1 /*
2  * Copyright (C) STRATO AG 2011.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 /*
20  * This module can be used to catch cases when the btrfs kernel
21  * code executes write requests to the disk that bring the file
22  * system in an inconsistent state. In such a state, a power-loss
23  * or kernel panic event would cause that the data on disk is
24  * lost or at least damaged.
25  *
26  * Code is added that examines all block write requests during
27  * runtime (including writes of the super block). Three rules
28  * are verified and an error is printed on violation of the
29  * rules:
30  * 1. It is not allowed to write a disk block which is
31  *    currently referenced by the super block (either directly
32  *    or indirectly).
33  * 2. When a super block is written, it is verified that all
34  *    referenced (directly or indirectly) blocks fulfill the
35  *    following requirements:
36  *    2a. All referenced blocks have either been present when
37  *        the file system was mounted, (i.e., they have been
38  *        referenced by the super block) or they have been
39  *        written since then and the write completion callback
40  *        was called and a FLUSH request to the device where
41  *        these blocks are located was received and completed.
42  *    2b. All referenced blocks need to have a generation
43  *        number which is equal to the parent's number.
44  *
45  * One issue that was found using this module was that the log
46  * tree on disk became temporarily corrupted because disk blocks
47  * that had been in use for the log tree had been freed and
48  * reused too early, while being referenced by the written super
49  * block.
50  *
51  * The search term in the kernel log that can be used to filter
52  * on the existence of detected integrity issues is
53  * "btrfs: attempt".
54  *
55  * The integrity check is enabled via mount options. These
56  * mount options are only supported if the integrity check
57  * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
58  *
59  * Example #1, apply integrity checks to all metadata:
60  * mount /dev/sdb1 /mnt -o check_int
61  *
62  * Example #2, apply integrity checks to all metadata and
63  * to data extents:
64  * mount /dev/sdb1 /mnt -o check_int_data
65  *
66  * Example #3, apply integrity checks to all metadata and dump
67  * the tree that the super block references to kernel messages
68  * each time after a super block was written:
69  * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
70  *
71  * If the integrity check tool is included and activated in
72  * the mount options, plenty of kernel memory is used, and
73  * plenty of additional CPU cycles are spent. Enabling this
74  * functionality is not intended for normal use. In most
75  * cases, unless you are a btrfs developer who needs to verify
76  * the integrity of (super)-block write requests, do not
77  * enable the config option BTRFS_FS_CHECK_INTEGRITY to
78  * include and compile the integrity check tool.
79  */
80 
81 #include <linux/sched.h>
82 #include <linux/slab.h>
83 #include <linux/buffer_head.h>
84 #include <linux/mutex.h>
85 #include <linux/crc32c.h>
86 #include <linux/genhd.h>
87 #include <linux/blkdev.h>
88 #include "ctree.h"
89 #include "disk-io.h"
90 #include "transaction.h"
91 #include "extent_io.h"
92 #include "disk-io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 
98 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
101 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
102 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
103 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
104 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
105 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6)	/* in characters,
106 							 * excluding " [...]" */
107 #define BTRFSIC_BLOCK_SIZE PAGE_SIZE
108 
109 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
110 
111 /*
112  * The definition of the bitmask fields for the print_mask.
113  * They are specified with the mount option check_integrity_print_mask.
114  */
115 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE			0x00000001
116 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION		0x00000002
117 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE			0x00000004
118 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE			0x00000008
119 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH			0x00000010
120 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH			0x00000020
121 #define BTRFSIC_PRINT_MASK_VERBOSE				0x00000040
122 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE				0x00000080
123 #define BTRFSIC_PRINT_MASK_INITIAL_TREE				0x00000100
124 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES			0x00000200
125 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE			0x00000400
126 #define BTRFSIC_PRINT_MASK_NUM_COPIES				0x00000800
127 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS		0x00001000
128 
129 struct btrfsic_dev_state;
130 struct btrfsic_state;
131 
132 struct btrfsic_block {
133 	u32 magic_num;		/* only used for debug purposes */
134 	unsigned int is_metadata:1;	/* if it is meta-data, not data-data */
135 	unsigned int is_superblock:1;	/* if it is one of the superblocks */
136 	unsigned int is_iodone:1;	/* if is done by lower subsystem */
137 	unsigned int iodone_w_error:1;	/* error was indicated to endio */
138 	unsigned int never_written:1;	/* block was added because it was
139 					 * referenced, not because it was
140 					 * written */
141 	unsigned int mirror_num:2;	/* large enough to hold
142 					 * BTRFS_SUPER_MIRROR_MAX */
143 	struct btrfsic_dev_state *dev_state;
144 	u64 dev_bytenr;		/* key, physical byte num on disk */
145 	u64 logical_bytenr;	/* logical byte num on disk */
146 	u64 generation;
147 	struct btrfs_disk_key disk_key;	/* extra info to print in case of
148 					 * issues, will not always be correct */
149 	struct list_head collision_resolving_node;	/* list node */
150 	struct list_head all_blocks_node;	/* list node */
151 
152 	/* the following two lists contain block_link items */
153 	struct list_head ref_to_list;	/* list */
154 	struct list_head ref_from_list;	/* list */
155 	struct btrfsic_block *next_in_same_bio;
156 	void *orig_bio_bh_private;
157 	union {
158 		bio_end_io_t *bio;
159 		bh_end_io_t *bh;
160 	} orig_bio_bh_end_io;
161 	int submit_bio_bh_rw;
162 	u64 flush_gen; /* only valid if !never_written */
163 };
164 
165 /*
166  * Elements of this type are allocated dynamically and required because
167  * each block object can refer to and can be ref from multiple blocks.
