1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/time.h>
27 #include <linux/ext3_jbd.h>
28 #include <linux/jbd.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/fiemap.h>
39 #include <linux/namei.h>
40 #include <trace/events/ext3.h>
41 #include "xattr.h"
42 #include "acl.h"
43 
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
46 
47 /*
48  * Test whether an inode is a fast symlink.
49  */
ext3_inode_is_fast_symlink(struct inode * inode)50 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 {
52 	int ea_blocks = EXT3_I(inode)->i_file_acl ?
53 		(inode->i_sb->s_blocksize >> 9) : 0;
54 
55 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
56 }
57 
58 /*
59  * The ext3 forget function must perform a revoke if we are freeing data
60  * which has been journaled.  Metadata (eg. indirect blocks) must be
61  * revoked in all cases.
62  *
63  * "bh" may be NULL: a metadata block may have been freed from memory
64  * but there may still be a record of it in the journal, and that record
65  * still needs to be revoked.
66  */
ext3_forget(handle_t * handle,int is_metadata,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t blocknr)67 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
68 			struct buffer_head *bh, ext3_fsblk_t blocknr)
69 {
70 	int err;
71 
72 	might_sleep();
73 
74 	trace_ext3_forget(inode, is_metadata, blocknr);
75 	BUFFER_TRACE(bh, "enter");
76 
77 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
78 		  "data mode %lx\n",
79 		  bh, is_metadata, inode->i_mode,
80 		  test_opt(inode->i_sb, DATA_FLAGS));
81 
82 	/* Never use the revoke function if we are doing full data
83 	 * journaling: there is no need to, and a V1 superblock won't
84 	 * support it.  Otherwise, only skip the revoke on un-journaled
85 	 * data blocks. */
86 
87 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
88 	    (!is_metadata && !ext3_should_journal_data(inode))) {
89 		if (bh) {
90 			BUFFER_TRACE(bh, "call journal_forget");
91 			return ext3_journal_forget(handle, bh);
92 		}
93 		return 0;
94 	}
95 
96 	/*
97 	 * data!=journal && (is_metadata || should_journal_data(inode))
98 	 */
99 	BUFFER_TRACE(bh, "call ext3_journal_revoke");
100 	err = ext3_journal_revoke(handle, blocknr, bh);
101 	if (err)
102 		ext3_abort(inode->i_sb, __func__,
103 			   "error %d when attempting revoke", err);
104 	BUFFER_TRACE(bh, "exit");
105 	return err;
106 }
107 
108 /*
109  * Work out how many blocks we need to proceed with the next chunk of a
110  * truncate transaction.
111  */
blocks_for_truncate(struct inode * inode)112 static unsigned long blocks_for_truncate(struct inode *inode)
113 {
114 	unsigned long needed;
115 
116 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
117 
118 	/* Give ourselves just enough room to cope with inodes in which
119 	 * i_blocks is corrupt: we've seen disk corruptions in the past
120 	 * which resulted in random data in an inode which looked enough
121 	 * like a regular file for ext3 to try to delete it.  Things
122 	 * will go a bit crazy if that happens, but at least we should
123 	 * try not to panic the whole kernel. */
124 	if (needed < 2)
125 		needed = 2;
126 
127 	/* But we need to bound the transaction so we don't overflow the
128 	 * journal. */
129 	if (needed > EXT3_MAX_TRANS_DATA)
130 		needed = EXT3_MAX_TRANS_DATA;
131 
132 	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
133 }
134 
135 /*
136  * Truncate transactions can be complex and absolutely huge.  So we need to
137  * be able to restart the transaction at a conventient checkpoint to make
138  * sure we don't overflow the journal.
139  *
140  * start_transaction gets us a new handle for a truncate transaction,
141  * and extend_transaction tries to extend the existing one a bit.  If
142  * extend fails, we need to propagate the failure up and restart the
143  * transaction in the top-level truncate loop. --sct
144  */
start_transaction(struct inode * inode)145 static handle_t *start_transaction(struct inode *inode)
146 {
147 	handle_t *result;
148 
149 	result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 	if (!IS_ERR(result))
151 		return result;
152 
153 	ext3_std_error(inode->i_sb, PTR_ERR(result));
154 	return result;
155 }
156 
157 /*
158  * Try to extend this transaction for the purposes of truncation.
159  *
160  * Returns 0 if we managed to create more room.  If we can't create more
161  * room, and the transaction must be restarted we return 1.
162  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)163 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164 {
165 	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 		return 0;
167 	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 		return 0;
169 	return 1;
170 }
171 
172 /*
173  * Restart the transaction associated with *handle.  This does a commit,
174  * so before we call here everything must be consistently dirtied against
175  * this transaction.
176  */
truncate_restart_transaction(handle_t * handle,struct inode * inode)177 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
178 {
179 	int ret;
180 
181 	jbd_debug(2, "restarting handle %p\n", handle);
182 	/*
183 	 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
184 	 * At this moment, get_block can be called only for blocks inside
185 	 * i_size since page cache has been already dropped and writes are
186 	 * blocked by i_mutex. So we can safely drop the truncate_mutex.
187 	 */
188 	mutex_unlock(&EXT3_I(inode)->truncate_mutex);
189 	ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
190 	mutex_lock(&EXT3_I(inode)->truncate_mutex);
191 	return ret;
192 }
193 
194 /*
195  * Called at inode eviction from icache
196  */
ext3_evict_inode(struct inode * inode)197 void ext3_evict_inode (struct inode *inode)
198 {
199 	struct ext3_inode_info *ei = EXT3_I(inode);
200 	struct ext3_block_alloc_info *rsv;
201 	handle_t *handle;
202 	int want_delete = 0;
203 
204 	trace_ext3_evict_inode(inode);
205 	if (!inode->i_nlink && !is_bad_inode(inode)) {
206 		dquot_initialize(inode);
207 		want_delete = 1;
208 	}
209 
210 	/*
211 	 * When journalling data dirty buffers are tracked only in the journal.
212 	 * So although mm thinks everything is clean and ready for reaping the
213 	 * inode might still have some pages to write in the running
214 	 * transaction or waiting to be checkpointed. Thus calling
215 	 * journal_invalidatepage() (via truncate_inode_pages()) to discard
216 	 * these buffers can cause data loss. Also even if we did not discard
217 	 * these buffers, we would have no way to find them after the inode
218 	 * is reaped and thus user could see stale data if he tries to read
219 	 * them before the transaction is checkpointed. So be careful and
220 	 * force everything to disk here... We use ei->i_datasync_tid to
221 	 * store the newest transaction containing inode's data.
222 	 *
223 	 * Note that directories do not have this problem because they don't
224 	 * use page cache.
225 	 *
226 	 * The s_journal check handles the case when ext3_get_journal() fails
227 	 * and puts the journal inode.
228 	 */
229 	if (inode->i_nlink && ext3_should_journal_data(inode) &&
230 	    EXT3_SB(inode->i_sb)->s_journal &&
231 	    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
232 		tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
233 		journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
234 
235 		log_start_commit(journal, commit_tid);
236 		log_wait_commit(journal, commit_tid);
237 		filemap_write_and_wait(&inode->i_data);
238 	}
239 	truncate_inode_pages(&inode->i_data, 0);
240 
241 	ext3_discard_reservation(inode);
242 	rsv = ei->i_block_alloc_info;
243 	ei->i_block_alloc_info = NULL;
244 	if (unlikely(rsv))
245 		kfree(rsv);
246 
247 	if (!want_delete)
248 		goto no_delete;
249 
250 	handle = start_transaction(inode);
251 	if (IS_ERR(handle)) {
252 		/*
253 		 * If we're going to skip the normal cleanup, we still need to
254 		 * make sure that the in-core orphan linked list is properly
255 		 * cleaned up.
256 		 */
257 		ext3_orphan_del(NULL, inode);
258 		goto no_delete;
259 	}
260 
261 	if (IS_SYNC(inode))
262 		handle->h_sync = 1;
263 	inode->i_size = 0;
264 	if (inode->i_blocks)
265 		ext3_truncate(inode);
266 	/*
267 	 * Kill off the orphan record created when the inode lost the last
268 	 * link.  Note that ext3_orphan_del() has to be able to cope with the
269 	 * deletion of a non-existent orphan - ext3_truncate() could
270 	 * have removed the record.
271 	 */
272 	ext3_orphan_del(handle, inode);
273 	ei->i_dtime = get_seconds();
274 
275 	/*
276 	 * One subtle ordering requirement: if anything has gone wrong
277 	 * (transaction abort, IO errors, whatever), then we can still
278 	 * do these next steps (the fs will already have been marked as
279 	 * having errors), but we can't free the inode if the mark_dirty
280 	 * fails.
281 	 */
282 	if (ext3_mark_inode_dirty(handle, inode)) {
283 		/* If that failed, just dquot_drop() and be done with that */
284 		dquot_drop(inode);
285 		end_writeback(inode);
286 	} else {
287 		ext3_xattr_delete_inode(handle, inode);
288 		dquot_free_inode(inode);
289 		dquot_drop(inode);
290 		end_writeback(inode);
291 		ext3_free_inode(handle, inode);
292 	}
293 	ext3_journal_stop(handle);
294 	return;
295 no_delete:
296 	end_writeback(inode);
297 	dquot_drop(inode);
298 }
299 
300 typedef struct {
301 	__le32	*p;
302 	__le32	key;
303 	struct buffer_head *bh;
304 } Indirect;
305 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)306 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
307 {
308 	p->key = *(p->p = v);
309 	p->bh = bh;
310 }
311 
verify_chain(Indirect * from,Indirect * to)312 static int verify_chain(Indirect *from, Indirect *to)
313 {
314 	while (from <= to && from->key == *from->p)
315 		from++;
316 	return (from > to);
317 }
318 
319 /**
320  *	ext3_block_to_path - parse the block number into array of offsets
321  *	@inode: inode in question (we are only interested in its superblock)
322  *	@i_block: block number to be parsed
323  *	@offsets: array to store the offsets in
324  *      @boundary: set this non-zero if the referred-to block is likely to be
325  *             followed (on disk) by an indirect block.
326  *
327  *	To store the locations of file's data ext3 uses a data structure common
328  *	for UNIX filesystems - tree of pointers anchored in the inode, with
329  *	data blocks at leaves and indirect blocks in intermediate nodes.
330  *	This function translates the block number into path in that tree -
331  *	return value is the path length and @offsets[n] is the offset of
332  *	pointer to (n+1)th node in the nth one. If @block is out of range
333  *	(negative or too large) warning is printed and zero returned.
334  *
335  *	Note: function doesn't find node addresses, so no IO is needed. All
336  *	we need to know is the capacity of indirect blocks (taken from the
337  *	inode->i_sb).
338  */
339 
340 /*
341  * Portability note: the last comparison (check that we fit into triple
342  * indirect block) is spelled differently, because otherwise on an
343  * architecture with 32-bit longs and 8Kb pages we might get into trouble
344  * if our filesystem had 8Kb blocks. We might use long long, but that would
345  * kill us on x86. Oh, well, at least the sign propagation does not matter -
346  * i_block would have to be negative in the very beginning, so we would not
347  * get there at all.
348  */
349 
ext3_block_to_path(struct inode * inode,long i_block,int offsets[4],int * boundary)350 static int ext3_block_to_path(struct inode *inode,
351 			long i_block, int offsets[4], int *boundary)
352 {
353 	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
354 	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
355 	const long direct_blocks = EXT3_NDIR_BLOCKS,
356 		indirect_blocks = ptrs,
357 		double_blocks = (1 << (ptrs_bits * 2));
358 	int n = 0;
359 	int final = 0;
360 
361 	if (i_block < 0) {
362 		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
363 	} else if (i_block < direct_blocks) {
364 		offsets[n++] = i_block;
365 		final = direct_blocks;
366 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
367 		offsets[n++] = EXT3_IND_BLOCK;
368 		offsets[n++] = i_block;
369 		final = ptrs;
370 	} else if ((i_block -= indirect_blocks) < double_blocks) {
371 		offsets[n++] = EXT3_DIND_BLOCK;
372 		offsets[n++] = i_block >> ptrs_bits;
373 		offsets[n++] = i_block & (ptrs - 1);
374 		final = ptrs;
375 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
376 		offsets[n++] = EXT3_TIND_BLOCK;
377 		offsets[n++] = i_block >> (ptrs_bits * 2);
378 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
379 		offsets[n++] = i_block & (ptrs - 1);
380 		final = ptrs;
381 	} else {
382 		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
383 	}
384 	if (boundary)
385 		*boundary = final - 1 - (i_block & (ptrs - 1));
386 	return n;
387 }
388 
389 /**
390  *	ext3_get_branch - read the chain of indirect blocks leading to data
391  *	@inode: inode in question
392  *	@depth: depth of the chain (1 - direct pointer, etc.)
393  *	@offsets: offsets of pointers in inode/indirect blocks
394  *	@chain: place to store the result
395  *	@err: here we store the error value
396  *
397  *	Function fills the array of triples <key, p, bh> and returns %NULL
398  *	if everything went OK or the pointer to the last filled triple
399  *	(incomplete one) otherwise. Upon the return chain[i].key contains
400  *	the number of (i+1)-th block in the chain (as it is stored in memory,
401  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
402  *	number (it points into struct inode for i==0 and into the bh->b_data
403  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
404  *	block for i>0 and NULL for i==0. In other words, it holds the block
405  *	numbers of the chain, addresses they were taken from (and where we can
406  *	verify that chain did not change) and buffer_heads hosting these
407  *	numbers.
408  *
409  *	Function stops when it stumbles upon zero pointer (absent block)
410  *		(pointer to last triple returned, *@err == 0)
411  *	or when it gets an IO error reading an indirect block
412  *		(ditto, *@err == -EIO)
413  *	or when it notices that chain had been changed while it was reading
414  *		(ditto, *@err == -EAGAIN)
415  *	or when it reads all @depth-1 indirect blocks successfully and finds
416  *	the whole chain, all way to the data (returns %NULL, *err == 0).
417  */
ext3_get_branch(struct inode * inode,int depth,int * offsets,Indirect chain[4],int * err)418 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
419 				 Indirect chain[4], int *err)
420 {
421 	struct super_block *sb = inode->i_sb;
422 	Indirect *p = chain;
423 	struct buffer_head *bh;
424 
425 	*err = 0;
426 	/* i_data is not going away, no lock needed */
427 	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
428 	if (!p->key)
429 		goto no_block;
430 	while (--depth) {
431 		bh = sb_bread(sb, le32_to_cpu(p->key));
432 		if (!bh)
433 			goto failure;
434 		/* Reader: pointers */
435 		if (!verify_chain(chain, p))
436 			goto changed;
437 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
438 		/* Reader: end */
439 		if (!p->key)
440 			goto no_block;
441 	}
442 	return NULL;
443 
444 changed:
445 	brelse(bh);
446 	*err = -EAGAIN;
447 	goto no_block;
448 failure:
449 	*err = -EIO;
450 no_block:
451 	return p;
452 }
453 
454 /**
455  *	ext3_find_near - find a place for allocation with sufficient locality
456  *	@inode: owner
457  *	@ind: descriptor of indirect block.
458  *
459  *	This function returns the preferred place for block allocation.
460  *	It is used when heuristic for sequential allocation fails.
461  *	Rules are:
462  *	  + if there is a block to the left of our position - allocate near it.
463  *	  + if pointer will live in indirect block - allocate near that block.
464  *	  + if pointer will live in inode - allocate in the same
465  *	    cylinder group.
466  *
467  * In the latter case we colour the starting block by the callers PID to
468  * prevent it from clashing with concurrent allocations for a different inode
469  * in the same block group.   The PID is used here so that functionally related
470  * files will be close-by on-disk.
471  *
472  *	Caller must make sure that @ind is valid and will stay that way.
