1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 					      loff_t new_size)
52 {
53 	trace_ext4_begin_ordered_truncate(inode, new_size);
54 	/*
55 	 * If jinode is zero, then we never opened the file for
56 	 * writing, so there's no need to call
57 	 * jbd2_journal_begin_ordered_truncate() since there's no
58 	 * outstanding writes we need to flush.
59 	 */
60 	if (!EXT4_I(inode)->jinode)
61 		return 0;
62 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 						   EXT4_I(inode)->jinode,
64 						   new_size);
65 }
66 
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 				   struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 		struct inode *inode, struct page *page, loff_t from,
76 		loff_t length, int flags);
77 
78 /*
79  * Test whether an inode is a fast symlink.
80  */
ext4_inode_is_fast_symlink(struct inode * inode)81 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 {
83 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 		(inode->i_sb->s_blocksize >> 9) : 0;
85 
86 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87 }
88 
89 /*
90  * Restart the transaction associated with *handle.  This does a commit,
91  * so before we call here everything must be consistently dirtied against
92  * this transaction.
93  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95 				 int nblocks)
96 {
97 	int ret;
98 
99 	/*
100 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
101 	 * moment, get_block can be called only for blocks inside i_size since
102 	 * page cache has been already dropped and writes are blocked by
103 	 * i_mutex. So we can safely drop the i_data_sem here.
104 	 */
105 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
106 	jbd_debug(2, "restarting handle %p\n", handle);
107 	up_write(&EXT4_I(inode)->i_data_sem);
108 	ret = ext4_journal_restart(handle, nblocks);
109 	down_write(&EXT4_I(inode)->i_data_sem);
110 	ext4_discard_preallocations(inode);
111 
112 	return ret;
113 }
114 
115 /*
116  * Called at the last iput() if i_nlink is zero.
117  */
ext4_evict_inode(struct inode * inode)118 void ext4_evict_inode(struct inode *inode)
119 {
120 	handle_t *handle;
121 	int err;
122 
123 	trace_ext4_evict_inode(inode);
124 
125 	ext4_ioend_wait(inode);
126 
127 	if (inode->i_nlink) {
128 		/*
129 		 * When journalling data dirty buffers are tracked only in the
130 		 * journal. So although mm thinks everything is clean and
131 		 * ready for reaping the inode might still have some pages to
132 		 * write in the running transaction or waiting to be
133 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 		 * (via truncate_inode_pages()) to discard these buffers can
135 		 * cause data loss. Also even if we did not discard these
136 		 * buffers, we would have no way to find them after the inode
137 		 * is reaped and thus user could see stale data if he tries to
138 		 * read them before the transaction is checkpointed. So be
139 		 * careful and force everything to disk here... We use
140 		 * ei->i_datasync_tid to store the newest transaction
141 		 * containing inode's data.
142 		 *
143 		 * Note that directories do not have this problem because they
144 		 * don't use page cache.
145 		 */
146 		if (ext4_should_journal_data(inode) &&
147 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150 
151 			jbd2_log_start_commit(journal, commit_tid);
152 			jbd2_log_wait_commit(journal, commit_tid);
153 			filemap_write_and_wait(&inode->i_data);
154 		}
155 		truncate_inode_pages(&inode->i_data, 0);
156 		goto no_delete;
157 	}
158 
159 	if (!is_bad_inode(inode))
160 		dquot_initialize(inode);
161 
162 	if (ext4_should_order_data(inode))
163 		ext4_begin_ordered_truncate(inode, 0);
164 	truncate_inode_pages(&inode->i_data, 0);
165 
166 	if (is_bad_inode(inode))
167 		goto no_delete;
168 
169 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170 	if (IS_ERR(handle)) {
171 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
172 		/*
173 		 * If we're going to skip the normal cleanup, we still need to
174 		 * make sure that the in-core orphan linked list is properly
175 		 * cleaned up.
176 		 */
177 		ext4_orphan_del(NULL, inode);
178 		goto no_delete;
179 	}
180 
181 	if (IS_SYNC(inode))
182 		ext4_handle_sync(handle);
183 	inode->i_size = 0;
184 	err = ext4_mark_inode_dirty(handle, inode);
185 	if (err) {
186 		ext4_warning(inode->i_sb,
187 			     "couldn't mark inode dirty (err %d)", err);
188 		goto stop_handle;
189 	}
190 	if (inode->i_blocks)
191 		ext4_truncate(inode);
192 
193 	/*
194 	 * ext4_ext_truncate() doesn't reserve any slop when it
195 	 * restarts journal transactions; therefore there may not be
196 	 * enough credits left in the handle to remove the inode from
197 	 * the orphan list and set the dtime field.
198 	 */
199 	if (!ext4_handle_has_enough_credits(handle, 3)) {
200 		err = ext4_journal_extend(handle, 3);
201 		if (err > 0)
202 			err = ext4_journal_restart(handle, 3);
203 		if (err != 0) {
204 			ext4_warning(inode->i_sb,
205 				     "couldn't extend journal (err %d)", err);
206 		stop_handle:
207 			ext4_journal_stop(handle);
208 			ext4_orphan_del(NULL, inode);
209 			goto no_delete;
210 		}
211 	}
212 
213 	/*
214 	 * Kill off the orphan record which ext4_truncate created.
215 	 * AKPM: I think this can be inside the above `if'.
216 	 * Note that ext4_orphan_del() has to be able to cope with the
217 	 * deletion of a non-existent orphan - this is because we don't
218 	 * know if ext4_truncate() actually created an orphan record.
219 	 * (Well, we could do this if we need to, but heck - it works)
220 	 */
221 	ext4_orphan_del(handle, inode);
222 	EXT4_I(inode)->i_dtime	= get_seconds();
223 
224 	/*
225 	 * One subtle ordering requirement: if anything has gone wrong
226 	 * (transaction abort, IO errors, whatever), then we can still
227 	 * do these next steps (the fs will already have been marked as
228 	 * having errors), but we can't free the inode if the mark_dirty
229 	 * fails.
230 	 */
231 	if (ext4_mark_inode_dirty(handle, inode))
232 		/* If that failed, just do the required in-core inode clear. */
233 		ext4_clear_inode(inode);
234 	else
235 		ext4_free_inode(handle, inode);
236 	ext4_journal_stop(handle);
237 	return;
238 no_delete:
239 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
240 }
241 
242 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)243 qsize_t *ext4_get_reserved_space(struct inode *inode)
244 {
245 	return &EXT4_I(inode)->i_reserved_quota;
246 }
247 #endif
248 
249 /*
250  * Calculate the number of metadata blocks need to reserve
251  * to allocate a block located at @lblock
252  */
ext4_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254 {
255 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256 		return ext4_ext_calc_metadata_amount(inode, lblock);
257 
258 	return ext4_ind_calc_metadata_amount(inode, lblock);
259 }
260 
261 /*
262  * Called with i_data_sem down, which is important since we can call
263  * ext4_discard_preallocations() from here.
264  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)265 void ext4_da_update_reserve_space(struct inode *inode,
266 					int used, int quota_claim)
267 {
268 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269 	struct ext4_inode_info *ei = EXT4_I(inode);
270 
271 	spin_lock(&ei->i_block_reservation_lock);
272 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273 	if (unlikely(used > ei->i_reserved_data_blocks)) {
274 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275 			 "with only %d reserved data blocks\n",
276 			 __func__, inode->i_ino, used,
277 			 ei->i_reserved_data_blocks);
278 		WARN_ON(1);
279 		used = ei->i_reserved_data_blocks;
280 	}
281 
282 	/* Update per-inode reservations */
283 	ei->i_reserved_data_blocks -= used;
284 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286 			   used + ei->i_allocated_meta_blocks);
287 	ei->i_allocated_meta_blocks = 0;
288 
289 	if (ei->i_reserved_data_blocks == 0) {
290 		/*
291 		 * We can release all of the reserved metadata blocks
292 		 * only when we have written all of the delayed
293 		 * allocation blocks.
294 		 */
295 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296 				   ei->i_reserved_meta_blocks);
297 		ei->i_reserved_meta_blocks = 0;
298 		ei->i_da_metadata_calc_len = 0;
299 	}
300 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301 
302 	/* Update quota subsystem for data blocks */
303 	if (quota_claim)
304 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
305 	else {
306 		/*
307 		 * We did fallocate with an offset that is already delayed
308 		 * allocated. So on delayed allocated writeback we should
309 		 * not re-claim the quota for fallocated blocks.
310 		 */
311 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
312 	}
313 
314 	/*
315 	 * If we have done all the pending block allocations and if
316 	 * there aren't any writers on the inode, we can discard the
317 	 * inode's preallocations.
318 	 */
319 	if ((ei->i_reserved_data_blocks == 0) &&
320 	    (atomic_read(&inode->i_writecount) == 0))
321 		ext4_discard_preallocations(inode);
322 }
323 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)324 static int __check_block_validity(struct inode *inode, const char *func,
325 				unsigned int line,
326 				struct ext4_map_blocks *map)
327 {
328 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329 				   map->m_len)) {
330 		ext4_error_inode(inode, func, line, map->m_pblk,
331 				 "lblock %lu mapped to illegal pblock "
332 				 "(length %d)", (unsigned long) map->m_lblk,
333 				 map->m_len);
334 		return -EIO;
335 	}
336 	return 0;
337 }
338 
339 #define check_block_validity(inode, map)	\
340 	__check_block_validity((inode), __func__, __LINE__, (map))
341 
342 /*
343  * Return the number of contiguous dirty pages in a given inode
344  * starting at page frame idx.
345  */
ext4_num_dirty_pages(struct inode * inode,pgoff_t idx,unsigned int max_pages)346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347 				    unsigned int max_pages)
348 {
349 	struct address_space *mapping = inode->i_mapping;
350 	pgoff_t	index;
351 	struct pagevec pvec;
352 	pgoff_t num = 0;
353 	int i, nr_pages, done = 0;
354 
355 	if (max_pages == 0)
356 		return 0;
357 	pagevec_init(&pvec, 0);
358 	while (!done) {
359 		index = idx;
360 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361 					      PAGECACHE_TAG_DIRTY,
362 					      (pgoff_t)PAGEVEC_SIZE);
363 		if (nr_pages == 0)
364 			break;
365 		for (i = 0; i < nr_pages; i++) {
366 			struct page *page = pvec.pages[i];
367 			struct buffer_head *bh, *head;
368 
369 			lock_page(page);
370 			if (unlikely(page->mapping != mapping) ||
371 			    !PageDirty(page) ||
372 			    PageWriteback(page) ||
373 			    page->index != idx) {
374 				done = 1;
375 				unlock_page(page);
376 				break;
377 			}
378 			if (page_has_buffers(page)) {
379 				bh = head = page_buffers(page);
380 				do {
381 					if (!buffer_delay(bh) &&
382 					    !buffer_unwritten(bh))
383 						done = 1;
384 					bh = bh->b_this_page;
385 				} while (!done && (bh != head));
386 			}
387 			unlock_page(page);
388 			if (done)
389 				break;
390 			idx++;
391 			num++;
392 			if (num >= max_pages) {
393 				done = 1;
394 				break;
395 			}
396 		}
397 		pagevec_release(&pvec);
398 	}
399 	return num;
400 }
401 
402 /*
403  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
404  */
set_buffers_da_mapped(struct inode * inode,struct ext4_map_blocks * map)405 static void set_buffers_da_mapped(struct inode *inode,
406 				   struct ext4_map_blocks *map)
407 {
408 	struct address_space *mapping = inode->i_mapping;
409 	struct pagevec pvec;
410 	int i, nr_pages;
411 	pgoff_t index, end;
412 
413 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414 	end = (map->m_lblk + map->m_len - 1) >>
415 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
416 
417 	pagevec_init(&pvec, 0);
418 	while (index <= end) {
419 		nr_pages = pagevec_lookup(&pvec, mapping, index,
420 					  min(end - index + 1,
421 					      (pgoff_t)PAGEVEC_SIZE));
422 		if (nr_pages == 0)
423 			break;
424 		for (i = 0; i < nr_pages; i++) {
425 			struct page *page = pvec.pages[i];
426 			struct buffer_head *bh, *head;
427 
428 			if (unlikely(page->mapping != mapping) ||
429 			    !PageDirty(page))
430 				break;
431 
432 			if (page_has_buffers(page)) {
433 				bh = head = page_buffers(page);
434 				do {
435 					set_buffer_da_mapped(bh);
436 					bh = bh->b_this_page;
437 				} while (bh != head);
438 			}
439 			index++;
440 		}
441 		pagevec_release(&pvec);
442 	}
443 }
444 
445 /*
446  * The ext4_map_blocks() function tries to look up the requested blocks,
447  * and returns if the blocks are already mapped.
448  *
449  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450  * and store the allocated blocks in the result buffer head and mark it
451  * mapped.
452  *
453  * If file type is extents based, it will call ext4_ext_map_blocks(),
454  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455  * based files
456  *
457  * On success, it returns the number of blocks being mapped or allocate.
458  * if create==0 and the blocks are pre-allocated and uninitialized block,
459  * the result buffer head is unmapped. If the create ==1, it will make sure
460  * the buffer head is mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, buffer head is unmapped
464  *
465  * It returns the error in case of allocation failure.
466  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 		    struct ext4_map_blocks *map, int flags)
469 {
470 	int retval;
471 
472 	map->m_flags = 0;
473 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 		  (unsigned long) map->m_lblk);
476 	/*
477 	 * Try to see if we can get the block without requesting a new
478 	 * file system block.
479 	 */
480 	down_read((&EXT4_I(inode)->i_data_sem));
481 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
483 					     EXT4_GET_BLOCKS_KEEP_SIZE);
484 	} else {
485 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
486 					     EXT4_GET_BLOCKS_KEEP_SIZE);
487 	}
488 	up_read((&EXT4_I(inode)->i_data_sem));
489 
490 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491 		int ret = check_block_validity(inode, map);
492 		if (ret != 0)
493 			return ret;
494 	}
495 
496 	/* If it is only a block(s) look up */
497 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498 		return retval;
499 
500 	/*
501 	 * Returns if the blocks have already allocated
502 	 *
503 	 * Note that if blocks have been preallocated
504 	 * ext4_ext_get_block() returns the create = 0
505 	 * with buffer head unmapped.
506 	 */
507 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508 		return retval;
509 
510 	/*
511 	 * When we call get_blocks without the create flag, the
512 	 * BH_Unwritten flag could have gotten set if the blocks
513 	 * requested were part of a uninitialized extent.  We need to
514 	 * clear this flag now that we are committed to convert all or
515 	 * part of the uninitialized extent to be an initialized
516 	 * extent.  This is because we need to avoid the combination
517 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
518 	 * set on the buffer_head.
519 	 */
520 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521 
522 	/*
523 	 * New blocks allocate and/or writing to uninitialized extent
524 	 * will possibly result in updating i_data, so we take
525 	 * the write lock of i_data_sem, and call get_blocks()
526 	 * with create == 1 flag.
527 	 */
528 	down_write((&EXT4_I(inode)->i_data_sem));
529 
530 	/*
531 	 * if the caller is from delayed allocation writeout path
532 	 * we have already reserved fs blocks for allocation
533 	 * let the underlying get_block() function know to
534 	 * avoid double accounting
535 	 */
536 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
538 	/*
539 	 * We need to check for EXT4 here because migrate
540 	 * could have changed the inode type in between
541 	 */
542 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
546 
547 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
548 			/*
549 			 * We allocated new blocks which will result in
550 			 * i_data's format changing.  Force the migrate
551 			 * to fail by clearing migrate flags
552 			 */
553 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
554 		}
555 
556 		/*
557 		 * Update reserved blocks/metadata blocks after successful
558 		 * block allocation which had been deferred till now. We don't
559 		 * support fallocate for non extent files. So we can update
560 		 * reserve space here.
561 		 */
562 		if ((retval > 0) &&
563 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564 			ext4_da_update_reserve_space(inode, retval, 1);
565 	}
566 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
568 
569 		/* If we have successfully mapped the delayed allocated blocks,
570 		 * set the BH_Da_Mapped bit on them. Its important to do this
571 		 * under the protection of i_data_sem.
572 		 */
573 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574 			set_buffers_da_mapped(inode, map);
575 	}
576 
577 	up_write((&EXT4_I(inode)->i_data_sem));
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 		int ret = check_block_validity(inode, map);
580 		if (ret != 0)
581 			return ret;
582 	}
583 	return retval;
584 }
585 
586 /* Maximum number of blocks we map for direct IO at once. */
587 #define DIO_MAX_BLOCKS 4096
588 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)589 static int _ext4_get_block(struct inode *inode, sector_t iblock,
590 			   struct buffer_head *bh, int flags)
591 {
592 	handle_t *handle = ext4_journal_current_handle();
593 	struct ext4_map_blocks map;
594 	int ret = 0, started = 0;
595 	int dio_credits;
596 
597 	map.m_lblk = iblock;
598 	map.m_len = bh->b_size >> inode->i_blkbits;
599 
600 	if (flags && !handle) {
601 		/* Direct IO write... */
602 		if (map.m_len > DIO_MAX_BLOCKS)
603 			map.m_len = DIO_MAX_BLOCKS;
604 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605 		handle = ext4_journal_start(inode, dio_credits);
606 		if (IS_ERR(handle)) {
607 			ret = PTR_ERR(handle);
608 			return ret;
609 		}
610 		started = 1;
611 	}
612 
613 	ret = ext4_map_blocks(handle, inode, &map, flags);
614 	if (ret > 0) {
615 		map_bh(bh, inode->i_sb, map.m_pblk);
616 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
618 		ret = 0;
619 	}
620 	if (started)
621 		ext4_journal_stop(handle);
622 	return ret;
623 }
624 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)625 int ext4_get_block(struct inode *inode, sector_t iblock,
626 		   struct buffer_head *bh, int create)
627 {
628 	return _ext4_get_block(inode, iblock, bh,
629 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
630 }
631 
632 /*
633  * `handle' can be NULL if create is zero
634  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * errp)635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
636 				ext4_lblk_t block, int create, int *errp)
637 {
638 	struct ext4_map_blocks map;
639 	struct buffer_head *bh;
640 	int fatal = 0, err;
641 
642 	J_ASSERT(handle != NULL || create == 0);
643 
644 	map.m_lblk = block;
645 	map.m_len = 1;
646 	err = ext4_map_blocks(handle, inode, &map,
647 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
648 
649 	if (err < 0)
650 		*errp = err;
651 	if (err <= 0)
652 		return NULL;
653 	*errp = 0;
654 
655 	bh = sb_getblk(inode->i_sb, map.m_pblk);
656 	if (!bh) {
657 		*errp = -EIO;
658 		return NULL;
659 	}
660 	if (map.m_flags & EXT4_MAP_NEW) {
661 		J_ASSERT(create != 0);
662 		J_ASSERT(handle != NULL);
663 
664 		/*
665 		 * Now that we do not always journal data, we should
666 		 * keep in mind whether this should always journal the
667 		 * new buffer as metadata.  For now, regular file
668 		 * writes use ext4_get_block instead, so it's not a
669 		 * problem.