168  * The key to lookup them in the hashtable is the dev_bytenr of
169  * the block ref to plus the one from the block refered from.
170  * The fact that they are searchable via a hashtable and that a
171  * ref_cnt is maintained is not required for the btrfs integrity
172  * check algorithm itself, it is only used to make the output more
173  * beautiful in case that an error is detected (an error is defined
174  * as a write operation to a block while that block is still referenced).
175  */
176 struct btrfsic_block_link {
177 	u32 magic_num;		/* only used for debug purposes */
178 	u32 ref_cnt;
179 	struct list_head node_ref_to;	/* list node */
180 	struct list_head node_ref_from;	/* list node */
181 	struct list_head collision_resolving_node;	/* list node */
182 	struct btrfsic_block *block_ref_to;
183 	struct btrfsic_block *block_ref_from;
184 	u64 parent_generation;
185 };
186 
187 struct btrfsic_dev_state {
188 	u32 magic_num;		/* only used for debug purposes */
189 	struct block_device *bdev;
190 	struct btrfsic_state *state;
191 	struct list_head collision_resolving_node;	/* list node */
192 	struct btrfsic_block dummy_block_for_bio_bh_flush;
193 	u64 last_flush_gen;
194 	char name[BDEVNAME_SIZE];
195 };
196 
197 struct btrfsic_block_hashtable {
198 	struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
199 };
200 
201 struct btrfsic_block_link_hashtable {
202 	struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
203 };
204 
205 struct btrfsic_dev_state_hashtable {
206 	struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
207 };
208 
209 struct btrfsic_block_data_ctx {
210 	u64 start;		/* virtual bytenr */
211 	u64 dev_bytenr;		/* physical bytenr on device */
212 	u32 len;
213 	struct btrfsic_dev_state *dev;
214 	char *data;
215 	struct buffer_head *bh;	/* do not use if set to NULL */
216 };
217 
218 /* This structure is used to implement recursion without occupying
219  * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221 	u32 magic;
222 	u32 nr;
223 	int error;
224 	int i;
225 	int limit_nesting;
226 	int num_copies;
227 	int mirror_num;
228 	struct btrfsic_block *block;
229 	struct btrfsic_block_data_ctx *block_ctx;
230 	struct btrfsic_block *next_block;
231 	struct btrfsic_block_data_ctx next_block_ctx;
232 	struct btrfs_header *hdr;
233 	struct btrfsic_stack_frame *prev;
234 };
235 
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238 	u32 print_mask;
239 	int include_extent_data;
240 	int csum_size;
241 	struct list_head all_blocks_list;
242 	struct btrfsic_block_hashtable block_hashtable;
243 	struct btrfsic_block_link_hashtable block_link_hashtable;
244 	struct btrfs_root *root;
245 	u64 max_superblock_generation;
246 	struct btrfsic_block *latest_superblock;
247 };
248 
249 static void btrfsic_block_init(struct btrfsic_block *b);
250 static struct btrfsic_block *btrfsic_block_alloc(void);
251 static void btrfsic_block_free(struct btrfsic_block *b);
252 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
253 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
254 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
255 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
256 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
257 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
258 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
259 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
260 					struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
263 		struct block_device *bdev,
264 		u64 dev_bytenr,
265 		struct btrfsic_block_hashtable *h);
266 static void btrfsic_block_link_hashtable_init(
267 		struct btrfsic_block_link_hashtable *h);
268 static void btrfsic_block_link_hashtable_add(
269 		struct btrfsic_block_link *l,
270 		struct btrfsic_block_link_hashtable *h);
271 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
272 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
273 		struct block_device *bdev_ref_to,
274 		u64 dev_bytenr_ref_to,
275 		struct block_device *bdev_ref_from,
276 		u64 dev_bytenr_ref_from,
277 		struct btrfsic_block_link_hashtable *h);
278 static void btrfsic_dev_state_hashtable_init(
279 		struct btrfsic_dev_state_hashtable *h);
280 static void btrfsic_dev_state_hashtable_add(
281 		struct btrfsic_dev_state *ds,
282 		struct btrfsic_dev_state_hashtable *h);
283 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
284 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
285 		struct block_device *bdev,
286 		struct btrfsic_dev_state_hashtable *h);
287 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
288 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
289 static int btrfsic_process_superblock(struct btrfsic_state *state,
290 				      struct btrfs_fs_devices *fs_devices);
291 static int btrfsic_process_metablock(struct btrfsic_state *state,
292 				     struct btrfsic_block *block,
293 				     struct btrfsic_block_data_ctx *block_ctx,
294 				     struct btrfs_header *hdr,
295 				     int limit_nesting, int force_iodone_flag);
296 static int btrfsic_create_link_to_next_block(
297 		struct btrfsic_state *state,