473  */
ext3_find_near(struct inode * inode,Indirect * ind)474 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
475 {
476 	struct ext3_inode_info *ei = EXT3_I(inode);
477 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
478 	__le32 *p;
479 	ext3_fsblk_t bg_start;
480 	ext3_grpblk_t colour;
481 
482 	/* Try to find previous block */
483 	for (p = ind->p - 1; p >= start; p--) {
484 		if (*p)
485 			return le32_to_cpu(*p);
486 	}
487 
488 	/* No such thing, so let's try location of indirect block */
489 	if (ind->bh)
490 		return ind->bh->b_blocknr;
491 
492 	/*
493 	 * It is going to be referred to from the inode itself? OK, just put it
494 	 * into the same cylinder group then.
495 	 */
496 	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
497 	colour = (current->pid % 16) *
498 			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
499 	return bg_start + colour;
500 }
501 
502 /**
503  *	ext3_find_goal - find a preferred place for allocation.
504  *	@inode: owner
505  *	@block:  block we want
506  *	@partial: pointer to the last triple within a chain
507  *
508  *	Normally this function find the preferred place for block allocation,
509  *	returns it.
510  */
511 
ext3_find_goal(struct inode * inode,long block,Indirect * partial)512 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
513 				   Indirect *partial)
514 {
515 	struct ext3_block_alloc_info *block_i;
516 
517 	block_i =  EXT3_I(inode)->i_block_alloc_info;
518 
519 	/*
520 	 * try the heuristic for sequential allocation,
521 	 * failing that at least try to get decent locality.
522 	 */
523 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
524 		&& (block_i->last_alloc_physical_block != 0)) {
525 		return block_i->last_alloc_physical_block + 1;
526 	}
527 
528 	return ext3_find_near(inode, partial);
529 }
530 
531 /**
532  *	ext3_blks_to_allocate - Look up the block map and count the number
533  *	of direct blocks need to be allocated for the given branch.
534  *
535  *	@branch: chain of indirect blocks
536  *	@k: number of blocks need for indirect blocks
537  *	@blks: number of data blocks to be mapped.
538  *	@blocks_to_boundary:  the offset in the indirect block
539  *
540  *	return the total number of blocks to be allocate, including the
541  *	direct and indirect blocks.
542  */
ext3_blks_to_allocate(Indirect * branch,int k,unsigned long blks,int blocks_to_boundary)543 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
544 		int blocks_to_boundary)
545 {
546 	unsigned long count = 0;
547 
548 	/*
549 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
550 	 * then it's clear blocks on that path have not allocated
551 	 */
552 	if (k > 0) {
553 		/* right now we don't handle cross boundary allocation */
554 		if (blks < blocks_to_boundary + 1)
555 			count += blks;
556 		else
557 			count += blocks_to_boundary + 1;
558 		return count;
559 	}
560 
561 	count++;
562 	while (count < blks && count <= blocks_to_boundary &&
563 		le32_to_cpu(*(branch[0].p + count)) == 0) {
564 		count++;
565 	}
566 	return count;
567 }
568 
569 /**
570  *	ext3_alloc_blocks - multiple allocate blocks needed for a branch
571  *	@handle: handle for this transaction
572  *	@inode: owner
573  *	@goal: preferred place for allocation
574  *	@indirect_blks: the number of blocks need to allocate for indirect
575  *			blocks
576  *	@blks:	number of blocks need to allocated for direct blocks
577  *	@new_blocks: on return it will store the new block numbers for
578  *	the indirect blocks(if needed) and the first direct block,
579  *	@err: here we store the error value
580  *
581  *	return the number of direct blocks allocated
582  */
ext3_alloc_blocks(handle_t * handle,struct inode * inode,ext3_fsblk_t goal,int indirect_blks,int blks,ext3_fsblk_t new_blocks[4],int * err)583 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
584 			ext3_fsblk_t goal, int indirect_blks, int blks,
585 			ext3_fsblk_t new_blocks[4], int *err)
586 {
587 	int target, i;
588 	unsigned long count = 0;
589 	int index = 0;
590 	ext3_fsblk_t current_block = 0;
591 	int ret = 0;
592 
593 	/*
594 	 * Here we try to allocate the requested multiple blocks at once,
595 	 * on a best-effort basis.
596 	 * To build a branch, we should allocate blocks for
597 	 * the indirect blocks(if not allocated yet), and at least
598 	 * the first direct block of this branch.  That's the
599 	 * minimum number of blocks need to allocate(required)
600 	 */
601 	target = blks + indirect_blks;
602 
603 	while (1) {
604 		count = target;
605 		/* allocating blocks for indirect blocks and direct blocks */
606 		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
607 		if (*err)
608 			goto failed_out;
609 
610 		target -= count;
611 		/* allocate blocks for indirect blocks */
612 		while (index < indirect_blks && count) {
613 			new_blocks[index++] = current_block++;
614 			count--;
615 		}
616 
617 		if (count > 0)
618 			break;
619 	}
620 
621 	/* save the new block number for the first direct block */
622 	new_blocks[index] = current_block;
623 
624 	/* total number of blocks allocated for direct blocks */
625 	ret = count;
626 	*err = 0;
627 	return ret;
628 failed_out:
629 	for (i = 0; i <index; i++)
630 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
631 	return ret;
632 }
633 
634 /**
635  *	ext3_alloc_branch - allocate and set up a chain of blocks.
636  *	@handle: handle for this transaction
637  *	@inode: owner
638  *	@indirect_blks: number of allocated indirect blocks
639  *	@blks: number of allocated direct blocks
640  *	@goal: preferred place for allocation
641  *	@offsets: offsets (in the blocks) to store the pointers to next.
642  *	@branch: place to store the chain in.
643  *
644  *	This function allocates blocks, zeroes out all but the last one,
645  *	links them into chain and (if we are synchronous) writes them to disk.
646  *	In other words, it prepares a branch that can be spliced onto the
647  *	inode. It stores the information about that chain in the branch[], in
648  *	the same format as ext3_get_branch() would do. We are calling it after
649  *	we had read the existing part of chain and partial points to the last
650  *	triple of that (one with zero ->key). Upon the exit we have the same
651  *	picture as after the successful ext3_get_block(), except that in one
652  *	place chain is disconnected - *branch->p is still zero (we did not
653  *	set the last link), but branch->key contains the number that should
654  *	be placed into *branch->p to fill that gap.
655  *
656  *	If allocation fails we free all blocks we've allocated (and forget
657  *	their buffer_heads) and return the error value the from failed
658  *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *	as described above and return 0.
660  */
ext3_alloc_branch(handle_t * handle,struct inode * inode,int indirect_blks,int * blks,ext3_fsblk_t goal,int * offsets,Indirect * branch)661 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
662 			int indirect_blks, int *blks, ext3_fsblk_t goal,
663 			int *offsets, Indirect *branch)
664 {
665 	int blocksize = inode->i_sb->s_blocksize;
666 	int i, n = 0;
667 	int err = 0;
668 	struct buffer_head *bh;
669 	int num;
670 	ext3_fsblk_t new_blocks[4];
671 	ext3_fsblk_t current_block;
672 
673 	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
674 				*blks, new_blocks, &err);
675 	if (err)
676 		return err;
677 
678 	branch[0].key = cpu_to_le32(new_blocks[0]);
679 	/*
680 	 * metadata blocks and data blocks are allocated.
681 	 */
682 	for (n = 1; n <= indirect_blks;  n++) {
683 		/*
684 		 * Get buffer_head for parent block, zero it out
685 		 * and set the pointer to new one, then send
686 		 * parent to disk.
687 		 */
688 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
689 		branch[n].bh = bh;
690 		lock_buffer(bh);
691 		BUFFER_TRACE(bh, "call get_create_access");
692 		err = ext3_journal_get_create_access(handle, bh);
693 		if (err) {
694 			unlock_buffer(bh);
695 			brelse(bh);
696 			goto failed;
697 		}
698 
699 		memset(bh->b_data, 0, blocksize);
700 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
701 		branch[n].key = cpu_to_le32(new_blocks[n]);
702 		*branch[n].p = branch[n].key;
703 		if ( n == indirect_blks) {
704 			current_block = new_blocks[n];
705 			/*
706 			 * End of chain, update the last new metablock of
707 			 * the chain to point to the new allocated
708 			 * data blocks numbers
709 			 */
710 			for (i=1; i < num; i++)
711 				*(branch[n].p + i) = cpu_to_le32(++current_block);
712 		}
713 		BUFFER_TRACE(bh, "marking uptodate");
714 		set_buffer_uptodate(bh);
715 		unlock_buffer(bh);
716 
717 		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
718 		err = ext3_journal_dirty_metadata(handle, bh);
719 		if (err)
720 			goto failed;
721 	}
722 	*blks = num;
723 	return err;
724 failed:
725 	/* Allocation failed, free what we already allocated */
726 	for (i = 1; i <= n ; i++) {
727 		BUFFER_TRACE(branch[i].bh, "call journal_forget");
728 		ext3_journal_forget(handle, branch[i].bh);
729 	}
730 	for (i = 0; i <indirect_blks; i++)
731 		ext3_free_blocks(handle, inode, new_blocks[i], 1);
732 
733 	ext3_free_blocks(handle, inode, new_blocks[i], num);
734 
735 	return err;
736 }
737 
738 /**
739  * ext3_splice_branch - splice the allocated branch onto inode.
740  * @handle: handle for this transaction
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @where: location of missing link
744  * @num:   number of indirect blocks we are adding
745  * @blks:  number of direct blocks we are adding
746  *
747  * This function fills the missing link and does all housekeeping needed in
748  * inode (->i_blocks, etc.). In case of success we end up with the full
749  * chain to new block and return 0.
750  */
ext3_splice_branch(handle_t * handle,struct inode * inode,long block,Indirect * where,int num,int blks)751 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
752 			long block, Indirect *where, int num, int blks)
753 {
754 	int i;
755 	int err = 0;
756 	struct ext3_block_alloc_info *block_i;
757 	ext3_fsblk_t current_block;
758 	struct ext3_inode_info *ei = EXT3_I(inode);
759 
760 	block_i = ei->i_block_alloc_info;
761 	/*
762 	 * If we're splicing into a [td]indirect block (as opposed to the
763 	 * inode) then we need to get write access to the [td]indirect block
764 	 * before the splice.
765 	 */
766 	if (where->bh) {
767 		BUFFER_TRACE(where->bh, "get_write_access");
768 		err = ext3_journal_get_write_access(handle, where->bh);
769 		if (err)
770 			goto err_out;
771 	}
772 	/* That's it */
773 
774 	*where->p = where->key;
775 
776 	/*
777 	 * Update the host buffer_head or inode to point to more just allocated
778 	 * direct blocks blocks
779 	 */
780 	if (num == 0 && blks > 1) {
781 		current_block = le32_to_cpu(where->key) + 1;
782 		for (i = 1; i < blks; i++)
783 			*(where->p + i ) = cpu_to_le32(current_block++);
784 	}
785 
786 	/*
787 	 * update the most recently allocated logical & physical block
788 	 * in i_block_alloc_info, to assist find the proper goal block for next
789 	 * allocation
790 	 */
791 	if (block_i) {
792 		block_i->last_alloc_logical_block = block + blks - 1;
793 		block_i->last_alloc_physical_block =
794 				le32_to_cpu(where[num].key) + blks - 1;
795 	}
796 
797 	/* We are done with atomic stuff, now do the rest of housekeeping */
798 
799 	inode->i_ctime = CURRENT_TIME_SEC;
800 	ext3_mark_inode_dirty(handle, inode);
801 	/* ext3_mark_inode_dirty already updated i_sync_tid */
802 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
803 
804 	/* had we spliced it onto indirect block? */
805 	if (where->bh) {
806 		/*
807 		 * If we spliced it onto an indirect block, we haven't
808 		 * altered the inode.  Note however that if it is being spliced
809 		 * onto an indirect block at the very end of the file (the
810 		 * file is growing) then we *will* alter the inode to reflect
811 		 * the new i_size.  But that is not done here - it is done in
812 		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
813 		 */
814 		jbd_debug(5, "splicing indirect only\n");
815 		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
816 		err = ext3_journal_dirty_metadata(handle, where->bh);
817 		if (err)
818 			goto err_out;
819 	} else {
820 		/*
821 		 * OK, we spliced it into the inode itself on a direct block.
822 		 * Inode was dirtied above.
823 		 */
824 		jbd_debug(5, "splicing direct\n");
825 	}
826 	return err;
827 
828 err_out:
829 	for (i = 1; i <= num; i++) {
830 		BUFFER_TRACE(where[i].bh, "call journal_forget");
831 		ext3_journal_forget(handle, where[i].bh);
832 		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
833 	}
834 	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
835 
836 	return err;
837 }
838 
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * The BKL may not be held on entry here.  Be sure to take it early.
854  * return > 0, # of blocks mapped or allocated.
855  * return = 0, if plain lookup failed.
856  * return < 0, error case.
857  */
ext3_get_blocks_handle(handle_t * handle,struct inode * inode,sector_t iblock,unsigned long maxblocks,struct buffer_head * bh_result,int create)858 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
859 		sector_t iblock, unsigned long maxblocks,
860 		struct buffer_head *bh_result,
861 		int create)
862 {
863 	int err = -EIO;
864 	int offsets[4];
865 	Indirect chain[4];
866 	Indirect *partial;
867 	ext3_fsblk_t goal;
868 	int indirect_blks;
869 	int blocks_to_boundary = 0;
870 	int depth;
871 	struct ext3_inode_info *ei = EXT3_I(inode);
872 	int count = 0;
873 	ext3_fsblk_t first_block = 0;
874 
875 
876 	trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
877 	J_ASSERT(handle != NULL || create == 0);
878 	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
879 
880 	if (depth == 0)
881 		goto out;
882 
883 	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
884 
885 	/* Simplest case - block found, no allocation needed */
886 	if (!partial) {
887 		first_block = le32_to_cpu(chain[depth - 1].key);
888 		clear_buffer_new(bh_result);
889 		count++;
890 		/*map more blocks*/
891 		while (count < maxblocks && count <= blocks_to_boundary) {
892 			ext3_fsblk_t blk;
893 
894 			if (!verify_chain(chain, chain + depth - 1)) {
895 				/*
896 				 * Indirect block might be removed by
897 				 * truncate while we were reading it.
898 				 * Handling of that case: forget what we've
899 				 * got now. Flag the err as EAGAIN, so it
900 				 * will reread.
901 				 */
902 				err = -EAGAIN;
903 				count = 0;
904 				break;
905 			}
906 			blk = le32_to_cpu(*(chain[depth-1].p + count));
907 
908 			if (blk == first_block + count)
909 				count++;
910 			else
911 				break;
912 		}
913 		if (err != -EAGAIN)
914 			goto got_it;
915 	}
916 
917 	/* Next simple case - plain lookup or failed read of indirect block */
918 	if (!create || err == -EIO)
919 		goto cleanup;
920 
921 	/*
922 	 * Block out ext3_truncate while we alter the tree
923 	 */
924 	mutex_lock(&ei->truncate_mutex);
925 
926 	/*
927 	 * If the indirect block is missing while we are reading
928 	 * the chain(ext3_get_branch() returns -EAGAIN err), or
929 	 * if the chain has been changed after we grab the semaphore,
930 	 * (either because another process truncated this branch, or
931 	 * another get_block allocated this branch) re-grab the chain to see if
932 	 * the request block has been allocated or not.
933 	 *
934 	 * Since we already block the truncate/other get_block
935 	 * at this point, we will have the current copy of the chain when we
936 	 * splice the branch into the tree.
937 	 */
938 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
939 		while (partial > chain) {
940 			brelse(partial->bh);
941 			partial--;
942 		}
943 		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
944 		if (!partial) {
945 			count++;
946 			mutex_unlock(&ei->truncate_mutex);
947 			if (err)
948 				goto cleanup;
949 			clear_buffer_new(bh_result);
950 			goto got_it;
951 		}
952 	}
953 
954 	/*
955 	 * Okay, we need to do block allocation.  Lazily initialize the block
956 	 * allocation info here if necessary
957 	*/
958 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
959 		ext3_init_block_alloc_info(inode);
960 
961 	goal = ext3_find_goal(inode, iblock, partial);
962 
963 	/* the number of blocks need to allocate for [d,t]indirect blocks */
964 	indirect_blks = (chain + depth) - partial - 1;
965 
966 	/*
967 	 * Next look up the indirect map to count the totoal number of
968 	 * direct blocks to allocate for this branch.