670 		 */
671 		lock_buffer(bh);
672 		BUFFER_TRACE(bh, "call get_create_access");
673 		fatal = ext4_journal_get_create_access(handle, bh);
674 		if (!fatal && !buffer_uptodate(bh)) {
675 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676 			set_buffer_uptodate(bh);
677 		}
678 		unlock_buffer(bh);
679 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680 		err = ext4_handle_dirty_metadata(handle, inode, bh);
681 		if (!fatal)
682 			fatal = err;
683 	} else {
684 		BUFFER_TRACE(bh, "not a new buffer");
685 	}
686 	if (fatal) {
687 		*errp = fatal;
688 		brelse(bh);
689 		bh = NULL;
690 	}
691 	return bh;
692 }
693 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * err)694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
695 			       ext4_lblk_t block, int create, int *err)
696 {
697 	struct buffer_head *bh;
698 
699 	bh = ext4_getblk(handle, inode, block, create, err);
700 	if (!bh)
701 		return bh;
702 	if (buffer_uptodate(bh))
703 		return bh;
704 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705 	wait_on_buffer(bh);
706 	if (buffer_uptodate(bh))
707 		return bh;
708 	put_bh(bh);
709 	*err = -EIO;
710 	return NULL;
711 }
712 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))713 static int walk_page_buffers(handle_t *handle,
714 			     struct buffer_head *head,
715 			     unsigned from,
716 			     unsigned to,
717 			     int *partial,
718 			     int (*fn)(handle_t *handle,
719 				       struct buffer_head *bh))
720 {
721 	struct buffer_head *bh;
722 	unsigned block_start, block_end;
723 	unsigned blocksize = head->b_size;
724 	int err, ret = 0;
725 	struct buffer_head *next;
726 
727 	for (bh = head, block_start = 0;
728 	     ret == 0 && (bh != head || !block_start);
729 	     block_start = block_end, bh = next) {
730 		next = bh->b_this_page;
731 		block_end = block_start + blocksize;
732 		if (block_end <= from || block_start >= to) {
733 			if (partial && !buffer_uptodate(bh))
734 				*partial = 1;
735 			continue;
736 		}
737 		err = (*fn)(handle, bh);
738 		if (!ret)
739 			ret = err;
740 	}
741 	return ret;
742 }
743 
744 /*
745  * To preserve ordering, it is essential that the hole instantiation and
746  * the data write be encapsulated in a single transaction.  We cannot
747  * close off a transaction and start a new one between the ext4_get_block()
748  * and the commit_write().  So doing the jbd2_journal_start at the start of
749  * prepare_write() is the right place.
750  *
751  * Also, this function can nest inside ext4_writepage() ->
752  * block_write_full_page(). In that case, we *know* that ext4_writepage()
753  * has generated enough buffer credits to do the whole page.  So we won't
754  * block on the journal in that case, which is good, because the caller may
755  * be PF_MEMALLOC.
756  *
757  * By accident, ext4 can be reentered when a transaction is open via
758  * quota file writes.  If we were to commit the transaction while thus
759  * reentered, there can be a deadlock - we would be holding a quota
760  * lock, and the commit would never complete if another thread had a
761  * transaction open and was blocking on the quota lock - a ranking
762  * violation.
763  *
764  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765  * will _not_ run commit under these circumstances because handle->h_ref
766  * is elevated.  We'll still have enough credits for the tiny quotafile
767  * write.
768  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)769 static int do_journal_get_write_access(handle_t *handle,
770 				       struct buffer_head *bh)
771 {
772 	int dirty = buffer_dirty(bh);
773 	int ret;
774 
775 	if (!buffer_mapped(bh) || buffer_freed(bh))
776 		return 0;
777 	/*
778 	 * __block_write_begin() could have dirtied some buffers. Clean
779 	 * the dirty bit as jbd2_journal_get_write_access() could complain
780 	 * otherwise about fs integrity issues. Setting of the dirty bit
781 	 * by __block_write_begin() isn't a real problem here as we clear
782 	 * the bit before releasing a page lock and thus writeback cannot
783 	 * ever write the buffer.
784 	 */
785 	if (dirty)
786 		clear_buffer_dirty(bh);
787 	ret = ext4_journal_get_write_access(handle, bh);
788 	if (!ret && dirty)
789 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790 	return ret;
791 }
792 
793 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794 		   struct buffer_head *bh_result, int create);
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)795 static int ext4_write_begin(struct file *file, struct address_space *mapping,
796 			    loff_t pos, unsigned len, unsigned flags,
797 			    struct page **pagep, void **fsdata)
798 {
799 	struct inode *inode = mapping->host;
800 	int ret, needed_blocks;
801 	handle_t *handle;
802 	int retries = 0;
803 	struct page *page;
804 	pgoff_t index;
805 	unsigned from, to;
806 
807 	trace_ext4_write_begin(inode, pos, len, flags);
808 	/*
809 	 * Reserve one block more for addition to orphan list in case
810 	 * we allocate blocks but write fails for some reason
811 	 */
812 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813 	index = pos >> PAGE_CACHE_SHIFT;
814 	from = pos & (PAGE_CACHE_SIZE - 1);
815 	to = from + len;
816 
817 retry:
818 	handle = ext4_journal_start(inode, needed_blocks);
819 	if (IS_ERR(handle)) {
820 		ret = PTR_ERR(handle);
821 		goto out;
822 	}
823 
824 	/* We cannot recurse into the filesystem as the transaction is already
825 	 * started */
826 	flags |= AOP_FLAG_NOFS;
827 
828 	page = grab_cache_page_write_begin(mapping, index, flags);
829 	if (!page) {
830 		ext4_journal_stop(handle);
831 		ret = -ENOMEM;
832 		goto out;
833 	}
834 	*pagep = page;
835 
836 	if (ext4_should_dioread_nolock(inode))
837 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838 	else
839 		ret = __block_write_begin(page, pos, len, ext4_get_block);
840 
841 	if (!ret && ext4_should_journal_data(inode)) {
842 		ret = walk_page_buffers(handle, page_buffers(page),
843 				from, to, NULL, do_journal_get_write_access);
844 	}
845 
846 	if (ret) {
847 		unlock_page(page);
848 		page_cache_release(page);
849 		/*
850 		 * __block_write_begin may have instantiated a few blocks
851 		 * outside i_size.  Trim these off again. Don't need
852 		 * i_size_read because we hold i_mutex.
853 		 *
854 		 * Add inode to orphan list in case we crash before
855 		 * truncate finishes
856 		 */
857 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
858 			ext4_orphan_add(handle, inode);
859 
860 		ext4_journal_stop(handle);
861 		if (pos + len > inode->i_size) {
862 			ext4_truncate_failed_write(inode);
863 			/*
864 			 * If truncate failed early the inode might
865 			 * still be on the orphan list; we need to
866 			 * make sure the inode is removed from the
867 			 * orphan list in that case.
868 			 */
869 			if (inode->i_nlink)
870 				ext4_orphan_del(NULL, inode);
871 		}
872 	}
873 
874 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875 		goto retry;
876 out:
877 	return ret;
878 }
879 
880 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)881 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
882 {
883 	if (!buffer_mapped(bh) || buffer_freed(bh))
884 		return 0;
885 	set_buffer_uptodate(bh);
886 	return ext4_handle_dirty_metadata(handle, NULL, bh);
887 }
888 
ext4_generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)889 static int ext4_generic_write_end(struct file *file,
890 				  struct address_space *mapping,
891 				  loff_t pos, unsigned len, unsigned copied,
892 				  struct page *page, void *fsdata)
893 {
894 	int i_size_changed = 0;
895 	struct inode *inode = mapping->host;
896 	handle_t *handle = ext4_journal_current_handle();
897 
898 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899 
900 	/*
901 	 * No need to use i_size_read() here, the i_size
902 	 * cannot change under us because we hold i_mutex.
903 	 *
904 	 * But it's important to update i_size while still holding page lock:
905 	 * page writeout could otherwise come in and zero beyond i_size.
906 	 */
907 	if (pos + copied > inode->i_size) {
908 		i_size_write(inode, pos + copied);
909 		i_size_changed = 1;
910 	}
911 
912 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
913 		/* We need to mark inode dirty even if
914 		 * new_i_size is less that inode->i_size
915 		 * bu greater than i_disksize.(hint delalloc)
916 		 */
917 		ext4_update_i_disksize(inode, (pos + copied));
918 		i_size_changed = 1;
919 	}
920 	unlock_page(page);
921 	page_cache_release(page);
922 
923 	/*
924 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
925 	 * makes the holding time of page lock longer. Second, it forces lock
926 	 * ordering of page lock and transaction start for journaling
927 	 * filesystems.
928 	 */
929 	if (i_size_changed)
930 		ext4_mark_inode_dirty(handle, inode);
931 
932 	return copied;
933 }
934 
935 /*
936  * We need to pick up the new inode size which generic_commit_write gave us
937  * `file' can be NULL - eg, when called from page_symlink().
938  *
939  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
940  * buffers are managed internally.
941  */
ext4_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)942 static int ext4_ordered_write_end(struct file *file,
943 				  struct address_space *mapping,
944 				  loff_t pos, unsigned len, unsigned copied,
945 				  struct page *page, void *fsdata)
946 {
947 	handle_t *handle = ext4_journal_current_handle();
948 	struct inode *inode = mapping->host;
949 	int ret = 0, ret2;
950 
951 	trace_ext4_ordered_write_end(inode, pos, len, copied);
952 	ret = ext4_jbd2_file_inode(handle, inode);
953 
954 	if (ret == 0) {
955 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
956 							page, fsdata);
957 		copied = ret2;
958 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 			/* if we have allocated more blocks and copied
960 			 * less. We will have blocks allocated outside
961 			 * inode->i_size. So truncate them
962 			 */
963 			ext4_orphan_add(handle, inode);
964 		if (ret2 < 0)
965 			ret = ret2;
966 	} else {
967 		unlock_page(page);
968 		page_cache_release(page);
969 	}
970 
971 	ret2 = ext4_journal_stop(handle);
972 	if (!ret)
973 		ret = ret2;
974 
975 	if (pos + len > inode->i_size) {
976 		ext4_truncate_failed_write(inode);
977 		/*
978 		 * If truncate failed early the inode might still be
979 		 * on the orphan list; we need to make sure the inode
980 		 * is removed from the orphan list in that case.
981 		 */
982 		if (inode->i_nlink)
983 			ext4_orphan_del(NULL, inode);
984 	}
985 
986 
987 	return ret ? ret : copied;
988 }
989 
ext4_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)990 static int ext4_writeback_write_end(struct file *file,
991 				    struct address_space *mapping,
992 				    loff_t pos, unsigned len, unsigned copied,
993 				    struct page *page, void *fsdata)
994 {
995 	handle_t *handle = ext4_journal_current_handle();
996 	struct inode *inode = mapping->host;
997 	int ret = 0, ret2;
998 
999 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1000 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1001 							page, fsdata);
1002 	copied = ret2;
1003 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004 		/* if we have allocated more blocks and copied
1005 		 * less. We will have blocks allocated outside
1006 		 * inode->i_size. So truncate them
1007 		 */
1008 		ext4_orphan_add(handle, inode);
1009 
1010 	if (ret2 < 0)
1011 		ret = ret2;
1012 
1013 	ret2 = ext4_journal_stop(handle);
1014 	if (!ret)
1015 		ret = ret2;
1016 
1017 	if (pos + len > inode->i_size) {
1018 		ext4_truncate_failed_write(inode);
1019 		/*
1020 		 * If truncate failed early the inode might still be
1021 		 * on the orphan list; we need to make sure the inode
1022 		 * is removed from the orphan list in that case.
1023 		 */
1024 		if (inode->i_nlink)
1025 			ext4_orphan_del(NULL, inode);
1026 	}
1027 
1028 	return ret ? ret : copied;
1029 }
1030 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1031 static int ext4_journalled_write_end(struct file *file,
1032 				     struct address_space *mapping,
1033 				     loff_t pos, unsigned len, unsigned copied,
1034 				     struct page *page, void *fsdata)
1035 {
1036 	handle_t *handle = ext4_journal_current_handle();
1037 	struct inode *inode = mapping->host;
1038 	int ret = 0, ret2;
1039 	int partial = 0;
1040 	unsigned from, to;
1041 	loff_t new_i_size;
1042 
1043 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1044 	from = pos & (PAGE_CACHE_SIZE - 1);
1045 	to = from + len;
1046 
1047 	BUG_ON(!ext4_handle_valid(handle));
1048 
1049 	if (copied < len) {
1050 		if (!PageUptodate(page))
1051 			copied = 0;
1052 		page_zero_new_buffers(page, from+copied, to);
1053 	}
1054 
1055 	ret = walk_page_buffers(handle, page_buffers(page), from,
1056 				to, &partial, write_end_fn);
1057 	if (!partial)
1058 		SetPageUptodate(page);
1059 	new_i_size = pos + copied;
1060 	if (new_i_size > inode->i_size)
1061 		i_size_write(inode, pos+copied);
1062 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1065 		ext4_update_i_disksize(inode, new_i_size);
1066 		ret2 = ext4_mark_inode_dirty(handle, inode);
1067 		if (!ret)
1068 			ret = ret2;
1069 	}
1070 
1071 	unlock_page(page);
1072 	page_cache_release(page);
1073 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074 		/* if we have allocated more blocks and copied
1075 		 * less. We will have blocks allocated outside
1076 		 * inode->i_size. So truncate them
1077 		 */
1078 		ext4_orphan_add(handle, inode);
1079 
1080 	ret2 = ext4_journal_stop(handle);
1081 	if (!ret)
1082 		ret = ret2;
1083 	if (pos + len > inode->i_size) {
1084 		ext4_truncate_failed_write(inode);
1085 		/*
1086 		 * If truncate failed early the inode might still be
1087 		 * on the orphan list; we need to make sure the inode
1088 		 * is removed from the orphan list in that case.
1089 		 */
1090 		if (inode->i_nlink)
1091 			ext4_orphan_del(NULL, inode);
1092 	}
1093 
1094 	return ret ? ret : copied;
1095 }
1096 
1097 /*
1098  * Reserve a single cluster located at lblock
1099  */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1101 {
1102 	int retries = 0;
1103 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104 	struct ext4_inode_info *ei = EXT4_I(inode);
1105 	unsigned int md_needed;
1106 	int ret;
1107 
1108 	/*
1109 	 * recalculate the amount of metadata blocks to reserve
1110 	 * in order to allocate nrblocks
1111 	 * worse case is one extent per block
1112 	 */
1113 repeat:
1114 	spin_lock(&ei->i_block_reservation_lock);
1115 	md_needed = EXT4_NUM_B2C(sbi,
1116 				 ext4_calc_metadata_amount(inode, lblock));
1117 	trace_ext4_da_reserve_space(inode, md_needed);
1118 	spin_unlock(&ei->i_block_reservation_lock);
1119 
1120 	/*
1121 	 * We will charge metadata quota at writeout time; this saves
1122 	 * us from metadata over-estimation, though we may go over by
1123 	 * a small amount in the end.  Here we just reserve for data.
1124 	 */
1125 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 	if (ret)
1127 		return ret;
1128 	/*
1129 	 * We do still charge estimated metadata to the sb though;
1130 	 * we cannot afford to run out of free blocks.
1131 	 */
1132 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1134 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135 			yield();
1136 			goto repeat;
1137 		}
1138 		return -ENOSPC;
1139 	}
1140 	spin_lock(&ei->i_block_reservation_lock);
1141 	ei->i_reserved_data_blocks++;
1142 	ei->i_reserved_meta_blocks += md_needed;
1143 	spin_unlock(&ei->i_block_reservation_lock);
1144 
1145 	return 0;       /* success */
1146 }
1147 
ext4_da_release_space(struct inode * inode,int to_free)1148 static void ext4_da_release_space(struct inode *inode, int to_free)
1149 {
1150 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151 	struct ext4_inode_info *ei = EXT4_I(inode);
1152 
1153 	if (!to_free)
1154 		return;		/* Nothing to release, exit */
1155 
1156 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1157 
1158 	trace_ext4_da_release_space(inode, to_free);
1159 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1160 		/*
1161 		 * if there aren't enough reserved blocks, then the
1162 		 * counter is messed up somewhere.  Since this
1163 		 * function is called from invalidate page, it's
1164 		 * harmless to return without any action.
1165 		 */
1166 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167 			 "ino %lu, to_free %d with only %d reserved "
1168 			 "data blocks\n", inode->i_ino, to_free,
1169 			 ei->i_reserved_data_blocks);
1170 		WARN_ON(1);
1171 		to_free = ei->i_reserved_data_blocks;
1172 	}
1173 	ei->i_reserved_data_blocks -= to_free;
1174 
1175 	if (ei->i_reserved_data_blocks == 0) {
1176 		/*
1177 		 * We can release all of the reserved metadata blocks
1178 		 * only when we have written all of the delayed
1179 		 * allocation blocks.
1180 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1181 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1182 		 */
1183 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184 				   ei->i_reserved_meta_blocks);
1185 		ei->i_reserved_meta_blocks = 0;
1186 		ei->i_da_metadata_calc_len = 0;
1187 	}
1188 
1189 	/* update fs dirty data blocks counter */
1190 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1191 
1192 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1193 
1194 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 }
1196 
ext4_da_page_release_reservation(struct page * page,unsigned long offset)1197 static void ext4_da_page_release_reservation(struct page *page,
1198 					     unsigned long offset)
1199 {
1200 	int to_release = 0;
1201 	struct buffer_head *head, *bh;
1202 	unsigned int curr_off = 0;
1203 	struct inode *inode = page->mapping->host;
1204 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 	int num_clusters;
1206 
1207 	head = page_buffers(page);
1208 	bh = head;
1209 	do {
1210 		unsigned int next_off = curr_off + bh->b_size;
1211 
1212 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1213 			to_release++;
1214 			clear_buffer_delay(bh);
1215 			clear_buffer_da_mapped(bh);
1216 		}
1217 		curr_off = next_off;
1218 	} while ((bh = bh->b_this_page) != head);
1219 
1220 	/* If we have released all the blocks belonging to a cluster, then we
1221 	 * need to release the reserved space for that cluster. */
1222 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223 	while (num_clusters > 0) {
1224 		ext4_fsblk_t lblk;
1225 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226 			((num_clusters - 1) << sbi->s_cluster_bits);
1227 		if (sbi->s_cluster_ratio == 1 ||
1228 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1229 			ext4_da_release_space(inode, 1);
1230 
1231 		num_clusters--;
1232 	}
1233 }
1234 
1235 /*
1236  * Delayed allocation stuff
1237  */
1238 
1239 /*
1240  * mpage_da_submit_io - walks through extent of pages and try to write
1241  * them with writepage() call back
1242  *
1243  * @mpd->inode: inode
1244  * @mpd->first_page: first page of the extent
1245  * @mpd->next_page: page after the last page of the extent
1246  *
1247  * By the time mpage_da_submit_io() is called we expect all blocks
1248  * to be allocated. this may be wrong if allocation failed.
1249  *
1250  * As pages are already locked by write_cache_pages(), we can't use it
1251  */
mpage_da_submit_io(struct mpage_da_data * mpd,struct ext4_map_blocks * map)1252 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253 			      struct ext4_map_blocks *map)
1254 {
1255 	struct pagevec pvec;
1256 	unsigned long index, end;
1257 	int ret = 0, err, nr_pages, i;
1258 	struct inode *inode = mpd->inode;
1259 	struct address_space *mapping = inode->i_mapping;
1260 	loff_t size = i_size_read(inode);
1261 	unsigned int len, block_start;
1262 	struct buffer_head *bh, *page_bufs = NULL;
1263 	int journal_data = ext4_should_journal_data(inode);
1264 	sector_t pblock = 0, cur_logical = 0;
1265 	struct ext4_io_submit io_submit;
1266 
1267 	BUG_ON(mpd->next_page <= mpd->first_page);
1268 	memset(&io_submit, 0, sizeof(io_submit));
1269 	/*
1270 	 * We need to start from the first_page to the next_page - 1
1271 	 * to make sure we also write the mapped dirty buffer_heads.