298 		struct btrfsic_block *block,
299 		struct btrfsic_block_data_ctx
300 		*block_ctx, u64 next_bytenr,
301 		int limit_nesting,
302 		struct btrfsic_block_data_ctx *next_block_ctx,
303 		struct btrfsic_block **next_blockp,
304 		int force_iodone_flag,
305 		int *num_copiesp, int *mirror_nump,
306 		struct btrfs_disk_key *disk_key,
307 		u64 parent_generation);
308 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
309 				      struct btrfsic_block *block,
310 				      struct btrfsic_block_data_ctx *block_ctx,
311 				      u32 item_offset, int force_iodone_flag);
312 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
313 			     struct btrfsic_block_data_ctx *block_ctx_out,
314 			     int mirror_num);
315 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
316 				  u32 len, struct block_device *bdev,
317 				  struct btrfsic_block_data_ctx *block_ctx_out);
318 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
319 static int btrfsic_read_block(struct btrfsic_state *state,
320 			      struct btrfsic_block_data_ctx *block_ctx);
321 static void btrfsic_dump_database(struct btrfsic_state *state);
322 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
323 				     const u8 *data, unsigned int size);
324 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
325 					  u64 dev_bytenr, u8 *mapped_data,
326 					  unsigned int len, struct bio *bio,
327 					  int *bio_is_patched,
328 					  struct buffer_head *bh,
329 					  int submit_bio_bh_rw);
330 static int btrfsic_process_written_superblock(
331 		struct btrfsic_state *state,
332 		struct btrfsic_block *const block,
333 		struct btrfs_super_block *const super_hdr);
334 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
335 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
336 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
337 					      const struct btrfsic_block *block,
338 					      int recursion_level);
339 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
340 					struct btrfsic_block *const block,
341 					int recursion_level);
342 static void btrfsic_print_add_link(const struct btrfsic_state *state,
343 				   const struct btrfsic_block_link *l);
344 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
345 				   const struct btrfsic_block_link *l);
346 static char btrfsic_get_block_type(const struct btrfsic_state *state,
347 				   const struct btrfsic_block *block);
348 static void btrfsic_dump_tree(const struct btrfsic_state *state);
349 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
350 				  const struct btrfsic_block *block,
351 				  int indent_level);
352 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
353 		struct btrfsic_state *state,
354 		struct btrfsic_block_data_ctx *next_block_ctx,
355 		struct btrfsic_block *next_block,
356 		struct btrfsic_block *from_block,
357 		u64 parent_generation);
358 static struct btrfsic_block *btrfsic_block_lookup_or_add(
359 		struct btrfsic_state *state,
360 		struct btrfsic_block_data_ctx *block_ctx,
361 		const char *additional_string,
362 		int is_metadata,
363 		int is_iodone,
364 		int never_written,
365 		int mirror_num,
366 		int *was_created);
367 static int btrfsic_process_superblock_dev_mirror(
368 		struct btrfsic_state *state,
369 		struct btrfsic_dev_state *dev_state,
370 		struct btrfs_device *device,
371 		int superblock_mirror_num,
372 		struct btrfsic_dev_state **selected_dev_state,
373 		struct btrfs_super_block *selected_super);
374 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
375 		struct block_device *bdev);
376 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
377 					   u64 bytenr,
378 					   struct btrfsic_dev_state *dev_state,
379 					   u64 dev_bytenr, char *data);
380 
381 static struct mutex btrfsic_mutex;
382 static int btrfsic_is_initialized;
383 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
384 
385 
btrfsic_block_init(struct btrfsic_block * b)386 static void btrfsic_block_init(struct btrfsic_block *b)
387 {
388 	b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
389 	b->dev_state = NULL;
390 	b->dev_bytenr = 0;
391 	b->logical_bytenr = 0;
392 	b->generation = BTRFSIC_GENERATION_UNKNOWN;
393 	b->disk_key.objectid = 0;
394 	b->disk_key.type = 0;
395 	b->disk_key.offset = 0;
396 	b->is_metadata = 0;
397 	b->is_superblock = 0;
398 	b->is_iodone = 0;
399 	b->iodone_w_error = 0;
400 	b->never_written = 0;
401 	b->mirror_num = 0;
402 	b->next_in_same_bio = NULL;
403 	b->orig_bio_bh_private = NULL;
404 	b->orig_bio_bh_end_io.bio = NULL;
405 	INIT_LIST_HEAD(&b->collision_resolving_node);
406 	INIT_LIST_HEAD(&b->all_blocks_node);
407 	INIT_LIST_HEAD(&b->ref_to_list);
408 	INIT_LIST_HEAD(&b->ref_from_list);
409 	b->submit_bio_bh_rw = 0;
410 	b->flush_gen = 0;
411 }
412 
btrfsic_block_alloc(void)413 static struct btrfsic_block *btrfsic_block_alloc(void)
414 {
415 	struct btrfsic_block *b;
416 
417 	b = kzalloc(sizeof(*b), GFP_NOFS);
418 	if (NULL != b)
419 		btrfsic_block_init(b);
420 
421 	return b;
422 }
423 
btrfsic_block_free(struct btrfsic_block * b)424 static void btrfsic_block_free(struct btrfsic_block *b)