969 	 */
970 	count = ext3_blks_to_allocate(partial, indirect_blks,
971 					maxblocks, blocks_to_boundary);
972 	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
973 				offsets + (partial - chain), partial);
974 
975 	/*
976 	 * The ext3_splice_branch call will free and forget any buffers
977 	 * on the new chain if there is a failure, but that risks using
978 	 * up transaction credits, especially for bitmaps where the
979 	 * credits cannot be returned.  Can we handle this somehow?  We
980 	 * may need to return -EAGAIN upwards in the worst case.  --sct
981 	 */
982 	if (!err)
983 		err = ext3_splice_branch(handle, inode, iblock,
984 					partial, indirect_blks, count);
985 	mutex_unlock(&ei->truncate_mutex);
986 	if (err)
987 		goto cleanup;
988 
989 	set_buffer_new(bh_result);
990 got_it:
991 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
992 	if (count > blocks_to_boundary)
993 		set_buffer_boundary(bh_result);
994 	err = count;
995 	/* Clean up and exit */
996 	partial = chain + depth - 1;	/* the whole chain */
997 cleanup:
998 	while (partial > chain) {
999 		BUFFER_TRACE(partial->bh, "call brelse");
1000 		brelse(partial->bh);
1001 		partial--;
1002 	}
1003 	BUFFER_TRACE(bh_result, "returned");
1004 out:
1005 	trace_ext3_get_blocks_exit(inode, iblock,
1006 				   depth ? le32_to_cpu(chain[depth-1].key) : 0,
1007 				   count, err);
1008 	return err;
1009 }
1010 
1011 /* Maximum number of blocks we map for direct IO at once. */
1012 #define DIO_MAX_BLOCKS 4096
1013 /*
1014  * Number of credits we need for writing DIO_MAX_BLOCKS:
1015  * We need sb + group descriptor + bitmap + inode -> 4
1016  * For B blocks with A block pointers per block we need:
1017  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1018  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1019  */
1020 #define DIO_CREDITS 25
1021 
ext3_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1022 static int ext3_get_block(struct inode *inode, sector_t iblock,
1023 			struct buffer_head *bh_result, int create)
1024 {
1025 	handle_t *handle = ext3_journal_current_handle();
1026 	int ret = 0, started = 0;
1027 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1028 
1029 	if (create && !handle) {	/* Direct IO write... */
1030 		if (max_blocks > DIO_MAX_BLOCKS)
1031 			max_blocks = DIO_MAX_BLOCKS;
1032 		handle = ext3_journal_start(inode, DIO_CREDITS +
1033 				EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1034 		if (IS_ERR(handle)) {
1035 			ret = PTR_ERR(handle);
1036 			goto out;
1037 		}
1038 		started = 1;
1039 	}
1040 
1041 	ret = ext3_get_blocks_handle(handle, inode, iblock,
1042 					max_blocks, bh_result, create);
1043 	if (ret > 0) {
1044 		bh_result->b_size = (ret << inode->i_blkbits);
1045 		ret = 0;
1046 	}
1047 	if (started)
1048 		ext3_journal_stop(handle);
1049 out:
1050 	return ret;
1051 }
1052 
ext3_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1053 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1054 		u64 start, u64 len)
1055 {
1056 	return generic_block_fiemap(inode, fieinfo, start, len,
1057 				    ext3_get_block);
1058 }
1059 
1060 /*
1061  * `handle' can be NULL if create is zero
1062  */
ext3_getblk(handle_t * handle,struct inode * inode,long block,int create,int * errp)1063 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1064 				long block, int create, int *errp)
1065 {
1066 	struct buffer_head dummy;
1067 	int fatal = 0, err;
1068 
1069 	J_ASSERT(handle != NULL || create == 0);
1070 
1071 	dummy.b_state = 0;
1072 	dummy.b_blocknr = -1000;
1073 	buffer_trace_init(&dummy.b_history);
1074 	err = ext3_get_blocks_handle(handle, inode, block, 1,
1075 					&dummy, create);
1076 	/*
1077 	 * ext3_get_blocks_handle() returns number of blocks
1078 	 * mapped. 0 in case of a HOLE.
1079 	 */
1080 	if (err > 0) {
1081 		if (err > 1)
1082 			WARN_ON(1);
1083 		err = 0;
1084 	}
1085 	*errp = err;
1086 	if (!err && buffer_mapped(&dummy)) {
1087 		struct buffer_head *bh;
1088 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1089 		if (!bh) {
1090 			*errp = -EIO;
1091 			goto err;
1092 		}
1093 		if (buffer_new(&dummy)) {
1094 			J_ASSERT(create != 0);
1095 			J_ASSERT(handle != NULL);
1096 
1097 			/*
1098 			 * Now that we do not always journal data, we should
1099 			 * keep in mind whether this should always journal the
1100 			 * new buffer as metadata.  For now, regular file
1101 			 * writes use ext3_get_block instead, so it's not a
1102 			 * problem.
1103 			 */
1104 			lock_buffer(bh);
1105 			BUFFER_TRACE(bh, "call get_create_access");
1106 			fatal = ext3_journal_get_create_access(handle, bh);
1107 			if (!fatal && !buffer_uptodate(bh)) {
1108 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1109 				set_buffer_uptodate(bh);
1110 			}
1111 			unlock_buffer(bh);
1112 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1113 			err = ext3_journal_dirty_metadata(handle, bh);
1114 			if (!fatal)
1115 				fatal = err;
1116 		} else {
1117 			BUFFER_TRACE(bh, "not a new buffer");
1118 		}
1119 		if (fatal) {
1120 			*errp = fatal;
1121 			brelse(bh);
1122 			bh = NULL;
1123 		}
1124 		return bh;
1125 	}
1126 err:
1127 	return NULL;
1128 }
1129 
ext3_bread(handle_t * handle,struct inode * inode,int block,int create,int * err)1130 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1131 			       int block, int create, int *err)
1132 {
1133 	struct buffer_head * bh;
1134 
1135 	bh = ext3_getblk(handle, inode, block, create, err);
1136 	if (!bh)
1137 		return bh;
1138 	if (bh_uptodate_or_lock(bh))
1139 		return bh;
1140 	get_bh(bh);
1141 	bh->b_end_io = end_buffer_read_sync;
1142 	submit_bh(READ | REQ_META | REQ_PRIO, bh);
1143 	wait_on_buffer(bh);
1144 	if (buffer_uptodate(bh))
1145 		return bh;
1146 	put_bh(bh);
1147 	*err = -EIO;
1148 	return NULL;
1149 }
1150 
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1151 static int walk_page_buffers(	handle_t *handle,
1152 				struct buffer_head *head,
1153 				unsigned from,
1154 				unsigned to,
1155 				int *partial,
1156 				int (*fn)(	handle_t *handle,
1157 						struct buffer_head *bh))
1158 {
1159 	struct buffer_head *bh;
1160 	unsigned block_start, block_end;
1161 	unsigned blocksize = head->b_size;
1162 	int err, ret = 0;
1163 	struct buffer_head *next;
1164 
1165 	for (	bh = head, block_start = 0;
1166 		ret == 0 && (bh != head || !block_start);
1167 		block_start = block_end, bh = next)
1168 	{
1169 		next = bh->b_this_page;
1170 		block_end = block_start + blocksize;
1171 		if (block_end <= from || block_start >= to) {
1172 			if (partial && !buffer_uptodate(bh))
1173 				*partial = 1;
1174 			continue;
1175 		}
1176 		err = (*fn)(handle, bh);
1177 		if (!ret)
1178 			ret = err;
1179 	}
1180 	return ret;
1181 }
1182 
1183 /*
1184  * To preserve ordering, it is essential that the hole instantiation and
1185  * the data write be encapsulated in a single transaction.  We cannot
1186  * close off a transaction and start a new one between the ext3_get_block()
1187  * and the commit_write().  So doing the journal_start at the start of
1188  * prepare_write() is the right place.
1189  *
1190  * Also, this function can nest inside ext3_writepage() ->
1191  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1192  * has generated enough buffer credits to do the whole page.  So we won't
1193  * block on the journal in that case, which is good, because the caller may
1194  * be PF_MEMALLOC.
1195  *
1196  * By accident, ext3 can be reentered when a transaction is open via
1197  * quota file writes.  If we were to commit the transaction while thus
1198  * reentered, there can be a deadlock - we would be holding a quota
1199  * lock, and the commit would never complete if another thread had a
1200  * transaction open and was blocking on the quota lock - a ranking
1201  * violation.
1202  *
1203  * So what we do is to rely on the fact that journal_stop/journal_start
1204  * will _not_ run commit under these circumstances because handle->h_ref
1205  * is elevated.  We'll still have enough credits for the tiny quotafile
1206  * write.
1207  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1208 static int do_journal_get_write_access(handle_t *handle,
1209 					struct buffer_head *bh)
1210 {
1211 	int dirty = buffer_dirty(bh);
1212 	int ret;
1213 
1214 	if (!buffer_mapped(bh) || buffer_freed(bh))
1215 		return 0;
1216 	/*
1217 	 * __block_prepare_write() could have dirtied some buffers. Clean
1218 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1219 	 * otherwise about fs integrity issues. Setting of the dirty bit
1220 	 * by __block_prepare_write() isn't a real problem here as we clear
1221 	 * the bit before releasing a page lock and thus writeback cannot
1222 	 * ever write the buffer.
1223 	 */
1224 	if (dirty)
1225 		clear_buffer_dirty(bh);
1226 	ret = ext3_journal_get_write_access(handle, bh);
1227 	if (!ret && dirty)
1228 		ret = ext3_journal_dirty_metadata(handle, bh);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * Truncate blocks that were not used by write. We have to truncate the
1234  * pagecache as well so that corresponding buffers get properly unmapped.
1235  */
ext3_truncate_failed_write(struct inode * inode)1236 static void ext3_truncate_failed_write(struct inode *inode)
1237 {
1238 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1239 	ext3_truncate(inode);
1240 }
1241 
1242 /*
1243  * Truncate blocks that were not used by direct IO write. We have to zero out
1244  * the last file block as well because direct IO might have written to it.
1245  */
ext3_truncate_failed_direct_write(struct inode * inode)1246 static void ext3_truncate_failed_direct_write(struct inode *inode)
1247 {
1248 	ext3_block_truncate_page(inode, inode->i_size);
1249 	ext3_truncate(inode);
1250 }
1251 
ext3_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1252 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1253 				loff_t pos, unsigned len, unsigned flags,
1254 				struct page **pagep, void **fsdata)
1255 {
1256 	struct inode *inode = mapping->host;
1257 	int ret;
1258 	handle_t *handle;
1259 	int retries = 0;
1260 	struct page *page;
1261 	pgoff_t index;
1262 	unsigned from, to;
1263 	/* Reserve one block more for addition to orphan list in case
1264 	 * we allocate blocks but write fails for some reason */
1265 	int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1266 
1267 	trace_ext3_write_begin(inode, pos, len, flags);
1268 
1269 	index = pos >> PAGE_CACHE_SHIFT;
1270 	from = pos & (PAGE_CACHE_SIZE - 1);
1271 	to = from + len;
1272 
1273 retry:
1274 	page = grab_cache_page_write_begin(mapping, index, flags);
1275 	if (!page)
1276 		return -ENOMEM;
1277 	*pagep = page;
1278 
1279 	handle = ext3_journal_start(inode, needed_blocks);
1280 	if (IS_ERR(handle)) {
1281 		unlock_page(page);
1282 		page_cache_release(page);
1283 		ret = PTR_ERR(handle);
1284 		goto out;
1285 	}
1286 	ret = __block_write_begin(page, pos, len, ext3_get_block);
1287 	if (ret)
1288 		goto write_begin_failed;
1289 
1290 	if (ext3_should_journal_data(inode)) {
1291 		ret = walk_page_buffers(handle, page_buffers(page),
1292 				from, to, NULL, do_journal_get_write_access);
1293 	}
1294 write_begin_failed:
1295 	if (ret) {
1296 		/*
1297 		 * block_write_begin may have instantiated a few blocks
1298 		 * outside i_size.  Trim these off again. Don't need
1299 		 * i_size_read because we hold i_mutex.
1300 		 *
1301 		 * Add inode to orphan list in case we crash before truncate
1302 		 * finishes. Do this only if ext3_can_truncate() agrees so
1303 		 * that orphan processing code is happy.
1304 		 */
1305 		if (pos + len > inode->i_size && ext3_can_truncate(inode))
1306 			ext3_orphan_add(handle, inode);
1307 		ext3_journal_stop(handle);
1308 		unlock_page(page);
1309 		page_cache_release(page);
1310 		if (pos + len > inode->i_size)
1311 			ext3_truncate_failed_write(inode);
1312 	}
1313 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1314 		goto retry;
1315 out:
1316 	return ret;
1317 }
1318 
1319 
ext3_journal_dirty_data(handle_t * handle,struct buffer_head * bh)1320 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1321 {
1322 	int err = journal_dirty_data(handle, bh);
1323 	if (err)
1324 		ext3_journal_abort_handle(__func__, __func__,
1325 						bh, handle, err);
1326 	return err;
1327 }
1328 
1329 /* For ordered writepage and write_end functions */
journal_dirty_data_fn(handle_t * handle,struct buffer_head * bh)1330 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1331 {
1332 	/*
1333 	 * Write could have mapped the buffer but it didn't copy the data in
1334 	 * yet. So avoid filing such buffer into a transaction.
1335 	 */
1336 	if (buffer_mapped(bh) && buffer_uptodate(bh))
1337 		return ext3_journal_dirty_data(handle, bh);
1338 	return 0;
1339 }
1340 
1341 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1342 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1343 {
1344 	if (!buffer_mapped(bh) || buffer_freed(bh))
1345 		return 0;
1346 	set_buffer_uptodate(bh);
1347 	return ext3_journal_dirty_metadata(handle, bh);
1348 }
1349 
1350 /*
1351  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1352  * for the whole page but later we failed to copy the data in. Update inode
1353  * size according to what we managed to copy. The rest is going to be
1354  * truncated in write_end function.
1355  */
update_file_sizes(struct inode * inode,loff_t pos,unsigned copied)1356 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1357 {
1358 	/* What matters to us is i_disksize. We don't write i_size anywhere */
1359 	if (pos + copied > inode->i_size)
1360 		i_size_write(inode, pos + copied);
1361 	if (pos + copied > EXT3_I(inode)->i_disksize) {
1362 		EXT3_I(inode)->i_disksize = pos + copied;
1363 		mark_inode_dirty(inode);
1364 	}
1365 }
1366 
1367 /*
1368  * We need to pick up the new inode size which generic_commit_write gave us
1369  * `file' can be NULL - eg, when called from page_symlink().
1370  *
1371  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1372  * buffers are managed internally.
1373  */
ext3_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1374 static int ext3_ordered_write_end(struct file *file,
1375 				struct address_space *mapping,
1376 				loff_t pos, unsigned len, unsigned copied,
1377 				struct page *page, void *fsdata)
1378 {
1379 	handle_t *handle = ext3_journal_current_handle();
1380 	struct inode *inode = file->f_mapping->host;
1381 	unsigned from, to;
1382 	int ret = 0, ret2;
1383 
1384 	trace_ext3_ordered_write_end(inode, pos, len, copied);
1385 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1386 
1387 	from = pos & (PAGE_CACHE_SIZE - 1);
1388 	to = from + copied;
1389 	ret = walk_page_buffers(handle, page_buffers(page),
1390 		from, to, NULL, journal_dirty_data_fn);
1391 
1392 	if (ret == 0)
1393 		update_file_sizes(inode, pos, copied);
1394 	/*
1395 	 * There may be allocated blocks outside of i_size because
1396 	 * we failed to copy some data. Prepare for truncate.
