1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
put_transaction(struct btrfs_transaction * transaction)34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		WARN_ON(transaction->delayed_refs.root.rb_node);
40 		WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 		memset(transaction, 0, sizeof(*transaction));
42 		kmem_cache_free(btrfs_transaction_cachep, transaction);
43 	}
44 }
45 
switch_commit_root(struct btrfs_root * root)46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 	free_extent_buffer(root->commit_root);
49 	root->commit_root = btrfs_root_node(root);
50 }
51 
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
join_transaction(struct btrfs_root * root,int nofail)55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 	struct btrfs_transaction *cur_trans;
58 
59 	spin_lock(&root->fs_info->trans_lock);
60 loop:
61 	if (root->fs_info->trans_no_join) {
62 		if (!nofail) {
63 			spin_unlock(&root->fs_info->trans_lock);
64 			return -EBUSY;
65 		}
66 	}
67 
68 	cur_trans = root->fs_info->running_transaction;
69 	if (cur_trans) {
70 		atomic_inc(&cur_trans->use_count);
71 		atomic_inc(&cur_trans->num_writers);
72 		cur_trans->num_joined++;
73 		spin_unlock(&root->fs_info->trans_lock);
74 		return 0;
75 	}
76 	spin_unlock(&root->fs_info->trans_lock);
77 
78 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79 	if (!cur_trans)
80 		return -ENOMEM;
81 
82 	spin_lock(&root->fs_info->trans_lock);
83 	if (root->fs_info->running_transaction) {
84 		/*
85 		 * someone started a transaction after we unlocked.  Make sure
86 		 * to redo the trans_no_join checks above
87 		 */
88 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89 		cur_trans = root->fs_info->running_transaction;
90 		goto loop;
91 	}
92 
93 	atomic_set(&cur_trans->num_writers, 1);
94 	cur_trans->num_joined = 0;
95 	init_waitqueue_head(&cur_trans->writer_wait);
96 	init_waitqueue_head(&cur_trans->commit_wait);
97 	cur_trans->in_commit = 0;
98 	cur_trans->blocked = 0;
99 	/*
100 	 * One for this trans handle, one so it will live on until we
101 	 * commit the transaction.
102 	 */
103 	atomic_set(&cur_trans->use_count, 2);
104 	cur_trans->commit_done = 0;
105 	cur_trans->start_time = get_seconds();
106 
107 	cur_trans->delayed_refs.root = RB_ROOT;
108 	cur_trans->delayed_refs.num_entries = 0;
109 	cur_trans->delayed_refs.num_heads_ready = 0;
110 	cur_trans->delayed_refs.num_heads = 0;
111 	cur_trans->delayed_refs.flushing = 0;
112 	cur_trans->delayed_refs.run_delayed_start = 0;
113 	cur_trans->delayed_refs.seq = 1;
114 	init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
115 	spin_lock_init(&cur_trans->commit_lock);
116 	spin_lock_init(&cur_trans->delayed_refs.lock);
117 	INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
118 
119 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
120 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
121 	extent_io_tree_init(&cur_trans->dirty_pages,
122 			     root->fs_info->btree_inode->i_mapping);
123 	root->fs_info->generation++;
124 	cur_trans->transid = root->fs_info->generation;
125 	root->fs_info->running_transaction = cur_trans;
126 	spin_unlock(&root->fs_info->trans_lock);
127 
128 	return 0;
129 }
130 
131 /*
132  * this does all the record keeping required to make sure that a reference
133  * counted root is properly recorded in a given transaction.  This is required
134  * to make sure the old root from before we joined the transaction is deleted
135  * when the transaction commits
136  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)137 static int record_root_in_trans(struct btrfs_trans_handle *trans,
138 			       struct btrfs_root *root)
139 {
140 	if (root->ref_cows && root->last_trans < trans->transid) {
141 		WARN_ON(root == root->fs_info->extent_root);
142 		WARN_ON(root->commit_root != root->node);
143 
144 		/*
145 		 * see below for in_trans_setup usage rules
146 		 * we have the reloc mutex held now, so there
147 		 * is only one writer in this function
148 		 */
149 		root->in_trans_setup = 1;
150 
151 		/* make sure readers find in_trans_setup before
152 		 * they find our root->last_trans update
153 		 */
154 		smp_wmb();
155 
156 		spin_lock(&root->fs_info->fs_roots_radix_lock);
157 		if (root->last_trans == trans->transid) {
158 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
159 			return 0;
160 		}
161 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
162 			   (unsigned long)root->root_key.objectid,
163 			   BTRFS_ROOT_TRANS_TAG);
164 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
165 		root->last_trans = trans->transid;
166 
167 		/* this is pretty tricky.  We don't want to
168 		 * take the relocation lock in btrfs_record_root_in_trans
169 		 * unless we're really doing the first setup for this root in
170 		 * this transaction.
171 		 *
172 		 * Normally we'd use root->last_trans as a flag to decide
173 		 * if we want to take the expensive mutex.
174 		 *
175 		 * But, we have to set root->last_trans before we
176 		 * init the relocation root, otherwise, we trip over warnings
177 		 * in ctree.c.  The solution used here is to flag ourselves
178 		 * with root->in_trans_setup.  When this is 1, we're still
179 		 * fixing up the reloc trees and everyone must wait.
