1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 
97 static struct kmem_cache *jbd2_revoke_record_cache;
98 static struct kmem_cache *jbd2_revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block.  During
101    journal replay, this involves recording the transaction ID of the
102    last transaction to revoke this block. */
103 
104 struct jbd2_revoke_record_s
105 {
106 	struct list_head  hash;
107 	tid_t		  sequence;	/* Used for recovery only */
108 	unsigned long long	  blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd2_revoke_table_s
114 {
115 	/* It is conceivable that we might want a larger hash table
116 	 * for recovery.  Must be a power of two. */
117 	int		  hash_size;
118 	int		  hash_shift;
119 	struct list_head *hash_table;
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 				    struct journal_head **, int *,
126 				    struct jbd2_revoke_record_s *, int);
127 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128 #endif
129 
130 /* Utility functions to maintain the revoke table */
131 
132 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned long long block)133 static inline int hash(journal_t *journal, unsigned long long block)
134 {
135 	struct jbd2_revoke_table_s *table = journal->j_revoke;
136 	int hash_shift = table->hash_shift;
137 	int hash = (int)block ^ (int)((block >> 31) >> 1);
138 
139 	return ((hash << (hash_shift - 6)) ^
140 		(hash >> 13) ^
141 		(hash << (hash_shift - 12))) & (table->hash_size - 1);
142 }
143 
insert_revoke_hash(journal_t * journal,unsigned long long blocknr,tid_t seq)144 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
145 			      tid_t seq)
146 {
147 	struct list_head *hash_list;
148 	struct jbd2_revoke_record_s *record;
149 
150 repeat:
151 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
152 	if (!record)
153 		goto oom;
154 
155 	record->sequence = seq;
156 	record->blocknr = blocknr;
157 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
158 	spin_lock(&journal->j_revoke_lock);
159 	list_add(&record->hash, hash_list);
160 	spin_unlock(&journal->j_revoke_lock);
161 	return 0;
162 
163 oom:
164 	if (!journal_oom_retry)
165 		return -ENOMEM;
166 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
167 	yield();
168 	goto repeat;
169 }
170 
171 /* Find a revoke record in the journal's hash table. */
172 
find_revoke_record(journal_t * journal,unsigned long long blocknr)173 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
174 						      unsigned long long blocknr)
175 {
176 	struct list_head *hash_list;
177 	struct jbd2_revoke_record_s *record;
178 
179 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
180 
181 	spin_lock(&journal->j_revoke_lock);
182 	record = (struct jbd2_revoke_record_s *) hash_list->next;
183 	while (&(record->hash) != hash_list) {
184 		if (record->blocknr == blocknr) {
185 			spin_unlock(&journal->j_revoke_lock);
186 			return record;
187 		}
188 		record = (struct jbd2_revoke_record_s *) record->hash.next;
189 	}
190 	spin_unlock(&journal->j_revoke_lock);
191 	return NULL;
192 }
193 
jbd2_journal_destroy_revoke_caches(void)194 void jbd2_journal_destroy_revoke_caches(void)
195 {
196 	if (jbd2_revoke_record_cache) {
197 		kmem_cache_destroy(jbd2_revoke_record_cache);
198 		jbd2_revoke_record_cache = NULL;
199 	}
200 	if (jbd2_revoke_table_cache) {
201 		kmem_cache_destroy(jbd2_revoke_table_cache);
202 		jbd2_revoke_table_cache = NULL;
203 	}
204 }
205 
jbd2_journal_init_revoke_caches(void)206 int __init jbd2_journal_init_revoke_caches(void)
207 {
208 	J_ASSERT(!jbd2_revoke_record_cache);
209 	J_ASSERT(!jbd2_revoke_table_cache);
210 
211 	jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record",
212 					   sizeof(struct jbd2_revoke_record_s),
213 					   0,
214 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
215 					   NULL);