1397 	 */
1398 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1399 		ext3_orphan_add(handle, inode);
1400 	ret2 = ext3_journal_stop(handle);
1401 	if (!ret)
1402 		ret = ret2;
1403 	unlock_page(page);
1404 	page_cache_release(page);
1405 
1406 	if (pos + len > inode->i_size)
1407 		ext3_truncate_failed_write(inode);
1408 	return ret ? ret : copied;
1409 }
1410 
ext3_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1411 static int ext3_writeback_write_end(struct file *file,
1412 				struct address_space *mapping,
1413 				loff_t pos, unsigned len, unsigned copied,
1414 				struct page *page, void *fsdata)
1415 {
1416 	handle_t *handle = ext3_journal_current_handle();
1417 	struct inode *inode = file->f_mapping->host;
1418 	int ret;
1419 
1420 	trace_ext3_writeback_write_end(inode, pos, len, copied);
1421 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1422 	update_file_sizes(inode, pos, copied);
1423 	/*
1424 	 * There may be allocated blocks outside of i_size because
1425 	 * we failed to copy some data. Prepare for truncate.
1426 	 */
1427 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1428 		ext3_orphan_add(handle, inode);
1429 	ret = ext3_journal_stop(handle);
1430 	unlock_page(page);
1431 	page_cache_release(page);
1432 
1433 	if (pos + len > inode->i_size)
1434 		ext3_truncate_failed_write(inode);
1435 	return ret ? ret : copied;
1436 }
1437 
ext3_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1438 static int ext3_journalled_write_end(struct file *file,
1439 				struct address_space *mapping,
1440 				loff_t pos, unsigned len, unsigned copied,
1441 				struct page *page, void *fsdata)
1442 {
1443 	handle_t *handle = ext3_journal_current_handle();
1444 	struct inode *inode = mapping->host;
1445 	struct ext3_inode_info *ei = EXT3_I(inode);
1446 	int ret = 0, ret2;
1447 	int partial = 0;
1448 	unsigned from, to;
1449 
1450 	trace_ext3_journalled_write_end(inode, pos, len, copied);
1451 	from = pos & (PAGE_CACHE_SIZE - 1);
1452 	to = from + len;
1453 
1454 	if (copied < len) {
1455 		if (!PageUptodate(page))
1456 			copied = 0;
1457 		page_zero_new_buffers(page, from + copied, to);
1458 		to = from + copied;
1459 	}
1460 
1461 	ret = walk_page_buffers(handle, page_buffers(page), from,
1462 				to, &partial, write_end_fn);
1463 	if (!partial)
1464 		SetPageUptodate(page);
1465 
1466 	if (pos + copied > inode->i_size)
1467 		i_size_write(inode, pos + copied);
1468 	/*
1469 	 * There may be allocated blocks outside of i_size because
1470 	 * we failed to copy some data. Prepare for truncate.
1471 	 */
1472 	if (pos + len > inode->i_size && ext3_can_truncate(inode))
1473 		ext3_orphan_add(handle, inode);
1474 	ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1475 	atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1476 	if (inode->i_size > ei->i_disksize) {
1477 		ei->i_disksize = inode->i_size;
1478 		ret2 = ext3_mark_inode_dirty(handle, inode);
1479 		if (!ret)
1480 			ret = ret2;
1481 	}
1482 
1483 	ret2 = ext3_journal_stop(handle);
1484 	if (!ret)
1485 		ret = ret2;
1486 	unlock_page(page);
1487 	page_cache_release(page);
1488 
1489 	if (pos + len > inode->i_size)
1490 		ext3_truncate_failed_write(inode);
1491 	return ret ? ret : copied;
1492 }
1493 
1494 /*
1495  * bmap() is special.  It gets used by applications such as lilo and by
1496  * the swapper to find the on-disk block of a specific piece of data.
1497  *
1498  * Naturally, this is dangerous if the block concerned is still in the
1499  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1500  * filesystem and enables swap, then they may get a nasty shock when the
1501  * data getting swapped to that swapfile suddenly gets overwritten by
1502  * the original zero's written out previously to the journal and
1503  * awaiting writeback in the kernel's buffer cache.
1504  *
1505  * So, if we see any bmap calls here on a modified, data-journaled file,
1506  * take extra steps to flush any blocks which might be in the cache.
1507  */
ext3_bmap(struct address_space * mapping,sector_t block)1508 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1509 {
1510 	struct inode *inode = mapping->host;
1511 	journal_t *journal;
1512 	int err;
1513 
1514 	if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1515 		/*
1516 		 * This is a REALLY heavyweight approach, but the use of
1517 		 * bmap on dirty files is expected to be extremely rare:
1518 		 * only if we run lilo or swapon on a freshly made file
1519 		 * do we expect this to happen.
1520 		 *
1521 		 * (bmap requires CAP_SYS_RAWIO so this does not
1522 		 * represent an unprivileged user DOS attack --- we'd be
1523 		 * in trouble if mortal users could trigger this path at
1524 		 * will.)
1525 		 *
1526 		 * NB. EXT3_STATE_JDATA is not set on files other than
1527 		 * regular files.  If somebody wants to bmap a directory
1528 		 * or symlink and gets confused because the buffer
1529 		 * hasn't yet been flushed to disk, they deserve
1530 		 * everything they get.
1531 		 */
1532 
1533 		ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1534 		journal = EXT3_JOURNAL(inode);
1535 		journal_lock_updates(journal);
1536 		err = journal_flush(journal);
1537 		journal_unlock_updates(journal);
1538 
1539 		if (err)
1540 			return 0;
1541 	}
1542 
1543 	return generic_block_bmap(mapping,block,ext3_get_block);
1544 }
1545 
bget_one(handle_t * handle,struct buffer_head * bh)1546 static int bget_one(handle_t *handle, struct buffer_head *bh)
1547 {
1548 	get_bh(bh);
1549 	return 0;
1550 }
1551 
bput_one(handle_t * handle,struct buffer_head * bh)1552 static int bput_one(handle_t *handle, struct buffer_head *bh)
1553 {
1554 	put_bh(bh);
1555 	return 0;
1556 }
1557 
buffer_unmapped(handle_t * handle,struct buffer_head * bh)1558 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1559 {
1560 	return !buffer_mapped(bh);
1561 }
1562 
1563 /*
1564  * Note that we always start a transaction even if we're not journalling
1565  * data.  This is to preserve ordering: any hole instantiation within
1566  * __block_write_full_page -> ext3_get_block() should be journalled
1567  * along with the data so we don't crash and then get metadata which
1568  * refers to old data.
1569  *
1570  * In all journalling modes block_write_full_page() will start the I/O.
1571  *
1572  * Problem:
1573  *
1574  *	ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1575  *		ext3_writepage()
1576  *
1577  * Similar for:
1578  *
1579  *	ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1580  *
1581  * Same applies to ext3_get_block().  We will deadlock on various things like
1582  * lock_journal and i_truncate_mutex.
1583  *
1584  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1585  * allocations fail.
1586  *
1587  * 16May01: If we're reentered then journal_current_handle() will be
1588  *	    non-zero. We simply *return*.
1589  *
1590  * 1 July 2001: @@@ FIXME:
1591  *   In journalled data mode, a data buffer may be metadata against the
1592  *   current transaction.  But the same file is part of a shared mapping
1593  *   and someone does a writepage() on it.
1594  *
1595  *   We will move the buffer onto the async_data list, but *after* it has
1596  *   been dirtied. So there's a small window where we have dirty data on
1597  *   BJ_Metadata.
1598  *
1599  *   Note that this only applies to the last partial page in the file.  The
1600  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1601  *   broken code anyway: it's wrong for msync()).
1602  *
1603  *   It's a rare case: affects the final partial page, for journalled data
1604  *   where the file is subject to bith write() and writepage() in the same
1605  *   transction.  To fix it we'll need a custom block_write_full_page().
1606  *   We'll probably need that anyway for journalling writepage() output.
1607  *
1608  * We don't honour synchronous mounts for writepage().  That would be
1609  * disastrous.  Any write() or metadata operation will sync the fs for
1610  * us.
1611  *
1612  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1613  * we don't need to open a transaction here.
1614  */
ext3_ordered_writepage(struct page * page,struct writeback_control * wbc)1615 static int ext3_ordered_writepage(struct page *page,
1616 				struct writeback_control *wbc)
1617 {
1618 	struct inode *inode = page->mapping->host;
1619 	struct buffer_head *page_bufs;
1620 	handle_t *handle = NULL;
1621 	int ret = 0;
1622 	int err;
1623 
1624 	J_ASSERT(PageLocked(page));
1625 	/*
1626 	 * We don't want to warn for emergency remount. The condition is
1627 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1628 	 * avoid slow-downs.
1629 	 */
1630 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1631 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1632 
1633 	/*
1634 	 * We give up here if we're reentered, because it might be for a
1635 	 * different filesystem.
1636 	 */
1637 	if (ext3_journal_current_handle())
1638 		goto out_fail;
1639 
1640 	trace_ext3_ordered_writepage(page);
1641 	if (!page_has_buffers(page)) {
1642 		create_empty_buffers(page, inode->i_sb->s_blocksize,
1643 				(1 << BH_Dirty)|(1 << BH_Uptodate));
1644 		page_bufs = page_buffers(page);
1645 	} else {
1646 		page_bufs = page_buffers(page);
1647 		if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1648 				       NULL, buffer_unmapped)) {
1649 			/* Provide NULL get_block() to catch bugs if buffers
1650 			 * weren't really mapped */
1651 			return block_write_full_page(page, NULL, wbc);
1652 		}
1653 	}
1654 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1655 
1656 	if (IS_ERR(handle)) {
1657 		ret = PTR_ERR(handle);
1658 		goto out_fail;
1659 	}
1660 
1661 	walk_page_buffers(handle, page_bufs, 0,
1662 			PAGE_CACHE_SIZE, NULL, bget_one);
1663 
1664 	ret = block_write_full_page(page, ext3_get_block, wbc);
1665 
1666 	/*
1667 	 * The page can become unlocked at any point now, and
1668 	 * truncate can then come in and change things.  So we
1669 	 * can't touch *page from now on.  But *page_bufs is
1670 	 * safe due to elevated refcount.
1671 	 */
1672 
1673 	/*
1674 	 * And attach them to the current transaction.  But only if
1675 	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1676 	 * and generally junk.
1677 	 */
1678 	if (ret == 0) {
1679 		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1680 					NULL, journal_dirty_data_fn);
1681 		if (!ret)
1682 			ret = err;
1683 	}
1684 	walk_page_buffers(handle, page_bufs, 0,
1685 			PAGE_CACHE_SIZE, NULL, bput_one);
1686 	err = ext3_journal_stop(handle);
1687 	if (!ret)
1688 		ret = err;
1689 	return ret;
1690 
1691 out_fail:
1692 	redirty_page_for_writepage(wbc, page);
1693 	unlock_page(page);
1694 	return ret;
1695 }
1696 
ext3_writeback_writepage(struct page * page,struct writeback_control * wbc)1697 static int ext3_writeback_writepage(struct page *page,
1698 				struct writeback_control *wbc)
1699 {
1700 	struct inode *inode = page->mapping->host;
1701 	handle_t *handle = NULL;
1702 	int ret = 0;
1703 	int err;
1704 
1705 	J_ASSERT(PageLocked(page));
1706 	/*
1707 	 * We don't want to warn for emergency remount. The condition is
1708 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1709 	 * avoid slow-downs.
1710 	 */
1711 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1712 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1713 
1714 	if (ext3_journal_current_handle())
1715 		goto out_fail;
1716 
1717 	trace_ext3_writeback_writepage(page);
1718 	if (page_has_buffers(page)) {
1719 		if (!walk_page_buffers(NULL, page_buffers(page), 0,
1720 				      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1721 			/* Provide NULL get_block() to catch bugs if buffers
1722 			 * weren't really mapped */
1723 			return block_write_full_page(page, NULL, wbc);
1724 		}
1725 	}
1726 
1727 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1728 	if (IS_ERR(handle)) {
1729 		ret = PTR_ERR(handle);
1730 		goto out_fail;
1731 	}
1732 
1733 	ret = block_write_full_page(page, ext3_get_block, wbc);
1734 
1735 	err = ext3_journal_stop(handle);
1736 	if (!ret)
1737 		ret = err;
1738 	return ret;
1739 
1740 out_fail:
1741 	redirty_page_for_writepage(wbc, page);
1742 	unlock_page(page);
1743 	return ret;
1744 }
1745 
ext3_journalled_writepage(struct page * page,struct writeback_control * wbc)1746 static int ext3_journalled_writepage(struct page *page,
1747 				struct writeback_control *wbc)
1748 {
1749 	struct inode *inode = page->mapping->host;
1750 	handle_t *handle = NULL;
1751 	int ret = 0;
1752 	int err;
1753 
1754 	J_ASSERT(PageLocked(page));
1755 	/*
1756 	 * We don't want to warn for emergency remount. The condition is
1757 	 * ordered to avoid dereferencing inode->i_sb in non-error case to
1758 	 * avoid slow-downs.
1759 	 */
1760 	WARN_ON_ONCE(IS_RDONLY(inode) &&
1761 		     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1762 
1763 	if (ext3_journal_current_handle())
1764 		goto no_write;
1765 
1766 	trace_ext3_journalled_writepage(page);
1767 	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1768 	if (IS_ERR(handle)) {
1769 		ret = PTR_ERR(handle);
1770 		goto no_write;
1771 	}
1772 
1773 	if (!page_has_buffers(page) || PageChecked(page)) {
1774 		/*
1775 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1776 		 * doesn't seem much point in redirtying the page here.
1777 		 */
1778 		ClearPageChecked(page);
1779 		ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1780 					  ext3_get_block);
1781 		if (ret != 0) {
1782 			ext3_journal_stop(handle);
1783 			goto out_unlock;
1784 		}
1785 		ret = walk_page_buffers(handle, page_buffers(page), 0,
1786 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1787 
1788 		err = walk_page_buffers(handle, page_buffers(page), 0,
1789 				PAGE_CACHE_SIZE, NULL, write_end_fn);
1790 		if (ret == 0)
1791 			ret = err;
1792 		ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1793 		atomic_set(&EXT3_I(inode)->i_datasync_tid,
1794 			   handle->h_transaction->t_tid);
1795 		unlock_page(page);
1796 	} else {
1797 		/*
1798 		 * It may be a page full of checkpoint-mode buffers.  We don't
1799 		 * really know unless we go poke around in the buffer_heads.
1800 		 * But block_write_full_page will do the right thing.
1801 		 */
1802 		ret = block_write_full_page(page, ext3_get_block, wbc);
1803 	}
1804 	err = ext3_journal_stop(handle);
1805 	if (!ret)
1806 		ret = err;
1807 out:
1808 	return ret;
1809 
1810 no_write:
1811 	redirty_page_for_writepage(wbc, page);
1812 out_unlock:
1813 	unlock_page(page);
1814 	goto out;
1815 }
1816 
ext3_readpage(struct file * file,struct page * page)1817 static int ext3_readpage(struct file *file, struct page *page)
1818 {
1819 	trace_ext3_readpage(page);
1820 	return mpage_readpage(page, ext3_get_block);
1821 }
1822 
1823 static int
ext3_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1824 ext3_readpages(struct file *file, struct address_space *mapping,
1825 		struct list_head *pages, unsigned nr_pages)
1826 {
1827 	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1828 }
1829 
ext3_invalidatepage(struct page * page,unsigned long offset)1830 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1831 {
1832 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1833 
1834 	trace_ext3_invalidatepage(page, offset);
1835 
1836 	/*
1837 	 * If it's a full truncate we just forget about the pending dirtying
1838 	 */
1839 	if (offset == 0)
1840 		ClearPageChecked(page);
1841 
1842 	journal_invalidatepage(journal, page, offset);
1843 }
1844 
ext3_releasepage(struct page * page,gfp_t wait)1845 static int ext3_releasepage(struct page *page, gfp_t wait)
1846 {
1847 	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1848 
1849 	trace_ext3_releasepage(page);
1850 	WARN_ON(PageChecked(page));
1851 	if (!page_has_buffers(page))
1852 		return 0;
1853 	return journal_try_to_free_buffers(journal, page, wait);
1854 }
1855 
1856 /*
1857  * If the O_DIRECT write will extend the file then add this inode to the
1858  * orphan list.  So recovery will truncate it back to the original size
1859  * if the machine crashes during the write.