180 		 *
181 		 * When this is zero, they can trust root->last_trans and fly
182 		 * through btrfs_record_root_in_trans without having to take the
183 		 * lock.  smp_wmb() makes sure that all the writes above are
184 		 * done before we pop in the zero below
185 		 */
186 		btrfs_init_reloc_root(trans, root);
187 		smp_wmb();
188 		root->in_trans_setup = 0;
189 	}
190 	return 0;
191 }
192 
193 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)194 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
195 			       struct btrfs_root *root)
196 {
197 	if (!root->ref_cows)
198 		return 0;
199 
200 	/*
201 	 * see record_root_in_trans for comments about in_trans_setup usage
202 	 * and barriers
203 	 */
204 	smp_rmb();
205 	if (root->last_trans == trans->transid &&
206 	    !root->in_trans_setup)
207 		return 0;
208 
209 	mutex_lock(&root->fs_info->reloc_mutex);
210 	record_root_in_trans(trans, root);
211 	mutex_unlock(&root->fs_info->reloc_mutex);
212 
213 	return 0;
214 }
215 
216 /* wait for commit against the current transaction to become unblocked
217  * when this is done, it is safe to start a new transaction, but the current
218  * transaction might not be fully on disk.
219  */
wait_current_trans(struct btrfs_root * root)220 static void wait_current_trans(struct btrfs_root *root)
221 {
222 	struct btrfs_transaction *cur_trans;
223 
224 	spin_lock(&root->fs_info->trans_lock);
225 	cur_trans = root->fs_info->running_transaction;
226 	if (cur_trans && cur_trans->blocked) {
227 		atomic_inc(&cur_trans->use_count);
228 		spin_unlock(&root->fs_info->trans_lock);
229 
230 		wait_event(root->fs_info->transaction_wait,
231 			   !cur_trans->blocked);
232 		put_transaction(cur_trans);
233 	} else {
234 		spin_unlock(&root->fs_info->trans_lock);
235 	}
236 }
237 
238 enum btrfs_trans_type {
239 	TRANS_START,
240 	TRANS_JOIN,
241 	TRANS_USERSPACE,
242 	TRANS_JOIN_NOLOCK,
243 };
244 
may_wait_transaction(struct btrfs_root * root,int type)245 static int may_wait_transaction(struct btrfs_root *root, int type)
246 {
247 	if (root->fs_info->log_root_recovering)
248 		return 0;
249 
250 	if (type == TRANS_USERSPACE)
251 		return 1;
252 
253 	if (type == TRANS_START &&
254 	    !atomic_read(&root->fs_info->open_ioctl_trans))
255 		return 1;
256 
257 	return 0;
258 }
259 
start_transaction(struct btrfs_root * root,u64 num_items,int type)260 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
261 						    u64 num_items, int type)
262 {
263 	struct btrfs_trans_handle *h;
264 	struct btrfs_transaction *cur_trans;
265 	u64 num_bytes = 0;
266 	int ret;
267 
268 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
269 		return ERR_PTR(-EROFS);
270 
271 	if (current->journal_info) {
272 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
273 		h = current->journal_info;
274 		h->use_count++;
275 		h->orig_rsv = h->block_rsv;
276 		h->block_rsv = NULL;
277 		goto got_it;
278 	}
279 
280 	/*
281 	 * Do the reservation before we join the transaction so we can do all
282 	 * the appropriate flushing if need be.
283 	 */
284 	if (num_items > 0 && root != root->fs_info->chunk_root) {
285 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
286 		ret = btrfs_block_rsv_add(root,
287 					  &root->fs_info->trans_block_rsv,
288 					  num_bytes);
289 		if (ret)
290 			return ERR_PTR(ret);
291 	}
292 again:
293 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
294 	if (!h)
295 		return ERR_PTR(-ENOMEM);
296 
297 	if (may_wait_transaction(root, type))
298 		wait_current_trans(root);
299 
300 	do {
301 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
302 		if (ret == -EBUSY)
303 			wait_current_trans(root);
304 	} while (ret == -EBUSY);
305 
306 	if (ret < 0) {
307 		kmem_cache_free(btrfs_trans_handle_cachep, h);
308 		return ERR_PTR(ret);
309 	}
310 
311 	cur_trans = root->fs_info->running_transaction;
312 
313 	h->transid = cur_trans->transid;
314 	h->transaction = cur_trans;
315 	h->blocks_used = 0;
316 	h->bytes_reserved = 0;
317 	h->delayed_ref_updates = 0;
318 	h->use_count = 1;
319 	h->block_rsv = NULL;
320 	h->orig_rsv = NULL;
321 
322 	smp_mb();
323 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
324 		btrfs_commit_transaction(h, root);
325 		goto again;
326 	}
327 
328 	if (num_bytes) {
329 		trace_btrfs_space_reservation(root->fs_info, "transaction",
330 					      (u64)(unsigned long)h,
331 					      num_bytes, 1);
332 		h->block_rsv = &root->fs_info->trans_block_rsv;
333 		h->bytes_reserved = num_bytes;
334 	}
335 
336 got_it:
337 	btrfs_record_root_in_trans(h, root);
338 
339 	if (!current->journal_info && type != TRANS_USERSPACE)
340 		current->journal_info = h;
341 	return h;
342 }
343 
btrfs_start_transaction(struct btrfs_root * root,int num_items)344 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
345 						   int num_items)