425 {
426 	BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
427 	kfree(b);
428 }
429 
btrfsic_block_link_init(struct btrfsic_block_link * l)430 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
431 {
432 	l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
433 	l->ref_cnt = 1;
434 	INIT_LIST_HEAD(&l->node_ref_to);
435 	INIT_LIST_HEAD(&l->node_ref_from);
436 	INIT_LIST_HEAD(&l->collision_resolving_node);
437 	l->block_ref_to = NULL;
438 	l->block_ref_from = NULL;
439 }
440 
btrfsic_block_link_alloc(void)441 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
442 {
443 	struct btrfsic_block_link *l;
444 
445 	l = kzalloc(sizeof(*l), GFP_NOFS);
446 	if (NULL != l)
447 		btrfsic_block_link_init(l);
448 
449 	return l;
450 }
451 
btrfsic_block_link_free(struct btrfsic_block_link * l)452 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
453 {
454 	BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
455 	kfree(l);
456 }
457 
btrfsic_dev_state_init(struct btrfsic_dev_state * ds)458 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
459 {
460 	ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
461 	ds->bdev = NULL;
462 	ds->state = NULL;
463 	ds->name[0] = '\0';
464 	INIT_LIST_HEAD(&ds->collision_resolving_node);
465 	ds->last_flush_gen = 0;
466 	btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
467 	ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
468 	ds->dummy_block_for_bio_bh_flush.dev_state = ds;
469 }
470 
btrfsic_dev_state_alloc(void)471 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
472 {
473 	struct btrfsic_dev_state *ds;
474 
475 	ds = kzalloc(sizeof(*ds), GFP_NOFS);
476 	if (NULL != ds)
477 		btrfsic_dev_state_init(ds);
478 
479 	return ds;
480 }
481 
btrfsic_dev_state_free(struct btrfsic_dev_state * ds)482 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
483 {
484 	BUG_ON(!(NULL == ds ||
485 		 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
486 	kfree(ds);
487 }
488 
btrfsic_block_hashtable_init(struct btrfsic_block_hashtable * h)489 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
490 {
491 	int i;
492 
493 	for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
494 		INIT_LIST_HEAD(h->table + i);
495 }
496 
btrfsic_block_hashtable_add(struct btrfsic_block * b,struct btrfsic_block_hashtable * h)497 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
498 					struct btrfsic_block_hashtable *h)
499 {
500 	const unsigned int hashval =
501 	    (((unsigned int)(b->dev_bytenr >> 16)) ^
502 	     ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
503 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
504 
505 	list_add(&b->collision_resolving_node, h->table + hashval);
506 }
507 
btrfsic_block_hashtable_remove(struct btrfsic_block * b)508 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
509 {
510 	list_del(&b->collision_resolving_node);
511 }
512 
btrfsic_block_hashtable_lookup(struct block_device * bdev,u64 dev_bytenr,struct btrfsic_block_hashtable * h)513 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
514 		struct block_device *bdev,
515 		u64 dev_bytenr,
516 		struct btrfsic_block_hashtable *h)
517 {
518 	const unsigned int hashval =
519 	    (((unsigned int)(dev_bytenr >> 16)) ^
520 	     ((unsigned int)((uintptr_t)bdev))) &
521 	     (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
522 	struct list_head *elem;
523 
524 	list_for_each(elem, h->table + hashval) {
525 		struct btrfsic_block *const b =
526 		    list_entry(elem, struct btrfsic_block,
527 			       collision_resolving_node);
528 
529 		if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
530 			return b;
531 	}
532 
533 	return NULL;
534 }
535 
btrfsic_block_link_hashtable_init(struct btrfsic_block_link_hashtable * h)536 static void btrfsic_block_link_hashtable_init(
537 		struct btrfsic_block_link_hashtable *h)
538 {
539 	int i;
540 
541 	for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
542 		INIT_LIST_HEAD(h->table + i);
543 }
544 
btrfsic_block_link_hashtable_add(struct btrfsic_block_link * l,struct btrfsic_block_link_hashtable * h)545 static void btrfsic_block_link_hashtable_add(
546 		struct btrfsic_block_link *l,
547 		struct btrfsic_block_link_hashtable *h)
548 {
549 	const unsigned int hashval =
550 	    (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
551 	     ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
552 	     ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
553 	     ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
554 	     & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
555 
556 	BUG_ON(NULL == l->block_ref_to);
557 	BUG_ON(NULL == l->block_ref_from);
558 	list_add(&l->collision_resolving_node, h->table + hashval);
559 }
560 
btrfsic_block_link_hashtable_remove(struct btrfsic_block_link * l)561 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
562 {
563 	list_del(&l->collision_resolving_node);
564 }
565 
btrfsic_block_link_hashtable_lookup(struct block_device * bdev_ref_to,u64 dev_bytenr_ref_to,struct block_device * bdev_ref_from,u64 dev_bytenr_ref_from,struct btrfsic_block_link_hashtable * h)566 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