1272 	 * If we look at mpd->b_blocknr we would only be looking
1273 	 * at the currently mapped buffer_heads.
1274 	 */
1275 	index = mpd->first_page;
1276 	end = mpd->next_page - 1;
1277 
1278 	pagevec_init(&pvec, 0);
1279 	while (index <= end) {
1280 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281 		if (nr_pages == 0)
1282 			break;
1283 		for (i = 0; i < nr_pages; i++) {
1284 			int commit_write = 0, skip_page = 0;
1285 			struct page *page = pvec.pages[i];
1286 
1287 			index = page->index;
1288 			if (index > end)
1289 				break;
1290 
1291 			if (index == size >> PAGE_CACHE_SHIFT)
1292 				len = size & ~PAGE_CACHE_MASK;
1293 			else
1294 				len = PAGE_CACHE_SIZE;
1295 			if (map) {
1296 				cur_logical = index << (PAGE_CACHE_SHIFT -
1297 							inode->i_blkbits);
1298 				pblock = map->m_pblk + (cur_logical -
1299 							map->m_lblk);
1300 			}
1301 			index++;
1302 
1303 			BUG_ON(!PageLocked(page));
1304 			BUG_ON(PageWriteback(page));
1305 
1306 			/*
1307 			 * If the page does not have buffers (for
1308 			 * whatever reason), try to create them using
1309 			 * __block_write_begin.  If this fails,
1310 			 * skip the page and move on.
1311 			 */
1312 			if (!page_has_buffers(page)) {
1313 				if (__block_write_begin(page, 0, len,
1314 						noalloc_get_block_write)) {
1315 				skip_page:
1316 					unlock_page(page);
1317 					continue;
1318 				}
1319 				commit_write = 1;
1320 			}
1321 
1322 			bh = page_bufs = page_buffers(page);
1323 			block_start = 0;
1324 			do {
1325 				if (!bh)
1326 					goto skip_page;
1327 				if (map && (cur_logical >= map->m_lblk) &&
1328 				    (cur_logical <= (map->m_lblk +
1329 						     (map->m_len - 1)))) {
1330 					if (buffer_delay(bh)) {
1331 						clear_buffer_delay(bh);
1332 						bh->b_blocknr = pblock;
1333 					}
1334 					if (buffer_da_mapped(bh))
1335 						clear_buffer_da_mapped(bh);
1336 					if (buffer_unwritten(bh) ||
1337 					    buffer_mapped(bh))
1338 						BUG_ON(bh->b_blocknr != pblock);
1339 					if (map->m_flags & EXT4_MAP_UNINIT)
1340 						set_buffer_uninit(bh);
1341 					clear_buffer_unwritten(bh);
1342 				}
1343 
1344 				/*
1345 				 * skip page if block allocation undone and
1346 				 * block is dirty
1347 				 */
1348 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1349 					skip_page = 1;
1350 				bh = bh->b_this_page;
1351 				block_start += bh->b_size;
1352 				cur_logical++;
1353 				pblock++;
1354 			} while (bh != page_bufs);
1355 
1356 			if (skip_page)
1357 				goto skip_page;
1358 
1359 			if (commit_write)
1360 				/* mark the buffer_heads as dirty & uptodate */
1361 				block_commit_write(page, 0, len);
1362 
1363 			clear_page_dirty_for_io(page);
1364 			/*
1365 			 * Delalloc doesn't support data journalling,
1366 			 * but eventually maybe we'll lift this
1367 			 * restriction.
1368 			 */
1369 			if (unlikely(journal_data && PageChecked(page)))
1370 				err = __ext4_journalled_writepage(page, len);
1371 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372 				err = ext4_bio_write_page(&io_submit, page,
1373 							  len, mpd->wbc);
1374 			else if (buffer_uninit(page_bufs)) {
1375 				ext4_set_bh_endio(page_bufs, inode);
1376 				err = block_write_full_page_endio(page,
1377 					noalloc_get_block_write,
1378 					mpd->wbc, ext4_end_io_buffer_write);
1379 			} else
1380 				err = block_write_full_page(page,
1381 					noalloc_get_block_write, mpd->wbc);
1382 
1383 			if (!err)
1384 				mpd->pages_written++;
1385 			/*
1386 			 * In error case, we have to continue because
1387 			 * remaining pages are still locked
1388 			 */
1389 			if (ret == 0)
1390 				ret = err;
1391 		}
1392 		pagevec_release(&pvec);
1393 	}
1394 	ext4_io_submit(&io_submit);
1395 	return ret;
1396 }
1397 
ext4_da_block_invalidatepages(struct mpage_da_data * mpd)1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1399 {
1400 	int nr_pages, i;
1401 	pgoff_t index, end;
1402 	struct pagevec pvec;
1403 	struct inode *inode = mpd->inode;
1404 	struct address_space *mapping = inode->i_mapping;
1405 
1406 	index = mpd->first_page;
1407 	end   = mpd->next_page - 1;
1408 	while (index <= end) {
1409 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410 		if (nr_pages == 0)
1411 			break;
1412 		for (i = 0; i < nr_pages; i++) {
1413 			struct page *page = pvec.pages[i];
1414 			if (page->index > end)
1415 				break;
1416 			BUG_ON(!PageLocked(page));
1417 			BUG_ON(PageWriteback(page));
1418 			block_invalidatepage(page, 0);
1419 			ClearPageUptodate(page);
1420 			unlock_page(page);
1421 		}
1422 		index = pvec.pages[nr_pages - 1]->index + 1;
1423 		pagevec_release(&pvec);
1424 	}
1425 	return;
1426 }
1427 
ext4_print_free_blocks(struct inode * inode)1428 static void ext4_print_free_blocks(struct inode *inode)
1429 {
1430 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431 	printk(KERN_CRIT "Total free blocks count %lld\n",
1432 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1433 			ext4_count_free_clusters(inode->i_sb)));
1434 	printk(KERN_CRIT "Free/Dirty block details\n");
1435 	printk(KERN_CRIT "free_blocks=%lld\n",
1436 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1437 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1438 	printk(KERN_CRIT "dirty_blocks=%lld\n",
1439 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1440 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1441 	printk(KERN_CRIT "Block reservation details\n");
1442 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1443 	       EXT4_I(inode)->i_reserved_data_blocks);
1444 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1445 	       EXT4_I(inode)->i_reserved_meta_blocks);
1446 	return;
1447 }
1448 
1449 /*
1450  * mpage_da_map_and_submit - go through given space, map them
1451  *       if necessary, and then submit them for I/O
1452  *
1453  * @mpd - bh describing space
1454  *
1455  * The function skips space we know is already mapped to disk blocks.
1456  *
1457  */
mpage_da_map_and_submit(struct mpage_da_data * mpd)1458 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1459 {
1460 	int err, blks, get_blocks_flags;
1461 	struct ext4_map_blocks map, *mapp = NULL;
1462 	sector_t next = mpd->b_blocknr;
1463 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1464 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1465 	handle_t *handle = NULL;
1466 
1467 	/*
1468 	 * If the blocks are mapped already, or we couldn't accumulate
1469 	 * any blocks, then proceed immediately to the submission stage.
1470 	 */
1471 	if ((mpd->b_size == 0) ||
1472 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1473 	     !(mpd->b_state & (1 << BH_Delay)) &&
1474 	     !(mpd->b_state & (1 << BH_Unwritten))))
1475 		goto submit_io;
1476 
1477 	handle = ext4_journal_current_handle();
1478 	BUG_ON(!handle);
1479 
1480 	/*
1481 	 * Call ext4_map_blocks() to allocate any delayed allocation
1482 	 * blocks, or to convert an uninitialized extent to be
1483 	 * initialized (in the case where we have written into
1484 	 * one or more preallocated blocks).
1485 	 *
1486 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1487 	 * indicate that we are on the delayed allocation path.  This
1488 	 * affects functions in many different parts of the allocation
1489 	 * call path.  This flag exists primarily because we don't
1490 	 * want to change *many* call functions, so ext4_map_blocks()
1491 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1492 	 * inode's allocation semaphore is taken.
1493 	 *
1494 	 * If the blocks in questions were delalloc blocks, set
1495 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1496 	 * variables are updated after the blocks have been allocated.
1497 	 */
1498 	map.m_lblk = next;
1499 	map.m_len = max_blocks;
1500 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1501 	if (ext4_should_dioread_nolock(mpd->inode))
1502 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1503 	if (mpd->b_state & (1 << BH_Delay))
1504 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1505 
1506 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1507 	if (blks < 0) {
1508 		struct super_block *sb = mpd->inode->i_sb;
1509 
1510 		err = blks;
1511 		/*
1512 		 * If get block returns EAGAIN or ENOSPC and there
1513 		 * appears to be free blocks we will just let
1514 		 * mpage_da_submit_io() unlock all of the pages.
1515 		 */
1516 		if (err == -EAGAIN)
1517 			goto submit_io;
1518 
1519 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1520 			mpd->retval = err;
1521 			goto submit_io;
1522 		}
1523 
1524 		/*
1525 		 * get block failure will cause us to loop in
1526 		 * writepages, because a_ops->writepage won't be able
1527 		 * to make progress. The page will be redirtied by
1528 		 * writepage and writepages will again try to write
1529 		 * the same.
1530 		 */
1531 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1532 			ext4_msg(sb, KERN_CRIT,
1533 				 "delayed block allocation failed for inode %lu "
1534 				 "at logical offset %llu with max blocks %zd "
1535 				 "with error %d", mpd->inode->i_ino,
1536 				 (unsigned long long) next,
1537 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1538 			ext4_msg(sb, KERN_CRIT,
1539 				"This should not happen!! Data will be lost\n");
1540 			if (err == -ENOSPC)
1541 				ext4_print_free_blocks(mpd->inode);
1542 		}
1543 		/* invalidate all the pages */
1544 		ext4_da_block_invalidatepages(mpd);
1545 
1546 		/* Mark this page range as having been completed */
1547 		mpd->io_done = 1;
1548 		return;
1549 	}
1550 	BUG_ON(blks == 0);
1551 
1552 	mapp = &map;
1553 	if (map.m_flags & EXT4_MAP_NEW) {
1554 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1555 		int i;
1556 
1557 		for (i = 0; i < map.m_len; i++)
1558 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1559 
1560 		if (ext4_should_order_data(mpd->inode)) {
1561 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1562 			if (err) {
1563 				/* Only if the journal is aborted */
1564 				mpd->retval = err;
1565 				goto submit_io;
1566 			}
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Update on-disk size along with block allocation.
1572 	 */
1573 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1574 	if (disksize > i_size_read(mpd->inode))
1575 		disksize = i_size_read(mpd->inode);
1576 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1577 		ext4_update_i_disksize(mpd->inode, disksize);
1578 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1579 		if (err)
1580 			ext4_error(mpd->inode->i_sb,
1581 				   "Failed to mark inode %lu dirty",
1582 				   mpd->inode->i_ino);
1583 	}
1584 
1585 submit_io:
1586 	mpage_da_submit_io(mpd, mapp);
1587 	mpd->io_done = 1;
1588 }
1589 
1590 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1591 		(1 << BH_Delay) | (1 << BH_Unwritten))
1592 
1593 /*
1594  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1595  *
1596  * @mpd->lbh - extent of blocks
1597  * @logical - logical number of the block in the file
1598  * @bh - bh of the block (used to access block's state)
1599  *
1600  * the function is used to collect contig. blocks in same state
1601  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,sector_t logical,size_t b_size,unsigned long b_state)1602 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1603 				   sector_t logical, size_t b_size,
1604 				   unsigned long b_state)
1605 {
1606 	sector_t next;
1607 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1608 
1609 	/*
1610 	 * XXX Don't go larger than mballoc is willing to allocate
1611 	 * This is a stopgap solution.  We eventually need to fold
1612 	 * mpage_da_submit_io() into this function and then call
1613 	 * ext4_map_blocks() multiple times in a loop
1614 	 */
1615 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1616 		goto flush_it;
1617 
1618 	/* check if thereserved journal credits might overflow */
1619 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1620 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1621 			/*
1622 			 * With non-extent format we are limited by the journal
1623 			 * credit available.  Total credit needed to insert
1624 			 * nrblocks contiguous blocks is dependent on the
1625 			 * nrblocks.  So limit nrblocks.
1626 			 */
1627 			goto flush_it;
1628 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1629 				EXT4_MAX_TRANS_DATA) {
1630 			/*
1631 			 * Adding the new buffer_head would make it cross the
1632 			 * allowed limit for which we have journal credit
1633 			 * reserved. So limit the new bh->b_size
1634 			 */
1635 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1636 						mpd->inode->i_blkbits;
1637 			/* we will do mpage_da_submit_io in the next loop */
1638 		}
1639 	}
1640 	/*
1641 	 * First block in the extent
1642 	 */
1643 	if (mpd->b_size == 0) {
1644 		mpd->b_blocknr = logical;
1645 		mpd->b_size = b_size;
1646 		mpd->b_state = b_state & BH_FLAGS;
1647 		return;
1648 	}
1649 
1650 	next = mpd->b_blocknr + nrblocks;
1651 	/*
1652 	 * Can we merge the block to our big extent?
1653 	 */
1654 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1655 		mpd->b_size += b_size;
1656 		return;
1657 	}
1658 
1659 flush_it:
1660 	/*
1661 	 * We couldn't merge the block to our extent, so we
1662 	 * need to flush current  extent and start new one
1663 	 */
1664 	mpage_da_map_and_submit(mpd);
1665 	return;
1666 }
1667 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1668 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1669 {
1670 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1671 }
1672 
1673 /*
1674  * This function is grabs code from the very beginning of
1675  * ext4_map_blocks, but assumes that the caller is from delayed write
1676  * time. This function looks up the requested blocks and sets the
1677  * buffer delay bit under the protection of i_data_sem.
1678  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1679 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1680 			      struct ext4_map_blocks *map,
1681 			      struct buffer_head *bh)
1682 {
1683 	int retval;
1684 	sector_t invalid_block = ~((sector_t) 0xffff);
1685 
1686 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1687 		invalid_block = ~0;
1688 
1689 	map->m_flags = 0;
1690 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1691 		  "logical block %lu\n", inode->i_ino, map->m_len,
1692 		  (unsigned long) map->m_lblk);
1693 	/*
1694 	 * Try to see if we can get the block without requesting a new
1695 	 * file system block.
1696 	 */
1697 	down_read((&EXT4_I(inode)->i_data_sem));
1698 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1699 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1700 	else
1701 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1702 
1703 	if (retval == 0) {
1704 		/*
1705 		 * XXX: __block_prepare_write() unmaps passed block,
1706 		 * is it OK?
1707 		 */
1708 		/* If the block was allocated from previously allocated cluster,
1709 		 * then we dont need to reserve it again. */
1710 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1711 			retval = ext4_da_reserve_space(inode, iblock);
1712 			if (retval)
1713 				/* not enough space to reserve */
1714 				goto out_unlock;
1715 		}
1716 
1717 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1718 		 * and it should not appear on the bh->b_state.
1719 		 */
1720 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1721 
1722 		map_bh(bh, inode->i_sb, invalid_block);
1723 		set_buffer_new(bh);
1724 		set_buffer_delay(bh);
1725 	}
1726 
1727 out_unlock:
1728 	up_read((&EXT4_I(inode)->i_data_sem));
1729 
1730 	return retval;
1731 }
1732 
1733 /*
1734  * This is a special get_blocks_t callback which is used by
1735  * ext4_da_write_begin().  It will either return mapped block or
1736  * reserve space for a single block.
1737  *
1738  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1739  * We also have b_blocknr = -1 and b_bdev initialized properly
1740  *
1741  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1742  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1743  * initialized properly.
1744  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1745 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1746 				  struct buffer_head *bh, int create)
1747 {
1748 	struct ext4_map_blocks map;
1749 	int ret = 0;
1750 
1751 	BUG_ON(create == 0);
1752 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1753 
1754 	map.m_lblk = iblock;
1755 	map.m_len = 1;
1756 
1757 	/*
1758 	 * first, we need to know whether the block is allocated already
1759 	 * preallocated blocks are unmapped but should treated
1760 	 * the same as allocated blocks.
1761 	 */
1762 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1763 	if (ret <= 0)
1764 		return ret;
1765 
1766 	map_bh(bh, inode->i_sb, map.m_pblk);
1767 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1768 
1769 	if (buffer_unwritten(bh)) {
1770 		/* A delayed write to unwritten bh should be marked
1771 		 * new and mapped.  Mapped ensures that we don't do
1772 		 * get_block multiple times when we write to the same
1773 		 * offset and new ensures that we do proper zero out
1774 		 * for partial write.
1775 		 */
1776 		set_buffer_new(bh);
1777 		set_buffer_mapped(bh);
1778 	}
1779 	return 0;
1780 }
1781 
1782 /*
1783  * This function is used as a standard get_block_t calback function
1784  * when there is no desire to allocate any blocks.  It is used as a
1785  * callback function for block_write_begin() and block_write_full_page().
1786  * These functions should only try to map a single block at a time.
1787  *
1788  * Since this function doesn't do block allocations even if the caller
1789  * requests it by passing in create=1, it is critically important that
1790  * any caller checks to make sure that any buffer heads are returned
1791  * by this function are either all already mapped or marked for
1792  * delayed allocation before calling  block_write_full_page().  Otherwise,
1793  * b_blocknr could be left unitialized, and the page write functions will
1794  * be taken by surprise.
1795  */
noalloc_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1796 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1797 				   struct buffer_head *bh_result, int create)
1798 {
1799 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1800 	return _ext4_get_block(inode, iblock, bh_result, 0);
1801 }
1802 
bget_one(handle_t * handle,struct buffer_head * bh)1803 static int bget_one(handle_t *handle, struct buffer_head *bh)
1804 {
1805 	get_bh(bh);
1806 	return 0;
1807 }
1808 
bput_one(handle_t * handle,struct buffer_head * bh)1809 static int bput_one(handle_t *handle, struct buffer_head *bh)
1810 {
1811 	put_bh(bh);
1812 	return 0;
1813 }
1814 
__ext4_journalled_writepage(struct page * page,unsigned int len)1815 static int __ext4_journalled_writepage(struct page *page,
1816 				       unsigned int len)
1817 {
1818 	struct address_space *mapping = page->mapping;
1819 	struct inode *inode = mapping->host;
1820 	struct buffer_head *page_bufs;
1821 	handle_t *handle = NULL;
1822 	int ret = 0;
1823 	int err;
1824 
1825 	ClearPageChecked(page);
1826 	page_bufs = page_buffers(page);
1827 	BUG_ON(!page_bufs);
1828 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1829 	/* As soon as we unlock the page, it can go away, but we have
1830 	 * references to buffers so we are safe */
1831 	unlock_page(page);
1832 
1833 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1834 	if (IS_ERR(handle)) {
1835 		ret = PTR_ERR(handle);
1836 		goto out;
1837 	}
1838 
1839 	BUG_ON(!ext4_handle_valid(handle));
1840 
1841 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1842 				do_journal_get_write_access);
1843 
1844 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1845 				write_end_fn);
1846 	if (ret == 0)
1847 		ret = err;
1848 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1849 	err = ext4_journal_stop(handle);
1850 	if (!ret)
1851 		ret = err;
1852 
1853 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1854 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1855 out:
1856 	return ret;
1857 }
1858 
1859 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1860 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1861 
1862 /*
1863  * Note that we don't need to start a transaction unless we're journaling data
1864  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1865  * need to file the inode to the transaction's list in ordered mode because if
1866  * we are writing back data added by write(), the inode is already there and if
1867  * we are writing back data modified via mmap(), no one guarantees in which
1868  * transaction the data will hit the disk. In case we are journaling data, we
1869  * cannot start transaction directly because transaction start ranks above page
1870  * lock so we have to do some magic.
