 /*
401  * Path walking has 2 modes, rcu-walk and ref-walk (see
402  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
403  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
406  * got stuck, so ref-walk may continue from there. If this is not successful
407  * (eg. a seqcount has changed), then failure is returned and it's up to caller
408  * to restart the path walk from the beginning in ref-walk mode.
409  */
410 
411 /**
412  * unlazy_walk - try to switch to ref-walk mode.
413  * @nd: nameidata pathwalk data
414  * @dentry: child of nd->path.dentry or NULL
415  * Returns: 0 on success, -ECHILD on failure
416  *
417  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
419  * @nd or NULL.  Must be called from rcu-walk context.
420  */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 	struct fs_struct *fs = current->fs;
424 	struct dentry *parent = nd->path.dentry;
425 	int want_root = 0;
426 
427 	BUG_ON(!(nd->flags & LOOKUP_RCU));
428 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 		want_root = 1;
430 		spin_lock(&fs->lock);
431 		if (nd->root.mnt != fs->root.mnt ||
432 				nd->root.dentry != fs->root.dentry)
433 			goto err_root;
434 	}
435 	spin_lock(&parent->d_lock);
436 	if (!dentry) {
437 		if (!__d_rcu_to_refcount(parent, nd->seq))
438 			goto err_parent;
439 		BUG_ON(nd->inode != parent->d_inode);
440 	} else {
441 		if (dentry->d_parent != parent)
442 			goto err_parent;
443 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 		if (!__d_rcu_to_refcount(dentry, nd->seq))
445 			goto err_child;
446 		/*
447 		 * If the sequence check on the child dentry passed, then
448 		 * the child has not been removed from its parent. This
449 		 * means the parent dentry must be valid and able to take
450 		 * a reference at this point.
451 		 */
452 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 		BUG_ON(!parent->d_count);
454 		parent->d_count++;
455 		spin_unlock(&dentry->d_lock);
456 	}
457 	spin_unlock(&parent->d_lock);
458 	if (want_root) {
459 		path_get(&nd->root);
460 		spin_unlock(&fs->lock);
461 	}
462 	mntget(nd->path.mnt);
463 
464 	rcu_read_unlock();
465 	br_read_unlock(vfsmount_lock);
466 	nd->flags &= ~LOOKUP_RCU;
467 	return 0;
468 
469 err_child:
470 	spin_unlock(&dentry->d_lock);
471 err_parent:
472 	spin_unlock(&parent->d_lock);
473 err_root:
474 	if (want_root)
475 		spin_unlock(&fs->lock);
476 	return -ECHILD;
477 }
478 
479 /**
480  * release_open_intent - free up open intent resources
481  * @nd: pointer to nameidata
482  */
release_open_intent(struct nameidata * nd)483 void release_open_intent(struct nameidata *nd)
484 {
485 	struct file *file = nd->intent.open.file;
486 
487 	if (file && !IS_ERR(file)) {
488 		if (file->f_path.dentry == NULL)
489 			put_filp(file);
490 		else
491 			fput(file);
492 	}
493 }
494 
d_revalidate(struct dentry * dentry,struct nameidata * nd)495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 	return dentry->d_op->d_revalidate(dentry, nd);
498 }
499 
500 /**
501  * complete_walk - successful completion of path walk
502  * @nd:  pointer nameidata
503  *
504  * If we had been in RCU mode, drop out of it and legitimize nd->path.
505  * Revalidate the final result, unless we'd already done that during
506  * the path walk or the filesystem doesn't ask for it.  Return 0 on
507  * success, -error on failure.  In case of failure caller does not
508  * need to drop nd->path.
509  */
complete_walk(struct nameidata * nd)510 static int complete_walk(struct nameidata *nd)
511 {
512 	struct dentry *dentry = nd->path.dentry;
513 	int status;
514 
515 	if (nd->flags & LOOKUP_RCU) {
516 		nd->flags &= ~LOOKUP_RCU;
517 		if (!(nd->flags & LOOKUP_ROOT))
518 			nd->root.mnt = NULL;
519 		spin_lock(&dentry->d_lock);
520 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 			spin_unlock(&dentry->d_lock);
522 			rcu_read_unlock();
523 			br_read_unlock(vfsmount_lock);
524 			return -ECHILD;
525 		}
526 		BUG_ON(nd->inode != dentry->d_inode);
527 		spin_unlock(&dentry->d_lock);
528 		mntget(nd->path.mnt);
529 		rcu_read_unlock();
530 		br_read_unlock(vfsmount_lock);
531 	}
532 
533 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 		return 0;
535 
536 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 		return 0;
538 
539 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 		return 0;
541 
542 	/* Note: we do not d_invalidate() */
543 	status = d_revalidate(dentry, nd);
544 	if (status > 0)
545 		return 0;
546 
547 	if (!status)
548 		status = -ESTALE;
549 
550 	path_put(&nd->path);
551 	return status;
552 }
553 
set_root(struct nameidata * nd)554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 	if (!nd->root.mnt)
557 		get_fs_root(current->fs, &nd->root);
558 }
559 
560 static int link_path_walk(const char *, struct nameidata *);
561 
set_root_rcu(struct nameidata * nd)562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 	if (!nd->root.mnt) {
565 		struct fs_struct *fs = current->fs;
566 		unsigned seq;
567 
568 		do {
569 			seq = read_seqcount_begin(&fs->seq);
570 			nd->root = fs->root;
571 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 		} while (read_seqcount_retry(&fs->seq, seq));
573 	}
574 }
575 
__vfs_follow_link(struct nameidata * nd,const char * link)576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 	int ret;
579 
580 	if (IS_ERR(link))
581 		goto fail;
582 
583 	if (*link == '/') {
584 		set_root(nd);
585 		path_put(&nd->path);
586 		nd->path = nd->root;
587 		path_get(&nd->root);
588 		nd->flags |= LOOKUP_JUMPED;
589 	}
590 	nd->inode = nd->path.dentry->d_inode;
591 
592 	ret = link_path_walk(link, nd);
593 	return ret;
594 fail:
595 	path_put(&nd->path);
596 	return PTR_ERR(link);
597 }
598 
path_put_conditional(struct path * path,struct nameidata * nd)599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 	dput(path->dentry);
602 	if (path->mnt != nd->path.mnt)
603 		mntput(path->mnt);
604 }
605 
path_to_nameidata(const struct path * path,struct nameidata * nd)606 static inline void path_to_nameidata(const struct path *path,
607 					struct nameidata *nd)
608 {
609 	if (!(nd->flags & LOOKUP_RCU)) {
610 		dput(nd->path.dentry);
611 		if (nd->path.mnt != path->mnt)
612 			mntput(nd->path.mnt);
613 	}
614 	nd->path.mnt = path->mnt;
615 	nd->path.dentry = path->dentry;
616 }
617 
put_link(struct nameidata * nd,struct path * link,void * cookie)618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 	struct inode *inode = link->dentry->d_inode;
621 	if (!IS_ERR(cookie) && inode->i_op->put_link)
622 		inode->i_op->put_link(link->dentry, nd, cookie);
623 	path_put(link);
624 }
625 
626 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 	int error;
630 	struct dentry *dentry = link->dentry;
631 
632 	BUG_ON(nd->flags & LOOKUP_RCU);
633 
634 	if (link->mnt == nd->path.mnt)
635 		mntget(link->mnt);
636 
637 	if (unlikely(current->total_link_count >= 40)) {
638 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 		path_put(&nd->path);
640 		return -ELOOP;
641 	}
642 	cond_resched();
643 	current->total_link_count++;
644 
645 	touch_atime(link->mnt, dentry);
646 	nd_set_link(nd, NULL);
647 
648 	error = security_inode_follow_link(link->dentry, nd);
649 	if (error) {
650 		*p = ERR_PTR(error); /* no ->put_link(), please */
651 		path_put(&nd->path);
652 		return error;
653 	}
654 
655 	nd->last_type = LAST_BIND;
656 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 	error = PTR_ERR(*p);
658 	if (!IS_ERR(*p)) {
659 		char *s = nd_get_link(nd);
660 		error = 0;
661 		if (s)
662 			error = __vfs_follow_link(nd, s);
663 		else if (nd->last_type == LAST_BIND) {
664 			nd->flags |= LOOKUP_JUMPED;
665 			nd->inode = nd->path.dentry->d_inode;
666 			if (nd->inode->i_op->follow_link) {
667 				/* stepped on a _really_ weird one */
668 				path_put(&nd->path);
669 				error = -ELOOP;
670 			}
671 		}
672 	}
673 	return error;
674 }
675 
follow_up_rcu(struct path * path)676 static int follow_up_rcu(struct path *path)
677 {
678 	struct mount *mnt = real_mount(path->mnt);
679 	struct mount *parent;
680 	struct dentry *mountpoint;
681 
682 	parent = mnt->mnt_parent;
683 	if (&parent->mnt == path->mnt)
684 		return 0;
685 	mountpoint = mnt->mnt_mountpoint;
686 	path->dentry = mountpoint;
687 	path->mnt = &parent->mnt;
688 	return 1;
689 }
690 
follow_up(struct path * path)691 int follow_up(struct path *path)
692 {
693 	struct mount *mnt = real_mount(path->mnt);
694 	struct mount *parent;
695 	struct dentry *mountpoint;
696 
697 	br_read_lock(vfsmount_lock);
698 	parent = mnt->mnt_parent;
699 	if (&parent->mnt == path->mnt) {
700 		br_read_unlock(vfsmount_lock);
701 		return 0;
702 	}
703 	mntget(&parent->mnt);
704 	mountpoint = dget(mnt->mnt_mountpoint);
705 	br_read_unlock(vfsmount_lock);
706 	dput(path->dentry);
707 	path->dentry = mountpoint;
708 	mntput(path->mnt);
709 	path->mnt = &parent->mnt;
710 	return 1;
711 }
712 
713 /*
714  * Perform an automount
715  * - return -EISDIR to tell follow_managed() to stop and return the path we
716  *   were called with.
717  */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)718 static int follow_automount(struct path *path, unsigned flags,
719 			    bool *need_mntput)
720 {
721 	struct vfsmount *mnt;
722 	int err;
723 
724 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 		return -EREMOTE;
726 
727 	/* We don't want to mount if someone's just doing a stat -
728 	 * unless they're stat'ing a directory and appended a '/' to
729 	 * the name.
730 	 *
731 	 * We do, however, want to mount if someone wants to open or
732 	 * create a file of any type under the mountpoint, wants to
733 	 * traverse through the mountpoint or wants to open the
734 	 * mounted directory.  Also, autofs may mark negative dentries
735 	 * as being automount points.  These will need the attentions
736 	 * of the daemon to instantiate them before they can be used.
737 	 */
738 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 	    path->dentry->d_inode)
741 		return -EISDIR;
742 
743 	current->total_link_count++;
744 	if (current->total_link_count >= 40)
745 		return -ELOOP;
746 
747 	mnt = path->dentry->d_op->d_automount(path);
748 	if (IS_ERR(mnt)) {
749 		/*
750 		 * The filesystem is allowed to return -EISDIR here to indicate
751 		 * it doesn't want to automount.  For instance, autofs would do
752 		 * this so that its userspace daemon can mount on this dentry.
753 		 *
754 		 * However, we can only permit this if it's a terminal point in
755 		 * the path being looked up; if it wasn't then the remainder of
756 		 * the path is inaccessible and we should say so.
757 		 */
758 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 			return -EREMOTE;
760 		return PTR_ERR(mnt);
761 	}
762 
763 	if (!mnt) /* mount collision */
764 		return 0;
765 
766 	if (!*need_mntput) {
767 		/* lock_mount() may release path->mnt on error */
768 		mntget(path->mnt);
769 		*need_mntput = true;
770 	}
771 	err = finish_automount(mnt, path);
772 
773 	switch (err) {
774 	case -EBUSY:
775 		/* Someone else made a mount here whilst we were busy */
776 		return 0;
777 	case 0:
778 		path_put(path);
779 		path->mnt = mnt;
780 		path->dentry = dget(mnt->mnt_root);
781 		return 0;
782 	default:
783 		return err;
784 	}
785 
786 }
787 
788 /*
789  * Handle a dentry that is managed in some way.