567 		struct block_device *bdev_ref_to,
568 		u64 dev_bytenr_ref_to,
569 		struct block_device *bdev_ref_from,
570 		u64 dev_bytenr_ref_from,
571 		struct btrfsic_block_link_hashtable *h)
572 {
573 	const unsigned int hashval =
574 	    (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
575 	     ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
576 	     ((unsigned int)((uintptr_t)bdev_ref_to)) ^
577 	     ((unsigned int)((uintptr_t)bdev_ref_from))) &
578 	     (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
579 	struct list_head *elem;
580 
581 	list_for_each(elem, h->table + hashval) {
582 		struct btrfsic_block_link *const l =
583 		    list_entry(elem, struct btrfsic_block_link,
584 			       collision_resolving_node);
585 
586 		BUG_ON(NULL == l->block_ref_to);
587 		BUG_ON(NULL == l->block_ref_from);
588 		if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
589 		    l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
590 		    l->block_ref_from->dev_state->bdev == bdev_ref_from &&
591 		    l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
592 			return l;
593 	}
594 
595 	return NULL;
596 }
597 
btrfsic_dev_state_hashtable_init(struct btrfsic_dev_state_hashtable * h)598 static void btrfsic_dev_state_hashtable_init(
599 		struct btrfsic_dev_state_hashtable *h)
600 {
601 	int i;
602 
603 	for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
604 		INIT_LIST_HEAD(h->table + i);
605 }
606 
btrfsic_dev_state_hashtable_add(struct btrfsic_dev_state * ds,struct btrfsic_dev_state_hashtable * h)607 static void btrfsic_dev_state_hashtable_add(
608 		struct btrfsic_dev_state *ds,
609 		struct btrfsic_dev_state_hashtable *h)
610 {
611 	const unsigned int hashval =
612 	    (((unsigned int)((uintptr_t)ds->bdev)) &
613 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
614 
615 	list_add(&ds->collision_resolving_node, h->table + hashval);
616 }
617 
btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state * ds)618 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
619 {
620 	list_del(&ds->collision_resolving_node);
621 }
622 
btrfsic_dev_state_hashtable_lookup(struct block_device * bdev,struct btrfsic_dev_state_hashtable * h)623 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
624 		struct block_device *bdev,
625 		struct btrfsic_dev_state_hashtable *h)
626 {
627 	const unsigned int hashval =
628 	    (((unsigned int)((uintptr_t)bdev)) &
629 	     (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
630 	struct list_head *elem;
631 
632 	list_for_each(elem, h->table + hashval) {
633 		struct btrfsic_dev_state *const ds =
634 		    list_entry(elem, struct btrfsic_dev_state,
635 			       collision_resolving_node);
636 
637 		if (ds->bdev == bdev)
638 			return ds;
639 	}
640 
641 	return NULL;
642 }
643 
btrfsic_process_superblock(struct btrfsic_state * state,struct btrfs_fs_devices * fs_devices)644 static int btrfsic_process_superblock(struct btrfsic_state *state,
645 				      struct btrfs_fs_devices *fs_devices)
646 {
647 	int ret = 0;
648 	struct btrfs_super_block *selected_super;
649 	struct list_head *dev_head = &fs_devices->devices;
650 	struct btrfs_device *device;
651 	struct btrfsic_dev_state *selected_dev_state = NULL;
652 	int pass;
653 
654 	BUG_ON(NULL == state);
655 	selected_super = kmalloc(sizeof(*selected_super), GFP_NOFS);
656 	if (NULL == selected_super) {
657 		printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
658 		return -1;
659 	}
660 
661 	list_for_each_entry(device, dev_head, dev_list) {
662 		int i;
663 		struct btrfsic_dev_state *dev_state;
664 
665 		if (!device->bdev || !device->name)
666 			continue;
667 
668 		dev_state = btrfsic_dev_state_lookup(device->bdev);
669 		BUG_ON(NULL == dev_state);
670 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
671 			ret = btrfsic_process_superblock_dev_mirror(
672 					state, dev_state, device, i,
673 					&selected_dev_state, selected_super);
674 			if (0 != ret && 0 == i) {
675 				kfree(selected_super);
676 				return ret;
677 			}
678 		}
679 	}
680 
681 	if (NULL == state->latest_superblock) {
682 		printk(KERN_INFO "btrfsic: no superblock found!\n");
683 		kfree(selected_super);
684 		return -1;
685 	}
686 
687 	state->csum_size = btrfs_super_csum_size(selected_super);
688 
689 	for (pass = 0; pass < 3; pass++) {
690 		int num_copies;
691 		int mirror_num;
692 		u64 next_bytenr;
693 
694 		switch (pass) {
695 		case 0:
696 			next_bytenr = btrfs_super_root(selected_super);
697 			if (state->print_mask &
698 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
699 				printk(KERN_INFO "root@%llu\n",
700 				       (unsigned long long)next_bytenr);
701 			break;
702 		case 1:
703 			next_bytenr = btrfs_super_chunk_root(selected_super);
704 			if (state->print_mask &
705 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
706 				printk(KERN_INFO "chunk@%llu\n",
707 				       (unsigned long long)next_bytenr);
708 			break;
709 		case 2:
710 			next_bytenr = btrfs_super_log_root(selected_super);