1871  *
1872  * This function can get called via...
1873  *   - ext4_da_writepages after taking page lock (have journal handle)
1874  *   - journal_submit_inode_data_buffers (no journal handle)
1875  *   - shrink_page_list via pdflush (no journal handle)
1876  *   - grab_page_cache when doing write_begin (have journal handle)
1877  *
1878  * We don't do any block allocation in this function. If we have page with
1879  * multiple blocks we need to write those buffer_heads that are mapped. This
1880  * is important for mmaped based write. So if we do with blocksize 1K
1881  * truncate(f, 1024);
1882  * a = mmap(f, 0, 4096);
1883  * a[0] = 'a';
1884  * truncate(f, 4096);
1885  * we have in the page first buffer_head mapped via page_mkwrite call back
1886  * but other buffer_heads would be unmapped but dirty (dirty done via the
1887  * do_wp_page). So writepage should write the first block. If we modify
1888  * the mmap area beyond 1024 we will again get a page_fault and the
1889  * page_mkwrite callback will do the block allocation and mark the
1890  * buffer_heads mapped.
1891  *
1892  * We redirty the page if we have any buffer_heads that is either delay or
1893  * unwritten in the page.
1894  *
1895  * We can get recursively called as show below.
1896  *
1897  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1898  *		ext4_writepage()
1899  *
1900  * But since we don't do any block allocation we should not deadlock.
1901  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1902  */
ext4_writepage(struct page * page,struct writeback_control * wbc)1903 static int ext4_writepage(struct page *page,
1904 			  struct writeback_control *wbc)
1905 {
1906 	int ret = 0, commit_write = 0;
1907 	loff_t size;
1908 	unsigned int len;
1909 	struct buffer_head *page_bufs = NULL;
1910 	struct inode *inode = page->mapping->host;
1911 
1912 	trace_ext4_writepage(page);
1913 	size = i_size_read(inode);
1914 	if (page->index == size >> PAGE_CACHE_SHIFT)
1915 		len = size & ~PAGE_CACHE_MASK;
1916 	else
1917 		len = PAGE_CACHE_SIZE;
1918 
1919 	/*
1920 	 * If the page does not have buffers (for whatever reason),
1921 	 * try to create them using __block_write_begin.  If this
1922 	 * fails, redirty the page and move on.
1923 	 */
1924 	if (!page_has_buffers(page)) {
1925 		if (__block_write_begin(page, 0, len,
1926 					noalloc_get_block_write)) {
1927 		redirty_page:
1928 			redirty_page_for_writepage(wbc, page);
1929 			unlock_page(page);
1930 			return 0;
1931 		}
1932 		commit_write = 1;
1933 	}
1934 	page_bufs = page_buffers(page);
1935 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1936 			      ext4_bh_delay_or_unwritten)) {
1937 		/*
1938 		 * We don't want to do block allocation, so redirty
1939 		 * the page and return.  We may reach here when we do
1940 		 * a journal commit via journal_submit_inode_data_buffers.
1941 		 * We can also reach here via shrink_page_list but it
1942 		 * should never be for direct reclaim so warn if that
1943 		 * happens
1944 		 */
1945 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1946 								PF_MEMALLOC);
1947 		goto redirty_page;
1948 	}
1949 	if (commit_write)
1950 		/* now mark the buffer_heads as dirty and uptodate */
1951 		block_commit_write(page, 0, len);
1952 
1953 	if (PageChecked(page) && ext4_should_journal_data(inode))
1954 		/*
1955 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1956 		 * doesn't seem much point in redirtying the page here.
1957 		 */
1958 		return __ext4_journalled_writepage(page, len);
1959 
1960 	if (buffer_uninit(page_bufs)) {
1961 		ext4_set_bh_endio(page_bufs, inode);
1962 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1963 					    wbc, ext4_end_io_buffer_write);
1964 	} else
1965 		ret = block_write_full_page(page, noalloc_get_block_write,
1966 					    wbc);
1967 
1968 	return ret;
1969 }
1970 
1971 /*
1972  * This is called via ext4_da_writepages() to
1973  * calculate the total number of credits to reserve to fit
1974  * a single extent allocation into a single transaction,
1975  * ext4_da_writpeages() will loop calling this before
1976  * the block allocation.
1977  */
1978 
ext4_da_writepages_trans_blocks(struct inode * inode)1979 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1980 {
1981 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1982 
1983 	/*
1984 	 * With non-extent format the journal credit needed to
1985 	 * insert nrblocks contiguous block is dependent on
1986 	 * number of contiguous block. So we will limit
1987 	 * number of contiguous block to a sane value
1988 	 */
1989 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1990 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1991 		max_blocks = EXT4_MAX_TRANS_DATA;
1992 
1993 	return ext4_chunk_trans_blocks(inode, max_blocks);
1994 }
1995 
1996 /*
1997  * write_cache_pages_da - walk the list of dirty pages of the given
1998  * address space and accumulate pages that need writing, and call
1999  * mpage_da_map_and_submit to map a single contiguous memory region
2000  * and then write them.
2001  */
write_cache_pages_da(struct address_space * mapping,struct writeback_control * wbc,struct mpage_da_data * mpd,pgoff_t * done_index)2002 static int write_cache_pages_da(struct address_space *mapping,
2003 				struct writeback_control *wbc,
2004 				struct mpage_da_data *mpd,
2005 				pgoff_t *done_index)
2006 {
2007 	struct buffer_head	*bh, *head;
2008 	struct inode		*inode = mapping->host;
2009 	struct pagevec		pvec;
2010 	unsigned int		nr_pages;
2011 	sector_t		logical;
2012 	pgoff_t			index, end;
2013 	long			nr_to_write = wbc->nr_to_write;
2014 	int			i, tag, ret = 0;
2015 
2016 	memset(mpd, 0, sizeof(struct mpage_da_data));
2017 	mpd->wbc = wbc;
2018 	mpd->inode = inode;
2019 	pagevec_init(&pvec, 0);
2020 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2021 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2022 
2023 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2024 		tag = PAGECACHE_TAG_TOWRITE;
2025 	else
2026 		tag = PAGECACHE_TAG_DIRTY;
2027 
2028 	*done_index = index;
2029 	while (index <= end) {
2030 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2031 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2032 		if (nr_pages == 0)
2033 			return 0;
2034 
2035 		for (i = 0; i < nr_pages; i++) {
2036 			struct page *page = pvec.pages[i];
2037 
2038 			/*
2039 			 * At this point, the page may be truncated or
2040 			 * invalidated (changing page->mapping to NULL), or
2041 			 * even swizzled back from swapper_space to tmpfs file
2042 			 * mapping. However, page->index will not change
2043 			 * because we have a reference on the page.
2044 			 */
2045 			if (page->index > end)
2046 				goto out;
2047 
2048 			*done_index = page->index + 1;
2049 
2050 			/*
2051 			 * If we can't merge this page, and we have
2052 			 * accumulated an contiguous region, write it
2053 			 */
2054 			if ((mpd->next_page != page->index) &&
2055 			    (mpd->next_page != mpd->first_page)) {
2056 				mpage_da_map_and_submit(mpd);
2057 				goto ret_extent_tail;
2058 			}
2059 
2060 			lock_page(page);
2061 
2062 			/*
2063 			 * If the page is no longer dirty, or its
2064 			 * mapping no longer corresponds to inode we
2065 			 * are writing (which means it has been
2066 			 * truncated or invalidated), or the page is
2067 			 * already under writeback and we are not
2068 			 * doing a data integrity writeback, skip the page
2069 			 */
2070 			if (!PageDirty(page) ||
2071 			    (PageWriteback(page) &&
2072 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2073 			    unlikely(page->mapping != mapping)) {
2074 				unlock_page(page);
2075 				continue;
2076 			}
2077 
2078 			wait_on_page_writeback(page);
2079 			BUG_ON(PageWriteback(page));
2080 
2081 			if (mpd->next_page != page->index)
2082 				mpd->first_page = page->index;
2083 			mpd->next_page = page->index + 1;
2084 			logical = (sector_t) page->index <<
2085 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2086 
2087 			if (!page_has_buffers(page)) {
2088 				mpage_add_bh_to_extent(mpd, logical,
2089 						       PAGE_CACHE_SIZE,
2090 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2091 				if (mpd->io_done)
2092 					goto ret_extent_tail;
2093 			} else {
2094 				/*
2095 				 * Page with regular buffer heads,
2096 				 * just add all dirty ones
2097 				 */
2098 				head = page_buffers(page);
2099 				bh = head;
2100 				do {
2101 					BUG_ON(buffer_locked(bh));
2102 					/*
2103 					 * We need to try to allocate
2104 					 * unmapped blocks in the same page.
2105 					 * Otherwise we won't make progress
2106 					 * with the page in ext4_writepage
2107 					 */
2108 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2109 						mpage_add_bh_to_extent(mpd, logical,
2110 								       bh->b_size,
2111 								       bh->b_state);
2112 						if (mpd->io_done)
2113 							goto ret_extent_tail;
2114 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2115 						/*
2116 						 * mapped dirty buffer. We need
2117 						 * to update the b_state
2118 						 * because we look at b_state
2119 						 * in mpage_da_map_blocks.  We
2120 						 * don't update b_size because
2121 						 * if we find an unmapped
2122 						 * buffer_head later we need to
2123 						 * use the b_state flag of that
2124 						 * buffer_head.
2125 						 */
2126 						if (mpd->b_size == 0)
2127 							mpd->b_state = bh->b_state & BH_FLAGS;
2128 					}
2129 					logical++;
2130 				} while ((bh = bh->b_this_page) != head);
2131 			}
2132 
2133 			if (nr_to_write > 0) {
2134 				nr_to_write--;
2135 				if (nr_to_write == 0 &&
2136 				    wbc->sync_mode == WB_SYNC_NONE)
2137 					/*
2138 					 * We stop writing back only if we are
2139 					 * not doing integrity sync. In case of
2140 					 * integrity sync we have to keep going
2141 					 * because someone may be concurrently
2142 					 * dirtying pages, and we might have
2143 					 * synced a lot of newly appeared dirty
2144 					 * pages, but have not synced all of the
2145 					 * old dirty pages.
2146 					 */
2147 					goto out;
2148 			}
2149 		}
2150 		pagevec_release(&pvec);
2151 		cond_resched();
2152 	}
2153 	return 0;
2154 ret_extent_tail:
2155 	ret = MPAGE_DA_EXTENT_TAIL;
2156 out:
2157 	pagevec_release(&pvec);
2158 	cond_resched();
2159 	return ret;
2160 }
2161 
2162 
ext4_da_writepages(struct address_space * mapping,struct writeback_control * wbc)2163 static int ext4_da_writepages(struct address_space *mapping,
2164 			      struct writeback_control *wbc)
2165 {
2166 	pgoff_t	index;
2167 	int range_whole = 0;
2168 	handle_t *handle = NULL;
2169 	struct mpage_da_data mpd;
2170 	struct inode *inode = mapping->host;
2171 	int pages_written = 0;
2172 	unsigned int max_pages;
2173 	int range_cyclic, cycled = 1, io_done = 0;
2174 	int needed_blocks, ret = 0;
2175 	long desired_nr_to_write, nr_to_writebump = 0;
2176 	loff_t range_start = wbc->range_start;
2177 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2178 	pgoff_t done_index = 0;
2179 	pgoff_t end;
2180 	struct blk_plug plug;
2181 
2182 	trace_ext4_da_writepages(inode, wbc);
2183 
2184 	/*
2185 	 * No pages to write? This is mainly a kludge to avoid starting
2186 	 * a transaction for special inodes like journal inode on last iput()
2187 	 * because that could violate lock ordering on umount
2188 	 */
2189 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2190 		return 0;
2191 
2192 	/*
2193 	 * If the filesystem has aborted, it is read-only, so return
2194 	 * right away instead of dumping stack traces later on that
2195 	 * will obscure the real source of the problem.  We test
2196 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2197 	 * the latter could be true if the filesystem is mounted
2198 	 * read-only, and in that case, ext4_da_writepages should
2199 	 * *never* be called, so if that ever happens, we would want
2200 	 * the stack trace.
2201 	 */
2202 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2203 		return -EROFS;
2204 
2205 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2206 		range_whole = 1;
2207 
2208 	range_cyclic = wbc->range_cyclic;
2209 	if (wbc->range_cyclic) {
2210 		index = mapping->writeback_index;
2211 		if (index)
2212 			cycled = 0;
2213 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2214 		wbc->range_end  = LLONG_MAX;
2215 		wbc->range_cyclic = 0;
2216 		end = -1;
2217 	} else {
2218 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2219 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2220 	}
2221 
2222 	/*
2223 	 * This works around two forms of stupidity.  The first is in
2224 	 * the writeback code, which caps the maximum number of pages
2225 	 * written to be 1024 pages.  This is wrong on multiple
2226 	 * levels; different architectues have a different page size,
2227 	 * which changes the maximum amount of data which gets
2228 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2229 	 * forces this value to be 16 megabytes by multiplying
2230 	 * nr_to_write parameter by four, and then relies on its
2231 	 * allocator to allocate larger extents to make them
2232 	 * contiguous.  Unfortunately this brings us to the second
2233 	 * stupidity, which is that ext4's mballoc code only allocates
2234 	 * at most 2048 blocks.  So we force contiguous writes up to
2235 	 * the number of dirty blocks in the inode, or
2236 	 * sbi->max_writeback_mb_bump whichever is smaller.
2237 	 */
2238 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2239 	if (!range_cyclic && range_whole) {
2240 		if (wbc->nr_to_write == LONG_MAX)
2241 			desired_nr_to_write = wbc->nr_to_write;
2242 		else
2243 			desired_nr_to_write = wbc->nr_to_write * 8;
2244 	} else
2245 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2246 							   max_pages);
2247 	if (desired_nr_to_write > max_pages)
2248 		desired_nr_to_write = max_pages;
2249 
2250 	if (wbc->nr_to_write < desired_nr_to_write) {
2251 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2252 		wbc->nr_to_write = desired_nr_to_write;
2253 	}
2254 
2255 retry:
2256 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2257 		tag_pages_for_writeback(mapping, index, end);
2258 
2259 	blk_start_plug(&plug);
2260 	while (!ret && wbc->nr_to_write > 0) {
2261 
2262 		/*
2263 		 * we  insert one extent at a time. So we need
2264 		 * credit needed for single extent allocation.
2265 		 * journalled mode is currently not supported
2266 		 * by delalloc
2267 		 */
2268 		BUG_ON(ext4_should_journal_data(inode));
2269 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2270 
2271 		/* start a new transaction*/
2272 		handle = ext4_journal_start(inode, needed_blocks);
2273 		if (IS_ERR(handle)) {
2274 			ret = PTR_ERR(handle);
2275 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2276 			       "%ld pages, ino %lu; err %d", __func__,
2277 				wbc->nr_to_write, inode->i_ino, ret);
2278 			blk_finish_plug(&plug);
2279 			goto out_writepages;
2280 		}
2281 
2282 		/*
2283 		 * Now call write_cache_pages_da() to find the next
2284 		 * contiguous region of logical blocks that need
2285 		 * blocks to be allocated by ext4 and submit them.
2286 		 */
2287 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2288 		/*
2289 		 * If we have a contiguous extent of pages and we
2290 		 * haven't done the I/O yet, map the blocks and submit
2291 		 * them for I/O.
2292 		 */
2293 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2294 			mpage_da_map_and_submit(&mpd);
2295 			ret = MPAGE_DA_EXTENT_TAIL;
2296 		}
2297 		trace_ext4_da_write_pages(inode, &mpd);
2298 		wbc->nr_to_write -= mpd.pages_written;
2299 
2300 		ext4_journal_stop(handle);
2301 
2302 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2303 			/* commit the transaction which would
2304 			 * free blocks released in the transaction
2305 			 * and try again
2306 			 */
2307 			jbd2_journal_force_commit_nested(sbi->s_journal);
2308 			ret = 0;
2309 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2310 			/*
2311 			 * Got one extent now try with rest of the pages.
2312 			 * If mpd.retval is set -EIO, journal is aborted.
2313 			 * So we don't need to write any more.
2314 			 */
2315 			pages_written += mpd.pages_written;
2316 			ret = mpd.retval;
2317 			io_done = 1;
2318 		} else if (wbc->nr_to_write)
2319 			/*
2320 			 * There is no more writeout needed
2321 			 * or we requested for a noblocking writeout
2322 			 * and we found the device congested
2323 			 */
2324 			break;
2325 	}
2326 	blk_finish_plug(&plug);
2327 	if (!io_done && !cycled) {
2328 		cycled = 1;
2329 		index = 0;
2330 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2331 		wbc->range_end  = mapping->writeback_index - 1;
2332 		goto retry;
2333 	}
2334 
2335 	/* Update index */
2336 	wbc->range_cyclic = range_cyclic;
2337 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2338 		/*
2339 		 * set the writeback_index so that range_cyclic
2340 		 * mode will write it back later
2341 		 */
2342 		mapping->writeback_index = done_index;
2343 
2344 out_writepages:
2345 	wbc->nr_to_write -= nr_to_writebump;
2346 	wbc->range_start = range_start;
2347 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2348 	return ret;
2349 }
2350 
2351 #define FALL_BACK_TO_NONDELALLOC 1
ext4_nonda_switch(struct super_block * sb)2352 static int ext4_nonda_switch(struct super_block *sb)
2353 {
2354 	s64 free_blocks, dirty_blocks;
2355 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2356 
2357 	/*
2358 	 * switch to non delalloc mode if we are running low
2359 	 * on free block. The free block accounting via percpu
2360 	 * counters can get slightly wrong with percpu_counter_batch getting
2361 	 * accumulated on each CPU without updating global counters
2362 	 * Delalloc need an accurate free block accounting. So switch
2363 	 * to non delalloc when we are near to error range.
2364 	 */
2365 	free_blocks  = EXT4_C2B(sbi,
2366 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2367 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2368 	if (2 * free_blocks < 3 * dirty_blocks ||
2369 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2370 		/*
2371 		 * free block count is less than 150% of dirty blocks
2372 		 * or free blocks is less than watermark
2373 		 */
2374 		return 1;
2375 	}
2376 	/*
2377 	 * Even if we don't switch but are nearing capacity,
2378 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2379 	 */
2380 	if (free_blocks < 2 * dirty_blocks)
2381 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2382 
2383 	return 0;
2384 }
2385 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2386 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2387 			       loff_t pos, unsigned len, unsigned flags,
2388 			       struct page **pagep, void **fsdata)
2389 {
2390 	int ret, retries = 0;
2391 	struct page *page;
2392 	pgoff_t index;
2393 	struct inode *inode = mapping->host;
2394 	handle_t *handle;
2395 
2396 	index = pos >> PAGE_CACHE_SHIFT;
2397 
2398 	if (ext4_nonda_switch(inode->i_sb)) {
2399 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2400 		return ext4_write_begin(file, mapping, pos,
2401 					len, flags, pagep, fsdata);
2402 	}
2403 	*fsdata = (void *)0;
2404 	trace_ext4_da_write_begin(inode, pos, len, flags);
2405 retry:
2406 	/*
2407 	 * With delayed allocation, we don't log the i_disksize update
2408 	 * if there is delayed block allocation. But we still need
2409 	 * to journalling the i_disksize update if writes to the end
2410 	 * of file which has an already mapped buffer.