346 {
347 	return start_transaction(root, num_items, TRANS_START);
348 }
btrfs_join_transaction(struct btrfs_root * root)349 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
350 {
351 	return start_transaction(root, 0, TRANS_JOIN);
352 }
353 
btrfs_join_transaction_nolock(struct btrfs_root * root)354 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
355 {
356 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
357 }
358 
btrfs_start_ioctl_transaction(struct btrfs_root * root)359 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
360 {
361 	return start_transaction(root, 0, TRANS_USERSPACE);
362 }
363 
364 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)365 static noinline void wait_for_commit(struct btrfs_root *root,
366 				    struct btrfs_transaction *commit)
367 {
368 	wait_event(commit->commit_wait, commit->commit_done);
369 }
370 
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)371 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
372 {
373 	struct btrfs_transaction *cur_trans = NULL, *t;
374 	int ret;
375 
376 	ret = 0;
377 	if (transid) {
378 		if (transid <= root->fs_info->last_trans_committed)
379 			goto out;
380 
381 		/* find specified transaction */
382 		spin_lock(&root->fs_info->trans_lock);
383 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
384 			if (t->transid == transid) {
385 				cur_trans = t;
386 				atomic_inc(&cur_trans->use_count);
387 				break;
388 			}
389 			if (t->transid > transid)
390 				break;
391 		}
392 		spin_unlock(&root->fs_info->trans_lock);
393 		ret = -EINVAL;
394 		if (!cur_trans)
395 			goto out;  /* bad transid */
396 	} else {
397 		/* find newest transaction that is committing | committed */
398 		spin_lock(&root->fs_info->trans_lock);
399 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
400 					    list) {
401 			if (t->in_commit) {
402 				if (t->commit_done)
403 					break;
404 				cur_trans = t;
405 				atomic_inc(&cur_trans->use_count);
406 				break;
407 			}
408 		}
409 		spin_unlock(&root->fs_info->trans_lock);
410 		if (!cur_trans)
411 			goto out;  /* nothing committing|committed */
412 	}
413 
414 	wait_for_commit(root, cur_trans);
415 
416 	put_transaction(cur_trans);
417 	ret = 0;
418 out:
419 	return ret;
420 }
421 
btrfs_throttle(struct btrfs_root * root)422 void btrfs_throttle(struct btrfs_root *root)
423 {
424 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
425 		wait_current_trans(root);
426 }
427 
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)428 static int should_end_transaction(struct btrfs_trans_handle *trans,
429 				  struct btrfs_root *root)
430 {
431 	int ret;
432 
433 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
434 	return ret ? 1 : 0;
435 }
436 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)437 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
438 				 struct btrfs_root *root)
439 {
440 	struct btrfs_transaction *cur_trans = trans->transaction;
441 	struct btrfs_block_rsv *rsv = trans->block_rsv;
442 	int updates;
443 
444 	smp_mb();
445 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
446 		return 1;
447 
448 	/*
449 	 * We need to do this in case we're deleting csums so the global block
450 	 * rsv get's used instead of the csum block rsv.
451 	 */
452 	trans->block_rsv = NULL;
453 
454 	updates = trans->delayed_ref_updates;
455 	trans->delayed_ref_updates = 0;
456 	if (updates)
457 		btrfs_run_delayed_refs(trans, root, updates);
458 
459 	trans->block_rsv = rsv;
460 
461 	return should_end_transaction(trans, root);
462 }
463 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle,int lock)464 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
465 			  struct btrfs_root *root, int throttle, int lock)
466 {
467 	struct btrfs_transaction *cur_trans = trans->transaction;
468 	struct btrfs_fs_info *info = root->fs_info;
469 	int count = 0;
470 
471 	if (--trans->use_count) {
472 		trans->block_rsv = trans->orig_rsv;
473 		return 0;
474 	}
475 
476 	btrfs_trans_release_metadata(trans, root);
477 	trans->block_rsv = NULL;
478 	while (count < 2) {
479 		unsigned long cur = trans->delayed_ref_updates;
480 		trans->delayed_ref_updates = 0;
481 		if (cur &&
482 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
483 			trans->delayed_ref_updates = 0;
484 			btrfs_run_delayed_refs(trans, root, cur);
485 		} else {
486 			break;
487 		}
488 		count++;
489 	}
490 
491 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
492 	    should_end_transaction(trans, root)) {
493 		trans->transaction->blocked = 1;
494 		smp_wmb();
495 	}
496 
497 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
498 		if (throttle) {
499 			/*
500 			 * We may race with somebody else here so end up having
501 			 * to call end_transaction on ourselves again, so inc
502 			 * our use_count.