790  * - Flagged for transit management (autofs)
791  * - Flagged as mountpoint
792  * - Flagged as automount point
793  *
794  * This may only be called in refwalk mode.
795  *
796  * Serialization is taken care of in namespace.c
797  */
follow_managed(struct path * path,unsigned flags)798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 	unsigned managed;
802 	bool need_mntput = false;
803 	int ret = 0;
804 
805 	/* Given that we're not holding a lock here, we retain the value in a
806 	 * local variable for each dentry as we look at it so that we don't see
807 	 * the components of that value change under us */
808 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 	       managed &= DCACHE_MANAGED_DENTRY,
810 	       unlikely(managed != 0)) {
811 		/* Allow the filesystem to manage the transit without i_mutex
812 		 * being held. */
813 		if (managed & DCACHE_MANAGE_TRANSIT) {
814 			BUG_ON(!path->dentry->d_op);
815 			BUG_ON(!path->dentry->d_op->d_manage);
816 			ret = path->dentry->d_op->d_manage(path->dentry, false);
817 			if (ret < 0)
818 				break;
819 		}
820 
821 		/* Transit to a mounted filesystem. */
822 		if (managed & DCACHE_MOUNTED) {
823 			struct vfsmount *mounted = lookup_mnt(path);
824 			if (mounted) {
825 				dput(path->dentry);
826 				if (need_mntput)
827 					mntput(path->mnt);
828 				path->mnt = mounted;
829 				path->dentry = dget(mounted->mnt_root);
830 				need_mntput = true;
831 				continue;
832 			}
833 
834 			/* Something is mounted on this dentry in another
835 			 * namespace and/or whatever was mounted there in this
836 			 * namespace got unmounted before we managed to get the
837 			 * vfsmount_lock */
838 		}
839 
840 		/* Handle an automount point */
841 		if (managed & DCACHE_NEED_AUTOMOUNT) {
842 			ret = follow_automount(path, flags, &need_mntput);
843 			if (ret < 0)
844 				break;
845 			continue;
846 		}
847 
848 		/* We didn't change the current path point */
849 		break;
850 	}
851 
852 	if (need_mntput && path->mnt == mnt)
853 		mntput(path->mnt);
854 	if (ret == -EISDIR)
855 		ret = 0;
856 	return ret < 0 ? ret : need_mntput;
857 }
858 
follow_down_one(struct path * path)859 int follow_down_one(struct path *path)
860 {
861 	struct vfsmount *mounted;
862 
863 	mounted = lookup_mnt(path);
864 	if (mounted) {
865 		dput(path->dentry);
866 		mntput(path->mnt);
867 		path->mnt = mounted;
868 		path->dentry = dget(mounted->mnt_root);
869 		return 1;
870 	}
871 	return 0;
872 }
873 
managed_dentry_might_block(struct dentry * dentry)874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 		dentry->d_op->d_manage(dentry, true) < 0);
878 }
879 
880 /*
881  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
882  * we meet a managed dentry that would need blocking.
883  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 			       struct inode **inode)
886 {
887 	for (;;) {
888 		struct mount *mounted;
889 		/*
890 		 * Don't forget we might have a non-mountpoint managed dentry
891 		 * that wants to block transit.
892 		 */
893 		if (unlikely(managed_dentry_might_block(path->dentry)))
894 			return false;
895 
896 		if (!d_mountpoint(path->dentry))
897 			break;
898 
899 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 		if (!mounted)
901 			break;
902 		path->mnt = &mounted->mnt;
903 		path->dentry = mounted->mnt.mnt_root;
904 		nd->flags |= LOOKUP_JUMPED;
905 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 		/*
907 		 * Update the inode too. We don't need to re-check the
908 		 * dentry sequence number here after this d_inode read,
909 		 * because a mount-point is always pinned.
910 		 */
911 		*inode = path->dentry->d_inode;
912 	}
913 	return true;
914 }
915 
follow_mount_rcu(struct nameidata * nd)916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 	while (d_mountpoint(nd->path.dentry)) {
919 		struct mount *mounted;
920 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 		if (!mounted)
922 			break;
923 		nd->path.mnt = &mounted->mnt;
924 		nd->path.dentry = mounted->mnt.mnt_root;
925 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 	}
927 }
928 
follow_dotdot_rcu(struct nameidata * nd)929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 	set_root_rcu(nd);
932 
933 	while (1) {
934 		if (nd->path.dentry == nd->root.dentry &&
935 		    nd->path.mnt == nd->root.mnt) {
936 			break;
937 		}
938 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 			struct dentry *old = nd->path.dentry;
940 			struct dentry *parent = old->d_parent;
941 			unsigned seq;
942 
943 			seq = read_seqcount_begin(&parent->d_seq);
944 			if (read_seqcount_retry(&old->d_seq, nd->seq))
945 				goto failed;
946 			nd->path.dentry = parent;
947 			nd->seq = seq;
948 			break;
949 		}
950 		if (!follow_up_rcu(&nd->path))
951 			break;
952 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 	}
954 	follow_mount_rcu(nd);
955 	nd->inode = nd->path.dentry->d_inode;
956 	return 0;
957 
958 failed:
959 	nd->flags &= ~LOOKUP_RCU;
960 	if (!(nd->flags & LOOKUP_ROOT))
961 		nd->root.mnt = NULL;
962 	rcu_read_unlock();
963 	br_read_unlock(vfsmount_lock);
964 	return -ECHILD;
965 }
966 
967 /*
968  * Follow down to the covering mount currently visible to userspace.  At each
969  * point, the filesystem owning that dentry may be queried as to whether the
970  * caller is permitted to proceed or not.
971  */
follow_down(struct path * path)972 int follow_down(struct path *path)
973 {
974 	unsigned managed;
975 	int ret;
976 
977 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 		/* Allow the filesystem to manage the transit without i_mutex
980 		 * being held.
981 		 *
982 		 * We indicate to the filesystem if someone is trying to mount
983 		 * something here.  This gives autofs the chance to deny anyone
984 		 * other than its daemon the right to mount on its
985 		 * superstructure.
986 		 *
987 		 * The filesystem may sleep at this point.
988 		 */
989 		if (managed & DCACHE_MANAGE_TRANSIT) {
990 			BUG_ON(!path->dentry->d_op);
991 			BUG_ON(!path->dentry->d_op->d_manage);
992 			ret = path->dentry->d_op->d_manage(
993 				path->dentry, false);
994 			if (ret < 0)
995 				return ret == -EISDIR ? 0 : ret;
996 		}
997 
998 		/* Transit to a mounted filesystem. */
999 		if (managed & DCACHE_MOUNTED) {
1000 			struct vfsmount *mounted = lookup_mnt(path);
1001 			if (!mounted)
1002 				break;
1003 			dput(path->dentry);
1004 			mntput(path->mnt);
1005 			path->mnt = mounted;
1006 			path->dentry = dget(mounted->mnt_root);
1007 			continue;
1008 		}
1009 
1010 		/* Don't handle automount points here */
1011 		break;
1012 	}
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018  */
follow_mount(struct path * path)1019 static void follow_mount(struct path *path)
1020 {
1021 	while (d_mountpoint(path->dentry)) {
1022 		struct vfsmount *mounted = lookup_mnt(path);
1023 		if (!mounted)
1024 			break;
1025 		dput(path->dentry);
1026 		mntput(path->mnt);
1027 		path->mnt = mounted;
1028 		path->dentry = dget(mounted->mnt_root);
1029 	}
1030 }
1031 
follow_dotdot(struct nameidata * nd)1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 	set_root(nd);
1035 
1036 	while(1) {
1037 		struct dentry *old = nd->path.dentry;
1038 
1039 		if (nd->path.dentry == nd->root.dentry &&
1040 		    nd->path.mnt == nd->root.mnt) {
1041 			break;
1042 		}
1043 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 			/* rare case of legitimate dget_parent()... */
1045 			nd->path.dentry = dget_parent(nd->path.dentry);
1046 			dput(old);
1047 			break;
1048 		}
1049 		if (!follow_up(&nd->path))
1050 			break;
1051 	}
1052 	follow_mount(&nd->path);
1053 	nd->inode = nd->path.dentry->d_inode;
1054 }
1055 
1056 /*
1057  * Allocate a dentry with name and parent, and perform a parent
1058  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060  * have verified that no child exists while under i_mutex.
1061  */
d_alloc_and_lookup(struct dentry * parent,struct qstr * name,struct nameidata * nd)1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 				struct qstr *name, struct nameidata *nd)
1064 {
1065 	struct inode *inode = parent->d_inode;
1066 	struct dentry *dentry;
1067 	struct dentry *old;
1068 
1069 	/* Don't create child dentry for a dead directory. */
1070 	if (unlikely(IS_DEADDIR(inode)))
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	dentry = d_alloc(parent, name);
1074 	if (unlikely(!dentry))
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	old = inode->i_op->lookup(inode, dentry, nd);
1078 	if (unlikely(old)) {
1079 		dput(dentry);
1080 		dentry = old;
1081 	}
1082 	return dentry;
1083 }
1084 
1085 /*
1086  * We already have a dentry, but require a lookup to be performed on the parent
1087  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089  * child exists while under i_mutex.
1090  */
d_inode_lookup(struct dentry * parent,struct dentry * dentry,struct nameidata * nd)1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 				     struct nameidata *nd)
1093 {
1094 	struct inode *inode = parent->d_inode;
1095 	struct dentry *old;
1096 
1097 	/* Don't create child dentry for a dead directory. */
1098 	if (unlikely(IS_DEADDIR(inode))) {
1099 		dput(dentry);
1100 		return ERR_PTR(-ENOENT);
1101 	}
1102 
1103 	old = inode->i_op->lookup(inode, dentry, nd);
1104 	if (unlikely(old)) {
1105 		dput(dentry);
1106 		dentry = old;
1107 	}
1108 	return dentry;
1109 }
1110 
1111 /*
1112  *  It's more convoluted than I'd like it to be, but... it's still fairly
1113  *  small and for now I'd prefer to have fast path as straight as possible.
1114  *  It _is_ time-critical.
1115  */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path,struct inode ** inode)1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 			struct path *path, struct inode **inode)
1118 {
1119 	struct vfsmount *mnt = nd->path.mnt;
1120 	struct dentry *dentry, *parent = nd->path.dentry;
1121 	int need_reval = 1;
1122 	int status = 1;
1123 	int err;
1124 
1125 	/*
1126 	 * Rename seqlock is not required here because in the off chance
1127 	 * of a false negative due to a concurrent rename, we're going to
1128 	 * do the non-racy lookup, below.