2411 	 */
2412 	handle = ext4_journal_start(inode, 1);
2413 	if (IS_ERR(handle)) {
2414 		ret = PTR_ERR(handle);
2415 		goto out;
2416 	}
2417 	/* We cannot recurse into the filesystem as the transaction is already
2418 	 * started */
2419 	flags |= AOP_FLAG_NOFS;
2420 
2421 	page = grab_cache_page_write_begin(mapping, index, flags);
2422 	if (!page) {
2423 		ext4_journal_stop(handle);
2424 		ret = -ENOMEM;
2425 		goto out;
2426 	}
2427 	*pagep = page;
2428 
2429 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2430 	if (ret < 0) {
2431 		unlock_page(page);
2432 		ext4_journal_stop(handle);
2433 		page_cache_release(page);
2434 		/*
2435 		 * block_write_begin may have instantiated a few blocks
2436 		 * outside i_size.  Trim these off again. Don't need
2437 		 * i_size_read because we hold i_mutex.
2438 		 */
2439 		if (pos + len > inode->i_size)
2440 			ext4_truncate_failed_write(inode);
2441 	}
2442 
2443 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2444 		goto retry;
2445 out:
2446 	return ret;
2447 }
2448 
2449 /*
2450  * Check if we should update i_disksize
2451  * when write to the end of file but not require block allocation
2452  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2453 static int ext4_da_should_update_i_disksize(struct page *page,
2454 					    unsigned long offset)
2455 {
2456 	struct buffer_head *bh;
2457 	struct inode *inode = page->mapping->host;
2458 	unsigned int idx;
2459 	int i;
2460 
2461 	bh = page_buffers(page);
2462 	idx = offset >> inode->i_blkbits;
2463 
2464 	for (i = 0; i < idx; i++)
2465 		bh = bh->b_this_page;
2466 
2467 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2468 		return 0;
2469 	return 1;
2470 }
2471 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2472 static int ext4_da_write_end(struct file *file,
2473 			     struct address_space *mapping,
2474 			     loff_t pos, unsigned len, unsigned copied,
2475 			     struct page *page, void *fsdata)
2476 {
2477 	struct inode *inode = mapping->host;
2478 	int ret = 0, ret2;
2479 	handle_t *handle = ext4_journal_current_handle();
2480 	loff_t new_i_size;
2481 	unsigned long start, end;
2482 	int write_mode = (int)(unsigned long)fsdata;
2483 
2484 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2485 		if (ext4_should_order_data(inode)) {
2486 			return ext4_ordered_write_end(file, mapping, pos,
2487 					len, copied, page, fsdata);
2488 		} else if (ext4_should_writeback_data(inode)) {
2489 			return ext4_writeback_write_end(file, mapping, pos,
2490 					len, copied, page, fsdata);
2491 		} else {
2492 			BUG();
2493 		}
2494 	}
2495 
2496 	trace_ext4_da_write_end(inode, pos, len, copied);
2497 	start = pos & (PAGE_CACHE_SIZE - 1);
2498 	end = start + copied - 1;
2499 
2500 	/*
2501 	 * generic_write_end() will run mark_inode_dirty() if i_size
2502 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2503 	 * into that.
2504 	 */
2505 
2506 	new_i_size = pos + copied;
2507 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2508 		if (ext4_da_should_update_i_disksize(page, end)) {
2509 			down_write(&EXT4_I(inode)->i_data_sem);
2510 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2511 				/*
2512 				 * Updating i_disksize when extending file
2513 				 * without needing block allocation
2514 				 */
2515 				if (ext4_should_order_data(inode))
2516 					ret = ext4_jbd2_file_inode(handle,
2517 								   inode);
2518 
2519 				EXT4_I(inode)->i_disksize = new_i_size;
2520 			}
2521 			up_write(&EXT4_I(inode)->i_data_sem);
2522 			/* We need to mark inode dirty even if
2523 			 * new_i_size is less that inode->i_size
2524 			 * bu greater than i_disksize.(hint delalloc)
2525 			 */
2526 			ext4_mark_inode_dirty(handle, inode);
2527 		}
2528 	}
2529 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2530 							page, fsdata);
2531 	copied = ret2;
2532 	if (ret2 < 0)
2533 		ret = ret2;
2534 	ret2 = ext4_journal_stop(handle);
2535 	if (!ret)
2536 		ret = ret2;
2537 
2538 	return ret ? ret : copied;
2539 }
2540 
ext4_da_invalidatepage(struct page * page,unsigned long offset)2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2542 {
2543 	/*
2544 	 * Drop reserved blocks
2545 	 */
2546 	BUG_ON(!PageLocked(page));
2547 	if (!page_has_buffers(page))
2548 		goto out;
2549 
2550 	ext4_da_page_release_reservation(page, offset);
2551 
2552 out:
2553 	ext4_invalidatepage(page, offset);
2554 
2555 	return;
2556 }
2557 
2558 /*
2559  * Force all delayed allocation blocks to be allocated for a given inode.
2560  */
ext4_alloc_da_blocks(struct inode * inode)2561 int ext4_alloc_da_blocks(struct inode *inode)
2562 {
2563 	trace_ext4_alloc_da_blocks(inode);
2564 
2565 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2567 		return 0;
2568 
2569 	/*
2570 	 * We do something simple for now.  The filemap_flush() will
2571 	 * also start triggering a write of the data blocks, which is
2572 	 * not strictly speaking necessary (and for users of
2573 	 * laptop_mode, not even desirable).  However, to do otherwise
2574 	 * would require replicating code paths in:
2575 	 *
2576 	 * ext4_da_writepages() ->
2577 	 *    write_cache_pages() ---> (via passed in callback function)
2578 	 *        __mpage_da_writepage() -->
2579 	 *           mpage_add_bh_to_extent()
2580 	 *           mpage_da_map_blocks()
2581 	 *
2582 	 * The problem is that write_cache_pages(), located in
2583 	 * mm/page-writeback.c, marks pages clean in preparation for
2584 	 * doing I/O, which is not desirable if we're not planning on
2585 	 * doing I/O at all.
2586 	 *
2587 	 * We could call write_cache_pages(), and then redirty all of
2588 	 * the pages by calling redirty_page_for_writepage() but that
2589 	 * would be ugly in the extreme.  So instead we would need to
2590 	 * replicate parts of the code in the above functions,
2591 	 * simplifying them because we wouldn't actually intend to
2592 	 * write out the pages, but rather only collect contiguous
2593 	 * logical block extents, call the multi-block allocator, and
2594 	 * then update the buffer heads with the block allocations.
2595 	 *
2596 	 * For now, though, we'll cheat by calling filemap_flush(),
2597 	 * which will map the blocks, and start the I/O, but not
2598 	 * actually wait for the I/O to complete.
2599 	 */
2600 	return filemap_flush(inode->i_mapping);
2601 }
2602 
2603 /*
2604  * bmap() is special.  It gets used by applications such as lilo and by
2605  * the swapper to find the on-disk block of a specific piece of data.
2606  *
2607  * Naturally, this is dangerous if the block concerned is still in the
2608  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2609  * filesystem and enables swap, then they may get a nasty shock when the
2610  * data getting swapped to that swapfile suddenly gets overwritten by
2611  * the original zero's written out previously to the journal and
2612  * awaiting writeback in the kernel's buffer cache.
2613  *
2614  * So, if we see any bmap calls here on a modified, data-journaled file,
2615  * take extra steps to flush any blocks which might be in the cache.
2616  */
ext4_bmap(struct address_space * mapping,sector_t block)2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2618 {
2619 	struct inode *inode = mapping->host;
2620 	journal_t *journal;
2621 	int err;
2622 
2623 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624 			test_opt(inode->i_sb, DELALLOC)) {
2625 		/*
2626 		 * With delalloc we want to sync the file
2627 		 * so that we can make sure we allocate
2628 		 * blocks for file
2629 		 */
2630 		filemap_write_and_wait(mapping);
2631 	}
2632 
2633 	if (EXT4_JOURNAL(inode) &&
2634 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2635 		/*
2636 		 * This is a REALLY heavyweight approach, but the use of
2637 		 * bmap on dirty files is expected to be extremely rare:
2638 		 * only if we run lilo or swapon on a freshly made file
2639 		 * do we expect this to happen.
2640 		 *
2641 		 * (bmap requires CAP_SYS_RAWIO so this does not
2642 		 * represent an unprivileged user DOS attack --- we'd be
2643 		 * in trouble if mortal users could trigger this path at
2644 		 * will.)
2645 		 *
2646 		 * NB. EXT4_STATE_JDATA is not set on files other than
2647 		 * regular files.  If somebody wants to bmap a directory
2648 		 * or symlink and gets confused because the buffer
2649 		 * hasn't yet been flushed to disk, they deserve
2650 		 * everything they get.
2651 		 */
2652 
2653 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2654 		journal = EXT4_JOURNAL(inode);
2655 		jbd2_journal_lock_updates(journal);
2656 		err = jbd2_journal_flush(journal);
2657 		jbd2_journal_unlock_updates(journal);
2658 
2659 		if (err)
2660 			return 0;
2661 	}
2662 
2663 	return generic_block_bmap(mapping, block, ext4_get_block);
2664 }
2665 
ext4_readpage(struct file * file,struct page * page)2666 static int ext4_readpage(struct file *file, struct page *page)
2667 {
2668 	trace_ext4_readpage(page);
2669 	return mpage_readpage(page, ext4_get_block);
2670 }
2671 
2672 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)2673 ext4_readpages(struct file *file, struct address_space *mapping,
2674 		struct list_head *pages, unsigned nr_pages)
2675 {
2676 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2677 }
2678 
ext4_invalidatepage_free_endio(struct page * page,unsigned long offset)2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2680 {
2681 	struct buffer_head *head, *bh;
2682 	unsigned int curr_off = 0;
2683 
2684 	if (!page_has_buffers(page))
2685 		return;
2686 	head = bh = page_buffers(page);
2687 	do {
2688 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689 					&& bh->b_private) {
2690 			ext4_free_io_end(bh->b_private);
2691 			bh->b_private = NULL;
2692 			bh->b_end_io = NULL;
2693 		}
2694 		curr_off = curr_off + bh->b_size;
2695 		bh = bh->b_this_page;
2696 	} while (bh != head);
2697 }
2698 
ext4_invalidatepage(struct page * page,unsigned long offset)2699 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2700 {
2701 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2702 
2703 	trace_ext4_invalidatepage(page, offset);
2704 
2705 	/*
2706 	 * free any io_end structure allocated for buffers to be discarded
2707 	 */
2708 	if (ext4_should_dioread_nolock(page->mapping->host))
2709 		ext4_invalidatepage_free_endio(page, offset);
2710 	/*
2711 	 * If it's a full truncate we just forget about the pending dirtying
2712 	 */
2713 	if (offset == 0)
2714 		ClearPageChecked(page);
2715 
2716 	if (journal)
2717 		jbd2_journal_invalidatepage(journal, page, offset);
2718 	else
2719 		block_invalidatepage(page, offset);
2720 }
2721 
ext4_releasepage(struct page * page,gfp_t wait)2722 static int ext4_releasepage(struct page *page, gfp_t wait)
2723 {
2724 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2725 
2726 	trace_ext4_releasepage(page);
2727 
2728 	WARN_ON(PageChecked(page));
2729 	if (!page_has_buffers(page))
2730 		return 0;
2731 	if (journal)
2732 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733 	else
2734 		return try_to_free_buffers(page);
2735 }
2736 
2737 /*
2738  * ext4_get_block used when preparing for a DIO write or buffer write.
2739  * We allocate an uinitialized extent if blocks haven't been allocated.
2740  * The extent will be converted to initialized after the IO is complete.
2741  */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2743 		   struct buffer_head *bh_result, int create)
2744 {
2745 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2746 		   inode->i_ino, create);
2747 	return _ext4_get_block(inode, iblock, bh_result,
2748 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2749 }
2750 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private,int ret,bool is_async)2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2752 			    ssize_t size, void *private, int ret,
2753 			    bool is_async)
2754 {
2755 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2756         ext4_io_end_t *io_end = iocb->private;
2757 	struct workqueue_struct *wq;
2758 	unsigned long flags;
2759 	struct ext4_inode_info *ei;
2760 
2761 	/* if not async direct IO or dio with 0 bytes write, just return */
2762 	if (!io_end || !size)
2763 		goto out;
2764 
2765 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2766 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2768 		  size);
2769 
2770 	iocb->private = NULL;
2771 
2772 	/* if not aio dio with unwritten extents, just free io and return */
2773 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2774 		ext4_free_io_end(io_end);
2775 out:
2776 		if (is_async)
2777 			aio_complete(iocb, ret, 0);
2778 		inode_dio_done(inode);
2779 		return;
2780 	}
2781 
2782 	io_end->offset = offset;
2783 	io_end->size = size;
2784 	if (is_async) {
2785 		io_end->iocb = iocb;
2786 		io_end->result = ret;
2787 	}
2788 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2789 
2790 	/* Add the io_end to per-inode completed aio dio list*/
2791 	ei = EXT4_I(io_end->inode);
2792 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2793 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2794 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2795 
2796 	/* queue the work to convert unwritten extents to written */
2797 	queue_work(wq, &io_end->work);
2798 
2799 	/* XXX: probably should move into the real I/O completion handler */
2800 	inode_dio_done(inode);
2801 }
2802 
ext4_end_io_buffer_write(struct buffer_head * bh,int uptodate)2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805 	ext4_io_end_t *io_end = bh->b_private;
2806 	struct workqueue_struct *wq;
2807 	struct inode *inode;
2808 	unsigned long flags;
2809 
2810 	if (!test_clear_buffer_uninit(bh) || !io_end)
2811 		goto out;
2812 
2813 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 		printk("sb umounted, discard end_io request for inode %lu\n",
2815 			io_end->inode->i_ino);
2816 		ext4_free_io_end(io_end);
2817 		goto out;
2818 	}
2819 
2820 	/*
2821 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822 	 * but being more careful is always safe for the future change.
2823 	 */
2824 	inode = io_end->inode;
2825 	ext4_set_io_unwritten_flag(inode, io_end);
2826 
2827 	/* Add the io_end to per-inode completed io list*/
2828 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2829 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2830 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2831 
2832 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2833 	/* queue the work to convert unwritten extents to written */
2834 	queue_work(wq, &io_end->work);
2835 out:
2836 	bh->b_private = NULL;
2837 	bh->b_end_io = NULL;
2838 	clear_buffer_uninit(bh);
2839 	end_buffer_async_write(bh, uptodate);
2840 }
2841 
ext4_set_bh_endio(struct buffer_head * bh,struct inode * inode)2842 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2843 {
2844 	ext4_io_end_t *io_end;
2845 	struct page *page = bh->b_page;
2846 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2847 	size_t size = bh->b_size;
2848 
2849 retry:
2850 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2851 	if (!io_end) {
2852 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2853 		schedule();
2854 		goto retry;
2855 	}
2856 	io_end->offset = offset;
2857 	io_end->size = size;
2858 	/*
2859 	 * We need to hold a reference to the page to make sure it
2860 	 * doesn't get evicted before ext4_end_io_work() has a chance
2861 	 * to convert the extent from written to unwritten.
2862 	 */
2863 	io_end->page = page;
2864 	get_page(io_end->page);
2865 
2866 	bh->b_private = io_end;
2867 	bh->b_end_io = ext4_end_io_buffer_write;
2868 	return 0;
2869 }
2870 
2871 /*
2872  * For ext4 extent files, ext4 will do direct-io write to holes,
2873  * preallocated extents, and those write extend the file, no need to
2874  * fall back to buffered IO.
2875  *
2876  * For holes, we fallocate those blocks, mark them as uninitialized
2877  * If those blocks were preallocated, we mark sure they are splited, but
2878  * still keep the range to write as uninitialized.
2879  *
2880  * The unwrritten extents will be converted to written when DIO is completed.
2881  * For async direct IO, since the IO may still pending when return, we
2882  * set up an end_io call back function, which will do the conversion
2883  * when async direct IO completed.
2884  *
2885  * If the O_DIRECT write will extend the file then add this inode to the
2886  * orphan list.  So recovery will truncate it back to the original size
2887  * if the machine crashes during the write.
2888  *
2889  */
ext4_ext_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)2890 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2891 			      const struct iovec *iov, loff_t offset,
2892 			      unsigned long nr_segs)
2893 {
2894 	struct file *file = iocb->ki_filp;
2895 	struct inode *inode = file->f_mapping->host;
2896 	ssize_t ret;
2897 	size_t count = iov_length(iov, nr_segs);
2898 
2899 	loff_t final_size = offset + count;
2900 	if (rw == WRITE && final_size <= inode->i_size) {
2901 		/*
2902  		 * We could direct write to holes and fallocate.
2903 		 *
2904  		 * Allocated blocks to fill the hole are marked as uninitialized
2905  		 * to prevent parallel buffered read to expose the stale data
2906  		 * before DIO complete the data IO.
2907 		 *
2908  		 * As to previously fallocated extents, ext4 get_block
2909  		 * will just simply mark the buffer mapped but still
2910  		 * keep the extents uninitialized.
2911  		 *
2912 		 * for non AIO case, we will convert those unwritten extents
2913 		 * to written after return back from blockdev_direct_IO.
2914 		 *
2915 		 * for async DIO, the conversion needs to be defered when
2916 		 * the IO is completed. The ext4 end_io callback function
2917 		 * will be called to take care of the conversion work.
2918 		 * Here for async case, we allocate an io_end structure to
2919 		 * hook to the iocb.
2920  		 */
2921 		iocb->private = NULL;
2922 		EXT4_I(inode)->cur_aio_dio = NULL;
2923 		if (!is_sync_kiocb(iocb)) {
2924 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2925 			if (!iocb->private)
2926 				return -ENOMEM;
2927 			/*
2928 			 * we save the io structure for current async
2929 			 * direct IO, so that later ext4_map_blocks()
2930 			 * could flag the io structure whether there
2931 			 * is a unwritten extents needs to be converted
2932 			 * when IO is completed.
2933 			 */
2934 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2935 		}
2936 
2937 		ret = __blockdev_direct_IO(rw, iocb, inode,
2938 					 inode->i_sb->s_bdev, iov,
2939 					 offset, nr_segs,
2940 					 ext4_get_block_write,
2941 					 ext4_end_io_dio,
2942 					 NULL,
2943 					 DIO_LOCKING | DIO_SKIP_HOLES);
2944 		if (iocb->private)
2945 			EXT4_I(inode)->cur_aio_dio = NULL;
2946 		/*
2947 		 * The io_end structure takes a reference to the inode,
2948 		 * that structure needs to be destroyed and the
2949 		 * reference to the inode need to be dropped, when IO is
2950 		 * complete, even with 0 byte write, or failed.