1860  *
1861  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1862  * crashes then stale disk data _may_ be exposed inside the file. But current
1863  * VFS code falls back into buffered path in that case so we are safe.
1864  */
ext3_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)1865 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1866 			const struct iovec *iov, loff_t offset,
1867 			unsigned long nr_segs)
1868 {
1869 	struct file *file = iocb->ki_filp;
1870 	struct inode *inode = file->f_mapping->host;
1871 	struct ext3_inode_info *ei = EXT3_I(inode);
1872 	handle_t *handle;
1873 	ssize_t ret;
1874 	int orphan = 0;
1875 	size_t count = iov_length(iov, nr_segs);
1876 	int retries = 0;
1877 
1878 	trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1879 
1880 	if (rw == WRITE) {
1881 		loff_t final_size = offset + count;
1882 
1883 		if (final_size > inode->i_size) {
1884 			/* Credits for sb + inode write */
1885 			handle = ext3_journal_start(inode, 2);
1886 			if (IS_ERR(handle)) {
1887 				ret = PTR_ERR(handle);
1888 				goto out;
1889 			}
1890 			ret = ext3_orphan_add(handle, inode);
1891 			if (ret) {
1892 				ext3_journal_stop(handle);
1893 				goto out;
1894 			}
1895 			orphan = 1;
1896 			ei->i_disksize = inode->i_size;
1897 			ext3_journal_stop(handle);
1898 		}
1899 	}
1900 
1901 retry:
1902 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1903 				 ext3_get_block);
1904 	/*
1905 	 * In case of error extending write may have instantiated a few
1906 	 * blocks outside i_size. Trim these off again.
1907 	 */
1908 	if (unlikely((rw & WRITE) && ret < 0)) {
1909 		loff_t isize = i_size_read(inode);
1910 		loff_t end = offset + iov_length(iov, nr_segs);
1911 
1912 		if (end > isize)
1913 			ext3_truncate_failed_direct_write(inode);
1914 	}
1915 	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1916 		goto retry;
1917 
1918 	if (orphan) {
1919 		int err;
1920 
1921 		/* Credits for sb + inode write */
1922 		handle = ext3_journal_start(inode, 2);
1923 		if (IS_ERR(handle)) {
1924 			/* This is really bad luck. We've written the data
1925 			 * but cannot extend i_size. Truncate allocated blocks
1926 			 * and pretend the write failed... */
1927 			ext3_truncate_failed_direct_write(inode);
1928 			ret = PTR_ERR(handle);
1929 			goto out;
1930 		}
1931 		if (inode->i_nlink)
1932 			ext3_orphan_del(handle, inode);
1933 		if (ret > 0) {
1934 			loff_t end = offset + ret;
1935 			if (end > inode->i_size) {
1936 				ei->i_disksize = end;
1937 				i_size_write(inode, end);
1938 				/*
1939 				 * We're going to return a positive `ret'
1940 				 * here due to non-zero-length I/O, so there's
1941 				 * no way of reporting error returns from
1942 				 * ext3_mark_inode_dirty() to userspace.  So
1943 				 * ignore it.
1944 				 */
1945 				ext3_mark_inode_dirty(handle, inode);
1946 			}
1947 		}
1948 		err = ext3_journal_stop(handle);
1949 		if (ret == 0)
1950 			ret = err;
1951 	}
1952 out:
1953 	trace_ext3_direct_IO_exit(inode, offset,
1954 				iov_length(iov, nr_segs), rw, ret);
1955 	return ret;
1956 }
1957 
1958 /*
1959  * Pages can be marked dirty completely asynchronously from ext3's journalling
1960  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1961  * much here because ->set_page_dirty is called under VFS locks.  The page is
1962  * not necessarily locked.
1963  *
1964  * We cannot just dirty the page and leave attached buffers clean, because the
1965  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1966  * or jbddirty because all the journalling code will explode.
1967  *
1968  * So what we do is to mark the page "pending dirty" and next time writepage
1969  * is called, propagate that into the buffers appropriately.
1970  */
ext3_journalled_set_page_dirty(struct page * page)1971 static int ext3_journalled_set_page_dirty(struct page *page)
1972 {
1973 	SetPageChecked(page);
1974 	return __set_page_dirty_nobuffers(page);
1975 }
1976 
1977 static const struct address_space_operations ext3_ordered_aops = {
1978 	.readpage		= ext3_readpage,
1979 	.readpages		= ext3_readpages,
1980 	.writepage		= ext3_ordered_writepage,
1981 	.write_begin		= ext3_write_begin,
1982 	.write_end		= ext3_ordered_write_end,
1983 	.bmap			= ext3_bmap,
1984 	.invalidatepage		= ext3_invalidatepage,
1985 	.releasepage		= ext3_releasepage,
1986 	.direct_IO		= ext3_direct_IO,
1987 	.migratepage		= buffer_migrate_page,
1988 	.is_partially_uptodate  = block_is_partially_uptodate,
1989 	.error_remove_page	= generic_error_remove_page,
1990 };
1991 
1992 static const struct address_space_operations ext3_writeback_aops = {
1993 	.readpage		= ext3_readpage,
1994 	.readpages		= ext3_readpages,
1995 	.writepage		= ext3_writeback_writepage,
1996 	.write_begin		= ext3_write_begin,
1997 	.write_end		= ext3_writeback_write_end,
1998 	.bmap			= ext3_bmap,
1999 	.invalidatepage		= ext3_invalidatepage,
2000 	.releasepage		= ext3_releasepage,
2001 	.direct_IO		= ext3_direct_IO,
2002 	.migratepage		= buffer_migrate_page,
2003 	.is_partially_uptodate  = block_is_partially_uptodate,
2004 	.error_remove_page	= generic_error_remove_page,
2005 };
2006 
2007 static const struct address_space_operations ext3_journalled_aops = {
2008 	.readpage		= ext3_readpage,
2009 	.readpages		= ext3_readpages,
2010 	.writepage		= ext3_journalled_writepage,
2011 	.write_begin		= ext3_write_begin,
2012 	.write_end		= ext3_journalled_write_end,
2013 	.set_page_dirty		= ext3_journalled_set_page_dirty,
2014 	.bmap			= ext3_bmap,
2015 	.invalidatepage		= ext3_invalidatepage,
2016 	.releasepage		= ext3_releasepage,
2017 	.is_partially_uptodate  = block_is_partially_uptodate,
2018 	.error_remove_page	= generic_error_remove_page,
2019 };
2020 
ext3_set_aops(struct inode * inode)2021 void ext3_set_aops(struct inode *inode)
2022 {
2023 	if (ext3_should_order_data(inode))
2024 		inode->i_mapping->a_ops = &ext3_ordered_aops;
2025 	else if (ext3_should_writeback_data(inode))
2026 		inode->i_mapping->a_ops = &ext3_writeback_aops;
2027 	else
2028 		inode->i_mapping->a_ops = &ext3_journalled_aops;
2029 }
2030 
2031 /*
2032  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2033  * up to the end of the block which corresponds to `from'.
2034  * This required during truncate. We need to physically zero the tail end
2035  * of that block so it doesn't yield old data if the file is later grown.
2036  */
ext3_block_truncate_page(struct inode * inode,loff_t from)2037 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2038 {
2039 	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2040 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2041 	unsigned blocksize, iblock, length, pos;
2042 	struct page *page;
2043 	handle_t *handle = NULL;
2044 	struct buffer_head *bh;
2045 	int err = 0;
2046 
2047 	/* Truncated on block boundary - nothing to do */
2048 	blocksize = inode->i_sb->s_blocksize;
2049 	if ((from & (blocksize - 1)) == 0)
2050 		return 0;
2051 
2052 	page = grab_cache_page(inode->i_mapping, index);
2053 	if (!page)
2054 		return -ENOMEM;
2055 	length = blocksize - (offset & (blocksize - 1));
2056 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2057 
2058 	if (!page_has_buffers(page))
2059 		create_empty_buffers(page, blocksize, 0);
2060 
2061 	/* Find the buffer that contains "offset" */
2062 	bh = page_buffers(page);
2063 	pos = blocksize;
2064 	while (offset >= pos) {
2065 		bh = bh->b_this_page;
2066 		iblock++;
2067 		pos += blocksize;
2068 	}
2069 
2070 	err = 0;
2071 	if (buffer_freed(bh)) {
2072 		BUFFER_TRACE(bh, "freed: skip");
2073 		goto unlock;
2074 	}
2075 
2076 	if (!buffer_mapped(bh)) {
2077 		BUFFER_TRACE(bh, "unmapped");
2078 		ext3_get_block(inode, iblock, bh, 0);
2079 		/* unmapped? It's a hole - nothing to do */
2080 		if (!buffer_mapped(bh)) {
2081 			BUFFER_TRACE(bh, "still unmapped");
2082 			goto unlock;
2083 		}
2084 	}
2085 
2086 	/* Ok, it's mapped. Make sure it's up-to-date */
2087 	if (PageUptodate(page))
2088 		set_buffer_uptodate(bh);
2089 
2090 	if (!bh_uptodate_or_lock(bh)) {
2091 		err = bh_submit_read(bh);
2092 		/* Uhhuh. Read error. Complain and punt. */
2093 		if (err)
2094 			goto unlock;
2095 	}
2096 
2097 	/* data=writeback mode doesn't need transaction to zero-out data */
2098 	if (!ext3_should_writeback_data(inode)) {
2099 		/* We journal at most one block */
2100 		handle = ext3_journal_start(inode, 1);
2101 		if (IS_ERR(handle)) {
2102 			clear_highpage(page);
2103 			flush_dcache_page(page);
2104 			err = PTR_ERR(handle);
2105 			goto unlock;
2106 		}
2107 	}
2108 
2109 	if (ext3_should_journal_data(inode)) {
2110 		BUFFER_TRACE(bh, "get write access");
2111 		err = ext3_journal_get_write_access(handle, bh);
2112 		if (err)
2113 			goto stop;
2114 	}
2115 
2116 	zero_user(page, offset, length);
2117 	BUFFER_TRACE(bh, "zeroed end of block");
2118 
2119 	err = 0;
2120 	if (ext3_should_journal_data(inode)) {
2121 		err = ext3_journal_dirty_metadata(handle, bh);
2122 	} else {
2123 		if (ext3_should_order_data(inode))
2124 			err = ext3_journal_dirty_data(handle, bh);
2125 		mark_buffer_dirty(bh);
2126 	}
2127 stop:
2128 	if (handle)
2129 		ext3_journal_stop(handle);
2130 
2131 unlock:
2132 	unlock_page(page);
2133 	page_cache_release(page);
2134 	return err;
2135 }
2136 
2137 /*
2138  * Probably it should be a library function... search for first non-zero word
2139  * or memcmp with zero_page, whatever is better for particular architecture.
2140  * Linus?
2141  */
all_zeroes(__le32 * p,__le32 * q)2142 static inline int all_zeroes(__le32 *p, __le32 *q)
2143 {
2144 	while (p < q)
2145 		if (*p++)
2146 			return 0;
2147 	return 1;
2148 }
2149 
2150 /**
2151  *	ext3_find_shared - find the indirect blocks for partial truncation.
2152  *	@inode:	  inode in question
2153  *	@depth:	  depth of the affected branch
2154  *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
2155  *	@chain:	  place to store the pointers to partial indirect blocks
2156  *	@top:	  place to the (detached) top of branch
2157  *
2158  *	This is a helper function used by ext3_truncate().
2159  *
2160  *	When we do truncate() we may have to clean the ends of several
2161  *	indirect blocks but leave the blocks themselves alive. Block is
2162  *	partially truncated if some data below the new i_size is referred
2163  *	from it (and it is on the path to the first completely truncated
2164  *	data block, indeed).  We have to free the top of that path along
2165  *	with everything to the right of the path. Since no allocation
2166  *	past the truncation point is possible until ext3_truncate()
2167  *	finishes, we may safely do the latter, but top of branch may
2168  *	require special attention - pageout below the truncation point
2169  *	might try to populate it.
2170  *
2171  *	We atomically detach the top of branch from the tree, store the
2172  *	block number of its root in *@top, pointers to buffer_heads of
2173  *	partially truncated blocks - in @chain[].bh and pointers to
2174  *	their last elements that should not be removed - in
2175  *	@chain[].p. Return value is the pointer to last filled element
2176  *	of @chain.
2177  *
2178  *	The work left to caller to do the actual freeing of subtrees:
2179  *		a) free the subtree starting from *@top
2180  *		b) free the subtrees whose roots are stored in
2181  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
2182  *		c) free the subtrees growing from the inode past the @chain[0].
2183  *			(no partially truncated stuff there).  */
2184 
ext3_find_shared(struct inode * inode,int depth,int offsets[4],Indirect chain[4],__le32 * top)2185 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2186 			int offsets[4], Indirect chain[4], __le32 *top)
2187 {
2188 	Indirect *partial, *p;
2189 	int k, err;
2190 
2191 	*top = 0;
2192 	/* Make k index the deepest non-null offset + 1 */
2193 	for (k = depth; k > 1 && !offsets[k-1]; k--)
2194 		;
2195 	partial = ext3_get_branch(inode, k, offsets, chain, &err);
2196 	/* Writer: pointers */
2197 	if (!partial)
2198 		partial = chain + k-1;
2199 	/*
2200 	 * If the branch acquired continuation since we've looked at it -
2201 	 * fine, it should all survive and (new) top doesn't belong to us.
2202 	 */
2203 	if (!partial->key && *partial->p)
2204 		/* Writer: end */
2205 		goto no_top;
2206 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2207 		;
2208 	/*
2209 	 * OK, we've found the last block that must survive. The rest of our
2210 	 * branch should be detached before unlocking. However, if that rest
2211 	 * of branch is all ours and does not grow immediately from the inode
2212 	 * it's easier to cheat and just decrement partial->p.
2213 	 */
2214 	if (p == chain + k - 1 && p > chain) {
2215 		p->p--;
2216 	} else {
2217 		*top = *p->p;
2218 		/* Nope, don't do this in ext3.  Must leave the tree intact */
2219 #if 0
2220 		*p->p = 0;
2221 #endif
2222 	}
2223 	/* Writer: end */
2224 
2225 	while(partial > p) {
2226 		brelse(partial->bh);
2227 		partial--;
2228 	}
2229 no_top:
2230 	return partial;
2231 }
2232 
2233 /*
2234  * Zero a number of block pointers in either an inode or an indirect block.
2235  * If we restart the transaction we must again get write access to the
2236  * indirect block for further modification.
2237  *
2238  * We release `count' blocks on disk, but (last - first) may be greater
2239  * than `count' because there can be holes in there.
2240  */
ext3_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext3_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)2241 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2242 		struct buffer_head *bh, ext3_fsblk_t block_to_free,
2243 		unsigned long count, __le32 *first, __le32 *last)
2244 {
2245 	__le32 *p;
2246 	if (try_to_extend_transaction(handle, inode)) {
2247 		if (bh) {
2248 			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2249 			if (ext3_journal_dirty_metadata(handle, bh))
2250 				return;
2251 		}
2252 		ext3_mark_inode_dirty(handle, inode);
2253 		truncate_restart_transaction(handle, inode);
2254 		if (bh) {
2255 			BUFFER_TRACE(bh, "retaking write access");
2256 			if (ext3_journal_get_write_access(handle, bh))
2257 				return;
2258 		}
2259 	}
2260 
2261 	/*
2262 	 * Any buffers which are on the journal will be in memory. We find
2263 	 * them on the hash table so journal_revoke() will run journal_forget()
2264 	 * on them.  We've already detached each block from the file, so
2265 	 * bforget() in journal_forget() should be safe.
2266 	 *
2267 	 * AKPM: turn on bforget in journal_forget()!!!