711 			if (0 == next_bytenr)
712 				continue;
713 			if (state->print_mask &
714 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715 				printk(KERN_INFO "log@%llu\n",
716 				       (unsigned long long)next_bytenr);
717 			break;
718 		}
719 
720 		num_copies =
721 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
722 				     next_bytenr, PAGE_SIZE);
723 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
724 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
725 			       (unsigned long long)next_bytenr, num_copies);
726 
727 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
728 			struct btrfsic_block *next_block;
729 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
730 			struct btrfsic_block_link *l;
731 			struct btrfs_header *hdr;
732 
733 			ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
734 						&tmp_next_block_ctx,
735 						mirror_num);
736 			if (ret) {
737 				printk(KERN_INFO "btrfsic:"
738 				       " btrfsic_map_block(root @%llu,"
739 				       " mirror %d) failed!\n",
740 				       (unsigned long long)next_bytenr,
741 				       mirror_num);
742 				kfree(selected_super);
743 				return -1;
744 			}
745 
746 			next_block = btrfsic_block_hashtable_lookup(
747 					tmp_next_block_ctx.dev->bdev,
748 					tmp_next_block_ctx.dev_bytenr,
749 					&state->block_hashtable);
750 			BUG_ON(NULL == next_block);
751 
752 			l = btrfsic_block_link_hashtable_lookup(
753 					tmp_next_block_ctx.dev->bdev,
754 					tmp_next_block_ctx.dev_bytenr,
755 					state->latest_superblock->dev_state->
756 					bdev,
757 					state->latest_superblock->dev_bytenr,
758 					&state->block_link_hashtable);
759 			BUG_ON(NULL == l);
760 
761 			ret = btrfsic_read_block(state, &tmp_next_block_ctx);
762 			if (ret < (int)BTRFSIC_BLOCK_SIZE) {
763 				printk(KERN_INFO
764 				       "btrfsic: read @logical %llu failed!\n",
765 				       (unsigned long long)
766 				       tmp_next_block_ctx.start);
767 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
768 				kfree(selected_super);
769 				return -1;
770 			}
771 
772 			hdr = (struct btrfs_header *)tmp_next_block_ctx.data;
773 			ret = btrfsic_process_metablock(state,
774 							next_block,
775 							&tmp_next_block_ctx,
776 							hdr,
777 							BTRFS_MAX_LEVEL + 3, 1);
778 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
779 		}
780 	}
781 
782 	kfree(selected_super);
783 	return ret;
784 }
785 
btrfsic_process_superblock_dev_mirror(struct btrfsic_state * state,struct btrfsic_dev_state * dev_state,struct btrfs_device * device,int superblock_mirror_num,struct btrfsic_dev_state ** selected_dev_state,struct btrfs_super_block * selected_super)786 static int btrfsic_process_superblock_dev_mirror(
787 		struct btrfsic_state *state,
788 		struct btrfsic_dev_state *dev_state,
789 		struct btrfs_device *device,
790 		int superblock_mirror_num,
791 		struct btrfsic_dev_state **selected_dev_state,
792 		struct btrfs_super_block *selected_super)
793 {
794 	struct btrfs_super_block *super_tmp;
795 	u64 dev_bytenr;
796 	struct buffer_head *bh;
797 	struct btrfsic_block *superblock_tmp;
798 	int pass;
799 	struct block_device *const superblock_bdev = device->bdev;
800 
801 	/* super block bytenr is always the unmapped device bytenr */
802 	dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
803 	bh = __bread(superblock_bdev, dev_bytenr / 4096, 4096);
804 	if (NULL == bh)
805 		return -1;
806 	super_tmp = (struct btrfs_super_block *)
807 	    (bh->b_data + (dev_bytenr & 4095));
808 
809 	if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
810 	    strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
811 		    sizeof(super_tmp->magic)) ||
812 	    memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE)) {
813 		brelse(bh);
814 		return 0;
815 	}
816 
817 	superblock_tmp =
818 	    btrfsic_block_hashtable_lookup(superblock_bdev,
819 					   dev_bytenr,
820 					   &state->block_hashtable);
821 	if (NULL == superblock_tmp) {
822 		superblock_tmp = btrfsic_block_alloc();
823 		if (NULL == superblock_tmp) {
824 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
825 			brelse(bh);
826 			return -1;
827 		}
828 		/* for superblock, only the dev_bytenr makes sense */
829 		superblock_tmp->dev_bytenr = dev_bytenr;
830 		superblock_tmp->dev_state = dev_state;
831 		superblock_tmp->logical_bytenr = dev_bytenr;
832 		superblock_tmp->generation = btrfs_super_generation(super_tmp);
833 		superblock_tmp->is_metadata = 1;
834 		superblock_tmp->is_superblock = 1;
835 		superblock_tmp->is_iodone = 1;
836 		superblock_tmp->never_written = 0;
837 		superblock_tmp->mirror_num = 1 + superblock_mirror_num;
838 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
839 			printk(KERN_INFO "New initial S-block (bdev %p, %s)"
840 			       " @%llu (%s/%llu/%d)\n",
841 			       superblock_bdev, device->name,
842 			       (unsigned long long)dev_bytenr,
843 			       dev_state->name,
844 			       (unsigned long long)dev_bytenr,
845 			       superblock_mirror_num);
846 		list_add(&superblock_tmp->all_blocks_node,
847 			 &state->all_blocks_list);