503 			 */
504 			trans->use_count++;
505 			return btrfs_commit_transaction(trans, root);
506 		} else {
507 			wake_up_process(info->transaction_kthread);
508 		}
509 	}
510 
511 	WARN_ON(cur_trans != info->running_transaction);
512 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
513 	atomic_dec(&cur_trans->num_writers);
514 
515 	smp_mb();
516 	if (waitqueue_active(&cur_trans->writer_wait))
517 		wake_up(&cur_trans->writer_wait);
518 	put_transaction(cur_trans);
519 
520 	if (current->journal_info == trans)
521 		current->journal_info = NULL;
522 	memset(trans, 0, sizeof(*trans));
523 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
524 
525 	if (throttle)
526 		btrfs_run_delayed_iputs(root);
527 
528 	return 0;
529 }
530 
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)531 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
532 			  struct btrfs_root *root)
533 {
534 	int ret;
535 
536 	ret = __btrfs_end_transaction(trans, root, 0, 1);
537 	if (ret)
538 		return ret;
539 	return 0;
540 }
541 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)542 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
543 				   struct btrfs_root *root)
544 {
545 	int ret;
546 
547 	ret = __btrfs_end_transaction(trans, root, 1, 1);
548 	if (ret)
549 		return ret;
550 	return 0;
551 }
552 
btrfs_end_transaction_nolock(struct btrfs_trans_handle * trans,struct btrfs_root * root)553 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
554 				 struct btrfs_root *root)
555 {
556 	int ret;
557 
558 	ret = __btrfs_end_transaction(trans, root, 0, 0);
559 	if (ret)
560 		return ret;
561 	return 0;
562 }
563 
btrfs_end_transaction_dmeta(struct btrfs_trans_handle * trans,struct btrfs_root * root)564 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
565 				struct btrfs_root *root)
566 {
567 	return __btrfs_end_transaction(trans, root, 1, 1);
568 }
569 
570 /*
571  * when btree blocks are allocated, they have some corresponding bits set for
572  * them in one of two extent_io trees.  This is used to make sure all of
573  * those extents are sent to disk but does not wait on them
574  */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)575 int btrfs_write_marked_extents(struct btrfs_root *root,
576 			       struct extent_io_tree *dirty_pages, int mark)
577 {
578 	int err = 0;
579 	int werr = 0;
580 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
581 	u64 start = 0;
582 	u64 end;
583 
584 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
585 				      mark)) {
586 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
587 				   GFP_NOFS);
588 		err = filemap_fdatawrite_range(mapping, start, end);
589 		if (err)
590 			werr = err;
591 		cond_resched();
592 		start = end + 1;
593 	}
594 	if (err)
595 		werr = err;
596 	return werr;
597 }
598 
599 /*
600  * when btree blocks are allocated, they have some corresponding bits set for
601  * them in one of two extent_io trees.  This is used to make sure all of
602  * those extents are on disk for transaction or log commit.  We wait
603  * on all the pages and clear them from the dirty pages state tree
604  */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)605 int btrfs_wait_marked_extents(struct btrfs_root *root,
606 			      struct extent_io_tree *dirty_pages, int mark)
607 {
608 	int err = 0;
609 	int werr = 0;
610 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
611 	u64 start = 0;
612 	u64 end;
613 
614 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
615 				      EXTENT_NEED_WAIT)) {
616 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
617 		err = filemap_fdatawait_range(mapping, start, end);
618 		if (err)
619 			werr = err;
620 		cond_resched();
621 		start = end + 1;
622 	}
623 	if (err)
624 		werr = err;
625 	return werr;
626 }
627 
628 /*
629  * when btree blocks are allocated, they have some corresponding bits set for
630  * them in one of two extent_io trees.  This is used to make sure all of
631  * those extents are on disk for transaction or log commit
632  */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)633 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
634 				struct extent_io_tree *dirty_pages, int mark)
635 {
636 	int ret;
637 	int ret2;
638 
639 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
640 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
641 
642 	if (ret)
643 		return ret;
644 	if (ret2)
645 		return ret2;
646 	return 0;
647 }
648 
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)649 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
650 				     struct btrfs_root *root)
651 {
652 	if (!trans || !trans->transaction) {
653 		struct inode *btree_inode;
654 		btree_inode = root->fs_info->btree_inode;
655 		return filemap_write_and_wait(btree_inode->i_mapping);
656 	}
657 	return btrfs_write_and_wait_marked_extents(root,
658 					   &trans->transaction->dirty_pages,
659 					   EXTENT_DIRTY);
660 }
661 
662 /*
663  * this is used to update the root pointer in the tree of tree roots.
664  *
665  * But, in the case of the extent allocation tree, updating the root
666  * pointer may allocate blocks which may change the root of the extent
667  * allocation tree.
668  *
669  * So, this loops and repeats and makes sure the cowonly root didn't
670  * change while the root pointer was being updated in the metadata.
671  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)672 static int update_cowonly_root(struct btrfs_trans_handle *trans,
673 			       struct btrfs_root *root)
674 {
675 	int ret;
676 	u64 old_root_bytenr;
677 	u64 old_root_used;
678 	struct btrfs_root *tree_root = root->fs_info->tree_root;
679 
680 	old_root_used = btrfs_root_used(&root->root_item);
681 	btrfs_write_dirty_block_groups(trans, root);
682 
683 	while (1) {
684 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
685 		if (old_root_bytenr == root->node->start &&
686 		    old_root_used == btrfs_root_used(&root->root_item))