216 	if (!jbd2_revoke_record_cache)
217 		goto record_cache_failure;
218 
219 	jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table",
220 					   sizeof(struct jbd2_revoke_table_s),
221 					   0, SLAB_TEMPORARY, NULL);
222 	if (!jbd2_revoke_table_cache)
223 		goto table_cache_failure;
224 	return 0;
225 table_cache_failure:
226 	jbd2_journal_destroy_revoke_caches();
227 record_cache_failure:
228 		return -ENOMEM;
229 }
230 
jbd2_journal_init_revoke_table(int hash_size)231 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
232 {
233 	int shift = 0;
234 	int tmp = hash_size;
235 	struct jbd2_revoke_table_s *table;
236 
237 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
238 	if (!table)
239 		goto out;
240 
241 	while((tmp >>= 1UL) != 0UL)
242 		shift++;
243 
244 	table->hash_size = hash_size;
245 	table->hash_shift = shift;
246 	table->hash_table =
247 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
248 	if (!table->hash_table) {
249 		kmem_cache_free(jbd2_revoke_table_cache, table);
250 		table = NULL;
251 		goto out;
252 	}
253 
254 	for (tmp = 0; tmp < hash_size; tmp++)
255 		INIT_LIST_HEAD(&table->hash_table[tmp]);
256 
257 out:
258 	return table;
259 }
260 
jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s * table)261 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
262 {
263 	int i;
264 	struct list_head *hash_list;
265 
266 	for (i = 0; i < table->hash_size; i++) {
267 		hash_list = &table->hash_table[i];
268 		J_ASSERT(list_empty(hash_list));
269 	}
270 
271 	kfree(table->hash_table);
272 	kmem_cache_free(jbd2_revoke_table_cache, table);
273 }
274 
275 /* Initialise the revoke table for a given journal to a given size. */
jbd2_journal_init_revoke(journal_t * journal,int hash_size)276 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
277 {
278 	J_ASSERT(journal->j_revoke_table[0] == NULL);
279 	J_ASSERT(is_power_of_2(hash_size));
280 
281 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
282 	if (!journal->j_revoke_table[0])
283 		goto fail0;
284 
285 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
286 	if (!journal->j_revoke_table[1])
287 		goto fail1;
288 
289 	journal->j_revoke = journal->j_revoke_table[1];
290 
291 	spin_lock_init(&journal->j_revoke_lock);
292 
293 	return 0;
294 
295 fail1:
296 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
297 fail0:
298 	return -ENOMEM;
299 }
300 
301 /* Destroy a journal's revoke table.  The table must already be empty! */
jbd2_journal_destroy_revoke(journal_t * journal)302 void jbd2_journal_destroy_revoke(journal_t *journal)
303 {
304 	journal->j_revoke = NULL;
305 	if (journal->j_revoke_table[0])
306 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
307 	if (journal->j_revoke_table[1])
308 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
309 }
310 
311 
312 #ifdef __KERNEL__
313 
314 /*
315  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
316  * prevents the block from being replayed during recovery if we take a
317  * crash after this current transaction commits.  Any subsequent
318  * metadata writes of the buffer in this transaction cancel the
319  * revoke.
320  *
321  * Note that this call may block --- it is up to the caller to make
322  * sure that there are no further calls to journal_write_metadata
323  * before the revoke is complete.  In ext3, this implies calling the
324  * revoke before clearing the block bitmap when we are deleting
325  * metadata.
326  *
327  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
328  * parameter, but does _not_ forget the buffer_head if the bh was only
329  * found implicitly.
330  *
331  * bh_in may not be a journalled buffer - it may have come off
332  * the hash tables without an attached journal_head.
333  *
334  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
335  * by one.