2951 		 *
2952 		 * In the successful AIO DIO case, the io_end structure will be
2953 		 * desctroyed and the reference to the inode will be dropped
2954 		 * after the end_io call back function is called.
2955 		 *
2956 		 * In the case there is 0 byte write, or error case, since
2957 		 * VFS direct IO won't invoke the end_io call back function,
2958 		 * we need to free the end_io structure here.
2959 		 */
2960 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2961 			ext4_free_io_end(iocb->private);
2962 			iocb->private = NULL;
2963 		} else if (ret > 0 && ext4_test_inode_state(inode,
2964 						EXT4_STATE_DIO_UNWRITTEN)) {
2965 			int err;
2966 			/*
2967 			 * for non AIO case, since the IO is already
2968 			 * completed, we could do the conversion right here
2969 			 */
2970 			err = ext4_convert_unwritten_extents(inode,
2971 							     offset, ret);
2972 			if (err < 0)
2973 				ret = err;
2974 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2975 		}
2976 		return ret;
2977 	}
2978 
2979 	/* for write the the end of file case, we fall back to old way */
2980 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2981 }
2982 
ext4_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)2983 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2984 			      const struct iovec *iov, loff_t offset,
2985 			      unsigned long nr_segs)
2986 {
2987 	struct file *file = iocb->ki_filp;
2988 	struct inode *inode = file->f_mapping->host;
2989 	ssize_t ret;
2990 
2991 	/*
2992 	 * If we are doing data journalling we don't support O_DIRECT
2993 	 */
2994 	if (ext4_should_journal_data(inode))
2995 		return 0;
2996 
2997 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2998 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2999 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3000 	else
3001 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3002 	trace_ext4_direct_IO_exit(inode, offset,
3003 				iov_length(iov, nr_segs), rw, ret);
3004 	return ret;
3005 }
3006 
3007 /*
3008  * Pages can be marked dirty completely asynchronously from ext4's journalling
3009  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3010  * much here because ->set_page_dirty is called under VFS locks.  The page is
3011  * not necessarily locked.
3012  *
3013  * We cannot just dirty the page and leave attached buffers clean, because the
3014  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3015  * or jbddirty because all the journalling code will explode.
3016  *
3017  * So what we do is to mark the page "pending dirty" and next time writepage
3018  * is called, propagate that into the buffers appropriately.
3019  */
ext4_journalled_set_page_dirty(struct page * page)3020 static int ext4_journalled_set_page_dirty(struct page *page)
3021 {
3022 	SetPageChecked(page);
3023 	return __set_page_dirty_nobuffers(page);
3024 }
3025 
3026 static const struct address_space_operations ext4_ordered_aops = {
3027 	.readpage		= ext4_readpage,
3028 	.readpages		= ext4_readpages,
3029 	.writepage		= ext4_writepage,
3030 	.write_begin		= ext4_write_begin,
3031 	.write_end		= ext4_ordered_write_end,
3032 	.bmap			= ext4_bmap,
3033 	.invalidatepage		= ext4_invalidatepage,
3034 	.releasepage		= ext4_releasepage,
3035 	.direct_IO		= ext4_direct_IO,
3036 	.migratepage		= buffer_migrate_page,
3037 	.is_partially_uptodate  = block_is_partially_uptodate,
3038 	.error_remove_page	= generic_error_remove_page,
3039 };
3040 
3041 static const struct address_space_operations ext4_writeback_aops = {
3042 	.readpage		= ext4_readpage,
3043 	.readpages		= ext4_readpages,
3044 	.writepage		= ext4_writepage,
3045 	.write_begin		= ext4_write_begin,
3046 	.write_end		= ext4_writeback_write_end,
3047 	.bmap			= ext4_bmap,
3048 	.invalidatepage		= ext4_invalidatepage,
3049 	.releasepage		= ext4_releasepage,
3050 	.direct_IO		= ext4_direct_IO,
3051 	.migratepage		= buffer_migrate_page,
3052 	.is_partially_uptodate  = block_is_partially_uptodate,
3053 	.error_remove_page	= generic_error_remove_page,
3054 };
3055 
3056 static const struct address_space_operations ext4_journalled_aops = {
3057 	.readpage		= ext4_readpage,
3058 	.readpages		= ext4_readpages,
3059 	.writepage		= ext4_writepage,
3060 	.write_begin		= ext4_write_begin,
3061 	.write_end		= ext4_journalled_write_end,
3062 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3063 	.bmap			= ext4_bmap,
3064 	.invalidatepage		= ext4_invalidatepage,
3065 	.releasepage		= ext4_releasepage,
3066 	.direct_IO		= ext4_direct_IO,
3067 	.is_partially_uptodate  = block_is_partially_uptodate,
3068 	.error_remove_page	= generic_error_remove_page,
3069 };
3070 
3071 static const struct address_space_operations ext4_da_aops = {
3072 	.readpage		= ext4_readpage,
3073 	.readpages		= ext4_readpages,
3074 	.writepage		= ext4_writepage,
3075 	.writepages		= ext4_da_writepages,
3076 	.write_begin		= ext4_da_write_begin,
3077 	.write_end		= ext4_da_write_end,
3078 	.bmap			= ext4_bmap,
3079 	.invalidatepage		= ext4_da_invalidatepage,
3080 	.releasepage		= ext4_releasepage,
3081 	.direct_IO		= ext4_direct_IO,
3082 	.migratepage		= buffer_migrate_page,
3083 	.is_partially_uptodate  = block_is_partially_uptodate,
3084 	.error_remove_page	= generic_error_remove_page,
3085 };
3086 
ext4_set_aops(struct inode * inode)3087 void ext4_set_aops(struct inode *inode)
3088 {
3089 	if (ext4_should_order_data(inode) &&
3090 		test_opt(inode->i_sb, DELALLOC))
3091 		inode->i_mapping->a_ops = &ext4_da_aops;
3092 	else if (ext4_should_order_data(inode))
3093 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3094 	else if (ext4_should_writeback_data(inode) &&
3095 		 test_opt(inode->i_sb, DELALLOC))
3096 		inode->i_mapping->a_ops = &ext4_da_aops;
3097 	else if (ext4_should_writeback_data(inode))
3098 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3099 	else
3100 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3101 }
3102 
3103 
3104 /*
3105  * ext4_discard_partial_page_buffers()
3106  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3107  * This function finds and locks the page containing the offset
3108  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3109  * Calling functions that already have the page locked should call
3110  * ext4_discard_partial_page_buffers_no_lock directly.
3111  */
ext4_discard_partial_page_buffers(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length,int flags)3112 int ext4_discard_partial_page_buffers(handle_t *handle,
3113 		struct address_space *mapping, loff_t from,
3114 		loff_t length, int flags)
3115 {
3116 	struct inode *inode = mapping->host;
3117 	struct page *page;
3118 	int err = 0;
3119 
3120 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3121 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3122 	if (!page)
3123 		return -ENOMEM;
3124 
3125 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3126 		from, length, flags);
3127 
3128 	unlock_page(page);
3129 	page_cache_release(page);
3130 	return err;
3131 }
3132 
3133 /*
3134  * ext4_discard_partial_page_buffers_no_lock()
3135  * Zeros a page range of length 'length' starting from offset 'from'.
3136  * Buffer heads that correspond to the block aligned regions of the
3137  * zeroed range will be unmapped.  Unblock aligned regions
3138  * will have the corresponding buffer head mapped if needed so that
3139  * that region of the page can be updated with the partial zero out.
3140  *
3141  * This function assumes that the page has already been  locked.  The
3142  * The range to be discarded must be contained with in the given page.
3143  * If the specified range exceeds the end of the page it will be shortened
3144  * to the end of the page that corresponds to 'from'.  This function is
3145  * appropriate for updating a page and it buffer heads to be unmapped and
3146  * zeroed for blocks that have been either released, or are going to be
3147  * released.
3148  *
3149  * handle: The journal handle
3150  * inode:  The files inode
3151  * page:   A locked page that contains the offset "from"
3152  * from:   The starting byte offset (from the begining of the file)
3153  *         to begin discarding
3154  * len:    The length of bytes to discard
3155  * flags:  Optional flags that may be used:
3156  *
3157  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3158  *         Only zero the regions of the page whose buffer heads
3159  *         have already been unmapped.  This flag is appropriate
3160  *         for updateing the contents of a page whose blocks may
3161  *         have already been released, and we only want to zero
3162  *         out the regions that correspond to those released blocks.
3163  *
3164  * Returns zero on sucess or negative on failure.
3165  */
ext4_discard_partial_page_buffers_no_lock(handle_t * handle,struct inode * inode,struct page * page,loff_t from,loff_t length,int flags)3166 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3167 		struct inode *inode, struct page *page, loff_t from,
3168 		loff_t length, int flags)
3169 {
3170 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3172 	unsigned int blocksize, max, pos;
3173 	ext4_lblk_t iblock;
3174 	struct buffer_head *bh;
3175 	int err = 0;
3176 
3177 	blocksize = inode->i_sb->s_blocksize;
3178 	max = PAGE_CACHE_SIZE - offset;
3179 
3180 	if (index != page->index)
3181 		return -EINVAL;
3182 
3183 	/*
3184 	 * correct length if it does not fall between
3185 	 * 'from' and the end of the page
3186 	 */
3187 	if (length > max || length < 0)
3188 		length = max;
3189 
3190 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3191 
3192 	if (!page_has_buffers(page))
3193 		create_empty_buffers(page, blocksize, 0);
3194 
3195 	/* Find the buffer that contains "offset" */
3196 	bh = page_buffers(page);
3197 	pos = blocksize;
3198 	while (offset >= pos) {
3199 		bh = bh->b_this_page;
3200 		iblock++;
3201 		pos += blocksize;
3202 	}
3203 
3204 	pos = offset;
3205 	while (pos < offset + length) {
3206 		unsigned int end_of_block, range_to_discard;
3207 
3208 		err = 0;
3209 
3210 		/* The length of space left to zero and unmap */
3211 		range_to_discard = offset + length - pos;
3212 
3213 		/* The length of space until the end of the block */
3214 		end_of_block = blocksize - (pos & (blocksize-1));
3215 
3216 		/*
3217 		 * Do not unmap or zero past end of block
3218 		 * for this buffer head
3219 		 */
3220 		if (range_to_discard > end_of_block)
3221 			range_to_discard = end_of_block;
3222 
3223 
3224 		/*
3225 		 * Skip this buffer head if we are only zeroing unampped
3226 		 * regions of the page
3227 		 */
3228 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3229 			buffer_mapped(bh))
3230 				goto next;
3231 
3232 		/* If the range is block aligned, unmap */
3233 		if (range_to_discard == blocksize) {
3234 			clear_buffer_dirty(bh);
3235 			bh->b_bdev = NULL;
3236 			clear_buffer_mapped(bh);
3237 			clear_buffer_req(bh);
3238 			clear_buffer_new(bh);
3239 			clear_buffer_delay(bh);
3240 			clear_buffer_unwritten(bh);
3241 			clear_buffer_uptodate(bh);
3242 			zero_user(page, pos, range_to_discard);
3243 			BUFFER_TRACE(bh, "Buffer discarded");
3244 			goto next;
3245 		}
3246 
3247 		/*
3248 		 * If this block is not completely contained in the range
3249 		 * to be discarded, then it is not going to be released. Because
3250 		 * we need to keep this block, we need to make sure this part
3251 		 * of the page is uptodate before we modify it by writeing
3252 		 * partial zeros on it.
3253 		 */
3254 		if (!buffer_mapped(bh)) {
3255 			/*
3256 			 * Buffer head must be mapped before we can read
3257 			 * from the block
3258 			 */
3259 			BUFFER_TRACE(bh, "unmapped");
3260 			ext4_get_block(inode, iblock, bh, 0);
3261 			/* unmapped? It's a hole - nothing to do */
3262 			if (!buffer_mapped(bh)) {
3263 				BUFFER_TRACE(bh, "still unmapped");
3264 				goto next;
3265 			}
3266 		}
3267 
3268 		/* Ok, it's mapped. Make sure it's up-to-date */
3269 		if (PageUptodate(page))
3270 			set_buffer_uptodate(bh);
3271 
3272 		if (!buffer_uptodate(bh)) {
3273 			err = -EIO;
3274 			ll_rw_block(READ, 1, &bh);
3275 			wait_on_buffer(bh);
3276 			/* Uhhuh. Read error. Complain and punt.*/
3277 			if (!buffer_uptodate(bh))
3278 				goto next;
3279 		}
3280 
3281 		if (ext4_should_journal_data(inode)) {
3282 			BUFFER_TRACE(bh, "get write access");
3283 			err = ext4_journal_get_write_access(handle, bh);
3284 			if (err)
3285 				goto next;
3286 		}
3287 
3288 		zero_user(page, pos, range_to_discard);
3289 
3290 		err = 0;
3291 		if (ext4_should_journal_data(inode)) {
3292 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3293 		} else
3294 			mark_buffer_dirty(bh);
3295 
3296 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3297 next:
3298 		bh = bh->b_this_page;
3299 		iblock++;
3300 		pos += range_to_discard;
3301 	}
3302 
3303 	return err;
3304 }
3305 
ext4_can_truncate(struct inode * inode)3306 int ext4_can_truncate(struct inode *inode)
3307 {
3308 	if (S_ISREG(inode->i_mode))
3309 		return 1;
3310 	if (S_ISDIR(inode->i_mode))
3311 		return 1;
3312 	if (S_ISLNK(inode->i_mode))
3313 		return !ext4_inode_is_fast_symlink(inode);
3314 	return 0;
3315 }
3316 
3317 /*
3318  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3319  * associated with the given offset and length
3320  *
3321  * @inode:  File inode
3322  * @offset: The offset where the hole will begin
3323  * @len:    The length of the hole
3324  *
3325  * Returns: 0 on sucess or negative on failure
3326  */
3327 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3328 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3329 {
3330 	struct inode *inode = file->f_path.dentry->d_inode;
3331 	if (!S_ISREG(inode->i_mode))
3332 		return -ENOTSUPP;
3333 
3334 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3335 		/* TODO: Add support for non extent hole punching */
3336 		return -ENOTSUPP;
3337 	}
3338 
3339 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3340 		/* TODO: Add support for bigalloc file systems */
3341 		return -ENOTSUPP;
3342 	}
3343 
3344 	return ext4_ext_punch_hole(file, offset, length);
3345 }
3346 
3347 /*
3348  * ext4_truncate()
3349  *
3350  * We block out ext4_get_block() block instantiations across the entire
3351  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3352  * simultaneously on behalf of the same inode.
3353  *
3354  * As we work through the truncate and commit bits of it to the journal there
3355  * is one core, guiding principle: the file's tree must always be consistent on
3356  * disk.  We must be able to restart the truncate after a crash.
3357  *
3358  * The file's tree may be transiently inconsistent in memory (although it
3359  * probably isn't), but whenever we close off and commit a journal transaction,
3360  * the contents of (the filesystem + the journal) must be consistent and
3361  * restartable.  It's pretty simple, really: bottom up, right to left (although
3362  * left-to-right works OK too).
3363  *
3364  * Note that at recovery time, journal replay occurs *before* the restart of
3365  * truncate against the orphan inode list.
3366  *
3367  * The committed inode has the new, desired i_size (which is the same as
3368  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3369  * that this inode's truncate did not complete and it will again call
3370  * ext4_truncate() to have another go.  So there will be instantiated blocks
3371  * to the right of the truncation point in a crashed ext4 filesystem.  But
3372  * that's fine - as long as they are linked from the inode, the post-crash
3373  * ext4_truncate() run will find them and release them.
3374  */
ext4_truncate(struct inode * inode)3375 void ext4_truncate(struct inode *inode)
3376 {
3377 	trace_ext4_truncate_enter(inode);
3378 
3379 	if (!ext4_can_truncate(inode))
3380 		return;
3381 
3382 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3383 
3384 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3385 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3386 
3387 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3388 		ext4_ext_truncate(inode);
3389 	else
3390 		ext4_ind_truncate(inode);
3391 
3392 	trace_ext4_truncate_exit(inode);
3393 }
3394 
3395 /*
3396  * ext4_get_inode_loc returns with an extra refcount against the inode's
3397  * underlying buffer_head on success. If 'in_mem' is true, we have all
3398  * data in memory that is needed to recreate the on-disk version of this
3399  * inode.
3400  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3401 static int __ext4_get_inode_loc(struct inode *inode,
3402 				struct ext4_iloc *iloc, int in_mem)
3403 {
3404 	struct ext4_group_desc	*gdp;
3405 	struct buffer_head	*bh;
3406 	struct super_block	*sb = inode->i_sb;
3407 	ext4_fsblk_t		block;
3408 	int			inodes_per_block, inode_offset;
3409 
3410 	iloc->bh = NULL;
3411 	if (!ext4_valid_inum(sb, inode->i_ino))
3412 		return -EIO;
3413 
3414 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3415 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3416 	if (!gdp)
3417 		return -EIO;
3418 
3419 	/*
3420 	 * Figure out the offset within the block group inode table
3421 	 */
3422 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3423 	inode_offset = ((inode->i_ino - 1) %
3424 			EXT4_INODES_PER_GROUP(sb));
3425 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3426 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3427 
3428 	bh = sb_getblk(sb, block);
3429 	if (!bh) {
3430 		EXT4_ERROR_INODE_BLOCK(inode, block,
3431 				       "unable to read itable block");
3432 		return -EIO;
3433 	}
3434 	if (!buffer_uptodate(bh)) {
3435 		lock_buffer(bh);
3436 
3437 		/*
3438 		 * If the buffer has the write error flag, we have failed
3439 		 * to write out another inode in the same block.  In this
3440 		 * case, we don't have to read the block because we may
3441 		 * read the old inode data successfully.
3442 		 */
3443 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3444 			set_buffer_uptodate(bh);
3445 
3446 		if (buffer_uptodate(bh)) {
3447 			/* someone brought it uptodate while we waited */
3448 			unlock_buffer(bh);
3449 			goto has_buffer;
3450 		}
3451 
3452 		/*
3453 		 * If we have all information of the inode in memory and this
3454 		 * is the only valid inode in the block, we need not read the
3455 		 * block.
3456 		 */
3457 		if (in_mem) {
3458 			struct buffer_head *bitmap_bh;
3459 			int i, start;
3460 
3461 			start = inode_offset & ~(inodes_per_block - 1);
3462 
3463 			/* Is the inode bitmap in cache? */
3464 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3465 			if (!bitmap_bh)
3466 				goto make_io;
3467 
3468 			/*
3469 			 * If the inode bitmap isn't in cache then the
3470 			 * optimisation may end up performing two reads instead
3471 			 * of one, so skip it.
3472 			 */
3473 			if (!buffer_uptodate(bitmap_bh)) {
3474 				brelse(bitmap_bh);
3475 				goto make_io;
3476 			}
3477 			for (i = start; i < start + inodes_per_block; i++) {
3478 				if (i == inode_offset)
3479 					continue;
3480 				if (ext4_test_bit(i, bitmap_bh->b_data))
3481 					break;
3482 			}
3483 			brelse(bitmap_bh);
3484 			if (i == start + inodes_per_block) {
3485 				/* all other inodes are free, so skip I/O */
3486 				memset(bh->b_data, 0, bh->b_size);
3487 				set_buffer_uptodate(bh);
3488 				unlock_buffer(bh);
3489 				goto has_buffer;
3490 			}
3491 		}
3492 
3493 make_io:
3494 		/*
3495 		 * If we need to do any I/O, try to pre-readahead extra
3496 		 * blocks from the inode table.