1129 	 */
1130 	if (nd->flags & LOOKUP_RCU) {
1131 		unsigned seq;
1132 		*inode = nd->inode;
1133 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 		if (!dentry)
1135 			goto unlazy;
1136 
1137 		/* Memory barrier in read_seqcount_begin of child is enough */
1138 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 			return -ECHILD;
1140 		nd->seq = seq;
1141 
1142 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 			status = d_revalidate(dentry, nd);
1144 			if (unlikely(status <= 0)) {
1145 				if (status != -ECHILD)
1146 					need_reval = 0;
1147 				goto unlazy;
1148 			}
1149 		}
1150 		if (unlikely(d_need_lookup(dentry)))
1151 			goto unlazy;
1152 		path->mnt = mnt;
1153 		path->dentry = dentry;
1154 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 			goto unlazy;
1156 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 			goto unlazy;
1158 		return 0;
1159 unlazy:
1160 		if (unlazy_walk(nd, dentry))
1161 			return -ECHILD;
1162 	} else {
1163 		dentry = __d_lookup(parent, name);
1164 	}
1165 
1166 	if (dentry && unlikely(d_need_lookup(dentry))) {
1167 		dput(dentry);
1168 		dentry = NULL;
1169 	}
1170 retry:
1171 	if (unlikely(!dentry)) {
1172 		struct inode *dir = parent->d_inode;
1173 		BUG_ON(nd->inode != dir);
1174 
1175 		mutex_lock(&dir->i_mutex);
1176 		dentry = d_lookup(parent, name);
1177 		if (likely(!dentry)) {
1178 			dentry = d_alloc_and_lookup(parent, name, nd);
1179 			if (IS_ERR(dentry)) {
1180 				mutex_unlock(&dir->i_mutex);
1181 				return PTR_ERR(dentry);
1182 			}
1183 			/* known good */
1184 			need_reval = 0;
1185 			status = 1;
1186 		} else if (unlikely(d_need_lookup(dentry))) {
1187 			dentry = d_inode_lookup(parent, dentry, nd);
1188 			if (IS_ERR(dentry)) {
1189 				mutex_unlock(&dir->i_mutex);
1190 				return PTR_ERR(dentry);
1191 			}
1192 			/* known good */
1193 			need_reval = 0;
1194 			status = 1;
1195 		}
1196 		mutex_unlock(&dir->i_mutex);
1197 	}
1198 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 		status = d_revalidate(dentry, nd);
1200 	if (unlikely(status <= 0)) {
1201 		if (status < 0) {
1202 			dput(dentry);
1203 			return status;
1204 		}
1205 		if (!d_invalidate(dentry)) {
1206 			dput(dentry);
1207 			dentry = NULL;
1208 			need_reval = 1;
1209 			goto retry;
1210 		}
1211 	}
1212 
1213 	path->mnt = mnt;
1214 	path->dentry = dentry;
1215 	err = follow_managed(path, nd->flags);
1216 	if (unlikely(err < 0)) {
1217 		path_put_conditional(path, nd);
1218 		return err;
1219 	}
1220 	if (err)
1221 		nd->flags |= LOOKUP_JUMPED;
1222 	*inode = path->dentry->d_inode;
1223 	return 0;
1224 }
1225 
may_lookup(struct nameidata * nd)1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 	if (nd->flags & LOOKUP_RCU) {
1229 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 		if (err != -ECHILD)
1231 			return err;
1232 		if (unlazy_walk(nd, NULL))
1233 			return -ECHILD;
1234 	}
1235 	return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237 
handle_dots(struct nameidata * nd,int type)1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 	if (type == LAST_DOTDOT) {
1241 		if (nd->flags & LOOKUP_RCU) {
1242 			if (follow_dotdot_rcu(nd))
1243 				return -ECHILD;
1244 		} else
1245 			follow_dotdot(nd);
1246 	}
1247 	return 0;
1248 }
1249 
terminate_walk(struct nameidata * nd)1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 	if (!(nd->flags & LOOKUP_RCU)) {
1253 		path_put(&nd->path);
1254 	} else {
1255 		nd->flags &= ~LOOKUP_RCU;
1256 		if (!(nd->flags & LOOKUP_ROOT))
1257 			nd->root.mnt = NULL;
1258 		rcu_read_unlock();
1259 		br_read_unlock(vfsmount_lock);
1260 	}
1261 }
1262 
1263 /*
1264  * Do we need to follow links? We _really_ want to be able
1265  * to do this check without having to look at inode->i_op,
1266  * so we keep a cache of "no, this doesn't need follow_link"
1267  * for the common case.
1268  */
should_follow_link(struct inode * inode,int follow)1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 		if (likely(inode->i_op->follow_link))
1273 			return follow;
1274 
1275 		/* This gets set once for the inode lifetime */
1276 		spin_lock(&inode->i_lock);
1277 		inode->i_opflags |= IOP_NOFOLLOW;
1278 		spin_unlock(&inode->i_lock);
1279 	}
1280 	return 0;
1281 }
1282 
walk_component(struct nameidata * nd,struct path * path,struct qstr * name,int type,int follow)1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 		struct qstr *name, int type, int follow)
1285 {
1286 	struct inode *inode;
1287 	int err;
1288 	/*
1289 	 * "." and ".." are special - ".." especially so because it has
1290 	 * to be able to know about the current root directory and
1291 	 * parent relationships.
1292 	 */
1293 	if (unlikely(type != LAST_NORM))
1294 		return handle_dots(nd, type);
1295 	err = do_lookup(nd, name, path, &inode);
1296 	if (unlikely(err)) {
1297 		terminate_walk(nd);
1298 		return err;
1299 	}
1300 	if (!inode) {
1301 		path_to_nameidata(path, nd);
1302 		terminate_walk(nd);
1303 		return -ENOENT;
1304 	}
1305 	if (should_follow_link(inode, follow)) {
1306 		if (nd->flags & LOOKUP_RCU) {
1307 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 				terminate_walk(nd);
1309 				return -ECHILD;
1310 			}
1311 		}
1312 		BUG_ON(inode != path->dentry->d_inode);
1313 		return 1;
1314 	}
1315 	path_to_nameidata(path, nd);
1316 	nd->inode = inode;
1317 	return 0;
1318 }
1319 
1320 /*
1321  * This limits recursive symlink follows to 8, while
1322  * limiting consecutive symlinks to 40.
1323  *
1324  * Without that kind of total limit, nasty chains of consecutive
1325  * symlinks can cause almost arbitrarily long lookups.
1326  */
nested_symlink(struct path * path,struct nameidata * nd)1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 	int res;
1330 
1331 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 		path_put_conditional(path, nd);
1333 		path_put(&nd->path);
1334 		return -ELOOP;
1335 	}
1336 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337 
1338 	nd->depth++;
1339 	current->link_count++;
1340 
1341 	do {
1342 		struct path link = *path;
1343 		void *cookie;
1344 
1345 		res = follow_link(&link, nd, &cookie);
1346 		if (!res)
1347 			res = walk_component(nd, path, &nd->last,
1348 					     nd->last_type, LOOKUP_FOLLOW);
1349 		put_link(nd, &link, cookie);
1350 	} while (res > 0);
1351 
1352 	current->link_count--;
1353 	nd->depth--;
1354 	return res;
1355 }
1356 
1357 /*
1358  * We really don't want to look at inode->i_op->lookup
1359  * when we don't have to. So we keep a cache bit in
1360  * the inode ->i_opflags field that says "yes, we can
1361  * do lookup on this inode".
1362  */
can_lookup(struct inode * inode)1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 	if (likely(inode->i_opflags & IOP_LOOKUP))
1366 		return 1;
1367 	if (likely(!inode->i_op->lookup))
1368 		return 0;
1369 
1370 	/* We do this once for the lifetime of the inode */
1371 	spin_lock(&inode->i_lock);
1372 	inode->i_opflags |= IOP_LOOKUP;
1373 	spin_unlock(&inode->i_lock);
1374 	return 1;
1375 }
1376 
full_name_hash(const unsigned char * name,unsigned int len)1377 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1378 {
1379 	unsigned long hash = init_name_hash();
1380 	while (len--)
1381 		hash = partial_name_hash(*name++, hash);
1382 	return end_name_hash(hash);
1383 }
1384 EXPORT_SYMBOL(full_name_hash);
1385 
1386 /*
1387  * We know there's a real path component here of at least
1388  * one character.
1389  */
hash_name(const char * name,unsigned int * hashp)1390 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1391 {
1392 	unsigned long hash = init_name_hash();
1393 	unsigned long len = 0, c;
1394 
1395 	c = (unsigned char)*name;
1396 	do {
1397 		len++;
1398 		hash = partial_name_hash(c, hash);
1399 		c = (unsigned char)name[len];
1400 	} while (c && c != '/');
1401 	*hashp = end_name_hash(hash);
1402 	return len;
1403 }
1404 
1405 /*
1406  * Name resolution.
1407  * This is the basic name resolution function, turning a pathname into
1408  * the final dentry. We expect 'base' to be positive and a directory.
1409  *
1410  * Returns 0 and nd will have valid dentry and mnt on success.
1411  * Returns error and drops reference to input namei data on failure.
1412  */
link_path_walk(const char * name,struct nameidata * nd)1413 static int link_path_walk(const char *name, struct nameidata *nd)
1414 {
1415 	struct path next;
1416 	int err;
1417 
1418 	while (*name=='/')
1419 		name++;
1420 	if (!*name)
1421 		return 0;
1422 
1423 	/* At this point we know we have a real path component. */
1424 	for(;;) {
1425 		struct qstr this;
1426 		long len;
1427 		int type;
1428 
1429 		err = may_lookup(nd);
1430  		if (err)
1431 			break;
1432 
1433 		len = hash_name(name, &this.hash);
1434 		this.name = name;
1435 		this.len = len;
1436 
1437 		type = LAST_NORM;
1438 		if (name[0] == '.') switch (len) {
1439 			case 2:
1440 				if (name[1] == '.') {
1441 					type = LAST_DOTDOT;
1442 					nd->flags |= LOOKUP_JUMPED;
1443 				}
1444 				break;
1445 			case 1:
1446 				type = LAST_DOT;
1447 		}
1448 		if (likely(type == LAST_NORM)) {
1449 			struct dentry *parent = nd->path.dentry;
1450 			nd->flags &= ~LOOKUP_JUMPED;
1451 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1452 				err = parent->d_op->d_hash(parent, nd->inode,
1453 							   &this);
1454 				if (err < 0)
1455 					break;
1456 			}
1457 		}
1458 
1459 		if (!name[len])
1460 			goto last_component;
1461 		/*
1462 		 * If it wasn't NUL, we know it was '/'. Skip that
1463 		 * slash, and continue until no more slashes.