336  */
337 
jbd2_journal_revoke(handle_t * handle,unsigned long long blocknr,struct buffer_head * bh_in)338 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
339 		   struct buffer_head *bh_in)
340 {
341 	struct buffer_head *bh = NULL;
342 	journal_t *journal;
343 	struct block_device *bdev;
344 	int err;
345 
346 	might_sleep();
347 	if (bh_in)
348 		BUFFER_TRACE(bh_in, "enter");
349 
350 	journal = handle->h_transaction->t_journal;
351 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
352 		J_ASSERT (!"Cannot set revoke feature!");
353 		return -EINVAL;
354 	}
355 
356 	bdev = journal->j_fs_dev;
357 	bh = bh_in;
358 
359 	if (!bh) {
360 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
361 		if (bh)
362 			BUFFER_TRACE(bh, "found on hash");
363 	}
364 #ifdef JBD2_EXPENSIVE_CHECKING
365 	else {
366 		struct buffer_head *bh2;
367 
368 		/* If there is a different buffer_head lying around in
369 		 * memory anywhere... */
370 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
371 		if (bh2) {
372 			/* ... and it has RevokeValid status... */
373 			if (bh2 != bh && buffer_revokevalid(bh2))
374 				/* ...then it better be revoked too,
375 				 * since it's illegal to create a revoke
376 				 * record against a buffer_head which is
377 				 * not marked revoked --- that would
378 				 * risk missing a subsequent revoke
379 				 * cancel. */
380 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
381 			put_bh(bh2);
382 		}
383 	}
384 #endif
385 
386 	/* We really ought not ever to revoke twice in a row without
387            first having the revoke cancelled: it's illegal to free a
388            block twice without allocating it in between! */
389 	if (bh) {
390 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
391 				 "inconsistent data on disk")) {
392 			if (!bh_in)
393 				brelse(bh);
394 			return -EIO;
395 		}
396 		set_buffer_revoked(bh);
397 		set_buffer_revokevalid(bh);
398 		if (bh_in) {
399 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
400 			jbd2_journal_forget(handle, bh_in);
401 		} else {
402 			BUFFER_TRACE(bh, "call brelse");
403 			__brelse(bh);
404 		}
405 	}
406 
407 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
408 	err = insert_revoke_hash(journal, blocknr,
409 				handle->h_transaction->t_tid);
410 	BUFFER_TRACE(bh_in, "exit");
411 	return err;
412 }
413 
414 /*
415  * Cancel an outstanding revoke.  For use only internally by the
416  * journaling code (called from jbd2_journal_get_write_access).
417  *
418  * We trust buffer_revoked() on the buffer if the buffer is already
419  * being journaled: if there is no revoke pending on the buffer, then we
420  * don't do anything here.
421  *
422  * This would break if it were possible for a buffer to be revoked and
423  * discarded, and then reallocated within the same transaction.  In such
424  * a case we would have lost the revoked bit, but when we arrived here
425  * the second time we would still have a pending revoke to cancel.  So,
426  * do not trust the Revoked bit on buffers unless RevokeValid is also
427  * set.
428  */
jbd2_journal_cancel_revoke(handle_t * handle,struct journal_head * jh)429 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
430 {
431 	struct jbd2_revoke_record_s *record;
432 	journal_t *journal = handle->h_transaction->t_journal;
433 	int need_cancel;
434 	int did_revoke = 0;	/* akpm: debug */
435 	struct buffer_head *bh = jh2bh(jh);
436 
437 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
438 
439 	/* Is the existing Revoke bit valid?  If so, we trust it, and
440 	 * only perform the full cancel if the revoke bit is set.  If
441 	 * not, we can't trust the revoke bit, and we need to do the
442 	 * full search for a revoke record. */
443 	if (test_set_buffer_revokevalid(bh)) {
444 		need_cancel = test_clear_buffer_revoked(bh);
445 	} else {
446 		need_cancel = 1;
447 		clear_buffer_revoked(bh);
448 	}
449 
450 	if (need_cancel) {
451 		record = find_revoke_record(journal, bh->b_blocknr);
452 		if (record) {
453 			jbd_debug(4, "cancelled existing revoke on "
454 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
455 			spin_lock(&journal->j_revoke_lock);
456 			list_del(&record->hash);
457 			spin_unlock(&journal->j_revoke_lock);
458 			kmem_cache_free(jbd2_revoke_record_cache, record);
459 			did_revoke = 1;
460 		}
461 	}
462 
463 #ifdef JBD2_EXPENSIVE_CHECKING
464 	/* There better not be one left behind by now! */
465 	record = find_revoke_record(journal, bh->b_blocknr);
466 	J_ASSERT_JH(jh, record == NULL);
467 #endif
468 
469 	/* Finally, have we just cleared revoke on an unhashed
470 	 * buffer_head?  If so, we'd better make sure we clear the
471 	 * revoked status on any hashed alias too, otherwise the revoke
472 	 * state machine will get very upset later on. */
473 	if (need_cancel) {
474 		struct buffer_head *bh2;
475 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
476 		if (bh2) {
477 			if (bh2 != bh)
478 				clear_buffer_revoked(bh2);
479 			__brelse(bh2);
480 		}
481 	}
482 	return did_revoke;
483 }
484 
485 /*
486  * journal_clear_revoked_flag clears revoked flag of buffers in
487  * revoke table to reflect there is no revoked buffers in the next
488  * transaction which is going to be started.