2268 	 */
2269 	for (p = first; p < last; p++) {
2270 		u32 nr = le32_to_cpu(*p);
2271 		if (nr) {
2272 			struct buffer_head *bh;
2273 
2274 			*p = 0;
2275 			bh = sb_find_get_block(inode->i_sb, nr);
2276 			ext3_forget(handle, 0, inode, bh, nr);
2277 		}
2278 	}
2279 
2280 	ext3_free_blocks(handle, inode, block_to_free, count);
2281 }
2282 
2283 /**
2284  * ext3_free_data - free a list of data blocks
2285  * @handle:	handle for this transaction
2286  * @inode:	inode we are dealing with
2287  * @this_bh:	indirect buffer_head which contains *@first and *@last
2288  * @first:	array of block numbers
2289  * @last:	points immediately past the end of array
2290  *
2291  * We are freeing all blocks referred from that array (numbers are stored as
2292  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2293  *
2294  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2295  * blocks are contiguous then releasing them at one time will only affect one
2296  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2297  * actually use a lot of journal space.
2298  *
2299  * @this_bh will be %NULL if @first and @last point into the inode's direct
2300  * block pointers.
2301  */
ext3_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)2302 static void ext3_free_data(handle_t *handle, struct inode *inode,
2303 			   struct buffer_head *this_bh,
2304 			   __le32 *first, __le32 *last)
2305 {
2306 	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2307 	unsigned long count = 0;	    /* Number of blocks in the run */
2308 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
2309 					       corresponding to
2310 					       block_to_free */
2311 	ext3_fsblk_t nr;		    /* Current block # */
2312 	__le32 *p;			    /* Pointer into inode/ind
2313 					       for current block */
2314 	int err;
2315 
2316 	if (this_bh) {				/* For indirect block */
2317 		BUFFER_TRACE(this_bh, "get_write_access");
2318 		err = ext3_journal_get_write_access(handle, this_bh);
2319 		/* Important: if we can't update the indirect pointers
2320 		 * to the blocks, we can't free them. */
2321 		if (err)
2322 			return;
2323 	}
2324 
2325 	for (p = first; p < last; p++) {
2326 		nr = le32_to_cpu(*p);
2327 		if (nr) {
2328 			/* accumulate blocks to free if they're contiguous */
2329 			if (count == 0) {
2330 				block_to_free = nr;
2331 				block_to_free_p = p;
2332 				count = 1;
2333 			} else if (nr == block_to_free + count) {
2334 				count++;
2335 			} else {
2336 				ext3_clear_blocks(handle, inode, this_bh,
2337 						  block_to_free,
2338 						  count, block_to_free_p, p);
2339 				block_to_free = nr;
2340 				block_to_free_p = p;
2341 				count = 1;
2342 			}
2343 		}
2344 	}
2345 
2346 	if (count > 0)
2347 		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2348 				  count, block_to_free_p, p);
2349 
2350 	if (this_bh) {
2351 		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2352 
2353 		/*
2354 		 * The buffer head should have an attached journal head at this
2355 		 * point. However, if the data is corrupted and an indirect
2356 		 * block pointed to itself, it would have been detached when
2357 		 * the block was cleared. Check for this instead of OOPSing.
2358 		 */
2359 		if (bh2jh(this_bh))
2360 			ext3_journal_dirty_metadata(handle, this_bh);
2361 		else
2362 			ext3_error(inode->i_sb, "ext3_free_data",
2363 				   "circular indirect block detected, "
2364 				   "inode=%lu, block=%llu",
2365 				   inode->i_ino,
2366 				   (unsigned long long)this_bh->b_blocknr);
2367 	}
2368 }
2369 
2370 /**
2371  *	ext3_free_branches - free an array of branches
2372  *	@handle: JBD handle for this transaction
2373  *	@inode:	inode we are dealing with
2374  *	@parent_bh: the buffer_head which contains *@first and *@last
2375  *	@first:	array of block numbers
2376  *	@last:	pointer immediately past the end of array
2377  *	@depth:	depth of the branches to free
2378  *
2379  *	We are freeing all blocks referred from these branches (numbers are
2380  *	stored as little-endian 32-bit) and updating @inode->i_blocks
2381  *	appropriately.
2382  */
ext3_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)2383 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2384 			       struct buffer_head *parent_bh,
2385 			       __le32 *first, __le32 *last, int depth)
2386 {
2387 	ext3_fsblk_t nr;
2388 	__le32 *p;
2389 
2390 	if (is_handle_aborted(handle))
2391 		return;
2392 
2393 	if (depth--) {
2394 		struct buffer_head *bh;
2395 		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2396 		p = last;
2397 		while (--p >= first) {
2398 			nr = le32_to_cpu(*p);
2399 			if (!nr)
2400 				continue;		/* A hole */
2401 
2402 			/* Go read the buffer for the next level down */
2403 			bh = sb_bread(inode->i_sb, nr);
2404 
2405 			/*
2406 			 * A read failure? Report error and clear slot
2407 			 * (should be rare).
2408 			 */
2409 			if (!bh) {
2410 				ext3_error(inode->i_sb, "ext3_free_branches",
2411 					   "Read failure, inode=%lu, block="E3FSBLK,
2412 					   inode->i_ino, nr);
2413 				continue;
2414 			}
2415 
2416 			/* This zaps the entire block.  Bottom up. */
2417 			BUFFER_TRACE(bh, "free child branches");
2418 			ext3_free_branches(handle, inode, bh,
2419 					   (__le32*)bh->b_data,
2420 					   (__le32*)bh->b_data + addr_per_block,
2421 					   depth);
2422 
2423 			/*
2424 			 * Everything below this this pointer has been
2425 			 * released.  Now let this top-of-subtree go.
2426 			 *
2427 			 * We want the freeing of this indirect block to be
2428 			 * atomic in the journal with the updating of the
2429 			 * bitmap block which owns it.  So make some room in
2430 			 * the journal.
2431 			 *
2432 			 * We zero the parent pointer *after* freeing its
2433 			 * pointee in the bitmaps, so if extend_transaction()
2434 			 * for some reason fails to put the bitmap changes and
2435 			 * the release into the same transaction, recovery
2436 			 * will merely complain about releasing a free block,
2437 			 * rather than leaking blocks.
2438 			 */
2439 			if (is_handle_aborted(handle))
2440 				return;
2441 			if (try_to_extend_transaction(handle, inode)) {
2442 				ext3_mark_inode_dirty(handle, inode);
2443 				truncate_restart_transaction(handle, inode);
2444 			}
2445 
2446 			/*
2447 			 * We've probably journalled the indirect block several
2448 			 * times during the truncate.  But it's no longer
2449 			 * needed and we now drop it from the transaction via
2450 			 * journal_revoke().
2451 			 *
2452 			 * That's easy if it's exclusively part of this
2453 			 * transaction.  But if it's part of the committing
2454 			 * transaction then journal_forget() will simply
2455 			 * brelse() it.  That means that if the underlying
2456 			 * block is reallocated in ext3_get_block(),
2457 			 * unmap_underlying_metadata() will find this block
2458 			 * and will try to get rid of it.  damn, damn. Thus
2459 			 * we don't allow a block to be reallocated until
2460 			 * a transaction freeing it has fully committed.
2461 			 *
2462 			 * We also have to make sure journal replay after a
2463 			 * crash does not overwrite non-journaled data blocks
2464 			 * with old metadata when the block got reallocated for
2465 			 * data.  Thus we have to store a revoke record for a
2466 			 * block in the same transaction in which we free the
2467 			 * block.
2468 			 */
2469 			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2470 
2471 			ext3_free_blocks(handle, inode, nr, 1);
2472 
2473 			if (parent_bh) {
2474 				/*
2475 				 * The block which we have just freed is
2476 				 * pointed to by an indirect block: journal it
2477 				 */
2478 				BUFFER_TRACE(parent_bh, "get_write_access");
2479 				if (!ext3_journal_get_write_access(handle,
2480 								   parent_bh)){
2481 					*p = 0;
2482 					BUFFER_TRACE(parent_bh,
2483 					"call ext3_journal_dirty_metadata");
2484 					ext3_journal_dirty_metadata(handle,
2485 								    parent_bh);
2486 				}
2487 			}
2488 		}
2489 	} else {
2490 		/* We have reached the bottom of the tree. */
2491 		BUFFER_TRACE(parent_bh, "free data blocks");
2492 		ext3_free_data(handle, inode, parent_bh, first, last);
2493 	}
2494 }
2495 
ext3_can_truncate(struct inode * inode)2496 int ext3_can_truncate(struct inode *inode)
2497 {
2498 	if (S_ISREG(inode->i_mode))
2499 		return 1;
2500 	if (S_ISDIR(inode->i_mode))
2501 		return 1;
2502 	if (S_ISLNK(inode->i_mode))
2503 		return !ext3_inode_is_fast_symlink(inode);
2504 	return 0;
2505 }
2506 
2507 /*
2508  * ext3_truncate()
2509  *
2510  * We block out ext3_get_block() block instantiations across the entire
2511  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2512  * simultaneously on behalf of the same inode.
2513  *
2514  * As we work through the truncate and commit bits of it to the journal there
2515  * is one core, guiding principle: the file's tree must always be consistent on
2516  * disk.  We must be able to restart the truncate after a crash.
2517  *
2518  * The file's tree may be transiently inconsistent in memory (although it
2519  * probably isn't), but whenever we close off and commit a journal transaction,
2520  * the contents of (the filesystem + the journal) must be consistent and
2521  * restartable.  It's pretty simple, really: bottom up, right to left (although
2522  * left-to-right works OK too).
2523  *
2524  * Note that at recovery time, journal replay occurs *before* the restart of
2525  * truncate against the orphan inode list.
2526  *
2527  * The committed inode has the new, desired i_size (which is the same as
2528  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2529  * that this inode's truncate did not complete and it will again call
2530  * ext3_truncate() to have another go.  So there will be instantiated blocks
2531  * to the right of the truncation point in a crashed ext3 filesystem.  But
2532  * that's fine - as long as they are linked from the inode, the post-crash
2533  * ext3_truncate() run will find them and release them.
2534  */
ext3_truncate(struct inode * inode)2535 void ext3_truncate(struct inode *inode)
2536 {
2537 	handle_t *handle;
2538 	struct ext3_inode_info *ei = EXT3_I(inode);
2539 	__le32 *i_data = ei->i_data;
2540 	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2541 	int offsets[4];
2542 	Indirect chain[4];
2543 	Indirect *partial;
2544 	__le32 nr = 0;
2545 	int n;
2546 	long last_block;
2547 	unsigned blocksize = inode->i_sb->s_blocksize;
2548 
2549 	trace_ext3_truncate_enter(inode);
2550 
2551 	if (!ext3_can_truncate(inode))
2552 		goto out_notrans;
2553 
2554 	if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2555 		ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2556 
2557 	handle = start_transaction(inode);
2558 	if (IS_ERR(handle))
2559 		goto out_notrans;
2560 
2561 	last_block = (inode->i_size + blocksize-1)
2562 					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2563 	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2564 	if (n == 0)
2565 		goto out_stop;	/* error */
2566 
2567 	/*
2568 	 * OK.  This truncate is going to happen.  We add the inode to the
2569 	 * orphan list, so that if this truncate spans multiple transactions,
2570 	 * and we crash, we will resume the truncate when the filesystem
2571 	 * recovers.  It also marks the inode dirty, to catch the new size.
2572 	 *
2573 	 * Implication: the file must always be in a sane, consistent
2574 	 * truncatable state while each transaction commits.
2575 	 */
2576 	if (ext3_orphan_add(handle, inode))
2577 		goto out_stop;
2578 
2579 	/*
2580 	 * The orphan list entry will now protect us from any crash which
2581 	 * occurs before the truncate completes, so it is now safe to propagate
2582 	 * the new, shorter inode size (held for now in i_size) into the
2583 	 * on-disk inode. We do this via i_disksize, which is the value which
2584 	 * ext3 *really* writes onto the disk inode.
2585 	 */
2586 	ei->i_disksize = inode->i_size;
2587 
2588 	/*
2589 	 * From here we block out all ext3_get_block() callers who want to
2590 	 * modify the block allocation tree.
2591 	 */
2592 	mutex_lock(&ei->truncate_mutex);
2593 
2594 	if (n == 1) {		/* direct blocks */
2595 		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2596 			       i_data + EXT3_NDIR_BLOCKS);
2597 		goto do_indirects;
2598 	}
2599 
2600 	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2601 	/* Kill the top of shared branch (not detached) */
2602 	if (nr) {
2603 		if (partial == chain) {
2604 			/* Shared branch grows from the inode */
2605 			ext3_free_branches(handle, inode, NULL,
2606 					   &nr, &nr+1, (chain+n-1) - partial);
2607 			*partial->p = 0;
2608 			/*
2609 			 * We mark the inode dirty prior to restart,
2610 			 * and prior to stop.  No need for it here.
2611 			 */
2612 		} else {
2613 			/* Shared branch grows from an indirect block */
2614 			ext3_free_branches(handle, inode, partial->bh,
2615 					partial->p,
2616 					partial->p+1, (chain+n-1) - partial);
2617 		}
2618 	}
2619 	/* Clear the ends of indirect blocks on the shared branch */
2620 	while (partial > chain) {
2621 		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2622 				   (__le32*)partial->bh->b_data+addr_per_block,
2623 				   (chain+n-1) - partial);
2624 		BUFFER_TRACE(partial->bh, "call brelse");
2625 		brelse (partial->bh);
2626 		partial--;
2627 	}
2628 do_indirects:
2629 	/* Kill the remaining (whole) subtrees */
2630 	switch (offsets[0]) {
2631 	default:
2632 		nr = i_data[EXT3_IND_BLOCK];
2633 		if (nr) {
2634 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2635 			i_data[EXT3_IND_BLOCK] = 0;
2636 		}
2637 	case EXT3_IND_BLOCK:
2638 		nr = i_data[EXT3_DIND_BLOCK];
2639 		if (nr) {
2640 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2641 			i_data[EXT3_DIND_BLOCK] = 0;
2642 		}
2643 	case EXT3_DIND_BLOCK:
2644 		nr = i_data[EXT3_TIND_BLOCK];
2645 		if (nr) {
2646 			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2647 			i_data[EXT3_TIND_BLOCK] = 0;
2648 		}
2649 	case EXT3_TIND_BLOCK:
2650 		;
2651 	}
2652 
2653 	ext3_discard_reservation(inode);
2654 
2655 	mutex_unlock(&ei->truncate_mutex);
2656 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2657 	ext3_mark_inode_dirty(handle, inode);
2658 
2659 	/*
2660 	 * In a multi-transaction truncate, we only make the final transaction
2661 	 * synchronous
2662 	 */
2663 	if (IS_SYNC(inode))
2664 		handle->h_sync = 1;
2665 out_stop:
2666 	/*
2667 	 * If this was a simple ftruncate(), and the file will remain alive
2668 	 * then we need to clear up the orphan record which we created above.
2669 	 * However, if this was a real unlink then we were called by
2670 	 * ext3_evict_inode(), and we allow that function to clean up the
2671 	 * orphan info for us.
2672 	 */
2673 	if (inode->i_nlink)
2674 		ext3_orphan_del(handle, inode);
2675 
2676 	ext3_journal_stop(handle);
2677 	trace_ext3_truncate_exit(inode);
2678 	return;
2679 out_notrans:
2680 	/*
2681 	 * Delete the inode from orphan list so that it doesn't stay there
2682 	 * forever and trigger assertion on umount.