1464 		 */
1465 		do {
1466 			len++;
1467 		} while (unlikely(name[len] == '/'));
1468 		if (!name[len])
1469 			goto last_component;
1470 		name += len;
1471 
1472 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1473 		if (err < 0)
1474 			return err;
1475 
1476 		if (err) {
1477 			err = nested_symlink(&next, nd);
1478 			if (err)
1479 				return err;
1480 		}
1481 		if (can_lookup(nd->inode))
1482 			continue;
1483 		err = -ENOTDIR;
1484 		break;
1485 		/* here ends the main loop */
1486 
1487 last_component:
1488 		nd->last = this;
1489 		nd->last_type = type;
1490 		return 0;
1491 	}
1492 	terminate_walk(nd);
1493 	return err;
1494 }
1495 
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1496 static int path_init(int dfd, const char *name, unsigned int flags,
1497 		     struct nameidata *nd, struct file **fp)
1498 {
1499 	int retval = 0;
1500 	int fput_needed;
1501 	struct file *file;
1502 
1503 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1504 	nd->flags = flags | LOOKUP_JUMPED;
1505 	nd->depth = 0;
1506 	if (flags & LOOKUP_ROOT) {
1507 		struct inode *inode = nd->root.dentry->d_inode;
1508 		if (*name) {
1509 			if (!inode->i_op->lookup)
1510 				return -ENOTDIR;
1511 			retval = inode_permission(inode, MAY_EXEC);
1512 			if (retval)
1513 				return retval;
1514 		}
1515 		nd->path = nd->root;
1516 		nd->inode = inode;
1517 		if (flags & LOOKUP_RCU) {
1518 			br_read_lock(vfsmount_lock);
1519 			rcu_read_lock();
1520 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1521 		} else {
1522 			path_get(&nd->path);
1523 		}
1524 		return 0;
1525 	}
1526 
1527 	nd->root.mnt = NULL;
1528 
1529 	if (*name=='/') {
1530 		if (flags & LOOKUP_RCU) {
1531 			br_read_lock(vfsmount_lock);
1532 			rcu_read_lock();
1533 			set_root_rcu(nd);
1534 		} else {
1535 			set_root(nd);
1536 			path_get(&nd->root);
1537 		}
1538 		nd->path = nd->root;
1539 	} else if (dfd == AT_FDCWD) {
1540 		if (flags & LOOKUP_RCU) {
1541 			struct fs_struct *fs = current->fs;
1542 			unsigned seq;
1543 
1544 			br_read_lock(vfsmount_lock);
1545 			rcu_read_lock();
1546 
1547 			do {
1548 				seq = read_seqcount_begin(&fs->seq);
1549 				nd->path = fs->pwd;
1550 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1551 			} while (read_seqcount_retry(&fs->seq, seq));
1552 		} else {
1553 			get_fs_pwd(current->fs, &nd->path);
1554 		}
1555 	} else {
1556 		struct dentry *dentry;
1557 
1558 		file = fget_raw_light(dfd, &fput_needed);
1559 		retval = -EBADF;
1560 		if (!file)
1561 			goto out_fail;
1562 
1563 		dentry = file->f_path.dentry;
1564 
1565 		if (*name) {
1566 			retval = -ENOTDIR;
1567 			if (!S_ISDIR(dentry->d_inode->i_mode))
1568 				goto fput_fail;
1569 
1570 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1571 			if (retval)
1572 				goto fput_fail;
1573 		}
1574 
1575 		nd->path = file->f_path;
1576 		if (flags & LOOKUP_RCU) {
1577 			if (fput_needed)
1578 				*fp = file;
1579 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1580 			br_read_lock(vfsmount_lock);
1581 			rcu_read_lock();
1582 		} else {
1583 			path_get(&file->f_path);
1584 			fput_light(file, fput_needed);
1585 		}
1586 	}
1587 
1588 	nd->inode = nd->path.dentry->d_inode;
1589 	return 0;
1590 
1591 fput_fail:
1592 	fput_light(file, fput_needed);
1593 out_fail:
1594 	return retval;
1595 }
1596 
lookup_last(struct nameidata * nd,struct path * path)1597 static inline int lookup_last(struct nameidata *nd, struct path *path)
1598 {
1599 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1600 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1601 
1602 	nd->flags &= ~LOOKUP_PARENT;
1603 	return walk_component(nd, path, &nd->last, nd->last_type,
1604 					nd->flags & LOOKUP_FOLLOW);
1605 }
1606 
1607 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1608 static int path_lookupat(int dfd, const char *name,
1609 				unsigned int flags, struct nameidata *nd)
1610 {
1611 	struct file *base = NULL;
1612 	struct path path;
1613 	int err;
1614 
1615 	/*
1616 	 * Path walking is largely split up into 2 different synchronisation
1617 	 * schemes, rcu-walk and ref-walk (explained in
1618 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1619 	 * path walk code, but some things particularly setup, cleanup, and
1620 	 * following mounts are sufficiently divergent that functions are
1621 	 * duplicated. Typically there is a function foo(), and its RCU
1622 	 * analogue, foo_rcu().
1623 	 *
1624 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1625 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1626 	 * be handled by restarting a traditional ref-walk (which will always
1627 	 * be able to complete).
1628 	 */
1629 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1630 
1631 	if (unlikely(err))
1632 		return err;
1633 
1634 	current->total_link_count = 0;
1635 	err = link_path_walk(name, nd);
1636 
1637 	if (!err && !(flags & LOOKUP_PARENT)) {
1638 		err = lookup_last(nd, &path);
1639 		while (err > 0) {
1640 			void *cookie;
1641 			struct path link = path;
1642 			nd->flags |= LOOKUP_PARENT;
1643 			err = follow_link(&link, nd, &cookie);
1644 			if (!err)
1645 				err = lookup_last(nd, &path);
1646 			put_link(nd, &link, cookie);
1647 		}
1648 	}
1649 
1650 	if (!err)
1651 		err = complete_walk(nd);
1652 
1653 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1654 		if (!nd->inode->i_op->lookup) {
1655 			path_put(&nd->path);
1656 			err = -ENOTDIR;
1657 		}
1658 	}
1659 
1660 	if (base)
1661 		fput(base);
1662 
1663 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1664 		path_put(&nd->root);
1665 		nd->root.mnt = NULL;
1666 	}
1667 	return err;
1668 }
1669 
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1670 static int do_path_lookup(int dfd, const char *name,
1671 				unsigned int flags, struct nameidata *nd)
1672 {
1673 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1674 	if (unlikely(retval == -ECHILD))
1675 		retval = path_lookupat(dfd, name, flags, nd);
1676 	if (unlikely(retval == -ESTALE))
1677 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1678 
1679 	if (likely(!retval)) {
1680 		if (unlikely(!audit_dummy_context())) {
1681 			if (nd->path.dentry && nd->inode)
1682 				audit_inode(name, nd->path.dentry);
1683 		}
1684 	}
1685 	return retval;
1686 }
1687 
kern_path_parent(const char * name,struct nameidata * nd)1688 int kern_path_parent(const char *name, struct nameidata *nd)
1689 {
1690 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1691 }
1692 
kern_path(const char * name,unsigned int flags,struct path * path)1693 int kern_path(const char *name, unsigned int flags, struct path *path)
1694 {
1695 	struct nameidata nd;
1696 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1697 	if (!res)
1698 		*path = nd.path;
1699 	return res;
1700 }
1701 
1702 /**
1703  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1704  * @dentry:  pointer to dentry of the base directory
1705  * @mnt: pointer to vfs mount of the base directory
1706  * @name: pointer to file name
1707  * @flags: lookup flags
1708  * @path: pointer to struct path to fill
1709  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)1710 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1711 		    const char *name, unsigned int flags,
1712 		    struct path *path)
1713 {
1714 	struct nameidata nd;
1715 	int err;
1716 	nd.root.dentry = dentry;
1717 	nd.root.mnt = mnt;
1718 	BUG_ON(flags & LOOKUP_PARENT);
1719 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1720 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1721 	if (!err)
1722 		*path = nd.path;
1723 	return err;
1724 }
1725 
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1726 static struct dentry *__lookup_hash(struct qstr *name,
1727 		struct dentry *base, struct nameidata *nd)
1728 {
1729 	struct inode *inode = base->d_inode;
1730 	struct dentry *dentry;
1731 	int err;
1732 
1733 	err = inode_permission(inode, MAY_EXEC);
1734 	if (err)
1735 		return ERR_PTR(err);
1736 
1737 	/*
1738 	 * Don't bother with __d_lookup: callers are for creat as
1739 	 * well as unlink, so a lot of the time it would cost
1740 	 * a double lookup.
1741 	 */
1742 	dentry = d_lookup(base, name);
1743 
1744 	if (dentry && d_need_lookup(dentry)) {
1745 		/*
1746 		 * __lookup_hash is called with the parent dir's i_mutex already
1747 		 * held, so we are good to go here.
1748 		 */
1749 		dentry = d_inode_lookup(base, dentry, nd);
1750 		if (IS_ERR(dentry))
1751 			return dentry;
1752 	}
1753 
1754 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1755 		int status = d_revalidate(dentry, nd);
1756 		if (unlikely(status <= 0)) {
1757 			/*
1758 			 * The dentry failed validation.
1759 			 * If d_revalidate returned 0 attempt to invalidate
1760 			 * the dentry otherwise d_revalidate is asking us
1761 			 * to return a fail status.
1762 			 */
1763 			if (status < 0) {
1764 				dput(dentry);
1765 				return ERR_PTR(status);
1766 			} else if (!d_invalidate(dentry)) {
1767 				dput(dentry);
1768 				dentry = NULL;
1769 			}
1770 		}
1771 	}
1772 
1773 	if (!dentry)
1774 		dentry = d_alloc_and_lookup(base, name, nd);
1775 
1776 	return dentry;
1777 }
1778 
1779 /*
1780  * Restricted form of lookup. Doesn't follow links, single-component only,
1781  * needs parent already locked. Doesn't follow mounts.
1782  * SMP-safe.
1783  */
lookup_hash(struct nameidata * nd)1784 static struct dentry *lookup_hash(struct nameidata *nd)
1785 {
1786 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1787 }
1788 
1789 /**
1790  * lookup_one_len - filesystem helper to lookup single pathname component
1791  * @name:	pathname component to lookup
1792  * @base:	base directory to lookup from
1793  * @len:	maximum length @len should be interpreted to
1794  *
1795  * Note that this routine is purely a helper for filesystem usage and should
1796  * not be called by generic code.  Also note that by using this function the
1797  * nameidata argument is passed to the filesystem methods and a filesystem
1798  * using this helper needs to be prepared for that.
1799  */
lookup_one_len(const char * name,struct dentry * base,int len)1800 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1801 {
1802 	struct qstr this;
1803 	unsigned int c;
1804 
1805 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1806 
1807 	this.name = name;
1808 	this.len = len;
1809 	this.hash = full_name_hash(name, len);
1810 	if (!len)
1811 		return ERR_PTR(-EACCES);
1812 
1813 	while (len--) {
1814 		c = *(const unsigned char *)name++;
1815 		if (c == '/' || c == '\0')
1816 			return ERR_PTR(-EACCES);
1817 	}
1818 	/*
1819 	 * See if the low-level filesystem might want
1820 	 * to use its own hash..
1821 	 */
1822 	if (base->d_flags & DCACHE_OP_HASH) {
1823 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1824 		if (err < 0)
1825 			return ERR_PTR(err);
1826 	}
1827 
1828 	return __lookup_hash(&this, base, NULL);
1829 }
1830 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)1831 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1832 		 struct path *path, int *empty)
1833 {
1834 	struct nameidata nd;
1835 	char *tmp = getname_flags(name, flags, empty);
1836 	int err = PTR_ERR(tmp);
1837 	if (!IS_ERR(tmp)) {
1838 
1839 		BUG_ON(flags & LOOKUP_PARENT);
1840 
1841 		err = do_path_lookup(dfd, tmp, flags, &nd);
1842 		putname(tmp);
1843 		if (!err)
1844 			*path = nd.path;
1845 	}
1846 	return err;
1847 }
1848 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1849 int user_path_at(int dfd, const char __user *name, unsigned flags,
1850 		 struct path *path)
1851 {
1852 	return user_path_at_empty(dfd, name, flags, path, 0);
1853 }
1854 
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1855 static int user_path_parent(int dfd, const char __user *path,
1856 			struct nameidata *nd, char **name)
1857 {
1858 	char *s = getname(path);
1859 	int error;
1860 
1861 	if (IS_ERR(s))
1862 		return PTR_ERR(s);
1863 
1864 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1865 	if (error)
1866 		putname(s);
1867 	else
1868 		*name = s;
1869 
1870 	return error;
1871 }
1872 
1873 /*
1874  * It's inline, so penalty for filesystems that don't use sticky bit is
1875  * minimal.
1876  */
check_sticky(struct inode * dir,struct inode * inode)1877 static inline int check_sticky(struct inode *dir, struct inode *inode)
1878 {
1879 	uid_t fsuid = current_fsuid();
1880 
1881 	if (!(dir->i_mode & S_ISVTX))
1882 		return 0;
1883 	if (current_user_ns() != inode_userns(inode))
1884 		goto other_userns;
1885 	if (inode->i_uid == fsuid)
1886 		return 0;
1887 	if (dir->i_uid == fsuid)
1888 		return 0;
1889 
1890 other_userns:
1891 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1892 }
1893 
1894 /*
1895  *	Check whether we can remove a link victim from directory dir, check
1896  *  whether the type of victim is right.
1897  *  1. We can't do it if dir is read-only (done in permission())
1898  *  2. We should have write and exec permissions on dir
1899  *  3. We can't remove anything from append-only dir
1900  *  4. We can't do anything with immutable dir (done in permission())
1901  *  5. If the sticky bit on dir is set we should either
1902  *	a. be owner of dir, or
1903  *	b. be owner of victim, or
1904  *	c. have CAP_FOWNER capability
1905  *  6. If the victim is append-only or immutable we can't do antyhing with
1906  *     links pointing to it.