687 			break;
688 
689 		btrfs_set_root_node(&root->root_item, root->node);
690 		ret = btrfs_update_root(trans, tree_root,
691 					&root->root_key,
692 					&root->root_item);
693 		BUG_ON(ret);
694 
695 		old_root_used = btrfs_root_used(&root->root_item);
696 		ret = btrfs_write_dirty_block_groups(trans, root);
697 		BUG_ON(ret);
698 	}
699 
700 	if (root != root->fs_info->extent_root)
701 		switch_commit_root(root);
702 
703 	return 0;
704 }
705 
706 /*
707  * update all the cowonly tree roots on disk
708  */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)709 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
710 					 struct btrfs_root *root)
711 {
712 	struct btrfs_fs_info *fs_info = root->fs_info;
713 	struct list_head *next;
714 	struct extent_buffer *eb;
715 	int ret;
716 
717 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
718 	BUG_ON(ret);
719 
720 	eb = btrfs_lock_root_node(fs_info->tree_root);
721 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
722 	btrfs_tree_unlock(eb);
723 	free_extent_buffer(eb);
724 
725 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
726 	BUG_ON(ret);
727 
728 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
729 		next = fs_info->dirty_cowonly_roots.next;
730 		list_del_init(next);
731 		root = list_entry(next, struct btrfs_root, dirty_list);
732 
733 		update_cowonly_root(trans, root);
734 	}
735 
736 	down_write(&fs_info->extent_commit_sem);
737 	switch_commit_root(fs_info->extent_root);
738 	up_write(&fs_info->extent_commit_sem);
739 
740 	return 0;
741 }
742 
743 /*
744  * dead roots are old snapshots that need to be deleted.  This allocates
745  * a dirty root struct and adds it into the list of dead roots that need to
746  * be deleted
747  */
btrfs_add_dead_root(struct btrfs_root * root)748 int btrfs_add_dead_root(struct btrfs_root *root)
749 {
750 	spin_lock(&root->fs_info->trans_lock);
751 	list_add(&root->root_list, &root->fs_info->dead_roots);
752 	spin_unlock(&root->fs_info->trans_lock);
753 	return 0;
754 }
755 
756 /*
757  * update all the cowonly tree roots on disk
758  */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)759 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
760 				    struct btrfs_root *root)
761 {
762 	struct btrfs_root *gang[8];
763 	struct btrfs_fs_info *fs_info = root->fs_info;
764 	int i;
765 	int ret;
766 	int err = 0;
767 
768 	spin_lock(&fs_info->fs_roots_radix_lock);
769 	while (1) {
770 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
771 						 (void **)gang, 0,
772 						 ARRAY_SIZE(gang),
773 						 BTRFS_ROOT_TRANS_TAG);
774 		if (ret == 0)
775 			break;
776 		for (i = 0; i < ret; i++) {
777 			root = gang[i];
778 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
779 					(unsigned long)root->root_key.objectid,
780 					BTRFS_ROOT_TRANS_TAG);
781 			spin_unlock(&fs_info->fs_roots_radix_lock);
782 
783 			btrfs_free_log(trans, root);
784 			btrfs_update_reloc_root(trans, root);
785 			btrfs_orphan_commit_root(trans, root);
786 
787 			btrfs_save_ino_cache(root, trans);
788 
789 			/* see comments in should_cow_block() */
790 			root->force_cow = 0;
791 			smp_wmb();
792 
793 			if (root->commit_root != root->node) {
794 				mutex_lock(&root->fs_commit_mutex);
795 				switch_commit_root(root);
796 				btrfs_unpin_free_ino(root);
797 				mutex_unlock(&root->fs_commit_mutex);
798 
799 				btrfs_set_root_node(&root->root_item,
800 						    root->node);
801 			}
802 
803 			err = btrfs_update_root(trans, fs_info->tree_root,
804 						&root->root_key,
805 						&root->root_item);
806 			spin_lock(&fs_info->fs_roots_radix_lock);
807 			if (err)
808 				break;
809 		}
810 	}
811 	spin_unlock(&fs_info->fs_roots_radix_lock);
812 	return err;
813 }
814 
815 /*
816  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
817  * otherwise every leaf in the btree is read and defragged.
818  */
btrfs_defrag_root(struct btrfs_root * root,int cacheonly)819 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
820 {
821 	struct btrfs_fs_info *info = root->fs_info;
822 	struct btrfs_trans_handle *trans;
823 	int ret;
824 	unsigned long nr;
825 
826 	if (xchg(&root->defrag_running, 1))
827 		return 0;
828 
829 	while (1) {
830 		trans = btrfs_start_transaction(root, 0);
831 		if (IS_ERR(trans))
832 			return PTR_ERR(trans);
833 
834 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
835 
836 		nr = trans->blocks_used;
837 		btrfs_end_transaction(trans, root);
838 		btrfs_btree_balance_dirty(info->tree_root, nr);
839 		cond_resched();
840 
841 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
842 			break;
843 	}
844 	root->defrag_running = 0;
845 	return ret;
846 }
847 
848 /*
849  * new snapshots need to be created at a very specific time in the
850  * transaction commit.  This does the actual creation
851  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)852 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
853 				   struct btrfs_fs_info *fs_info,
854 				   struct btrfs_pending_snapshot *pending)
855 {
856 	struct btrfs_key key;
857 	struct btrfs_root_item *new_root_item;
858 	struct btrfs_root *tree_root = fs_info->tree_root;
859 	struct btrfs_root *root = pending->root;
860 	struct btrfs_root *parent_root;
861 	struct btrfs_block_rsv *rsv;
862 	struct inode *parent_inode;
863 	struct dentry *parent;
864 	struct dentry *dentry;
865 	struct extent_buffer *tmp;
866 	struct extent_buffer *old;
867 	int ret;
868 	u64 to_reserve = 0;
869 	u64 index = 0;
870 	u64 objectid;
871 	u64 root_flags;
872 
873 	rsv = trans->block_rsv;
874 
875 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
876 	if (!new_root_item) {
877 		pending->error = -ENOMEM;
878 		goto fail;
879 	}
880 
881 	ret = btrfs_find_free_objectid(tree_root, &objectid);
882 	if (ret) {
883 		pending->error = ret;
884 		goto fail;
885 	}
886 
887 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