848 		btrfsic_block_hashtable_add(superblock_tmp,
849 					    &state->block_hashtable);
850 	}
851 
852 	/* select the one with the highest generation field */
853 	if (btrfs_super_generation(super_tmp) >
854 	    state->max_superblock_generation ||
855 	    0 == state->max_superblock_generation) {
856 		memcpy(selected_super, super_tmp, sizeof(*selected_super));
857 		*selected_dev_state = dev_state;
858 		state->max_superblock_generation =
859 		    btrfs_super_generation(super_tmp);
860 		state->latest_superblock = superblock_tmp;
861 	}
862 
863 	for (pass = 0; pass < 3; pass++) {
864 		u64 next_bytenr;
865 		int num_copies;
866 		int mirror_num;
867 		const char *additional_string = NULL;
868 		struct btrfs_disk_key tmp_disk_key;
869 
870 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
871 		tmp_disk_key.offset = 0;
872 		switch (pass) {
873 		case 0:
874 			tmp_disk_key.objectid =
875 			    cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
876 			additional_string = "initial root ";
877 			next_bytenr = btrfs_super_root(super_tmp);
878 			break;
879 		case 1:
880 			tmp_disk_key.objectid =
881 			    cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
882 			additional_string = "initial chunk ";
883 			next_bytenr = btrfs_super_chunk_root(super_tmp);
884 			break;
885 		case 2:
886 			tmp_disk_key.objectid =
887 			    cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
888 			additional_string = "initial log ";
889 			next_bytenr = btrfs_super_log_root(super_tmp);
890 			if (0 == next_bytenr)
891 				continue;
892 			break;
893 		}
894 
895 		num_copies =
896 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
897 				     next_bytenr, PAGE_SIZE);
898 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
899 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
900 			       (unsigned long long)next_bytenr, num_copies);
901 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
902 			struct btrfsic_block *next_block;
903 			struct btrfsic_block_data_ctx tmp_next_block_ctx;
904 			struct btrfsic_block_link *l;
905 
906 			if (btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
907 					      &tmp_next_block_ctx,
908 					      mirror_num)) {
909 				printk(KERN_INFO "btrfsic: btrfsic_map_block("
910 				       "bytenr @%llu, mirror %d) failed!\n",
911 				       (unsigned long long)next_bytenr,
912 				       mirror_num);
913 				brelse(bh);
914 				return -1;
915 			}
916 
917 			next_block = btrfsic_block_lookup_or_add(
918 					state, &tmp_next_block_ctx,
919 					additional_string, 1, 1, 0,
920 					mirror_num, NULL);
921 			if (NULL == next_block) {
922 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
923 				brelse(bh);
924 				return -1;
925 			}
926 
927 			next_block->disk_key = tmp_disk_key;
928 			next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
929 			l = btrfsic_block_link_lookup_or_add(
930 					state, &tmp_next_block_ctx,
931 					next_block, superblock_tmp,
932 					BTRFSIC_GENERATION_UNKNOWN);
933 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 			if (NULL == l) {
935 				brelse(bh);
936 				return -1;
937 			}
938 		}
939 	}
940 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
941 		btrfsic_dump_tree_sub(state, superblock_tmp, 0);
942 
943 	brelse(bh);
944 	return 0;
945 }
946 
btrfsic_stack_frame_alloc(void)947 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
948 {
949 	struct btrfsic_stack_frame *sf;
950 
951 	sf = kzalloc(sizeof(*sf), GFP_NOFS);
952 	if (NULL == sf)
953 		printk(KERN_INFO "btrfsic: alloc memory failed!\n");
954 	else
955 		sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
956 	return sf;
957 }
958 
btrfsic_stack_frame_free(struct btrfsic_stack_frame * sf)959 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
960 {
961 	BUG_ON(!(NULL == sf ||
962 		 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
963 	kfree(sf);
964 }
965 
btrfsic_process_metablock(struct btrfsic_state * state,struct btrfsic_block * const first_block,struct btrfsic_block_data_ctx * const first_block_ctx,struct btrfs_header * const first_hdr,int first_limit_nesting,int force_iodone_flag)966 static int btrfsic_process_metablock(
967 		struct btrfsic_state *state,
968 		struct btrfsic_block *const first_block,
969 		struct btrfsic_block_data_ctx *const first_block_ctx,
970 		struct btrfs_header *const first_hdr,
971 		int first_limit_nesting, int force_iodone_flag)
972 {
973 	struct btrfsic_stack_frame initial_stack_frame = { 0 };
974 	struct btrfsic_stack_frame *sf;
975 	struct btrfsic_stack_frame *next_stack;
976 
977 	sf = &initial_stack_frame;
978 	sf->error = 0;
979 	sf->i = -1;
980 	sf->limit_nesting = first_limit_nesting;
981 	sf->block = first_block;
982 	sf->block_ctx = first_block_ctx;
983 	sf->next_block = NULL;
984 	sf->hdr = first_hdr;
985 	sf->prev = NULL;
986 
987 continue_with_new_stack_frame:
988 	sf->block->generation = le64_to_cpu(sf->hdr->generation);
989 	if (0 == sf->hdr->level) {
990 		struct btrfs_leaf *const leafhdr =
991 		    (struct btrfs_leaf *)sf->hdr;
992 
993 		if (-1 == sf->i) {
994 			sf->nr = le32_to_cpu(leafhdr->header.nritems);