1907  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1908  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1909  *  9. We can't remove a root or mountpoint.
1910  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1911  *     nfs_async_unlink().
1912  */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1913 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1914 {
1915 	int error;
1916 
1917 	if (!victim->d_inode)
1918 		return -ENOENT;
1919 
1920 	BUG_ON(victim->d_parent->d_inode != dir);
1921 	audit_inode_child(victim, dir);
1922 
1923 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1924 	if (error)
1925 		return error;
1926 	if (IS_APPEND(dir))
1927 		return -EPERM;
1928 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1929 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1930 		return -EPERM;
1931 	if (isdir) {
1932 		if (!S_ISDIR(victim->d_inode->i_mode))
1933 			return -ENOTDIR;
1934 		if (IS_ROOT(victim))
1935 			return -EBUSY;
1936 	} else if (S_ISDIR(victim->d_inode->i_mode))
1937 		return -EISDIR;
1938 	if (IS_DEADDIR(dir))
1939 		return -ENOENT;
1940 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1941 		return -EBUSY;
1942 	return 0;
1943 }
1944 
1945 /*	Check whether we can create an object with dentry child in directory
1946  *  dir.
1947  *  1. We can't do it if child already exists (open has special treatment for
1948  *     this case, but since we are inlined it's OK)
1949  *  2. We can't do it if dir is read-only (done in permission())
1950  *  3. We should have write and exec permissions on dir
1951  *  4. We can't do it if dir is immutable (done in permission())
1952  */
may_create(struct inode * dir,struct dentry * child)1953 static inline int may_create(struct inode *dir, struct dentry *child)
1954 {
1955 	if (child->d_inode)
1956 		return -EEXIST;
1957 	if (IS_DEADDIR(dir))
1958 		return -ENOENT;
1959 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1960 }
1961 
1962 /*
1963  * p1 and p2 should be directories on the same fs.
1964  */
lock_rename(struct dentry * p1,struct dentry * p2)1965 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1966 {
1967 	struct dentry *p;
1968 
1969 	if (p1 == p2) {
1970 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1971 		return NULL;
1972 	}
1973 
1974 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1975 
1976 	p = d_ancestor(p2, p1);
1977 	if (p) {
1978 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1979 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1980 		return p;
1981 	}
1982 
1983 	p = d_ancestor(p1, p2);
1984 	if (p) {
1985 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1986 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1987 		return p;
1988 	}
1989 
1990 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1991 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1992 	return NULL;
1993 }
1994 
unlock_rename(struct dentry * p1,struct dentry * p2)1995 void unlock_rename(struct dentry *p1, struct dentry *p2)
1996 {
1997 	mutex_unlock(&p1->d_inode->i_mutex);
1998 	if (p1 != p2) {
1999 		mutex_unlock(&p2->d_inode->i_mutex);
2000 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2001 	}
2002 }
2003 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)2004 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2005 		struct nameidata *nd)
2006 {
2007 	int error = may_create(dir, dentry);
2008 
2009 	if (error)
2010 		return error;
2011 
2012 	if (!dir->i_op->create)
2013 		return -EACCES;	/* shouldn't it be ENOSYS? */
2014 	mode &= S_IALLUGO;
2015 	mode |= S_IFREG;
2016 	error = security_inode_create(dir, dentry, mode);
2017 	if (error)
2018 		return error;
2019 	error = dir->i_op->create(dir, dentry, mode, nd);
2020 	if (!error)
2021 		fsnotify_create(dir, dentry);
2022 	return error;
2023 }
2024 
may_open(struct path * path,int acc_mode,int flag)2025 static int may_open(struct path *path, int acc_mode, int flag)
2026 {
2027 	struct dentry *dentry = path->dentry;
2028 	struct inode *inode = dentry->d_inode;
2029 	int error;
2030 
2031 	/* O_PATH? */
2032 	if (!acc_mode)
2033 		return 0;
2034 
2035 	if (!inode)
2036 		return -ENOENT;
2037 
2038 	switch (inode->i_mode & S_IFMT) {
2039 	case S_IFLNK:
2040 		return -ELOOP;
2041 	case S_IFDIR:
2042 		if (acc_mode & MAY_WRITE)
2043 			return -EISDIR;
2044 		break;
2045 	case S_IFBLK:
2046 	case S_IFCHR:
2047 		if (path->mnt->mnt_flags & MNT_NODEV)
2048 			return -EACCES;
2049 		/*FALLTHRU*/
2050 	case S_IFIFO:
2051 	case S_IFSOCK:
2052 		flag &= ~O_TRUNC;
2053 		break;
2054 	}
2055 
2056 	error = inode_permission(inode, acc_mode);
2057 	if (error)
2058 		return error;
2059 
2060 	/*
2061 	 * An append-only file must be opened in append mode for writing.
2062 	 */
2063 	if (IS_APPEND(inode)) {
2064 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2065 			return -EPERM;
2066 		if (flag & O_TRUNC)
2067 			return -EPERM;
2068 	}
2069 
2070 	/* O_NOATIME can only be set by the owner or superuser */
2071 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2072 		return -EPERM;
2073 
2074 	return 0;
2075 }
2076 
handle_truncate(struct file * filp)2077 static int handle_truncate(struct file *filp)
2078 {
2079 	struct path *path = &filp->f_path;
2080 	struct inode *inode = path->dentry->d_inode;
2081 	int error = get_write_access(inode);
2082 	if (error)
2083 		return error;
2084 	/*
2085 	 * Refuse to truncate files with mandatory locks held on them.
2086 	 */
2087 	error = locks_verify_locked(inode);
2088 	if (!error)
2089 		error = security_path_truncate(path);
2090 	if (!error) {
2091 		error = do_truncate(path->dentry, 0,
2092 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2093 				    filp);
2094 	}
2095 	put_write_access(inode);
2096 	return error;
2097 }
2098 
open_to_namei_flags(int flag)2099 static inline int open_to_namei_flags(int flag)
2100 {
2101 	if ((flag & O_ACCMODE) == 3)
2102 		flag--;
2103 	return flag;
2104 }
2105 
2106 /*
2107  * Handle the last step of open()
2108  */
do_last(struct nameidata * nd,struct path * path,const struct open_flags * op,const char * pathname)2109 static struct file *do_last(struct nameidata *nd, struct path *path,
2110 			    const struct open_flags *op, const char *pathname)
2111 {
2112 	struct dentry *dir = nd->path.dentry;
2113 	struct dentry *dentry;
2114 	int open_flag = op->open_flag;
2115 	int will_truncate = open_flag & O_TRUNC;
2116 	int want_write = 0;
2117 	int acc_mode = op->acc_mode;
2118 	struct file *filp;
2119 	int error;
2120 
2121 	nd->flags &= ~LOOKUP_PARENT;
2122 	nd->flags |= op->intent;
2123 
2124 	switch (nd->last_type) {
2125 	case LAST_DOTDOT:
2126 	case LAST_DOT:
2127 		error = handle_dots(nd, nd->last_type);
2128 		if (error)
2129 			return ERR_PTR(error);
2130 		/* fallthrough */
2131 	case LAST_ROOT:
2132 		error = complete_walk(nd);
2133 		if (error)
2134 			return ERR_PTR(error);
2135 		audit_inode(pathname, nd->path.dentry);
2136 		if (open_flag & O_CREAT) {
2137 			error = -EISDIR;
2138 			goto exit;
2139 		}
2140 		goto ok;
2141 	case LAST_BIND:
2142 		error = complete_walk(nd);
2143 		if (error)
2144 			return ERR_PTR(error);
2145 		audit_inode(pathname, dir);
2146 		goto ok;
2147 	}
2148 
2149 	if (!(open_flag & O_CREAT)) {
2150 		int symlink_ok = 0;
2151 		if (nd->last.name[nd->last.len])
2152 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2153 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2154 			symlink_ok = 1;
2155 		/* we _can_ be in RCU mode here */
2156 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2157 					!symlink_ok);
2158 		if (error < 0)
2159 			return ERR_PTR(error);
2160 		if (error) /* symlink */
2161 			return NULL;
2162 		/* sayonara */
2163 		error = complete_walk(nd);
2164 		if (error)
2165 			return ERR_PTR(error);
2166 
2167 		error = -ENOTDIR;
2168 		if (nd->flags & LOOKUP_DIRECTORY) {
2169 			if (!nd->inode->i_op->lookup)
2170 				goto exit;
2171 		}
2172 		audit_inode(pathname, nd->path.dentry);
2173 		goto ok;
2174 	}
2175 
2176 	/* create side of things */
2177 	/*
2178 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2179 	 * cleared when we got to the last component we are about to look up
2180 	 */
2181 	error = complete_walk(nd);
2182 	if (error)
2183 		return ERR_PTR(error);
2184 
2185 	audit_inode(pathname, dir);
2186 	error = -EISDIR;
2187 	/* trailing slashes? */
2188 	if (nd->last.name[nd->last.len])
2189 		goto exit;
2190 
2191 	mutex_lock(&dir->d_inode->i_mutex);
2192 
2193 	dentry = lookup_hash(nd);
2194 	error = PTR_ERR(dentry);
2195 	if (IS_ERR(dentry)) {
2196 		mutex_unlock(&dir->d_inode->i_mutex);
2197 		goto exit;
2198 	}
2199 
2200 	path->dentry = dentry;
2201 	path->mnt = nd->path.mnt;
2202 
2203 	/* Negative dentry, just create the file */
2204 	if (!dentry->d_inode) {
2205 		umode_t mode = op->mode;
2206 		if (!IS_POSIXACL(dir->d_inode))
2207 			mode &= ~current_umask();
2208 		/*
2209 		 * This write is needed to ensure that a
2210 		 * rw->ro transition does not occur between
2211 		 * the time when the file is created and when
2212 		 * a permanent write count is taken through
2213 		 * the 'struct file' in nameidata_to_filp().
2214 		 */
2215 		error = mnt_want_write(nd->path.mnt);
2216 		if (error)
2217 			goto exit_mutex_unlock;
2218 		want_write = 1;
2219 		/* Don't check for write permission, don't truncate */
2220 		open_flag &= ~O_TRUNC;
2221 		will_truncate = 0;
2222 		acc_mode = MAY_OPEN;
2223 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2224 		if (error)
2225 			goto exit_mutex_unlock;
2226 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2227 		if (error)
2228 			goto exit_mutex_unlock;
2229 		mutex_unlock(&dir->d_inode->i_mutex);
2230 		dput(nd->path.dentry);
2231 		nd->path.dentry = dentry;
2232 		goto common;
2233 	}
2234 
2235 	/*
2236 	 * It already exists.