888 
889 	if (to_reserve > 0) {
890 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
891 						  to_reserve);
892 		if (ret) {
893 			pending->error = ret;
894 			goto fail;
895 		}
896 	}
897 
898 	key.objectid = objectid;
899 	key.offset = (u64)-1;
900 	key.type = BTRFS_ROOT_ITEM_KEY;
901 
902 	trans->block_rsv = &pending->block_rsv;
903 
904 	dentry = pending->dentry;
905 	parent = dget_parent(dentry);
906 	parent_inode = parent->d_inode;
907 	parent_root = BTRFS_I(parent_inode)->root;
908 	record_root_in_trans(trans, parent_root);
909 
910 	/*
911 	 * insert the directory item
912 	 */
913 	ret = btrfs_set_inode_index(parent_inode, &index);
914 	BUG_ON(ret);
915 	ret = btrfs_insert_dir_item(trans, parent_root,
916 				dentry->d_name.name, dentry->d_name.len,
917 				parent_inode, &key,
918 				BTRFS_FT_DIR, index);
919 	if (ret) {
920 		pending->error = -EEXIST;
921 		dput(parent);
922 		goto fail;
923 	}
924 
925 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
926 					 dentry->d_name.len * 2);
927 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
928 	BUG_ON(ret);
929 
930 	/*
931 	 * pull in the delayed directory update
932 	 * and the delayed inode item
933 	 * otherwise we corrupt the FS during
934 	 * snapshot
935 	 */
936 	ret = btrfs_run_delayed_items(trans, root);
937 	BUG_ON(ret);
938 
939 	record_root_in_trans(trans, root);
940 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
941 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
942 	btrfs_check_and_init_root_item(new_root_item);
943 
944 	root_flags = btrfs_root_flags(new_root_item);
945 	if (pending->readonly)
946 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
947 	else
948 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
949 	btrfs_set_root_flags(new_root_item, root_flags);
950 
951 	old = btrfs_lock_root_node(root);
952 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
953 	btrfs_set_lock_blocking(old);
954 
955 	btrfs_copy_root(trans, root, old, &tmp, objectid);
956 	btrfs_tree_unlock(old);
957 	free_extent_buffer(old);
958 
959 	/* see comments in should_cow_block() */
960 	root->force_cow = 1;
961 	smp_wmb();
962 
963 	btrfs_set_root_node(new_root_item, tmp);
964 	/* record when the snapshot was created in key.offset */
965 	key.offset = trans->transid;
966 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
967 	btrfs_tree_unlock(tmp);
968 	free_extent_buffer(tmp);
969 	BUG_ON(ret);
970 
971 	/*
972 	 * insert root back/forward references
973 	 */
974 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
975 				 parent_root->root_key.objectid,
976 				 btrfs_ino(parent_inode), index,
977 				 dentry->d_name.name, dentry->d_name.len);
978 	BUG_ON(ret);
979 	dput(parent);
980 
981 	key.offset = (u64)-1;
982 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
983 	BUG_ON(IS_ERR(pending->snap));
984 
985 	btrfs_reloc_post_snapshot(trans, pending);
986 fail:
987 	kfree(new_root_item);
988 	trans->block_rsv = rsv;
989 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
990 	return 0;
991 }
992 
993 /*
994  * create all the snapshots we've scheduled for creation
995  */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)996 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
997 					     struct btrfs_fs_info *fs_info)
998 {
999 	struct btrfs_pending_snapshot *pending;
1000 	struct list_head *head = &trans->transaction->pending_snapshots;
1001 
1002 	list_for_each_entry(pending, head, list)
1003 		create_pending_snapshot(trans, fs_info, pending);
1004 	return 0;
1005 }
1006 
update_super_roots(struct btrfs_root * root)1007 static void update_super_roots(struct btrfs_root *root)
1008 {
1009 	struct btrfs_root_item *root_item;
1010 	struct btrfs_super_block *super;
1011 
1012 	super = root->fs_info->super_copy;
1013 
1014 	root_item = &root->fs_info->chunk_root->root_item;
1015 	super->chunk_root = root_item->bytenr;
1016 	super->chunk_root_generation = root_item->generation;
1017 	super->chunk_root_level = root_item->level;
1018 
1019 	root_item = &root->fs_info->tree_root->root_item;
1020 	super->root = root_item->bytenr;
1021 	super->generation = root_item->generation;
1022 	super->root_level = root_item->level;
1023 	if (btrfs_test_opt(root, SPACE_CACHE))
1024 		super->cache_generation = root_item->generation;
1025 }
1026 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1027 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1028 {
1029 	int ret = 0;
1030 	spin_lock(&info->trans_lock);
1031 	if (info->running_transaction)
1032 		ret = info->running_transaction->in_commit;
1033 	spin_unlock(&info->trans_lock);
1034 	return ret;
1035 }
1036 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1037 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1038 {
1039 	int ret = 0;
1040 	spin_lock(&info->trans_lock);
1041 	if (info->running_transaction)
1042 		ret = info->running_transaction->blocked;
1043 	spin_unlock(&info->trans_lock);
1044 	return ret;
1045 }
1046 
1047 /*
1048  * wait for the current transaction commit to start and block subsequent
1049  * transaction joins
1050  */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1051 static void wait_current_trans_commit_start(struct btrfs_root *root,
1052 					    struct btrfs_transaction *trans)
1053 {
1054 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1055 }
1056 
1057 /*
1058  * wait for the current transaction to start and then become unblocked.
1059  * caller holds ref.
1060  */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1061 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1062 					 struct btrfs_transaction *trans)
1063 {
1064 	wait_event(root->fs_info->transaction_wait,
1065 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1066 }
1067 
1068 /*
1069  * commit transactions asynchronously. once btrfs_commit_transaction_async
1070  * returns, any subsequent transaction will not be allowed to join.