3497 		 */
3498 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3499 			ext4_fsblk_t b, end, table;
3500 			unsigned num;
3501 
3502 			table = ext4_inode_table(sb, gdp);
3503 			/* s_inode_readahead_blks is always a power of 2 */
3504 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3505 			if (table > b)
3506 				b = table;
3507 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3508 			num = EXT4_INODES_PER_GROUP(sb);
3509 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3510 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3511 				num -= ext4_itable_unused_count(sb, gdp);
3512 			table += num / inodes_per_block;
3513 			if (end > table)
3514 				end = table;
3515 			while (b <= end)
3516 				sb_breadahead(sb, b++);
3517 		}
3518 
3519 		/*
3520 		 * There are other valid inodes in the buffer, this inode
3521 		 * has in-inode xattrs, or we don't have this inode in memory.
3522 		 * Read the block from disk.
3523 		 */
3524 		trace_ext4_load_inode(inode);
3525 		get_bh(bh);
3526 		bh->b_end_io = end_buffer_read_sync;
3527 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3528 		wait_on_buffer(bh);
3529 		if (!buffer_uptodate(bh)) {
3530 			EXT4_ERROR_INODE_BLOCK(inode, block,
3531 					       "unable to read itable block");
3532 			brelse(bh);
3533 			return -EIO;
3534 		}
3535 	}
3536 has_buffer:
3537 	iloc->bh = bh;
3538 	return 0;
3539 }
3540 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)3541 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3542 {
3543 	/* We have all inode data except xattrs in memory here. */
3544 	return __ext4_get_inode_loc(inode, iloc,
3545 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3546 }
3547 
ext4_set_inode_flags(struct inode * inode)3548 void ext4_set_inode_flags(struct inode *inode)
3549 {
3550 	unsigned int flags = EXT4_I(inode)->i_flags;
3551 
3552 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3553 	if (flags & EXT4_SYNC_FL)
3554 		inode->i_flags |= S_SYNC;
3555 	if (flags & EXT4_APPEND_FL)
3556 		inode->i_flags |= S_APPEND;
3557 	if (flags & EXT4_IMMUTABLE_FL)
3558 		inode->i_flags |= S_IMMUTABLE;
3559 	if (flags & EXT4_NOATIME_FL)
3560 		inode->i_flags |= S_NOATIME;
3561 	if (flags & EXT4_DIRSYNC_FL)
3562 		inode->i_flags |= S_DIRSYNC;
3563 }
3564 
3565 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)3566 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3567 {
3568 	unsigned int vfs_fl;
3569 	unsigned long old_fl, new_fl;
3570 
3571 	do {
3572 		vfs_fl = ei->vfs_inode.i_flags;
3573 		old_fl = ei->i_flags;
3574 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3575 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3576 				EXT4_DIRSYNC_FL);
3577 		if (vfs_fl & S_SYNC)
3578 			new_fl |= EXT4_SYNC_FL;
3579 		if (vfs_fl & S_APPEND)
3580 			new_fl |= EXT4_APPEND_FL;
3581 		if (vfs_fl & S_IMMUTABLE)
3582 			new_fl |= EXT4_IMMUTABLE_FL;
3583 		if (vfs_fl & S_NOATIME)
3584 			new_fl |= EXT4_NOATIME_FL;
3585 		if (vfs_fl & S_DIRSYNC)
3586 			new_fl |= EXT4_DIRSYNC_FL;
3587 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3588 }
3589 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)3590 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3591 				  struct ext4_inode_info *ei)
3592 {
3593 	blkcnt_t i_blocks ;
3594 	struct inode *inode = &(ei->vfs_inode);
3595 	struct super_block *sb = inode->i_sb;
3596 
3597 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3598 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3599 		/* we are using combined 48 bit field */
3600 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3601 					le32_to_cpu(raw_inode->i_blocks_lo);
3602 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3603 			/* i_blocks represent file system block size */
3604 			return i_blocks  << (inode->i_blkbits - 9);
3605 		} else {
3606 			return i_blocks;
3607 		}
3608 	} else {
3609 		return le32_to_cpu(raw_inode->i_blocks_lo);
3610 	}
3611 }
3612 
ext4_iget(struct super_block * sb,unsigned long ino)3613 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3614 {
3615 	struct ext4_iloc iloc;
3616 	struct ext4_inode *raw_inode;
3617 	struct ext4_inode_info *ei;
3618 	struct inode *inode;
3619 	journal_t *journal = EXT4_SB(sb)->s_journal;
3620 	long ret;
3621 	int block;
3622 
3623 	inode = iget_locked(sb, ino);
3624 	if (!inode)
3625 		return ERR_PTR(-ENOMEM);
3626 	if (!(inode->i_state & I_NEW))
3627 		return inode;
3628 
3629 	ei = EXT4_I(inode);
3630 	iloc.bh = NULL;
3631 
3632 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3633 	if (ret < 0)
3634 		goto bad_inode;
3635 	raw_inode = ext4_raw_inode(&iloc);
3636 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3637 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3638 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3639 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3640 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3641 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3642 	}
3643 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3644 
3645 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3646 	ei->i_dir_start_lookup = 0;
3647 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3648 	/* We now have enough fields to check if the inode was active or not.
3649 	 * This is needed because nfsd might try to access dead inodes
3650 	 * the test is that same one that e2fsck uses
3651 	 * NeilBrown 1999oct15
3652 	 */
3653 	if (inode->i_nlink == 0) {
3654 		if (inode->i_mode == 0 ||
3655 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3656 			/* this inode is deleted */
3657 			ret = -ESTALE;
3658 			goto bad_inode;
3659 		}
3660 		/* The only unlinked inodes we let through here have
3661 		 * valid i_mode and are being read by the orphan
3662 		 * recovery code: that's fine, we're about to complete
3663 		 * the process of deleting those. */
3664 	}
3665 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3666 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3667 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3668 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3669 		ei->i_file_acl |=
3670 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3671 	inode->i_size = ext4_isize(raw_inode);
3672 	ei->i_disksize = inode->i_size;
3673 #ifdef CONFIG_QUOTA
3674 	ei->i_reserved_quota = 0;
3675 #endif
3676 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3677 	ei->i_block_group = iloc.block_group;
3678 	ei->i_last_alloc_group = ~0;
3679 	/*
3680 	 * NOTE! The in-memory inode i_data array is in little-endian order
3681 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3682 	 */
3683 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3684 		ei->i_data[block] = raw_inode->i_block[block];
3685 	INIT_LIST_HEAD(&ei->i_orphan);
3686 
3687 	/*
3688 	 * Set transaction id's of transactions that have to be committed
3689 	 * to finish f[data]sync. We set them to currently running transaction
3690 	 * as we cannot be sure that the inode or some of its metadata isn't
3691 	 * part of the transaction - the inode could have been reclaimed and
3692 	 * now it is reread from disk.
3693 	 */
3694 	if (journal) {
3695 		transaction_t *transaction;
3696 		tid_t tid;
3697 
3698 		read_lock(&journal->j_state_lock);
3699 		if (journal->j_running_transaction)
3700 			transaction = journal->j_running_transaction;
3701 		else
3702 			transaction = journal->j_committing_transaction;
3703 		if (transaction)
3704 			tid = transaction->t_tid;
3705 		else
3706 			tid = journal->j_commit_sequence;
3707 		read_unlock(&journal->j_state_lock);
3708 		ei->i_sync_tid = tid;
3709 		ei->i_datasync_tid = tid;
3710 	}
3711 
3712 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3713 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3714 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3715 		    EXT4_INODE_SIZE(inode->i_sb)) {
3716 			ret = -EIO;
3717 			goto bad_inode;
3718 		}
3719 		if (ei->i_extra_isize == 0) {
3720 			/* The extra space is currently unused. Use it. */
3721 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3722 					    EXT4_GOOD_OLD_INODE_SIZE;
3723 		} else {
3724 			__le32 *magic = (void *)raw_inode +
3725 					EXT4_GOOD_OLD_INODE_SIZE +
3726 					ei->i_extra_isize;
3727 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3728 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3729 		}
3730 	} else
3731 		ei->i_extra_isize = 0;
3732 
3733 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3734 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3735 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3736 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3737 
3738 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3739 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3740 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3741 			inode->i_version |=
3742 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3743 	}
3744 
3745 	ret = 0;
3746 	if (ei->i_file_acl &&
3747 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3748 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3749 				 ei->i_file_acl);
3750 		ret = -EIO;
3751 		goto bad_inode;
3752 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3753 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3754 		    (S_ISLNK(inode->i_mode) &&
3755 		     !ext4_inode_is_fast_symlink(inode)))
3756 			/* Validate extent which is part of inode */
3757 			ret = ext4_ext_check_inode(inode);
3758 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3759 		   (S_ISLNK(inode->i_mode) &&
3760 		    !ext4_inode_is_fast_symlink(inode))) {
3761 		/* Validate block references which are part of inode */
3762 		ret = ext4_ind_check_inode(inode);
3763 	}
3764 	if (ret)
3765 		goto bad_inode;
3766 
3767 	if (S_ISREG(inode->i_mode)) {
3768 		inode->i_op = &ext4_file_inode_operations;
3769 		inode->i_fop = &ext4_file_operations;
3770 		ext4_set_aops(inode);
3771 	} else if (S_ISDIR(inode->i_mode)) {
3772 		inode->i_op = &ext4_dir_inode_operations;
3773 		inode->i_fop = &ext4_dir_operations;
3774 	} else if (S_ISLNK(inode->i_mode)) {
3775 		if (ext4_inode_is_fast_symlink(inode)) {
3776 			inode->i_op = &ext4_fast_symlink_inode_operations;
3777 			nd_terminate_link(ei->i_data, inode->i_size,
3778 				sizeof(ei->i_data) - 1);
3779 		} else {
3780 			inode->i_op = &ext4_symlink_inode_operations;
3781 			ext4_set_aops(inode);
3782 		}
3783 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3784 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3785 		inode->i_op = &ext4_special_inode_operations;
3786 		if (raw_inode->i_block[0])
3787 			init_special_inode(inode, inode->i_mode,
3788 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3789 		else
3790 			init_special_inode(inode, inode->i_mode,
3791 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3792 	} else {
3793 		ret = -EIO;
3794 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3795 		goto bad_inode;
3796 	}
3797 	brelse(iloc.bh);
3798 	ext4_set_inode_flags(inode);
3799 	unlock_new_inode(inode);
3800 	return inode;
3801 
3802 bad_inode:
3803 	brelse(iloc.bh);
3804 	iget_failed(inode);
3805 	return ERR_PTR(ret);
3806 }
3807 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)3808 static int ext4_inode_blocks_set(handle_t *handle,
3809 				struct ext4_inode *raw_inode,
3810 				struct ext4_inode_info *ei)
3811 {
3812 	struct inode *inode = &(ei->vfs_inode);
3813 	u64 i_blocks = inode->i_blocks;
3814 	struct super_block *sb = inode->i_sb;
3815 
3816 	if (i_blocks <= ~0U) {
3817 		/*
3818 		 * i_blocks can be represnted in a 32 bit variable
3819 		 * as multiple of 512 bytes
3820 		 */
3821 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3822 		raw_inode->i_blocks_high = 0;
3823 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3824 		return 0;
3825 	}
3826 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3827 		return -EFBIG;
3828 
3829 	if (i_blocks <= 0xffffffffffffULL) {
3830 		/*
3831 		 * i_blocks can be represented in a 48 bit variable
3832 		 * as multiple of 512 bytes
3833 		 */
3834 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3835 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3836 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3837 	} else {
3838 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3839 		/* i_block is stored in file system block size */
3840 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3841 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3842 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3843 	}
3844 	return 0;
3845 }
3846 
3847 /*
3848  * Post the struct inode info into an on-disk inode location in the
3849  * buffer-cache.  This gobbles the caller's reference to the
3850  * buffer_head in the inode location struct.
3851  *
3852  * The caller must have write access to iloc->bh.
3853  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)3854 static int ext4_do_update_inode(handle_t *handle,
3855 				struct inode *inode,
3856 				struct ext4_iloc *iloc)
3857 {
3858 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3859 	struct ext4_inode_info *ei = EXT4_I(inode);
3860 	struct buffer_head *bh = iloc->bh;
3861 	int err = 0, rc, block;
3862 
3863 	/* For fields not not tracking in the in-memory inode,
3864 	 * initialise them to zero for new inodes. */
3865 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3866 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3867 
3868 	ext4_get_inode_flags(ei);
3869 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3870 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3871 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3872 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3873 /*
3874  * Fix up interoperability with old kernels. Otherwise, old inodes get
3875  * re-used with the upper 16 bits of the uid/gid intact
3876  */
3877 		if (!ei->i_dtime) {
3878 			raw_inode->i_uid_high =
3879 				cpu_to_le16(high_16_bits(inode->i_uid));
3880 			raw_inode->i_gid_high =
3881 				cpu_to_le16(high_16_bits(inode->i_gid));
3882 		} else {
3883 			raw_inode->i_uid_high = 0;
3884 			raw_inode->i_gid_high = 0;
3885 		}
3886 	} else {
3887 		raw_inode->i_uid_low =
3888 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3889 		raw_inode->i_gid_low =
3890 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3891 		raw_inode->i_uid_high = 0;
3892 		raw_inode->i_gid_high = 0;
3893 	}
3894 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3895 
3896 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3897 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3898 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3899 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3900 
3901 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3902 		goto out_brelse;
3903 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3904 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3905 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3906 	    cpu_to_le32(EXT4_OS_HURD))
3907 		raw_inode->i_file_acl_high =
3908 			cpu_to_le16(ei->i_file_acl >> 32);
3909 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3910 	ext4_isize_set(raw_inode, ei->i_disksize);
3911 	if (ei->i_disksize > 0x7fffffffULL) {
3912 		struct super_block *sb = inode->i_sb;
3913 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3914 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3915 				EXT4_SB(sb)->s_es->s_rev_level ==
3916 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3917 			/* If this is the first large file
3918 			 * created, add a flag to the superblock.
3919 			 */
3920 			err = ext4_journal_get_write_access(handle,
3921 					EXT4_SB(sb)->s_sbh);
3922 			if (err)
3923 				goto out_brelse;
3924 			ext4_update_dynamic_rev(sb);
3925 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3926 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3927 			sb->s_dirt = 1;
3928 			ext4_handle_sync(handle);
3929 			err = ext4_handle_dirty_metadata(handle, NULL,
3930 					EXT4_SB(sb)->s_sbh);
3931 		}
3932 	}
3933 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3934 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3935 		if (old_valid_dev(inode->i_rdev)) {
3936 			raw_inode->i_block[0] =
3937 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3938 			raw_inode->i_block[1] = 0;
3939 		} else {
3940 			raw_inode->i_block[0] = 0;
3941 			raw_inode->i_block[1] =
3942 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3943 			raw_inode->i_block[2] = 0;
3944 		}
3945 	} else
3946 		for (block = 0; block < EXT4_N_BLOCKS; block++)
3947 			raw_inode->i_block[block] = ei->i_data[block];
3948 
3949 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3950 	if (ei->i_extra_isize) {
3951 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3952 			raw_inode->i_version_hi =
3953 			cpu_to_le32(inode->i_version >> 32);
3954 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3955 	}
3956 
3957 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3958 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3959 	if (!err)
3960 		err = rc;
3961 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3962 
3963 	ext4_update_inode_fsync_trans(handle, inode, 0);
3964 out_brelse:
3965 	brelse(bh);
3966 	ext4_std_error(inode->i_sb, err);
3967 	return err;
3968 }
3969 
3970 /*
3971  * ext4_write_inode()
3972  *
3973  * We are called from a few places:
3974  *
3975  * - Within generic_file_write() for O_SYNC files.
3976  *   Here, there will be no transaction running. We wait for any running
3977  *   trasnaction to commit.
3978  *
3979  * - Within sys_sync(), kupdate and such.
3980  *   We wait on commit, if tol to.
3981  *
3982  * - Within prune_icache() (PF_MEMALLOC == true)
3983  *   Here we simply return.  We can't afford to block kswapd on the
3984  *   journal commit.
3985  *
3986  * In all cases it is actually safe for us to return without doing anything,
3987  * because the inode has been copied into a raw inode buffer in
3988  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3989  * knfsd.
3990  *
3991  * Note that we are absolutely dependent upon all inode dirtiers doing the
3992  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3993  * which we are interested.
3994  *
3995  * It would be a bug for them to not do this.  The code:
3996  *
3997  *	mark_inode_dirty(inode)
3998  *	stuff();
3999  *	inode->i_size = expr;
4000  *
4001  * is in error because a kswapd-driven write_inode() could occur while
4002  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4003  * will no longer be on the superblock's dirty inode list.
4004  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4005 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4006 {
4007 	int err;
4008 
4009 	if (current->flags & PF_MEMALLOC)
4010 		return 0;
4011 
4012 	if (EXT4_SB(inode->i_sb)->s_journal) {
4013 		if (ext4_journal_current_handle()) {
4014 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4015 			dump_stack();
4016 			return -EIO;
4017 		}
4018 
4019 		if (wbc->sync_mode != WB_SYNC_ALL)
4020 			return 0;
4021 
4022 		err = ext4_force_commit(inode->i_sb);
4023 	} else {
4024 		struct ext4_iloc iloc;
4025 
4026 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4027 		if (err)
4028 			return err;
4029 		if (wbc->sync_mode == WB_SYNC_ALL)
4030 			sync_dirty_buffer(iloc.bh);
4031 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4032 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4033 					 "IO error syncing inode");
4034 			err = -EIO;
4035 		}
4036 		brelse(iloc.bh);
4037 	}
4038 	return err;
4039 }
4040 
4041 /*
4042  * ext4_setattr()
4043  *
4044  * Called from notify_change.
4045  *
4046  * We want to trap VFS attempts to truncate the file as soon as
4047  * possible.  In particular, we want to make sure that when the VFS
4048  * shrinks i_size, we put the inode on the orphan list and modify
4049  * i_disksize immediately, so that during the subsequent flushing of
4050  * dirty pages and freeing of disk blocks, we can guarantee that any
4051  * commit will leave the blocks being flushed in an unused state on
4052  * disk.  (On recovery, the inode will get truncated and the blocks will
4053  * be freed, so we have a strong guarantee that no future commit will
4054  * leave these blocks visible to the user.)
4055  *
4056  * Another thing we have to assure is that if we are in ordered mode
4057  * and inode is still attached to the committing transaction, we must
4058  * we start writeout of all the dirty pages which are being truncated.
4059  * This way we are sure that all the data written in the previous
4060  * transaction are already on disk (truncate waits for pages under
4061  * writeback).
4062  *
4063  * Called with inode->i_mutex down.