2237 	 */
2238 	mutex_unlock(&dir->d_inode->i_mutex);
2239 	audit_inode(pathname, path->dentry);
2240 
2241 	error = -EEXIST;
2242 	if (open_flag & O_EXCL)
2243 		goto exit_dput;
2244 
2245 	error = follow_managed(path, nd->flags);
2246 	if (error < 0)
2247 		goto exit_dput;
2248 
2249 	if (error)
2250 		nd->flags |= LOOKUP_JUMPED;
2251 
2252 	error = -ENOENT;
2253 	if (!path->dentry->d_inode)
2254 		goto exit_dput;
2255 
2256 	if (path->dentry->d_inode->i_op->follow_link)
2257 		return NULL;
2258 
2259 	path_to_nameidata(path, nd);
2260 	nd->inode = path->dentry->d_inode;
2261 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2262 	error = complete_walk(nd);
2263 	if (error)
2264 		return ERR_PTR(error);
2265 	error = -EISDIR;
2266 	if (S_ISDIR(nd->inode->i_mode))
2267 		goto exit;
2268 ok:
2269 	if (!S_ISREG(nd->inode->i_mode))
2270 		will_truncate = 0;
2271 
2272 	if (will_truncate) {
2273 		error = mnt_want_write(nd->path.mnt);
2274 		if (error)
2275 			goto exit;
2276 		want_write = 1;
2277 	}
2278 common:
2279 	error = may_open(&nd->path, acc_mode, open_flag);
2280 	if (error)
2281 		goto exit;
2282 	filp = nameidata_to_filp(nd);
2283 	if (!IS_ERR(filp)) {
2284 		error = ima_file_check(filp, op->acc_mode);
2285 		if (error) {
2286 			fput(filp);
2287 			filp = ERR_PTR(error);
2288 		}
2289 	}
2290 	if (!IS_ERR(filp)) {
2291 		if (will_truncate) {
2292 			error = handle_truncate(filp);
2293 			if (error) {
2294 				fput(filp);
2295 				filp = ERR_PTR(error);
2296 			}
2297 		}
2298 	}
2299 out:
2300 	if (want_write)
2301 		mnt_drop_write(nd->path.mnt);
2302 	path_put(&nd->path);
2303 	return filp;
2304 
2305 exit_mutex_unlock:
2306 	mutex_unlock(&dir->d_inode->i_mutex);
2307 exit_dput:
2308 	path_put_conditional(path, nd);
2309 exit:
2310 	filp = ERR_PTR(error);
2311 	goto out;
2312 }
2313 
path_openat(int dfd,const char * pathname,struct nameidata * nd,const struct open_flags * op,int flags)2314 static struct file *path_openat(int dfd, const char *pathname,
2315 		struct nameidata *nd, const struct open_flags *op, int flags)
2316 {
2317 	struct file *base = NULL;
2318 	struct file *filp;
2319 	struct path path;
2320 	int error;
2321 
2322 	filp = get_empty_filp();
2323 	if (!filp)
2324 		return ERR_PTR(-ENFILE);
2325 
2326 	filp->f_flags = op->open_flag;
2327 	nd->intent.open.file = filp;
2328 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2329 	nd->intent.open.create_mode = op->mode;
2330 
2331 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2332 	if (unlikely(error))
2333 		goto out_filp;
2334 
2335 	current->total_link_count = 0;
2336 	error = link_path_walk(pathname, nd);
2337 	if (unlikely(error))
2338 		goto out_filp;
2339 
2340 	filp = do_last(nd, &path, op, pathname);
2341 	while (unlikely(!filp)) { /* trailing symlink */
2342 		struct path link = path;
2343 		void *cookie;
2344 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2345 			path_put_conditional(&path, nd);
2346 			path_put(&nd->path);
2347 			filp = ERR_PTR(-ELOOP);
2348 			break;
2349 		}
2350 		nd->flags |= LOOKUP_PARENT;
2351 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2352 		error = follow_link(&link, nd, &cookie);
2353 		if (unlikely(error))
2354 			filp = ERR_PTR(error);
2355 		else
2356 			filp = do_last(nd, &path, op, pathname);
2357 		put_link(nd, &link, cookie);
2358 	}
2359 out:
2360 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2361 		path_put(&nd->root);
2362 	if (base)
2363 		fput(base);
2364 	release_open_intent(nd);
2365 	return filp;
2366 
2367 out_filp:
2368 	filp = ERR_PTR(error);
2369 	goto out;
2370 }
2371 
do_filp_open(int dfd,const char * pathname,const struct open_flags * op,int flags)2372 struct file *do_filp_open(int dfd, const char *pathname,
2373 		const struct open_flags *op, int flags)
2374 {
2375 	struct nameidata nd;
2376 	struct file *filp;
2377 
2378 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2379 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2380 		filp = path_openat(dfd, pathname, &nd, op, flags);
2381 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2382 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2383 	return filp;
2384 }
2385 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op,int flags)2386 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2387 		const char *name, const struct open_flags *op, int flags)
2388 {
2389 	struct nameidata nd;
2390 	struct file *file;
2391 
2392 	nd.root.mnt = mnt;
2393 	nd.root.dentry = dentry;
2394 
2395 	flags |= LOOKUP_ROOT;
2396 
2397 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2398 		return ERR_PTR(-ELOOP);
2399 
2400 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2401 	if (unlikely(file == ERR_PTR(-ECHILD)))
2402 		file = path_openat(-1, name, &nd, op, flags);
2403 	if (unlikely(file == ERR_PTR(-ESTALE)))
2404 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2405 	return file;
2406 }
2407 
kern_path_create(int dfd,const char * pathname,struct path * path,int is_dir)2408 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2409 {
2410 	struct dentry *dentry = ERR_PTR(-EEXIST);
2411 	struct nameidata nd;
2412 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2413 	if (error)
2414 		return ERR_PTR(error);
2415 
2416 	/*
2417 	 * Yucky last component or no last component at all?
2418 	 * (foo/., foo/.., /////)
2419 	 */
2420 	if (nd.last_type != LAST_NORM)
2421 		goto out;
2422 	nd.flags &= ~LOOKUP_PARENT;
2423 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2424 	nd.intent.open.flags = O_EXCL;
2425 
2426 	/*
2427 	 * Do the final lookup.
2428 	 */
2429 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2430 	dentry = lookup_hash(&nd);
2431 	if (IS_ERR(dentry))
2432 		goto fail;
2433 
2434 	if (dentry->d_inode)
2435 		goto eexist;
2436 	/*
2437 	 * Special case - lookup gave negative, but... we had foo/bar/
2438 	 * From the vfs_mknod() POV we just have a negative dentry -
2439 	 * all is fine. Let's be bastards - you had / on the end, you've
2440 	 * been asking for (non-existent) directory. -ENOENT for you.
2441 	 */
2442 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2443 		dput(dentry);
2444 		dentry = ERR_PTR(-ENOENT);
2445 		goto fail;
2446 	}
2447 	*path = nd.path;
2448 	return dentry;
2449 eexist:
2450 	dput(dentry);
2451 	dentry = ERR_PTR(-EEXIST);
2452 fail:
2453 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2454 out:
2455 	path_put(&nd.path);
2456 	return dentry;
2457 }
2458 EXPORT_SYMBOL(kern_path_create);
2459 
user_path_create(int dfd,const char __user * pathname,struct path * path,int is_dir)2460 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2461 {
2462 	char *tmp = getname(pathname);
2463 	struct dentry *res;
2464 	if (IS_ERR(tmp))
2465 		return ERR_CAST(tmp);
2466 	res = kern_path_create(dfd, tmp, path, is_dir);
2467 	putname(tmp);
2468 	return res;
2469 }
2470 EXPORT_SYMBOL(user_path_create);
2471 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2472 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2473 {
2474 	int error = may_create(dir, dentry);
2475 
2476 	if (error)
2477 		return error;
2478 
2479 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2480 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2481 		return -EPERM;
2482 
2483 	if (!dir->i_op->mknod)
2484 		return -EPERM;
2485 
2486 	error = devcgroup_inode_mknod(mode, dev);
2487 	if (error)
2488 		return error;
2489 
2490 	error = security_inode_mknod(dir, dentry, mode, dev);
2491 	if (error)
2492 		return error;
2493 
2494 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2495 	if (!error)
2496 		fsnotify_create(dir, dentry);
2497 	return error;
2498 }
2499 
may_mknod(umode_t mode)2500 static int may_mknod(umode_t mode)
2501 {
2502 	switch (mode & S_IFMT) {
2503 	case S_IFREG:
2504 	case S_IFCHR:
2505 	case S_IFBLK:
2506 	case S_IFIFO:
2507 	case S_IFSOCK:
2508 	case 0: /* zero mode translates to S_IFREG */
2509 		return 0;
2510 	case S_IFDIR:
2511 		return -EPERM;
2512 	default:
2513 		return -EINVAL;
2514 	}
2515 }
2516 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)2517 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2518 		unsigned, dev)
2519 {
2520 	struct dentry *dentry;
2521 	struct path path;
2522 	int error;
2523 
2524 	if (S_ISDIR(mode))
2525 		return -EPERM;
2526 
2527 	dentry = user_path_create(dfd, filename, &path, 0);
2528 	if (IS_ERR(dentry))
2529 		return PTR_ERR(dentry);
2530 
2531 	if (!IS_POSIXACL(path.dentry->d_inode))
2532 		mode &= ~current_umask();
2533 	error = may_mknod(mode);
2534 	if (error)
2535 		goto out_dput;
2536 	error = mnt_want_write(path.mnt);
2537 	if (error)
2538 		goto out_dput;
2539 	error = security_path_mknod(&path, dentry, mode, dev);
2540 	if (error)
2541 		goto out_drop_write;
2542 	switch (mode & S_IFMT) {
2543 		case 0: case S_IFREG:
2544 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2545 			break;
2546 		case S_IFCHR: case S_IFBLK:
2547 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2548 					new_decode_dev(dev));
2549 			break;
2550 		case S_IFIFO: case S_IFSOCK:
2551 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2552 			break;
2553 	}
2554 out_drop_write:
2555 	mnt_drop_write(path.mnt);
2556 out_dput:
2557 	dput(dentry);
2558 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2559 	path_put(&path);
2560 
2561 	return error;
2562 }
2563 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)2564 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2565 {
2566 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2567 }
2568 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2569 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2570 {
2571 	int error = may_create(dir, dentry);
2572 
2573 	if (error)
2574 		return error;
2575 
2576 	if (!dir->i_op->mkdir)
2577 		return -EPERM;
2578 
2579 	mode &= (S_IRWXUGO|S_ISVTX);
2580 	error = security_inode_mkdir(dir, dentry, mode);
2581 	if (error)
2582 		return error;
2583 
2584 	error = dir->i_op->mkdir(dir, dentry, mode);
2585 	if (!error)
2586 		fsnotify_mkdir(dir, dentry);
2587 	return error;
2588 }
2589 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)2590 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2591 {
2592 	struct dentry *dentry;
2593 	struct path path;
2594 	int error;
2595 
2596 	dentry = user_path_create(dfd, pathname, &path, 1);
2597 	if (IS_ERR(dentry))
2598 		return PTR_ERR(dentry);
2599 
2600 	if (!IS_POSIXACL(path.dentry->d_inode))
2601 		mode &= ~current_umask();
2602 	error = mnt_want_write(path.mnt);
2603 	if (error)
2604 		goto out_dput;
2605 	error = security_path_mkdir(&path, dentry, mode);
2606 	if (error)
2607 		goto out_drop_write;
2608 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2609 out_drop_write:
2610 	mnt_drop_write(path.mnt);
2611 out_dput:
2612 	dput(dentry);
2613 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2614 	path_put(&path);
2615 	return error;
2616 }
2617 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)2618 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2619 {
2620 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2621 }
2622 
2623 /*
2624  * The dentry_unhash() helper will try to drop the dentry early: we
2625  * should have a usage count of 2 if we're the only user of this
2626  * dentry, and if that is true (possibly after pruning the dcache),
2627  * then we drop the dentry now.
2628  *
2629  * A low-level filesystem can, if it choses, legally
2630  * do a
2631  *
2632  *	if (!d_unhashed(dentry))
2633  *		return -EBUSY;
2634  *
2635  * if it cannot handle the case of removing a directory
2636  * that is still in use by something else..