489  */
jbd2_clear_buffer_revoked_flags(journal_t * journal)490 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
491 {
492 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
493 	int i = 0;
494 
495 	for (i = 0; i < revoke->hash_size; i++) {
496 		struct list_head *hash_list;
497 		struct list_head *list_entry;
498 		hash_list = &revoke->hash_table[i];
499 
500 		list_for_each(list_entry, hash_list) {
501 			struct jbd2_revoke_record_s *record;
502 			struct buffer_head *bh;
503 			record = (struct jbd2_revoke_record_s *)list_entry;
504 			bh = __find_get_block(journal->j_fs_dev,
505 					      record->blocknr,
506 					      journal->j_blocksize);
507 			if (bh) {
508 				clear_buffer_revoked(bh);
509 				__brelse(bh);
510 			}
511 		}
512 	}
513 }
514 
515 /* journal_switch_revoke table select j_revoke for next transaction
516  * we do not want to suspend any processing until all revokes are
517  * written -bzzz
518  */
jbd2_journal_switch_revoke_table(journal_t * journal)519 void jbd2_journal_switch_revoke_table(journal_t *journal)
520 {
521 	int i;
522 
523 	if (journal->j_revoke == journal->j_revoke_table[0])
524 		journal->j_revoke = journal->j_revoke_table[1];
525 	else
526 		journal->j_revoke = journal->j_revoke_table[0];
527 
528 	for (i = 0; i < journal->j_revoke->hash_size; i++)
529 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
530 }
531 
532 /*
533  * Write revoke records to the journal for all entries in the current
534  * revoke hash, deleting the entries as we go.
535  */
jbd2_journal_write_revoke_records(journal_t * journal,transaction_t * transaction,int write_op)536 void jbd2_journal_write_revoke_records(journal_t *journal,
537 				       transaction_t *transaction,
538 				       int write_op)
539 {
540 	struct journal_head *descriptor;
541 	struct jbd2_revoke_record_s *record;
542 	struct jbd2_revoke_table_s *revoke;
543 	struct list_head *hash_list;
544 	int i, offset, count;
545 
546 	descriptor = NULL;
547 	offset = 0;
548 	count = 0;
549 
550 	/* select revoke table for committing transaction */
551 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
552 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
553 
554 	for (i = 0; i < revoke->hash_size; i++) {
555 		hash_list = &revoke->hash_table[i];
556 
557 		while (!list_empty(hash_list)) {
558 			record = (struct jbd2_revoke_record_s *)
559 				hash_list->next;
560 			write_one_revoke_record(journal, transaction,
561 						&descriptor, &offset,
562 						record, write_op);
563 			count++;
564 			list_del(&record->hash);
565 			kmem_cache_free(jbd2_revoke_record_cache, record);
566 		}
567 	}
568 	if (descriptor)
569 		flush_descriptor(journal, descriptor, offset, write_op);
570 	jbd_debug(1, "Wrote %d revoke records\n", count);
571 }
572 
573 /*
574  * Write out one revoke record.  We need to create a new descriptor
575  * block if the old one is full or if we have not already created one.
576  */
577 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd2_revoke_record_s * record,int write_op)578 static void write_one_revoke_record(journal_t *journal,
579 				    transaction_t *transaction,
580 				    struct journal_head **descriptorp,
581 				    int *offsetp,
582 				    struct jbd2_revoke_record_s *record,
583 				    int write_op)
584 {
585 	struct journal_head *descriptor;
586 	int offset;
587 	journal_header_t *header;
588 
589 	/* If we are already aborting, this all becomes a noop.  We
590            still need to go round the loop in
591            jbd2_journal_write_revoke_records in order to free all of the
592            revoke records: only the IO to the journal is omitted. */
593 	if (is_journal_aborted(journal))
594 		return;
595 
596 	descriptor = *descriptorp;
597 	offset = *offsetp;
598 
599 	/* Make sure we have a descriptor with space left for the record */
600 	if (descriptor) {
601 		if (offset == journal->j_blocksize) {
602 			flush_descriptor(journal, descriptor, offset, write_op);
603 			descriptor = NULL;
604 		}
605 	}
606 
607 	if (!descriptor) {
608 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
609 		if (!descriptor)
610 			return;
611 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
612 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
613 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
614 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
615 
616 		/* Record it so that we can wait for IO completion later */
617 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
618 		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
619 
620 		offset = sizeof(jbd2_journal_revoke_header_t);
621 		*descriptorp = descriptor;
622 	}
623 
624 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
625 		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
626 			cpu_to_be64(record->blocknr);
627 		offset += 8;
628 
629 	} else {
630 		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
631 			cpu_to_be32(record->blocknr);
632 		offset += 4;
633 	}
634 
635 	*offsetp = offset;
636 }
637 
638 /*
639  * Flush a revoke descriptor out to the journal.  If we are aborting,
640  * this is a noop; otherwise we are generating a buffer which needs to
641  * be waited for during commit, so it has to go onto the appropriate
642  * journal buffer list.