1071  */
1072 struct btrfs_async_commit {
1073 	struct btrfs_trans_handle *newtrans;
1074 	struct btrfs_root *root;
1075 	struct delayed_work work;
1076 };
1077 
do_async_commit(struct work_struct * work)1078 static void do_async_commit(struct work_struct *work)
1079 {
1080 	struct btrfs_async_commit *ac =
1081 		container_of(work, struct btrfs_async_commit, work.work);
1082 
1083 	btrfs_commit_transaction(ac->newtrans, ac->root);
1084 	kfree(ac);
1085 }
1086 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1087 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1088 				   struct btrfs_root *root,
1089 				   int wait_for_unblock)
1090 {
1091 	struct btrfs_async_commit *ac;
1092 	struct btrfs_transaction *cur_trans;
1093 
1094 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1095 	if (!ac)
1096 		return -ENOMEM;
1097 
1098 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1099 	ac->root = root;
1100 	ac->newtrans = btrfs_join_transaction(root);
1101 	if (IS_ERR(ac->newtrans)) {
1102 		int err = PTR_ERR(ac->newtrans);
1103 		kfree(ac);
1104 		return err;
1105 	}
1106 
1107 	/* take transaction reference */
1108 	cur_trans = trans->transaction;
1109 	atomic_inc(&cur_trans->use_count);
1110 
1111 	btrfs_end_transaction(trans, root);
1112 	schedule_delayed_work(&ac->work, 0);
1113 
1114 	/* wait for transaction to start and unblock */
1115 	if (wait_for_unblock)
1116 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1117 	else
1118 		wait_current_trans_commit_start(root, cur_trans);
1119 
1120 	if (current->journal_info == trans)
1121 		current->journal_info = NULL;
1122 
1123 	put_transaction(cur_trans);
1124 	return 0;
1125 }
1126 
1127 /*
1128  * btrfs_transaction state sequence:
1129  *    in_commit = 0, blocked = 0  (initial)
1130  *    in_commit = 1, blocked = 1
1131  *    blocked = 0
1132  *    commit_done = 1
1133  */
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1134 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1135 			     struct btrfs_root *root)
1136 {
1137 	unsigned long joined = 0;
1138 	struct btrfs_transaction *cur_trans;
1139 	struct btrfs_transaction *prev_trans = NULL;
1140 	DEFINE_WAIT(wait);
1141 	int ret;
1142 	int should_grow = 0;
1143 	unsigned long now = get_seconds();
1144 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1145 
1146 	btrfs_run_ordered_operations(root, 0);
1147 
1148 	btrfs_trans_release_metadata(trans, root);
1149 	trans->block_rsv = NULL;
1150 
1151 	/* make a pass through all the delayed refs we have so far
1152 	 * any runnings procs may add more while we are here
1153 	 */
1154 	ret = btrfs_run_delayed_refs(trans, root, 0);
1155 	BUG_ON(ret);
1156 
1157 	cur_trans = trans->transaction;
1158 	/*
1159 	 * set the flushing flag so procs in this transaction have to
1160 	 * start sending their work down.
1161 	 */
1162 	cur_trans->delayed_refs.flushing = 1;
1163 
1164 	ret = btrfs_run_delayed_refs(trans, root, 0);
1165 	BUG_ON(ret);
1166 
1167 	spin_lock(&cur_trans->commit_lock);
1168 	if (cur_trans->in_commit) {
1169 		spin_unlock(&cur_trans->commit_lock);
1170 		atomic_inc(&cur_trans->use_count);
1171 		btrfs_end_transaction(trans, root);
1172 
1173 		wait_for_commit(root, cur_trans);
1174 
1175 		put_transaction(cur_trans);
1176 
1177 		return 0;
1178 	}
1179 
1180 	trans->transaction->in_commit = 1;
1181 	trans->transaction->blocked = 1;
1182 	spin_unlock(&cur_trans->commit_lock);
1183 	wake_up(&root->fs_info->transaction_blocked_wait);
1184 
1185 	spin_lock(&root->fs_info->trans_lock);
1186 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1187 		prev_trans = list_entry(cur_trans->list.prev,
1188 					struct btrfs_transaction, list);
1189 		if (!prev_trans->commit_done) {
1190 			atomic_inc(&prev_trans->use_count);
1191 			spin_unlock(&root->fs_info->trans_lock);
1192 
1193 			wait_for_commit(root, prev_trans);
1194 
1195 			put_transaction(prev_trans);
1196 		} else {
1197 			spin_unlock(&root->fs_info->trans_lock);
1198 		}
1199 	} else {
1200 		spin_unlock(&root->fs_info->trans_lock);
1201 	}
1202 
1203 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1204 		should_grow = 1;
1205 
1206 	do {
1207 		int snap_pending = 0;
1208 
1209 		joined = cur_trans->num_joined;
1210 		if (!list_empty(&trans->transaction->pending_snapshots))
1211 			snap_pending = 1;
1212 
1213 		WARN_ON(cur_trans != trans->transaction);
1214 
1215 		if (flush_on_commit || snap_pending) {
1216 			btrfs_start_delalloc_inodes(root, 1);
1217 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1218 			BUG_ON(ret);
1219 		}
1220 
1221 		ret = btrfs_run_delayed_items(trans, root);
1222 		BUG_ON(ret);
1223 
1224 		/*
1225 		 * rename don't use btrfs_join_transaction, so, once we
1226 		 * set the transaction to blocked above, we aren't going
1227 		 * to get any new ordered operations.  We can safely run
1228 		 * it here and no for sure that nothing new will be added
1229 		 * to the list
1230 		 */
1231 		btrfs_run_ordered_operations(root, 1);
1232 
1233 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1234 				TASK_UNINTERRUPTIBLE);
1235 
1236 		if (atomic_read(&cur_trans->num_writers) > 1)
1237 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1238 		else if (should_grow)
1239 			schedule_timeout(1);
1240 
1241 		finish_wait(&cur_trans->writer_wait, &wait);
1242 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1243 		 (should_grow && cur_trans->num_joined != joined));
1244 
1245 	/*
1246 	 * Ok now we need to make sure to block out any other joins while we
1247 	 * commit the transaction.  We could have started a join before setting
1248 	 * no_join so make sure to wait for num_writers to == 1 again.