2637  */
dentry_unhash(struct dentry * dentry)2638 void dentry_unhash(struct dentry *dentry)
2639 {
2640 	shrink_dcache_parent(dentry);
2641 	spin_lock(&dentry->d_lock);
2642 	if (dentry->d_count == 1)
2643 		__d_drop(dentry);
2644 	spin_unlock(&dentry->d_lock);
2645 }
2646 
vfs_rmdir(struct inode * dir,struct dentry * dentry)2647 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2648 {
2649 	int error = may_delete(dir, dentry, 1);
2650 
2651 	if (error)
2652 		return error;
2653 
2654 	if (!dir->i_op->rmdir)
2655 		return -EPERM;
2656 
2657 	dget(dentry);
2658 	mutex_lock(&dentry->d_inode->i_mutex);
2659 
2660 	error = -EBUSY;
2661 	if (d_mountpoint(dentry))
2662 		goto out;
2663 
2664 	error = security_inode_rmdir(dir, dentry);
2665 	if (error)
2666 		goto out;
2667 
2668 	shrink_dcache_parent(dentry);
2669 	error = dir->i_op->rmdir(dir, dentry);
2670 	if (error)
2671 		goto out;
2672 
2673 	dentry->d_inode->i_flags |= S_DEAD;
2674 	dont_mount(dentry);
2675 
2676 out:
2677 	mutex_unlock(&dentry->d_inode->i_mutex);
2678 	dput(dentry);
2679 	if (!error)
2680 		d_delete(dentry);
2681 	return error;
2682 }
2683 
do_rmdir(int dfd,const char __user * pathname)2684 static long do_rmdir(int dfd, const char __user *pathname)
2685 {
2686 	int error = 0;
2687 	char * name;
2688 	struct dentry *dentry;
2689 	struct nameidata nd;
2690 
2691 	error = user_path_parent(dfd, pathname, &nd, &name);
2692 	if (error)
2693 		return error;
2694 
2695 	switch(nd.last_type) {
2696 	case LAST_DOTDOT:
2697 		error = -ENOTEMPTY;
2698 		goto exit1;
2699 	case LAST_DOT:
2700 		error = -EINVAL;
2701 		goto exit1;
2702 	case LAST_ROOT:
2703 		error = -EBUSY;
2704 		goto exit1;
2705 	}
2706 
2707 	nd.flags &= ~LOOKUP_PARENT;
2708 
2709 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2710 	dentry = lookup_hash(&nd);
2711 	error = PTR_ERR(dentry);
2712 	if (IS_ERR(dentry))
2713 		goto exit2;
2714 	if (!dentry->d_inode) {
2715 		error = -ENOENT;
2716 		goto exit3;
2717 	}
2718 	error = mnt_want_write(nd.path.mnt);
2719 	if (error)
2720 		goto exit3;
2721 	error = security_path_rmdir(&nd.path, dentry);
2722 	if (error)
2723 		goto exit4;
2724 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2725 exit4:
2726 	mnt_drop_write(nd.path.mnt);
2727 exit3:
2728 	dput(dentry);
2729 exit2:
2730 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2731 exit1:
2732 	path_put(&nd.path);
2733 	putname(name);
2734 	return error;
2735 }
2736 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2737 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2738 {
2739 	return do_rmdir(AT_FDCWD, pathname);
2740 }
2741 
vfs_unlink(struct inode * dir,struct dentry * dentry)2742 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2743 {
2744 	int error = may_delete(dir, dentry, 0);
2745 
2746 	if (error)
2747 		return error;
2748 
2749 	if (!dir->i_op->unlink)
2750 		return -EPERM;
2751 
2752 	mutex_lock(&dentry->d_inode->i_mutex);
2753 	if (d_mountpoint(dentry))
2754 		error = -EBUSY;
2755 	else {
2756 		error = security_inode_unlink(dir, dentry);
2757 		if (!error) {
2758 			error = dir->i_op->unlink(dir, dentry);
2759 			if (!error)
2760 				dont_mount(dentry);
2761 		}
2762 	}
2763 	mutex_unlock(&dentry->d_inode->i_mutex);
2764 
2765 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2766 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2767 		fsnotify_link_count(dentry->d_inode);
2768 		d_delete(dentry);
2769 	}
2770 
2771 	return error;
2772 }
2773 
2774 /*
2775  * Make sure that the actual truncation of the file will occur outside its
2776  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2777  * writeout happening, and we don't want to prevent access to the directory
2778  * while waiting on the I/O.
2779  */
do_unlinkat(int dfd,const char __user * pathname)2780 static long do_unlinkat(int dfd, const char __user *pathname)
2781 {
2782 	int error;
2783 	char *name;
2784 	struct dentry *dentry;
2785 	struct nameidata nd;
2786 	struct inode *inode = NULL;
2787 
2788 	error = user_path_parent(dfd, pathname, &nd, &name);
2789 	if (error)
2790 		return error;
2791 
2792 	error = -EISDIR;
2793 	if (nd.last_type != LAST_NORM)
2794 		goto exit1;
2795 
2796 	nd.flags &= ~LOOKUP_PARENT;
2797 
2798 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2799 	dentry = lookup_hash(&nd);
2800 	error = PTR_ERR(dentry);
2801 	if (!IS_ERR(dentry)) {
2802 		/* Why not before? Because we want correct error value */
2803 		if (nd.last.name[nd.last.len])
2804 			goto slashes;
2805 		inode = dentry->d_inode;
2806 		if (!inode)
2807 			goto slashes;
2808 		ihold(inode);
2809 		error = mnt_want_write(nd.path.mnt);
2810 		if (error)
2811 			goto exit2;
2812 		error = security_path_unlink(&nd.path, dentry);
2813 		if (error)
2814 			goto exit3;
2815 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2816 exit3:
2817 		mnt_drop_write(nd.path.mnt);
2818 	exit2:
2819 		dput(dentry);
2820 	}
2821 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2822 	if (inode)
2823 		iput(inode);	/* truncate the inode here */
2824 exit1:
2825 	path_put(&nd.path);
2826 	putname(name);
2827 	return error;
2828 
2829 slashes:
2830 	error = !dentry->d_inode ? -ENOENT :
2831 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2832 	goto exit2;
2833 }
2834 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2835 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2836 {
2837 	if ((flag & ~AT_REMOVEDIR) != 0)
2838 		return -EINVAL;
2839 
2840 	if (flag & AT_REMOVEDIR)
2841 		return do_rmdir(dfd, pathname);
2842 
2843 	return do_unlinkat(dfd, pathname);
2844 }
2845 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2846 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2847 {
2848 	return do_unlinkat(AT_FDCWD, pathname);
2849 }
2850 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2851 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2852 {
2853 	int error = may_create(dir, dentry);
2854 
2855 	if (error)
2856 		return error;
2857 
2858 	if (!dir->i_op->symlink)
2859 		return -EPERM;
2860 
2861 	error = security_inode_symlink(dir, dentry, oldname);
2862 	if (error)
2863 		return error;
2864 
2865 	error = dir->i_op->symlink(dir, dentry, oldname);
2866 	if (!error)
2867 		fsnotify_create(dir, dentry);
2868 	return error;
2869 }
2870 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2871 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2872 		int, newdfd, const char __user *, newname)
2873 {
2874 	int error;
2875 	char *from;
2876 	struct dentry *dentry;
2877 	struct path path;
2878 
2879 	from = getname(oldname);
2880 	if (IS_ERR(from))
2881 		return PTR_ERR(from);
2882 
2883 	dentry = user_path_create(newdfd, newname, &path, 0);
2884 	error = PTR_ERR(dentry);
2885 	if (IS_ERR(dentry))
2886 		goto out_putname;
2887 
2888 	error = mnt_want_write(path.mnt);
2889 	if (error)
2890 		goto out_dput;
2891 	error = security_path_symlink(&path, dentry, from);
2892 	if (error)
2893 		goto out_drop_write;
2894 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2895 out_drop_write:
2896 	mnt_drop_write(path.mnt);
2897 out_dput:
2898 	dput(dentry);
2899 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2900 	path_put(&path);
2901 out_putname:
2902 	putname(from);
2903 	return error;
2904 }
2905 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2906 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2907 {
2908 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2909 }
2910 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2911 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2912 {
2913 	struct inode *inode = old_dentry->d_inode;
2914 	int error;
2915 
2916 	if (!inode)
2917 		return -ENOENT;
2918 
2919 	error = may_create(dir, new_dentry);
2920 	if (error)
2921 		return error;
2922 
2923 	if (dir->i_sb != inode->i_sb)
2924 		return -EXDEV;
2925 
2926 	/*
2927 	 * A link to an append-only or immutable file cannot be created.
2928 	 */
2929 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2930 		return -EPERM;
2931 	if (!dir->i_op->link)
2932 		return -EPERM;
2933 	if (S_ISDIR(inode->i_mode))
2934 		return -EPERM;
2935 
2936 	error = security_inode_link(old_dentry, dir, new_dentry);
2937 	if (error)
2938 		return error;
2939 
2940 	mutex_lock(&inode->i_mutex);
2941 	/* Make sure we don't allow creating hardlink to an unlinked file */
2942 	if (inode->i_nlink == 0)
2943 		error =  -ENOENT;
2944 	else
2945 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2946 	mutex_unlock(&inode->i_mutex);
2947 	if (!error)
2948 		fsnotify_link(dir, inode, new_dentry);
2949 	return error;
2950 }
2951 
2952 /*
2953  * Hardlinks are often used in delicate situations.  We avoid
2954  * security-related surprises by not following symlinks on the
2955  * newname.  --KAB
2956  *
2957  * We don't follow them on the oldname either to be compatible
2958  * with linux 2.0, and to avoid hard-linking to directories
2959  * and other special files.  --ADM
2960  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)2961 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2962 		int, newdfd, const char __user *, newname, int, flags)
2963 {
2964 	struct dentry *new_dentry;
2965 	struct path old_path, new_path;
2966 	int how = 0;
2967 	int error;
2968 
2969 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2970 		return -EINVAL;
2971 	/*
2972 	 * To use null names we require CAP_DAC_READ_SEARCH
2973 	 * This ensures that not everyone will be able to create
2974 	 * handlink using the passed filedescriptor.
2975 	 */
2976 	if (flags & AT_EMPTY_PATH) {
2977 		if (!capable(CAP_DAC_READ_SEARCH))
2978 			return -ENOENT;
2979 		how = LOOKUP_EMPTY;
2980 	}
2981 
2982 	if (flags & AT_SYMLINK_FOLLOW)
2983 		how |= LOOKUP_FOLLOW;
2984 
2985 	error = user_path_at(olddfd, oldname, how, &old_path);
2986 	if (error)
2987 		return error;
2988 
2989 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2990 	error = PTR_ERR(new_dentry);
2991 	if (IS_ERR(new_dentry))
2992 		goto out;
2993 
2994 	error = -EXDEV;
2995 	if (old_path.mnt != new_path.mnt)
2996 		goto out_dput;
2997 	error = mnt_want_write(new_path.mnt);
2998 	if (error)
2999 		goto out_dput;
3000 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3001 	if (error)
3002 		goto out_drop_write;
3003 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3004 out_drop_write:
3005 	mnt_drop_write(new_path.mnt);
3006 out_dput:
3007 	dput(new_dentry);
3008 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3009 	path_put(&new_path);
3010 out:
3011 	path_put(&old_path);
3012 
3013 	return error;
3014 }
3015 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)3016 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3017 {
3018 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3019 }
3020 
3021 /*
3022  * The worst of all namespace operations - renaming directory. "Perverted"
3023  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3024  * Problems:
3025  *	a) we can get into loop creation. Check is done in is_subdir().
3026  *	b) race potential - two innocent renames can create a loop together.
3027  *	   That's where 4.4 screws up. Current fix: serialization on
3028  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3029  *	   story.
3030  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3031  *	   And that - after we got ->i_mutex on parents (until then we don't know
3032  *	   whether the target exists).  Solution: try to be smart with locking
3033  *	   order for inodes.  We rely on the fact that tree topology may change
3034  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3035  *	   move will be locked.  Thus we can rank directories by the tree
3036  *	   (ancestors first) and rank all non-directories after them.
3037  *	   That works since everybody except rename does "lock parent, lookup,
3038  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3039  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3040  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3041  *	   we'd better make sure that there's no link(2) for them.