643  */
644 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset,int write_op)645 static void flush_descriptor(journal_t *journal,
646 			     struct journal_head *descriptor,
647 			     int offset, int write_op)
648 {
649 	jbd2_journal_revoke_header_t *header;
650 	struct buffer_head *bh = jh2bh(descriptor);
651 
652 	if (is_journal_aborted(journal)) {
653 		put_bh(bh);
654 		return;
655 	}
656 
657 	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
658 	header->r_count = cpu_to_be32(offset);
659 	set_buffer_jwrite(bh);
660 	BUFFER_TRACE(bh, "write");
661 	set_buffer_dirty(bh);
662 	write_dirty_buffer(bh, write_op);
663 }
664 #endif
665 
666 /*
667  * Revoke support for recovery.
668  *
669  * Recovery needs to be able to:
670  *
671  *  record all revoke records, including the tid of the latest instance
672  *  of each revoke in the journal
673  *
674  *  check whether a given block in a given transaction should be replayed
675  *  (ie. has not been revoked by a revoke record in that or a subsequent
676  *  transaction)
677  *
678  *  empty the revoke table after recovery.
679  */
680 
681 /*
682  * First, setting revoke records.  We create a new revoke record for
683  * every block ever revoked in the log as we scan it for recovery, and
684  * we update the existing records if we find multiple revokes for a
685  * single block.
686  */
687 
jbd2_journal_set_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)688 int jbd2_journal_set_revoke(journal_t *journal,
689 		       unsigned long long blocknr,
690 		       tid_t sequence)
691 {
692 	struct jbd2_revoke_record_s *record;
693 
694 	record = find_revoke_record(journal, blocknr);
695 	if (record) {
696 		/* If we have multiple occurrences, only record the
697 		 * latest sequence number in the hashed record */
698 		if (tid_gt(sequence, record->sequence))
699 			record->sequence = sequence;
700 		return 0;
701 	}
702 	return insert_revoke_hash(journal, blocknr, sequence);
703 }
704 
705 /*
706  * Test revoke records.  For a given block referenced in the log, has
707  * that block been revoked?  A revoke record with a given transaction
708  * sequence number revokes all blocks in that transaction and earlier
709  * ones, but later transactions still need replayed.
710  */
711 
jbd2_journal_test_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)712 int jbd2_journal_test_revoke(journal_t *journal,
713 			unsigned long long blocknr,
714 			tid_t sequence)
715 {
716 	struct jbd2_revoke_record_s *record;
717 
718 	record = find_revoke_record(journal, blocknr);
719 	if (!record)
720 		return 0;
721 	if (tid_gt(sequence, record->sequence))
722 		return 0;
723 	return 1;
724 }
725 
726 /*
727  * Finally, once recovery is over, we need to clear the revoke table so
728  * that it can be reused by the running filesystem.
729  */
730 
jbd2_journal_clear_revoke(journal_t * journal)731 void jbd2_journal_clear_revoke(journal_t *journal)
732 {
733 	int i;
734 	struct list_head *hash_list;
735 	struct jbd2_revoke_record_s *record;
736 	struct jbd2_revoke_table_s *revoke;
737 
738 	revoke = journal->j_revoke;
739 
740 	for (i = 0; i < revoke->hash_size; i++) {
741 		hash_list = &revoke->hash_table[i];
742 		while (!list_empty(hash_list)) {
743 			record = (struct jbd2_revoke_record_s*) hash_list->next;
744 			list_del(&record->hash);
745 			kmem_cache_free(jbd2_revoke_record_cache, record);
746 		}
747 	}
748 }
749