2683 	 */
2684 	if (inode->i_nlink)
2685 		ext3_orphan_del(NULL, inode);
2686 	trace_ext3_truncate_exit(inode);
2687 }
2688 
ext3_get_inode_block(struct super_block * sb,unsigned long ino,struct ext3_iloc * iloc)2689 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2690 		unsigned long ino, struct ext3_iloc *iloc)
2691 {
2692 	unsigned long block_group;
2693 	unsigned long offset;
2694 	ext3_fsblk_t block;
2695 	struct ext3_group_desc *gdp;
2696 
2697 	if (!ext3_valid_inum(sb, ino)) {
2698 		/*
2699 		 * This error is already checked for in namei.c unless we are
2700 		 * looking at an NFS filehandle, in which case no error
2701 		 * report is needed
2702 		 */
2703 		return 0;
2704 	}
2705 
2706 	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2707 	gdp = ext3_get_group_desc(sb, block_group, NULL);
2708 	if (!gdp)
2709 		return 0;
2710 	/*
2711 	 * Figure out the offset within the block group inode table
2712 	 */
2713 	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2714 		EXT3_INODE_SIZE(sb);
2715 	block = le32_to_cpu(gdp->bg_inode_table) +
2716 		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2717 
2718 	iloc->block_group = block_group;
2719 	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2720 	return block;
2721 }
2722 
2723 /*
2724  * ext3_get_inode_loc returns with an extra refcount against the inode's
2725  * underlying buffer_head on success. If 'in_mem' is true, we have all
2726  * data in memory that is needed to recreate the on-disk version of this
2727  * inode.
2728  */
__ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc,int in_mem)2729 static int __ext3_get_inode_loc(struct inode *inode,
2730 				struct ext3_iloc *iloc, int in_mem)
2731 {
2732 	ext3_fsblk_t block;
2733 	struct buffer_head *bh;
2734 
2735 	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2736 	if (!block)
2737 		return -EIO;
2738 
2739 	bh = sb_getblk(inode->i_sb, block);
2740 	if (!bh) {
2741 		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2742 				"unable to read inode block - "
2743 				"inode=%lu, block="E3FSBLK,
2744 				 inode->i_ino, block);
2745 		return -EIO;
2746 	}
2747 	if (!buffer_uptodate(bh)) {
2748 		lock_buffer(bh);
2749 
2750 		/*
2751 		 * If the buffer has the write error flag, we have failed
2752 		 * to write out another inode in the same block.  In this
2753 		 * case, we don't have to read the block because we may
2754 		 * read the old inode data successfully.
2755 		 */
2756 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2757 			set_buffer_uptodate(bh);
2758 
2759 		if (buffer_uptodate(bh)) {
2760 			/* someone brought it uptodate while we waited */
2761 			unlock_buffer(bh);
2762 			goto has_buffer;
2763 		}
2764 
2765 		/*
2766 		 * If we have all information of the inode in memory and this
2767 		 * is the only valid inode in the block, we need not read the
2768 		 * block.
2769 		 */
2770 		if (in_mem) {
2771 			struct buffer_head *bitmap_bh;
2772 			struct ext3_group_desc *desc;
2773 			int inodes_per_buffer;
2774 			int inode_offset, i;
2775 			int block_group;
2776 			int start;
2777 
2778 			block_group = (inode->i_ino - 1) /
2779 					EXT3_INODES_PER_GROUP(inode->i_sb);
2780 			inodes_per_buffer = bh->b_size /
2781 				EXT3_INODE_SIZE(inode->i_sb);
2782 			inode_offset = ((inode->i_ino - 1) %
2783 					EXT3_INODES_PER_GROUP(inode->i_sb));
2784 			start = inode_offset & ~(inodes_per_buffer - 1);
2785 
2786 			/* Is the inode bitmap in cache? */
2787 			desc = ext3_get_group_desc(inode->i_sb,
2788 						block_group, NULL);
2789 			if (!desc)
2790 				goto make_io;
2791 
2792 			bitmap_bh = sb_getblk(inode->i_sb,
2793 					le32_to_cpu(desc->bg_inode_bitmap));
2794 			if (!bitmap_bh)
2795 				goto make_io;
2796 
2797 			/*
2798 			 * If the inode bitmap isn't in cache then the
2799 			 * optimisation may end up performing two reads instead
2800 			 * of one, so skip it.
2801 			 */
2802 			if (!buffer_uptodate(bitmap_bh)) {
2803 				brelse(bitmap_bh);
2804 				goto make_io;
2805 			}
2806 			for (i = start; i < start + inodes_per_buffer; i++) {
2807 				if (i == inode_offset)
2808 					continue;
2809 				if (ext3_test_bit(i, bitmap_bh->b_data))
2810 					break;
2811 			}
2812 			brelse(bitmap_bh);
2813 			if (i == start + inodes_per_buffer) {
2814 				/* all other inodes are free, so skip I/O */
2815 				memset(bh->b_data, 0, bh->b_size);
2816 				set_buffer_uptodate(bh);
2817 				unlock_buffer(bh);
2818 				goto has_buffer;
2819 			}
2820 		}
2821 
2822 make_io:
2823 		/*
2824 		 * There are other valid inodes in the buffer, this inode
2825 		 * has in-inode xattrs, or we don't have this inode in memory.
2826 		 * Read the block from disk.
2827 		 */
2828 		trace_ext3_load_inode(inode);
2829 		get_bh(bh);
2830 		bh->b_end_io = end_buffer_read_sync;
2831 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
2832 		wait_on_buffer(bh);
2833 		if (!buffer_uptodate(bh)) {
2834 			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2835 					"unable to read inode block - "
2836 					"inode=%lu, block="E3FSBLK,
2837 					inode->i_ino, block);
2838 			brelse(bh);
2839 			return -EIO;
2840 		}
2841 	}
2842 has_buffer:
2843 	iloc->bh = bh;
2844 	return 0;
2845 }
2846 
ext3_get_inode_loc(struct inode * inode,struct ext3_iloc * iloc)2847 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2848 {
2849 	/* We have all inode data except xattrs in memory here. */
2850 	return __ext3_get_inode_loc(inode, iloc,
2851 		!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2852 }
2853 
ext3_set_inode_flags(struct inode * inode)2854 void ext3_set_inode_flags(struct inode *inode)
2855 {
2856 	unsigned int flags = EXT3_I(inode)->i_flags;
2857 
2858 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2859 	if (flags & EXT3_SYNC_FL)
2860 		inode->i_flags |= S_SYNC;
2861 	if (flags & EXT3_APPEND_FL)
2862 		inode->i_flags |= S_APPEND;
2863 	if (flags & EXT3_IMMUTABLE_FL)
2864 		inode->i_flags |= S_IMMUTABLE;
2865 	if (flags & EXT3_NOATIME_FL)
2866 		inode->i_flags |= S_NOATIME;
2867 	if (flags & EXT3_DIRSYNC_FL)
2868 		inode->i_flags |= S_DIRSYNC;
2869 }
2870 
2871 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
ext3_get_inode_flags(struct ext3_inode_info * ei)2872 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2873 {
2874 	unsigned int flags = ei->vfs_inode.i_flags;
2875 
2876 	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2877 			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2878 	if (flags & S_SYNC)
2879 		ei->i_flags |= EXT3_SYNC_FL;
2880 	if (flags & S_APPEND)
2881 		ei->i_flags |= EXT3_APPEND_FL;
2882 	if (flags & S_IMMUTABLE)
2883 		ei->i_flags |= EXT3_IMMUTABLE_FL;
2884 	if (flags & S_NOATIME)
2885 		ei->i_flags |= EXT3_NOATIME_FL;
2886 	if (flags & S_DIRSYNC)
2887 		ei->i_flags |= EXT3_DIRSYNC_FL;
2888 }
2889 
ext3_iget(struct super_block * sb,unsigned long ino)2890 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2891 {
2892 	struct ext3_iloc iloc;
2893 	struct ext3_inode *raw_inode;
2894 	struct ext3_inode_info *ei;
2895 	struct buffer_head *bh;
2896 	struct inode *inode;
2897 	journal_t *journal = EXT3_SB(sb)->s_journal;
2898 	transaction_t *transaction;
2899 	long ret;
2900 	int block;
2901 
2902 	inode = iget_locked(sb, ino);
2903 	if (!inode)
2904 		return ERR_PTR(-ENOMEM);
2905 	if (!(inode->i_state & I_NEW))
2906 		return inode;
2907 
2908 	ei = EXT3_I(inode);
2909 	ei->i_block_alloc_info = NULL;
2910 
2911 	ret = __ext3_get_inode_loc(inode, &iloc, 0);
2912 	if (ret < 0)
2913 		goto bad_inode;
2914 	bh = iloc.bh;
2915 	raw_inode = ext3_raw_inode(&iloc);
2916 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2917 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2918 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2919 	if(!(test_opt (inode->i_sb, NO_UID32))) {
2920 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2921 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2922 	}
2923 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2924 	inode->i_size = le32_to_cpu(raw_inode->i_size);
2925 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2926 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2927 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2928 	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2929 
2930 	ei->i_state_flags = 0;
2931 	ei->i_dir_start_lookup = 0;
2932 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2933 	/* We now have enough fields to check if the inode was active or not.
2934 	 * This is needed because nfsd might try to access dead inodes
2935 	 * the test is that same one that e2fsck uses
2936 	 * NeilBrown 1999oct15
2937 	 */
2938 	if (inode->i_nlink == 0) {
2939 		if (inode->i_mode == 0 ||
2940 		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2941 			/* this inode is deleted */
2942 			brelse (bh);
2943 			ret = -ESTALE;
2944 			goto bad_inode;
2945 		}
2946 		/* The only unlinked inodes we let through here have
2947 		 * valid i_mode and are being read by the orphan
2948 		 * recovery code: that's fine, we're about to complete
2949 		 * the process of deleting those. */
2950 	}
2951 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2952 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2953 #ifdef EXT3_FRAGMENTS
2954 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2955 	ei->i_frag_no = raw_inode->i_frag;
2956 	ei->i_frag_size = raw_inode->i_fsize;
2957 #endif
2958 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2959 	if (!S_ISREG(inode->i_mode)) {
2960 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2961 	} else {
2962 		inode->i_size |=
2963 			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2964 	}
2965 	ei->i_disksize = inode->i_size;
2966 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2967 	ei->i_block_group = iloc.block_group;
2968 	/*
2969 	 * NOTE! The in-memory inode i_data array is in little-endian order
2970 	 * even on big-endian machines: we do NOT byteswap the block numbers!
2971 	 */
2972 	for (block = 0; block < EXT3_N_BLOCKS; block++)
2973 		ei->i_data[block] = raw_inode->i_block[block];
2974 	INIT_LIST_HEAD(&ei->i_orphan);
2975 
2976 	/*
2977 	 * Set transaction id's of transactions that have to be committed
2978 	 * to finish f[data]sync. We set them to currently running transaction
2979 	 * as we cannot be sure that the inode or some of its metadata isn't
2980 	 * part of the transaction - the inode could have been reclaimed and
2981 	 * now it is reread from disk.
2982 	 */
2983 	if (journal) {
2984 		tid_t tid;
2985 
2986 		spin_lock(&journal->j_state_lock);
2987 		if (journal->j_running_transaction)
2988 			transaction = journal->j_running_transaction;
2989 		else
2990 			transaction = journal->j_committing_transaction;
2991 		if (transaction)
2992 			tid = transaction->t_tid;
2993 		else
2994 			tid = journal->j_commit_sequence;
2995 		spin_unlock(&journal->j_state_lock);
2996 		atomic_set(&ei->i_sync_tid, tid);
2997 		atomic_set(&ei->i_datasync_tid, tid);
2998 	}
2999 
3000 	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3001 	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3002 		/*
3003 		 * When mke2fs creates big inodes it does not zero out
3004 		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3005 		 * so ignore those first few inodes.
3006 		 */
3007 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3008 		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3009 		    EXT3_INODE_SIZE(inode->i_sb)) {
3010 			brelse (bh);
3011 			ret = -EIO;
3012 			goto bad_inode;
3013 		}
3014 		if (ei->i_extra_isize == 0) {
3015 			/* The extra space is currently unused. Use it. */
3016 			ei->i_extra_isize = sizeof(struct ext3_inode) -
3017 					    EXT3_GOOD_OLD_INODE_SIZE;
3018 		} else {
3019 			__le32 *magic = (void *)raw_inode +
3020 					EXT3_GOOD_OLD_INODE_SIZE +
3021 					ei->i_extra_isize;
3022 			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3023 				 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3024 		}
3025 	} else
3026 		ei->i_extra_isize = 0;
3027 
3028 	if (S_ISREG(inode->i_mode)) {
3029 		inode->i_op = &ext3_file_inode_operations;
3030 		inode->i_fop = &ext3_file_operations;
3031 		ext3_set_aops(inode);
3032 	} else if (S_ISDIR(inode->i_mode)) {
3033 		inode->i_op = &ext3_dir_inode_operations;
3034 		inode->i_fop = &ext3_dir_operations;
3035 	} else if (S_ISLNK(inode->i_mode)) {
3036 		if (ext3_inode_is_fast_symlink(inode)) {
3037 			inode->i_op = &ext3_fast_symlink_inode_operations;
3038 			nd_terminate_link(ei->i_data, inode->i_size,
3039 				sizeof(ei->i_data) - 1);
3040 		} else {
3041 			inode->i_op = &ext3_symlink_inode_operations;
3042 			ext3_set_aops(inode);
3043 		}
3044 	} else {
3045 		inode->i_op = &ext3_special_inode_operations;
3046 		if (raw_inode->i_block[0])
3047 			init_special_inode(inode, inode->i_mode,
3048 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3049 		else
3050 			init_special_inode(inode, inode->i_mode,
3051 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3052 	}
3053 	brelse (iloc.bh);
3054 	ext3_set_inode_flags(inode);
3055 	unlock_new_inode(inode);
3056 	return inode;
3057 
3058 bad_inode:
3059 	iget_failed(inode);
3060 	return ERR_PTR(ret);
3061 }
3062 
3063 /*
3064  * Post the struct inode info into an on-disk inode location in the
3065  * buffer-cache.  This gobbles the caller's reference to the
3066  * buffer_head in the inode location struct.
3067  *
3068  * The caller must have write access to iloc->bh.
3069  */
ext3_do_update_inode(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3070 static int ext3_do_update_inode(handle_t *handle,
3071 				struct inode *inode,
3072 				struct ext3_iloc *iloc)
3073 {
3074 	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3075 	struct ext3_inode_info *ei = EXT3_I(inode);
3076 	struct buffer_head *bh = iloc->bh;
3077 	int err = 0, rc, block;
3078 
3079 again:
3080 	/* we can't allow multiple procs in here at once, its a bit racey */
3081 	lock_buffer(bh);
3082 
3083 	/* For fields not not tracking in the in-memory inode,
3084 	 * initialise them to zero for new inodes. */
3085 	if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3086 		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3087 
3088 	ext3_get_inode_flags(ei);
3089 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3090 	if(!(test_opt(inode->i_sb, NO_UID32))) {
3091 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3092 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3093 /*
3094  * Fix up interoperability with old kernels. Otherwise, old inodes get
3095  * re-used with the upper 16 bits of the uid/gid intact
3096  */
3097 		if(!ei->i_dtime) {
3098 			raw_inode->i_uid_high =
3099 				cpu_to_le16(high_16_bits(inode->i_uid));
3100 			raw_inode->i_gid_high =
3101 				cpu_to_le16(high_16_bits(inode->i_gid));
3102 		} else {
3103 			raw_inode->i_uid_high = 0;
3104 			raw_inode->i_gid_high = 0;
3105 		}
3106 	} else {
3107 		raw_inode->i_uid_low =
3108 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3109 		raw_inode->i_gid_low =
3110 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3111 		raw_inode->i_uid_high = 0;
3112 		raw_inode->i_gid_high = 0;
3113 	}
3114 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3115 	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3116 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3117 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3118 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3119 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3120 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3121 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3122 #ifdef EXT3_FRAGMENTS
3123 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3124 	raw_inode->i_frag = ei->i_frag_no;
3125 	raw_inode->i_fsize = ei->i_frag_size;
3126 #endif
3127 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3128 	if (!S_ISREG(inode->i_mode)) {
3129 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3130 	} else {
3131 		raw_inode->i_size_high =
3132 			cpu_to_le32(ei->i_disksize >> 32);
3133 		if (ei->i_disksize > 0x7fffffffULL) {
3134 			struct super_block *sb = inode->i_sb;
3135 			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3136 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3137 			    EXT3_SB(sb)->s_es->s_rev_level ==
3138 					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3139 			       /* If this is the first large file
3140 				* created, add a flag to the superblock.