3042  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3043  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3044  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3045  *	   ->i_mutex on parents, which works but leads to some truly excessive
3046  *	   locking].
3047  */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3048 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3049 			  struct inode *new_dir, struct dentry *new_dentry)
3050 {
3051 	int error = 0;
3052 	struct inode *target = new_dentry->d_inode;
3053 
3054 	/*
3055 	 * If we are going to change the parent - check write permissions,
3056 	 * we'll need to flip '..'.
3057 	 */
3058 	if (new_dir != old_dir) {
3059 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3060 		if (error)
3061 			return error;
3062 	}
3063 
3064 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3065 	if (error)
3066 		return error;
3067 
3068 	dget(new_dentry);
3069 	if (target)
3070 		mutex_lock(&target->i_mutex);
3071 
3072 	error = -EBUSY;
3073 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3074 		goto out;
3075 
3076 	if (target)
3077 		shrink_dcache_parent(new_dentry);
3078 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3079 	if (error)
3080 		goto out;
3081 
3082 	if (target) {
3083 		target->i_flags |= S_DEAD;
3084 		dont_mount(new_dentry);
3085 	}
3086 out:
3087 	if (target)
3088 		mutex_unlock(&target->i_mutex);
3089 	dput(new_dentry);
3090 	if (!error)
3091 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3092 			d_move(old_dentry,new_dentry);
3093 	return error;
3094 }
3095 
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3096 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3097 			    struct inode *new_dir, struct dentry *new_dentry)
3098 {
3099 	struct inode *target = new_dentry->d_inode;
3100 	int error;
3101 
3102 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3103 	if (error)
3104 		return error;
3105 
3106 	dget(new_dentry);
3107 	if (target)
3108 		mutex_lock(&target->i_mutex);
3109 
3110 	error = -EBUSY;
3111 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3112 		goto out;
3113 
3114 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3115 	if (error)
3116 		goto out;
3117 
3118 	if (target)
3119 		dont_mount(new_dentry);
3120 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3121 		d_move(old_dentry, new_dentry);
3122 out:
3123 	if (target)
3124 		mutex_unlock(&target->i_mutex);
3125 	dput(new_dentry);
3126 	return error;
3127 }
3128 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3129 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3130 	       struct inode *new_dir, struct dentry *new_dentry)
3131 {
3132 	int error;
3133 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3134 	const unsigned char *old_name;
3135 
3136 	if (old_dentry->d_inode == new_dentry->d_inode)
3137  		return 0;
3138 
3139 	error = may_delete(old_dir, old_dentry, is_dir);
3140 	if (error)
3141 		return error;
3142 
3143 	if (!new_dentry->d_inode)
3144 		error = may_create(new_dir, new_dentry);
3145 	else
3146 		error = may_delete(new_dir, new_dentry, is_dir);
3147 	if (error)
3148 		return error;
3149 
3150 	if (!old_dir->i_op->rename)
3151 		return -EPERM;
3152 
3153 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3154 
3155 	if (is_dir)
3156 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3157 	else
3158 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3159 	if (!error)
3160 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3161 			      new_dentry->d_inode, old_dentry);
3162 	fsnotify_oldname_free(old_name);
3163 
3164 	return error;
3165 }
3166 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)3167 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3168 		int, newdfd, const char __user *, newname)
3169 {
3170 	struct dentry *old_dir, *new_dir;
3171 	struct dentry *old_dentry, *new_dentry;
3172 	struct dentry *trap;
3173 	struct nameidata oldnd, newnd;
3174 	char *from;
3175 	char *to;
3176 	int error;
3177 
3178 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3179 	if (error)
3180 		goto exit;
3181 
3182 	error = user_path_parent(newdfd, newname, &newnd, &to);
3183 	if (error)
3184 		goto exit1;
3185 
3186 	error = -EXDEV;
3187 	if (oldnd.path.mnt != newnd.path.mnt)
3188 		goto exit2;
3189 
3190 	old_dir = oldnd.path.dentry;
3191 	error = -EBUSY;
3192 	if (oldnd.last_type != LAST_NORM)
3193 		goto exit2;
3194 
3195 	new_dir = newnd.path.dentry;
3196 	if (newnd.last_type != LAST_NORM)
3197 		goto exit2;
3198 
3199 	oldnd.flags &= ~LOOKUP_PARENT;
3200 	newnd.flags &= ~LOOKUP_PARENT;
3201 	newnd.flags |= LOOKUP_RENAME_TARGET;
3202 
3203 	trap = lock_rename(new_dir, old_dir);
3204 
3205 	old_dentry = lookup_hash(&oldnd);
3206 	error = PTR_ERR(old_dentry);
3207 	if (IS_ERR(old_dentry))
3208 		goto exit3;
3209 	/* source must exist */
3210 	error = -ENOENT;
3211 	if (!old_dentry->d_inode)
3212 		goto exit4;
3213 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3214 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3215 		error = -ENOTDIR;
3216 		if (oldnd.last.name[oldnd.last.len])
3217 			goto exit4;
3218 		if (newnd.last.name[newnd.last.len])
3219 			goto exit4;
3220 	}
3221 	/* source should not be ancestor of target */
3222 	error = -EINVAL;
3223 	if (old_dentry == trap)
3224 		goto exit4;
3225 	new_dentry = lookup_hash(&newnd);
3226 	error = PTR_ERR(new_dentry);
3227 	if (IS_ERR(new_dentry))
3228 		goto exit4;
3229 	/* target should not be an ancestor of source */
3230 	error = -ENOTEMPTY;
3231 	if (new_dentry == trap)
3232 		goto exit5;
3233 
3234 	error = mnt_want_write(oldnd.path.mnt);
3235 	if (error)
3236 		goto exit5;
3237 	error = security_path_rename(&oldnd.path, old_dentry,
3238 				     &newnd.path, new_dentry);
3239 	if (error)
3240 		goto exit6;
3241 	error = vfs_rename(old_dir->d_inode, old_dentry,
3242 				   new_dir->d_inode, new_dentry);
3243 exit6:
3244 	mnt_drop_write(oldnd.path.mnt);
3245 exit5:
3246 	dput(new_dentry);
3247 exit4:
3248 	dput(old_dentry);
3249 exit3:
3250 	unlock_rename(new_dir, old_dir);
3251 exit2:
3252 	path_put(&newnd.path);
3253 	putname(to);
3254 exit1:
3255 	path_put(&oldnd.path);
3256 	putname(from);
3257 exit:
3258 	return error;
3259 }
3260 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)3261 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3262 {
3263 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3264 }
3265 
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)3266 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3267 {
3268 	int len;
3269 
3270 	len = PTR_ERR(link);
3271 	if (IS_ERR(link))
3272 		goto out;
3273 
3274 	len = strlen(link);
3275 	if (len > (unsigned) buflen)
3276 		len = buflen;
3277 	if (copy_to_user(buffer, link, len))
3278 		len = -EFAULT;
3279 out:
3280 	return len;
3281 }
3282 
3283 /*
3284  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3285  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3286  * using) it for any given inode is up to filesystem.
3287  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)3288 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3289 {
3290 	struct nameidata nd;
3291 	void *cookie;
3292 	int res;
3293 
3294 	nd.depth = 0;
3295 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3296 	if (IS_ERR(cookie))
3297 		return PTR_ERR(cookie);
3298 
3299 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3300 	if (dentry->d_inode->i_op->put_link)
3301 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3302 	return res;
3303 }
3304 
vfs_follow_link(struct nameidata * nd,const char * link)3305 int vfs_follow_link(struct nameidata *nd, const char *link)
3306 {
3307 	return __vfs_follow_link(nd, link);
3308 }
3309 
3310 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)3311 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3312 {
3313 	char *kaddr;
3314 	struct page *page;
3315 	struct address_space *mapping = dentry->d_inode->i_mapping;
3316 	page = read_mapping_page(mapping, 0, NULL);
3317 	if (IS_ERR(page))
3318 		return (char*)page;
3319 	*ppage = page;
3320 	kaddr = kmap(page);
3321 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3322 	return kaddr;
3323 }
3324 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)3325 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3326 {
3327 	struct page *page = NULL;
3328 	char *s = page_getlink(dentry, &page);
3329 	int res = vfs_readlink(dentry,buffer,buflen,s);
3330 	if (page) {
3331 		kunmap(page);
3332 		page_cache_release(page);
3333 	}
3334 	return res;
3335 }
3336 
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)3337 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3338 {
3339 	struct page *page = NULL;
3340 	nd_set_link(nd, page_getlink(dentry, &page));
3341 	return page;
3342 }
3343 
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)3344 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3345 {
3346 	struct page *page = cookie;
3347 
3348 	if (page) {
3349 		kunmap(page);
3350 		page_cache_release(page);
3351 	}
3352 }
3353 
3354 /*
3355  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3356  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)3357 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3358 {
3359 	struct address_space *mapping = inode->i_mapping;
3360 	struct page *page;
3361 	void *fsdata;
3362 	int err;
3363 	char *kaddr;
3364 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3365 	if (nofs)
3366 		flags |= AOP_FLAG_NOFS;
3367 
3368 retry:
3369 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3370 				flags, &page, &fsdata);
3371 	if (err)
3372 		goto fail;
3373 
3374 	kaddr = kmap_atomic(page, KM_USER0);
3375 	memcpy(kaddr, symname, len-1);
3376 	kunmap_atomic(kaddr, KM_USER0);
3377 
3378 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3379 							page, fsdata);
3380 	if (err < 0)
3381 		goto fail;
3382 	if (err < len-1)
3383 		goto retry;
3384 
3385 	mark_inode_dirty(inode);
3386 	return 0;
3387 fail:
3388 	return err;
3389 }
3390 
page_symlink(struct inode * inode,const char * symname,int len)3391 int page_symlink(struct inode *inode, const char *symname, int len)
3392 {
3393 	return __page_symlink(inode, symname, len,
3394 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3395 }
3396 
3397 const struct inode_operations page_symlink_inode_operations = {
3398 	.readlink	= generic_readlink,
3399 	.follow_link	= page_follow_link_light,
3400 	.put_link	= page_put_link,
3401 };
3402 
3403 EXPORT_SYMBOL(user_path_at);
3404 EXPORT_SYMBOL(follow_down_one);
3405 EXPORT_SYMBOL(follow_down);
3406 EXPORT_SYMBOL(follow_up);
3407 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3408 EXPORT_SYMBOL(getname);
3409 EXPORT_SYMBOL(lock_rename);
3410 EXPORT_SYMBOL(lookup_one_len);
3411 EXPORT_SYMBOL(page_follow_link_light);
3412 EXPORT_SYMBOL(page_put_link);
3413 EXPORT_SYMBOL(page_readlink);
3414 EXPORT_SYMBOL(__page_symlink);
3415 EXPORT_SYMBOL(page_symlink);
3416 EXPORT_SYMBOL(page_symlink_inode_operations);
3417 EXPORT_SYMBOL(kern_path);
3418 EXPORT_SYMBOL(vfs_path_lookup);
3419 EXPORT_SYMBOL(inode_permission);
3420 EXPORT_SYMBOL(unlock_rename);
3421 EXPORT_SYMBOL(vfs_create);
3422 EXPORT_SYMBOL(vfs_follow_link);
3423 EXPORT_SYMBOL(vfs_link);
3424 EXPORT_SYMBOL(vfs_mkdir);
3425 EXPORT_SYMBOL(vfs_mknod);
3426 EXPORT_SYMBOL(generic_permission);
3427 EXPORT_SYMBOL(vfs_readlink);
3428 EXPORT_SYMBOL(vfs_rename);
3429 EXPORT_SYMBOL(vfs_rmdir);
3430 EXPORT_SYMBOL(vfs_symlink);
3431 EXPORT_SYMBOL(vfs_unlink);
3432 EXPORT_SYMBOL(dentry_unhash);
3433 EXPORT_SYMBOL(generic_readlink);
3434