4064  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4065 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4066 {
4067 	struct inode *inode = dentry->d_inode;
4068 	int error, rc = 0;
4069 	int orphan = 0;
4070 	const unsigned int ia_valid = attr->ia_valid;
4071 
4072 	error = inode_change_ok(inode, attr);
4073 	if (error)
4074 		return error;
4075 
4076 	if (is_quota_modification(inode, attr))
4077 		dquot_initialize(inode);
4078 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4079 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4080 		handle_t *handle;
4081 
4082 		/* (user+group)*(old+new) structure, inode write (sb,
4083 		 * inode block, ? - but truncate inode update has it) */
4084 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4085 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4086 		if (IS_ERR(handle)) {
4087 			error = PTR_ERR(handle);
4088 			goto err_out;
4089 		}
4090 		error = dquot_transfer(inode, attr);
4091 		if (error) {
4092 			ext4_journal_stop(handle);
4093 			return error;
4094 		}
4095 		/* Update corresponding info in inode so that everything is in
4096 		 * one transaction */
4097 		if (attr->ia_valid & ATTR_UID)
4098 			inode->i_uid = attr->ia_uid;
4099 		if (attr->ia_valid & ATTR_GID)
4100 			inode->i_gid = attr->ia_gid;
4101 		error = ext4_mark_inode_dirty(handle, inode);
4102 		ext4_journal_stop(handle);
4103 	}
4104 
4105 	if (attr->ia_valid & ATTR_SIZE) {
4106 		inode_dio_wait(inode);
4107 
4108 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4109 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4110 
4111 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4112 				return -EFBIG;
4113 		}
4114 	}
4115 
4116 	if (S_ISREG(inode->i_mode) &&
4117 	    attr->ia_valid & ATTR_SIZE &&
4118 	    (attr->ia_size < inode->i_size)) {
4119 		handle_t *handle;
4120 
4121 		handle = ext4_journal_start(inode, 3);
4122 		if (IS_ERR(handle)) {
4123 			error = PTR_ERR(handle);
4124 			goto err_out;
4125 		}
4126 		if (ext4_handle_valid(handle)) {
4127 			error = ext4_orphan_add(handle, inode);
4128 			orphan = 1;
4129 		}
4130 		EXT4_I(inode)->i_disksize = attr->ia_size;
4131 		rc = ext4_mark_inode_dirty(handle, inode);
4132 		if (!error)
4133 			error = rc;
4134 		ext4_journal_stop(handle);
4135 
4136 		if (ext4_should_order_data(inode)) {
4137 			error = ext4_begin_ordered_truncate(inode,
4138 							    attr->ia_size);
4139 			if (error) {
4140 				/* Do as much error cleanup as possible */
4141 				handle = ext4_journal_start(inode, 3);
4142 				if (IS_ERR(handle)) {
4143 					ext4_orphan_del(NULL, inode);
4144 					goto err_out;
4145 				}
4146 				ext4_orphan_del(handle, inode);
4147 				orphan = 0;
4148 				ext4_journal_stop(handle);
4149 				goto err_out;
4150 			}
4151 		}
4152 	}
4153 
4154 	if (attr->ia_valid & ATTR_SIZE) {
4155 		if (attr->ia_size != i_size_read(inode)) {
4156 			truncate_setsize(inode, attr->ia_size);
4157 			ext4_truncate(inode);
4158 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4159 			ext4_truncate(inode);
4160 	}
4161 
4162 	if (!rc) {
4163 		setattr_copy(inode, attr);
4164 		mark_inode_dirty(inode);
4165 	}
4166 
4167 	/*
4168 	 * If the call to ext4_truncate failed to get a transaction handle at
4169 	 * all, we need to clean up the in-core orphan list manually.
4170 	 */
4171 	if (orphan && inode->i_nlink)
4172 		ext4_orphan_del(NULL, inode);
4173 
4174 	if (!rc && (ia_valid & ATTR_MODE))
4175 		rc = ext4_acl_chmod(inode);
4176 
4177 err_out:
4178 	ext4_std_error(inode->i_sb, error);
4179 	if (!error)
4180 		error = rc;
4181 	return error;
4182 }
4183 
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4184 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4185 		 struct kstat *stat)
4186 {
4187 	struct inode *inode;
4188 	unsigned long delalloc_blocks;
4189 
4190 	inode = dentry->d_inode;
4191 	generic_fillattr(inode, stat);
4192 
4193 	/*
4194 	 * We can't update i_blocks if the block allocation is delayed
4195 	 * otherwise in the case of system crash before the real block
4196 	 * allocation is done, we will have i_blocks inconsistent with
4197 	 * on-disk file blocks.
4198 	 * We always keep i_blocks updated together with real
4199 	 * allocation. But to not confuse with user, stat
4200 	 * will return the blocks that include the delayed allocation
4201 	 * blocks for this file.
4202 	 */
4203 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4204 
4205 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4206 	return 0;
4207 }
4208 
ext4_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)4209 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4210 {
4211 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4212 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4213 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4214 }
4215 
4216 /*
4217  * Account for index blocks, block groups bitmaps and block group
4218  * descriptor blocks if modify datablocks and index blocks
4219  * worse case, the indexs blocks spread over different block groups
4220  *
4221  * If datablocks are discontiguous, they are possible to spread over
4222  * different block groups too. If they are contiuguous, with flexbg,
4223  * they could still across block group boundary.
4224  *
4225  * Also account for superblock, inode, quota and xattr blocks
4226  */
ext4_meta_trans_blocks(struct inode * inode,int nrblocks,int chunk)4227 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4228 {
4229 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4230 	int gdpblocks;
4231 	int idxblocks;
4232 	int ret = 0;
4233 
4234 	/*
4235 	 * How many index blocks need to touch to modify nrblocks?
4236 	 * The "Chunk" flag indicating whether the nrblocks is
4237 	 * physically contiguous on disk
4238 	 *
4239 	 * For Direct IO and fallocate, they calls get_block to allocate
4240 	 * one single extent at a time, so they could set the "Chunk" flag
4241 	 */
4242 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4243 
4244 	ret = idxblocks;
4245 
4246 	/*
4247 	 * Now let's see how many group bitmaps and group descriptors need
4248 	 * to account
4249 	 */
4250 	groups = idxblocks;
4251 	if (chunk)
4252 		groups += 1;
4253 	else
4254 		groups += nrblocks;
4255 
4256 	gdpblocks = groups;
4257 	if (groups > ngroups)
4258 		groups = ngroups;
4259 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4260 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4261 
4262 	/* bitmaps and block group descriptor blocks */
4263 	ret += groups + gdpblocks;
4264 
4265 	/* Blocks for super block, inode, quota and xattr blocks */
4266 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4267 
4268 	return ret;
4269 }
4270 
4271 /*
4272  * Calculate the total number of credits to reserve to fit
4273  * the modification of a single pages into a single transaction,
4274  * which may include multiple chunks of block allocations.
4275  *
4276  * This could be called via ext4_write_begin()
4277  *
4278  * We need to consider the worse case, when
4279  * one new block per extent.
4280  */
ext4_writepage_trans_blocks(struct inode * inode)4281 int ext4_writepage_trans_blocks(struct inode *inode)
4282 {
4283 	int bpp = ext4_journal_blocks_per_page(inode);
4284 	int ret;
4285 
4286 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4287 
4288 	/* Account for data blocks for journalled mode */
4289 	if (ext4_should_journal_data(inode))
4290 		ret += bpp;
4291 	return ret;
4292 }
4293 
4294 /*
4295  * Calculate the journal credits for a chunk of data modification.
4296  *
4297  * This is called from DIO, fallocate or whoever calling
4298  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4299  *
4300  * journal buffers for data blocks are not included here, as DIO
4301  * and fallocate do no need to journal data buffers.
4302  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4303 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4304 {
4305 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4306 }
4307 
4308 /*
4309  * The caller must have previously called ext4_reserve_inode_write().
4310  * Give this, we know that the caller already has write access to iloc->bh.
4311  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4312 int ext4_mark_iloc_dirty(handle_t *handle,
4313 			 struct inode *inode, struct ext4_iloc *iloc)
4314 {
4315 	int err = 0;
4316 
4317 	if (test_opt(inode->i_sb, I_VERSION))
4318 		inode_inc_iversion(inode);
4319 
4320 	/* the do_update_inode consumes one bh->b_count */
4321 	get_bh(iloc->bh);
4322 
4323 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4324 	err = ext4_do_update_inode(handle, inode, iloc);
4325 	put_bh(iloc->bh);
4326 	return err;
4327 }
4328 
4329 /*
4330  * On success, We end up with an outstanding reference count against
4331  * iloc->bh.  This _must_ be cleaned up later.
4332  */
4333 
4334 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4335 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4336 			 struct ext4_iloc *iloc)
4337 {
4338 	int err;
4339 
4340 	err = ext4_get_inode_loc(inode, iloc);
4341 	if (!err) {
4342 		BUFFER_TRACE(iloc->bh, "get_write_access");
4343 		err = ext4_journal_get_write_access(handle, iloc->bh);
4344 		if (err) {
4345 			brelse(iloc->bh);
4346 			iloc->bh = NULL;
4347 		}
4348 	}
4349 	ext4_std_error(inode->i_sb, err);
4350 	return err;
4351 }
4352 
4353 /*
4354  * Expand an inode by new_extra_isize bytes.
4355  * Returns 0 on success or negative error number on failure.
4356  */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)4357 static int ext4_expand_extra_isize(struct inode *inode,
4358 				   unsigned int new_extra_isize,
4359 				   struct ext4_iloc iloc,
4360 				   handle_t *handle)
4361 {
4362 	struct ext4_inode *raw_inode;
4363 	struct ext4_xattr_ibody_header *header;
4364 
4365 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4366 		return 0;
4367 
4368 	raw_inode = ext4_raw_inode(&iloc);
4369 
4370 	header = IHDR(inode, raw_inode);
4371 
4372 	/* No extended attributes present */
4373 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4374 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4375 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4376 			new_extra_isize);
4377 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4378 		return 0;
4379 	}
4380 
4381 	/* try to expand with EAs present */
4382 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4383 					  raw_inode, handle);
4384 }
4385 
4386 /*
4387  * What we do here is to mark the in-core inode as clean with respect to inode
4388  * dirtiness (it may still be data-dirty).
4389  * This means that the in-core inode may be reaped by prune_icache
4390  * without having to perform any I/O.  This is a very good thing,
4391  * because *any* task may call prune_icache - even ones which
4392  * have a transaction open against a different journal.
4393  *
4394  * Is this cheating?  Not really.  Sure, we haven't written the
4395  * inode out, but prune_icache isn't a user-visible syncing function.
4396  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4397  * we start and wait on commits.
4398  *
4399  * Is this efficient/effective?  Well, we're being nice to the system
4400  * by cleaning up our inodes proactively so they can be reaped
4401  * without I/O.  But we are potentially leaving up to five seconds'
4402  * worth of inodes floating about which prune_icache wants us to
4403  * write out.  One way to fix that would be to get prune_icache()
4404  * to do a write_super() to free up some memory.  It has the desired
4405  * effect.
4406  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)4407 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4408 {
4409 	struct ext4_iloc iloc;
4410 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4411 	static unsigned int mnt_count;
4412 	int err, ret;
4413 
4414 	might_sleep();
4415 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4416 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4417 	if (ext4_handle_valid(handle) &&
4418 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4419 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4420 		/*
4421 		 * We need extra buffer credits since we may write into EA block
4422 		 * with this same handle. If journal_extend fails, then it will
4423 		 * only result in a minor loss of functionality for that inode.
4424 		 * If this is felt to be critical, then e2fsck should be run to
4425 		 * force a large enough s_min_extra_isize.
4426 		 */
4427 		if ((jbd2_journal_extend(handle,
4428 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4429 			ret = ext4_expand_extra_isize(inode,
4430 						      sbi->s_want_extra_isize,
4431 						      iloc, handle);
4432 			if (ret) {
4433 				ext4_set_inode_state(inode,
4434 						     EXT4_STATE_NO_EXPAND);
4435 				if (mnt_count !=
4436 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4437 					ext4_warning(inode->i_sb,
4438 					"Unable to expand inode %lu. Delete"
4439 					" some EAs or run e2fsck.",
4440 					inode->i_ino);
4441 					mnt_count =
4442 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4443 				}
4444 			}
4445 		}
4446 	}
4447 	if (!err)
4448 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4449 	return err;
4450 }
4451 
4452 /*
4453  * ext4_dirty_inode() is called from __mark_inode_dirty()
4454  *
4455  * We're really interested in the case where a file is being extended.
4456  * i_size has been changed by generic_commit_write() and we thus need
4457  * to include the updated inode in the current transaction.
4458  *
4459  * Also, dquot_alloc_block() will always dirty the inode when blocks
4460  * are allocated to the file.
4461  *
4462  * If the inode is marked synchronous, we don't honour that here - doing
4463  * so would cause a commit on atime updates, which we don't bother doing.
4464  * We handle synchronous inodes at the highest possible level.
4465  */
ext4_dirty_inode(struct inode * inode,int flags)4466 void ext4_dirty_inode(struct inode *inode, int flags)
4467 {
4468 	handle_t *handle;
4469 
4470 	handle = ext4_journal_start(inode, 2);
4471 	if (IS_ERR(handle))
4472 		goto out;
4473 
4474 	ext4_mark_inode_dirty(handle, inode);
4475 
4476 	ext4_journal_stop(handle);
4477 out:
4478 	return;
4479 }
4480 
4481 #if 0
4482 /*
4483  * Bind an inode's backing buffer_head into this transaction, to prevent
4484  * it from being flushed to disk early.  Unlike
4485  * ext4_reserve_inode_write, this leaves behind no bh reference and
4486  * returns no iloc structure, so the caller needs to repeat the iloc
4487  * lookup to mark the inode dirty later.
4488  */
4489 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4490 {
4491 	struct ext4_iloc iloc;
4492 
4493 	int err = 0;
4494 	if (handle) {
4495 		err = ext4_get_inode_loc(inode, &iloc);
4496 		if (!err) {
4497 			BUFFER_TRACE(iloc.bh, "get_write_access");
4498 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4499 			if (!err)
4500 				err = ext4_handle_dirty_metadata(handle,
4501 								 NULL,
4502 								 iloc.bh);
4503 			brelse(iloc.bh);
4504 		}
4505 	}
4506 	ext4_std_error(inode->i_sb, err);
4507 	return err;
4508 }
4509 #endif
4510 
ext4_change_inode_journal_flag(struct inode * inode,int val)4511 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4512 {
4513 	journal_t *journal;
4514 	handle_t *handle;
4515 	int err;
4516 
4517 	/*
4518 	 * We have to be very careful here: changing a data block's
4519 	 * journaling status dynamically is dangerous.  If we write a
4520 	 * data block to the journal, change the status and then delete
4521 	 * that block, we risk forgetting to revoke the old log record
4522 	 * from the journal and so a subsequent replay can corrupt data.
4523 	 * So, first we make sure that the journal is empty and that
4524 	 * nobody is changing anything.
4525 	 */
4526 
4527 	journal = EXT4_JOURNAL(inode);
4528 	if (!journal)
4529 		return 0;
4530 	if (is_journal_aborted(journal))
4531 		return -EROFS;
4532 	/* We have to allocate physical blocks for delalloc blocks
4533 	 * before flushing journal. otherwise delalloc blocks can not
4534 	 * be allocated any more. even more truncate on delalloc blocks
4535 	 * could trigger BUG by flushing delalloc blocks in journal.
4536 	 * There is no delalloc block in non-journal data mode.
4537 	 */
4538 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4539 		err = ext4_alloc_da_blocks(inode);
4540 		if (err < 0)
4541 			return err;
4542 	}
4543 
4544 	jbd2_journal_lock_updates(journal);
4545 
4546 	/*
4547 	 * OK, there are no updates running now, and all cached data is
4548 	 * synced to disk.  We are now in a completely consistent state
4549 	 * which doesn't have anything in the journal, and we know that
4550 	 * no filesystem updates are running, so it is safe to modify
4551 	 * the inode's in-core data-journaling state flag now.
4552 	 */
4553 
4554 	if (val)
4555 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4556 	else {
4557 		jbd2_journal_flush(journal);
4558 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4559 	}
4560 	ext4_set_aops(inode);
4561 
4562 	jbd2_journal_unlock_updates(journal);
4563 
4564 	/* Finally we can mark the inode as dirty. */
4565 
4566 	handle = ext4_journal_start(inode, 1);
4567 	if (IS_ERR(handle))
4568 		return PTR_ERR(handle);
4569 
4570 	err = ext4_mark_inode_dirty(handle, inode);
4571 	ext4_handle_sync(handle);
4572 	ext4_journal_stop(handle);
4573 	ext4_std_error(inode->i_sb, err);
4574 
4575 	return err;
4576 }
4577 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)4578 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4579 {
4580 	return !buffer_mapped(bh);
4581 }
4582 
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)4583 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4584 {
4585 	struct page *page = vmf->page;
4586 	loff_t size;
4587 	unsigned long len;
4588 	int ret;
4589 	struct file *file = vma->vm_file;
4590 	struct inode *inode = file->f_path.dentry->d_inode;
4591 	struct address_space *mapping = inode->i_mapping;
4592 	handle_t *handle;
4593 	get_block_t *get_block;
4594 	int retries = 0;
4595 
4596 	/*
4597 	 * This check is racy but catches the common case. We rely on
4598 	 * __block_page_mkwrite() to do a reliable check.
4599 	 */
4600 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4601 	/* Delalloc case is easy... */
4602 	if (test_opt(inode->i_sb, DELALLOC) &&
4603 	    !ext4_should_journal_data(inode) &&
4604 	    !ext4_nonda_switch(inode->i_sb)) {
4605 		do {
4606 			ret = __block_page_mkwrite(vma, vmf,
4607 						   ext4_da_get_block_prep);
4608 		} while (ret == -ENOSPC &&
4609 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4610 		goto out_ret;
4611 	}
4612 
4613 	lock_page(page);
4614 	size = i_size_read(inode);
4615 	/* Page got truncated from under us? */
4616 	if (page->mapping != mapping || page_offset(page) > size) {
4617 		unlock_page(page);
4618 		ret = VM_FAULT_NOPAGE;
4619 		goto out;
4620 	}
4621 
4622 	if (page->index == size >> PAGE_CACHE_SHIFT)
4623 		len = size & ~PAGE_CACHE_MASK;
4624 	else
4625 		len = PAGE_CACHE_SIZE;
4626 	/*
4627 	 * Return if we have all the buffers mapped. This avoids the need to do
4628 	 * journal_start/journal_stop which can block and take a long time
4629 	 */
4630 	if (page_has_buffers(page)) {
4631 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4632 					ext4_bh_unmapped)) {
4633 			/* Wait so that we don't change page under IO */
4634 			wait_on_page_writeback(page);
4635 			ret = VM_FAULT_LOCKED;
4636 			goto out;
4637 		}
4638 	}
4639 	unlock_page(page);
4640 	/* OK, we need to fill the hole... */
4641 	if (ext4_should_dioread_nolock(inode))
4642 		get_block = ext4_get_block_write;
4643 	else
4644 		get_block = ext4_get_block;
4645 retry_alloc:
4646 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4647 	if (IS_ERR(handle)) {
4648 		ret = VM_FAULT_SIGBUS;
4649 		goto out;
4650 	}
4651 	ret = __block_page_mkwrite(vma, vmf, get_block);
4652 	if (!ret && ext4_should_journal_data(inode)) {
4653 		if (walk_page_buffers(handle, page_buffers(page), 0,
4654 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4655 			unlock_page(page);
4656 			ret = VM_FAULT_SIGBUS;
4657 			ext4_journal_stop(handle);
4658 			goto out;
4659 		}
4660 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4661 	}
4662 	ext4_journal_stop(handle);
4663 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4664 		goto retry_alloc;
4665 out_ret:
4666 	ret = block_page_mkwrite_return(ret);
4667 out:
4668 	return ret;
4669 }
4670