1249 	 */
1250 	spin_lock(&root->fs_info->trans_lock);
1251 	root->fs_info->trans_no_join = 1;
1252 	spin_unlock(&root->fs_info->trans_lock);
1253 	wait_event(cur_trans->writer_wait,
1254 		   atomic_read(&cur_trans->num_writers) == 1);
1255 
1256 	/*
1257 	 * the reloc mutex makes sure that we stop
1258 	 * the balancing code from coming in and moving
1259 	 * extents around in the middle of the commit
1260 	 */
1261 	mutex_lock(&root->fs_info->reloc_mutex);
1262 
1263 	ret = btrfs_run_delayed_items(trans, root);
1264 	BUG_ON(ret);
1265 
1266 	ret = create_pending_snapshots(trans, root->fs_info);
1267 	BUG_ON(ret);
1268 
1269 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1270 	BUG_ON(ret);
1271 
1272 	/*
1273 	 * make sure none of the code above managed to slip in a
1274 	 * delayed item
1275 	 */
1276 	btrfs_assert_delayed_root_empty(root);
1277 
1278 	WARN_ON(cur_trans != trans->transaction);
1279 
1280 	btrfs_scrub_pause(root);
1281 	/* btrfs_commit_tree_roots is responsible for getting the
1282 	 * various roots consistent with each other.  Every pointer
1283 	 * in the tree of tree roots has to point to the most up to date
1284 	 * root for every subvolume and other tree.  So, we have to keep
1285 	 * the tree logging code from jumping in and changing any
1286 	 * of the trees.
1287 	 *
1288 	 * At this point in the commit, there can't be any tree-log
1289 	 * writers, but a little lower down we drop the trans mutex
1290 	 * and let new people in.  By holding the tree_log_mutex
1291 	 * from now until after the super is written, we avoid races
1292 	 * with the tree-log code.
1293 	 */
1294 	mutex_lock(&root->fs_info->tree_log_mutex);
1295 
1296 	ret = commit_fs_roots(trans, root);
1297 	BUG_ON(ret);
1298 
1299 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1300 	 * safe to free the root of tree log roots
1301 	 */
1302 	btrfs_free_log_root_tree(trans, root->fs_info);
1303 
1304 	ret = commit_cowonly_roots(trans, root);
1305 	BUG_ON(ret);
1306 
1307 	btrfs_prepare_extent_commit(trans, root);
1308 
1309 	cur_trans = root->fs_info->running_transaction;
1310 
1311 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1312 			    root->fs_info->tree_root->node);
1313 	switch_commit_root(root->fs_info->tree_root);
1314 
1315 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1316 			    root->fs_info->chunk_root->node);
1317 	switch_commit_root(root->fs_info->chunk_root);
1318 
1319 	update_super_roots(root);
1320 
1321 	if (!root->fs_info->log_root_recovering) {
1322 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1323 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1324 	}
1325 
1326 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1327 	       sizeof(*root->fs_info->super_copy));
1328 
1329 	trans->transaction->blocked = 0;
1330 	spin_lock(&root->fs_info->trans_lock);
1331 	root->fs_info->running_transaction = NULL;
1332 	root->fs_info->trans_no_join = 0;
1333 	spin_unlock(&root->fs_info->trans_lock);
1334 	mutex_unlock(&root->fs_info->reloc_mutex);
1335 
1336 	wake_up(&root->fs_info->transaction_wait);
1337 
1338 	ret = btrfs_write_and_wait_transaction(trans, root);
1339 	BUG_ON(ret);
1340 	write_ctree_super(trans, root, 0);
1341 
1342 	/*
1343 	 * the super is written, we can safely allow the tree-loggers
1344 	 * to go about their business
1345 	 */
1346 	mutex_unlock(&root->fs_info->tree_log_mutex);
1347 
1348 	btrfs_finish_extent_commit(trans, root);
1349 
1350 	cur_trans->commit_done = 1;
1351 
1352 	root->fs_info->last_trans_committed = cur_trans->transid;
1353 
1354 	wake_up(&cur_trans->commit_wait);
1355 
1356 	spin_lock(&root->fs_info->trans_lock);
1357 	list_del_init(&cur_trans->list);
1358 	spin_unlock(&root->fs_info->trans_lock);
1359 
1360 	put_transaction(cur_trans);
1361 	put_transaction(cur_trans);
1362 
1363 	trace_btrfs_transaction_commit(root);
1364 
1365 	btrfs_scrub_continue(root);
1366 
1367 	if (current->journal_info == trans)
1368 		current->journal_info = NULL;
1369 
1370 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1371 
1372 	if (current != root->fs_info->transaction_kthread)
1373 		btrfs_run_delayed_iputs(root);
1374 
1375 	return ret;
1376 }
1377 
1378 /*
1379  * interface function to delete all the snapshots we have scheduled for deletion
1380  */
btrfs_clean_old_snapshots(struct btrfs_root * root)1381 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1382 {
1383 	LIST_HEAD(list);
1384 	struct btrfs_fs_info *fs_info = root->fs_info;
1385 
1386 	spin_lock(&fs_info->trans_lock);
1387 	list_splice_init(&fs_info->dead_roots, &list);
1388 	spin_unlock(&fs_info->trans_lock);
1389 
1390 	while (!list_empty(&list)) {
1391 		root = list_entry(list.next, struct btrfs_root, root_list);
1392 		list_del(&root->root_list);
1393 
1394 		btrfs_kill_all_delayed_nodes(root);
1395 
1396 		if (btrfs_header_backref_rev(root->node) <
1397 		    BTRFS_MIXED_BACKREF_REV)
1398 			btrfs_drop_snapshot(root, NULL, 0, 0);
1399 		else
1400 			btrfs_drop_snapshot(root, NULL, 1, 0);
1401 	}
1402 	return 0;
1403 }
1404