3141 				*/
3142 				unlock_buffer(bh);
3143 				err = ext3_journal_get_write_access(handle,
3144 						EXT3_SB(sb)->s_sbh);
3145 				if (err)
3146 					goto out_brelse;
3147 
3148 				ext3_update_dynamic_rev(sb);
3149 				EXT3_SET_RO_COMPAT_FEATURE(sb,
3150 					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3151 				handle->h_sync = 1;
3152 				err = ext3_journal_dirty_metadata(handle,
3153 						EXT3_SB(sb)->s_sbh);
3154 				/* get our lock and start over */
3155 				goto again;
3156 			}
3157 		}
3158 	}
3159 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3160 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3161 		if (old_valid_dev(inode->i_rdev)) {
3162 			raw_inode->i_block[0] =
3163 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3164 			raw_inode->i_block[1] = 0;
3165 		} else {
3166 			raw_inode->i_block[0] = 0;
3167 			raw_inode->i_block[1] =
3168 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3169 			raw_inode->i_block[2] = 0;
3170 		}
3171 	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
3172 		raw_inode->i_block[block] = ei->i_data[block];
3173 
3174 	if (ei->i_extra_isize)
3175 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3176 
3177 	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3178 	unlock_buffer(bh);
3179 	rc = ext3_journal_dirty_metadata(handle, bh);
3180 	if (!err)
3181 		err = rc;
3182 	ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3183 
3184 	atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3185 out_brelse:
3186 	brelse (bh);
3187 	ext3_std_error(inode->i_sb, err);
3188 	return err;
3189 }
3190 
3191 /*
3192  * ext3_write_inode()
3193  *
3194  * We are called from a few places:
3195  *
3196  * - Within generic_file_write() for O_SYNC files.
3197  *   Here, there will be no transaction running. We wait for any running
3198  *   trasnaction to commit.
3199  *
3200  * - Within sys_sync(), kupdate and such.
3201  *   We wait on commit, if tol to.
3202  *
3203  * - Within prune_icache() (PF_MEMALLOC == true)
3204  *   Here we simply return.  We can't afford to block kswapd on the
3205  *   journal commit.
3206  *
3207  * In all cases it is actually safe for us to return without doing anything,
3208  * because the inode has been copied into a raw inode buffer in
3209  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3210  * knfsd.
3211  *
3212  * Note that we are absolutely dependent upon all inode dirtiers doing the
3213  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3214  * which we are interested.
3215  *
3216  * It would be a bug for them to not do this.  The code:
3217  *
3218  *	mark_inode_dirty(inode)
3219  *	stuff();
3220  *	inode->i_size = expr;
3221  *
3222  * is in error because a kswapd-driven write_inode() could occur while
3223  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3224  * will no longer be on the superblock's dirty inode list.
3225  */
ext3_write_inode(struct inode * inode,struct writeback_control * wbc)3226 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3227 {
3228 	if (current->flags & PF_MEMALLOC)
3229 		return 0;
3230 
3231 	if (ext3_journal_current_handle()) {
3232 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3233 		dump_stack();
3234 		return -EIO;
3235 	}
3236 
3237 	if (wbc->sync_mode != WB_SYNC_ALL)
3238 		return 0;
3239 
3240 	return ext3_force_commit(inode->i_sb);
3241 }
3242 
3243 /*
3244  * ext3_setattr()
3245  *
3246  * Called from notify_change.
3247  *
3248  * We want to trap VFS attempts to truncate the file as soon as
3249  * possible.  In particular, we want to make sure that when the VFS
3250  * shrinks i_size, we put the inode on the orphan list and modify
3251  * i_disksize immediately, so that during the subsequent flushing of
3252  * dirty pages and freeing of disk blocks, we can guarantee that any
3253  * commit will leave the blocks being flushed in an unused state on
3254  * disk.  (On recovery, the inode will get truncated and the blocks will
3255  * be freed, so we have a strong guarantee that no future commit will
3256  * leave these blocks visible to the user.)
3257  *
3258  * Called with inode->sem down.
3259  */
ext3_setattr(struct dentry * dentry,struct iattr * attr)3260 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3261 {
3262 	struct inode *inode = dentry->d_inode;
3263 	int error, rc = 0;
3264 	const unsigned int ia_valid = attr->ia_valid;
3265 
3266 	error = inode_change_ok(inode, attr);
3267 	if (error)
3268 		return error;
3269 
3270 	if (is_quota_modification(inode, attr))
3271 		dquot_initialize(inode);
3272 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3273 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3274 		handle_t *handle;
3275 
3276 		/* (user+group)*(old+new) structure, inode write (sb,
3277 		 * inode block, ? - but truncate inode update has it) */
3278 		handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3279 					EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3280 		if (IS_ERR(handle)) {
3281 			error = PTR_ERR(handle);
3282 			goto err_out;
3283 		}
3284 		error = dquot_transfer(inode, attr);
3285 		if (error) {
3286 			ext3_journal_stop(handle);
3287 			return error;
3288 		}
3289 		/* Update corresponding info in inode so that everything is in
3290 		 * one transaction */
3291 		if (attr->ia_valid & ATTR_UID)
3292 			inode->i_uid = attr->ia_uid;
3293 		if (attr->ia_valid & ATTR_GID)
3294 			inode->i_gid = attr->ia_gid;
3295 		error = ext3_mark_inode_dirty(handle, inode);
3296 		ext3_journal_stop(handle);
3297 	}
3298 
3299 	if (attr->ia_valid & ATTR_SIZE)
3300 		inode_dio_wait(inode);
3301 
3302 	if (S_ISREG(inode->i_mode) &&
3303 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3304 		handle_t *handle;
3305 
3306 		handle = ext3_journal_start(inode, 3);
3307 		if (IS_ERR(handle)) {
3308 			error = PTR_ERR(handle);
3309 			goto err_out;
3310 		}
3311 
3312 		error = ext3_orphan_add(handle, inode);
3313 		if (error) {
3314 			ext3_journal_stop(handle);
3315 			goto err_out;
3316 		}
3317 		EXT3_I(inode)->i_disksize = attr->ia_size;
3318 		error = ext3_mark_inode_dirty(handle, inode);
3319 		ext3_journal_stop(handle);
3320 		if (error) {
3321 			/* Some hard fs error must have happened. Bail out. */
3322 			ext3_orphan_del(NULL, inode);
3323 			goto err_out;
3324 		}
3325 		rc = ext3_block_truncate_page(inode, attr->ia_size);
3326 		if (rc) {
3327 			/* Cleanup orphan list and exit */
3328 			handle = ext3_journal_start(inode, 3);
3329 			if (IS_ERR(handle)) {
3330 				ext3_orphan_del(NULL, inode);
3331 				goto err_out;
3332 			}
3333 			ext3_orphan_del(handle, inode);
3334 			ext3_journal_stop(handle);
3335 			goto err_out;
3336 		}
3337 	}
3338 
3339 	if ((attr->ia_valid & ATTR_SIZE) &&
3340 	    attr->ia_size != i_size_read(inode)) {
3341 		truncate_setsize(inode, attr->ia_size);
3342 		ext3_truncate(inode);
3343 	}
3344 
3345 	setattr_copy(inode, attr);
3346 	mark_inode_dirty(inode);
3347 
3348 	if (ia_valid & ATTR_MODE)
3349 		rc = ext3_acl_chmod(inode);
3350 
3351 err_out:
3352 	ext3_std_error(inode->i_sb, error);
3353 	if (!error)
3354 		error = rc;
3355 	return error;
3356 }
3357 
3358 
3359 /*
3360  * How many blocks doth make a writepage()?
3361  *
3362  * With N blocks per page, it may be:
3363  * N data blocks
3364  * 2 indirect block
3365  * 2 dindirect
3366  * 1 tindirect
3367  * N+5 bitmap blocks (from the above)
3368  * N+5 group descriptor summary blocks
3369  * 1 inode block
3370  * 1 superblock.
3371  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3372  *
3373  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3374  *
3375  * With ordered or writeback data it's the same, less the N data blocks.
3376  *
3377  * If the inode's direct blocks can hold an integral number of pages then a
3378  * page cannot straddle two indirect blocks, and we can only touch one indirect
3379  * and dindirect block, and the "5" above becomes "3".
3380  *
3381  * This still overestimates under most circumstances.  If we were to pass the
3382  * start and end offsets in here as well we could do block_to_path() on each
3383  * block and work out the exact number of indirects which are touched.  Pah.
3384  */
3385 
ext3_writepage_trans_blocks(struct inode * inode)3386 static int ext3_writepage_trans_blocks(struct inode *inode)
3387 {
3388 	int bpp = ext3_journal_blocks_per_page(inode);
3389 	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3390 	int ret;
3391 
3392 	if (ext3_should_journal_data(inode))
3393 		ret = 3 * (bpp + indirects) + 2;
3394 	else
3395 		ret = 2 * (bpp + indirects) + indirects + 2;
3396 
3397 #ifdef CONFIG_QUOTA
3398 	/* We know that structure was already allocated during dquot_initialize so
3399 	 * we will be updating only the data blocks + inodes */
3400 	ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3401 #endif
3402 
3403 	return ret;
3404 }
3405 
3406 /*
3407  * The caller must have previously called ext3_reserve_inode_write().
3408  * Give this, we know that the caller already has write access to iloc->bh.
3409  */
ext3_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3410 int ext3_mark_iloc_dirty(handle_t *handle,
3411 		struct inode *inode, struct ext3_iloc *iloc)
3412 {
3413 	int err = 0;
3414 
3415 	/* the do_update_inode consumes one bh->b_count */
3416 	get_bh(iloc->bh);
3417 
3418 	/* ext3_do_update_inode() does journal_dirty_metadata */
3419 	err = ext3_do_update_inode(handle, inode, iloc);
3420 	put_bh(iloc->bh);
3421 	return err;
3422 }
3423 
3424 /*
3425  * On success, We end up with an outstanding reference count against
3426  * iloc->bh.  This _must_ be cleaned up later.
3427  */
3428 
3429 int
ext3_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext3_iloc * iloc)3430 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3431 			 struct ext3_iloc *iloc)
3432 {
3433 	int err = 0;
3434 	if (handle) {
3435 		err = ext3_get_inode_loc(inode, iloc);
3436 		if (!err) {
3437 			BUFFER_TRACE(iloc->bh, "get_write_access");
3438 			err = ext3_journal_get_write_access(handle, iloc->bh);
3439 			if (err) {
3440 				brelse(iloc->bh);
3441 				iloc->bh = NULL;
3442 			}
3443 		}
3444 	}
3445 	ext3_std_error(inode->i_sb, err);
3446 	return err;
3447 }
3448 
3449 /*
3450  * What we do here is to mark the in-core inode as clean with respect to inode
3451  * dirtiness (it may still be data-dirty).
3452  * This means that the in-core inode may be reaped by prune_icache
3453  * without having to perform any I/O.  This is a very good thing,
3454  * because *any* task may call prune_icache - even ones which
3455  * have a transaction open against a different journal.
3456  *
3457  * Is this cheating?  Not really.  Sure, we haven't written the
3458  * inode out, but prune_icache isn't a user-visible syncing function.
3459  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3460  * we start and wait on commits.
3461  *
3462  * Is this efficient/effective?  Well, we're being nice to the system
3463  * by cleaning up our inodes proactively so they can be reaped
3464  * without I/O.  But we are potentially leaving up to five seconds'
3465  * worth of inodes floating about which prune_icache wants us to
3466  * write out.  One way to fix that would be to get prune_icache()
3467  * to do a write_super() to free up some memory.  It has the desired
3468  * effect.
3469  */
ext3_mark_inode_dirty(handle_t * handle,struct inode * inode)3470 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3471 {
3472 	struct ext3_iloc iloc;
3473 	int err;
3474 
3475 	might_sleep();
3476 	trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3477 	err = ext3_reserve_inode_write(handle, inode, &iloc);
3478 	if (!err)
3479 		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3480 	return err;
3481 }
3482 
3483 /*
3484  * ext3_dirty_inode() is called from __mark_inode_dirty()
3485  *
3486  * We're really interested in the case where a file is being extended.
3487  * i_size has been changed by generic_commit_write() and we thus need
3488  * to include the updated inode in the current transaction.
3489  *
3490  * Also, dquot_alloc_space() will always dirty the inode when blocks
3491  * are allocated to the file.
3492  *
3493  * If the inode is marked synchronous, we don't honour that here - doing
3494  * so would cause a commit on atime updates, which we don't bother doing.
3495  * We handle synchronous inodes at the highest possible level.
3496  */
ext3_dirty_inode(struct inode * inode,int flags)3497 void ext3_dirty_inode(struct inode *inode, int flags)
3498 {
3499 	handle_t *current_handle = ext3_journal_current_handle();
3500 	handle_t *handle;
3501 
3502 	handle = ext3_journal_start(inode, 2);
3503 	if (IS_ERR(handle))
3504 		goto out;
3505 	if (current_handle &&
3506 		current_handle->h_transaction != handle->h_transaction) {
3507 		/* This task has a transaction open against a different fs */
3508 		printk(KERN_EMERG "%s: transactions do not match!\n",
3509 		       __func__);
3510 	} else {
3511 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3512 				current_handle);
3513 		ext3_mark_inode_dirty(handle, inode);
3514 	}
3515 	ext3_journal_stop(handle);
3516 out:
3517 	return;
3518 }
3519 
3520 #if 0
3521 /*
3522  * Bind an inode's backing buffer_head into this transaction, to prevent
3523  * it from being flushed to disk early.  Unlike
3524  * ext3_reserve_inode_write, this leaves behind no bh reference and
3525  * returns no iloc structure, so the caller needs to repeat the iloc
3526  * lookup to mark the inode dirty later.
3527  */
3528 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3529 {
3530 	struct ext3_iloc iloc;
3531 
3532 	int err = 0;
3533 	if (handle) {
3534 		err = ext3_get_inode_loc(inode, &iloc);
3535 		if (!err) {
3536 			BUFFER_TRACE(iloc.bh, "get_write_access");
3537 			err = journal_get_write_access(handle, iloc.bh);
3538 			if (!err)
3539 				err = ext3_journal_dirty_metadata(handle,
3540 								  iloc.bh);
3541 			brelse(iloc.bh);
3542 		}
3543 	}
3544 	ext3_std_error(inode->i_sb, err);
3545 	return err;
3546 }
3547 #endif
3548 
ext3_change_inode_journal_flag(struct inode * inode,int val)3549 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3550 {
3551 	journal_t *journal;
3552 	handle_t *handle;
3553 	int err;
3554 
3555 	/*
3556 	 * We have to be very careful here: changing a data block's
3557 	 * journaling status dynamically is dangerous.  If we write a
3558 	 * data block to the journal, change the status and then delete
3559 	 * that block, we risk forgetting to revoke the old log record
3560 	 * from the journal and so a subsequent replay can corrupt data.
3561 	 * So, first we make sure that the journal is empty and that
3562 	 * nobody is changing anything.
3563 	 */
3564 
3565 	journal = EXT3_JOURNAL(inode);
3566 	if (is_journal_aborted(journal))
3567 		return -EROFS;
3568 
3569 	journal_lock_updates(journal);
3570 	journal_flush(journal);
3571 
3572 	/*
3573 	 * OK, there are no updates running now, and all cached data is
3574 	 * synced to disk.  We are now in a completely consistent state
3575 	 * which doesn't have anything in the journal, and we know that
3576 	 * no filesystem updates are running, so it is safe to modify
3577 	 * the inode's in-core data-journaling state flag now.
3578 	 */
3579 
3580 	if (val)
3581 		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3582 	else
3583 		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3584 	ext3_set_aops(inode);
3585 
3586 	journal_unlock_updates(journal);
3587 
3588 	/* Finally we can mark the inode as dirty. */
3589 
3590 	handle = ext3_journal_start(inode, 1);
3591 	if (IS_ERR(handle))
3592 		return PTR_ERR(handle);
3593 
3594 	err = ext3_mark_inode_dirty(handle, inode);
3595 	handle->h_sync = 1;
3596 	ext3_journal_stop(handle);
3597 	ext3_std_error(inode->i_sb, err);
3598 
3599 	return err;
3600 }
3601