995 
996 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
997 				printk(KERN_INFO
998 				       "leaf %llu items %d generation %llu"
999 				       " owner %llu\n",
1000 				       (unsigned long long)
1001 				       sf->block_ctx->start,
1002 				       sf->nr,
1003 				       (unsigned long long)
1004 				       le64_to_cpu(leafhdr->header.generation),
1005 				       (unsigned long long)
1006 				       le64_to_cpu(leafhdr->header.owner));
1007 		}
1008 
1009 continue_with_current_leaf_stack_frame:
1010 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1011 			sf->i++;
1012 			sf->num_copies = 0;
1013 		}
1014 
1015 		if (sf->i < sf->nr) {
1016 			struct btrfs_item *disk_item = leafhdr->items + sf->i;
1017 			struct btrfs_disk_key *disk_key = &disk_item->key;
1018 			u8 type;
1019 			const u32 item_offset = le32_to_cpu(disk_item->offset);
1020 
1021 			type = disk_key->type;
1022 
1023 			if (BTRFS_ROOT_ITEM_KEY == type) {
1024 				const struct btrfs_root_item *const root_item =
1025 				    (struct btrfs_root_item *)
1026 				    (sf->block_ctx->data +
1027 				     offsetof(struct btrfs_leaf, items) +
1028 				     item_offset);
1029 				const u64 next_bytenr =
1030 				    le64_to_cpu(root_item->bytenr);
1031 
1032 				sf->error =
1033 				    btrfsic_create_link_to_next_block(
1034 						state,
1035 						sf->block,
1036 						sf->block_ctx,
1037 						next_bytenr,
1038 						sf->limit_nesting,
1039 						&sf->next_block_ctx,
1040 						&sf->next_block,
1041 						force_iodone_flag,
1042 						&sf->num_copies,
1043 						&sf->mirror_num,
1044 						disk_key,
1045 						le64_to_cpu(root_item->
1046 						generation));
1047 				if (sf->error)
1048 					goto one_stack_frame_backwards;
1049 
1050 				if (NULL != sf->next_block) {
1051 					struct btrfs_header *const next_hdr =
1052 					    (struct btrfs_header *)
1053 					    sf->next_block_ctx.data;
1054 
1055 					next_stack =
1056 					    btrfsic_stack_frame_alloc();
1057 					if (NULL == next_stack) {
1058 						btrfsic_release_block_ctx(
1059 								&sf->
1060 								next_block_ctx);
1061 						goto one_stack_frame_backwards;
1062 					}
1063 
1064 					next_stack->i = -1;
1065 					next_stack->block = sf->next_block;
1066 					next_stack->block_ctx =
1067 					    &sf->next_block_ctx;
1068 					next_stack->next_block = NULL;
1069 					next_stack->hdr = next_hdr;
1070 					next_stack->limit_nesting =
1071 					    sf->limit_nesting - 1;
1072 					next_stack->prev = sf;
1073 					sf = next_stack;
1074 					goto continue_with_new_stack_frame;
1075 				}
1076 			} else if (BTRFS_EXTENT_DATA_KEY == type &&
1077 				   state->include_extent_data) {
1078 				sf->error = btrfsic_handle_extent_data(
1079 						state,
1080 						sf->block,
1081 						sf->block_ctx,
1082 						item_offset,
1083 						force_iodone_flag);
1084 				if (sf->error)
1085 					goto one_stack_frame_backwards;
1086 			}
1087 
1088 			goto continue_with_current_leaf_stack_frame;
1089 		}
1090 	} else {
1091 		struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1092 
1093 		if (-1 == sf->i) {
1094 			sf->nr = le32_to_cpu(nodehdr->header.nritems);
1095 
1096 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1097 				printk(KERN_INFO "node %llu level %d items %d"
1098 				       " generation %llu owner %llu\n",
1099 				       (unsigned long long)
1100 				       sf->block_ctx->start,
1101 				       nodehdr->header.level, sf->nr,
1102 				       (unsigned long long)
1103 				       le64_to_cpu(nodehdr->header.generation),
1104 				       (unsigned long long)
1105 				       le64_to_cpu(nodehdr->header.owner));
1106 		}
1107 
1108 continue_with_current_node_stack_frame:
1109 		if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1110 			sf->i++;
1111 			sf->num_copies = 0;
1112 		}
1113 
1114 		if (sf->i < sf->nr) {
1115 			struct btrfs_key_ptr *disk_key_ptr =
1116 			    nodehdr->ptrs + sf->i;
1117 			const u64 next_bytenr =
1118 			    le64_to_cpu(disk_key_ptr->blockptr);
1119 
1120 			sf->error = btrfsic_create_link_to_next_block(
1121 					state,
1122 					sf->block,
1123 					sf->block_ctx,
1124 					next_bytenr,
1125 					sf->limit_nesting,
1126 					&sf->next_block_ctx,
1127 					&sf->next_block,
1128 					force_iodone_flag,
1129 					&sf->num_copies,
1130 					&sf->mirror_num,
1131 					&disk_key_ptr->key,
1132 					le64_to_cpu(disk_key_ptr->generation));
1133 			if (sf->error)
1134 				goto one_stack_frame_backwards;
1135 
1136 			if (NULL != sf->next_block) {
1137 				struct btrfs_header *const next_hdr =
1138 				    (struct btrfs_header *)
1139 				    sf->next_block_ctx.data;
1140 
1141 				next_stack = btrfsic_stack_frame_alloc();
1142 				if (NULL == next_stack)
1143 					goto one_stack_frame_backwards;
1144 
1145 				next_stack->i = -1;
1146 				next_stack->block = sf->next_block;
1147 				next_stack->block_ctx = &sf->next_block_ctx;
1148 				next_stack->next_block = NULL;
1149 				next_stack->hdr = next_hdr;
1150 				next_stack->limit_nesting =
1151 				    sf->limit_nesting - 1;
1152 				next_stack->prev = sf;
1153 				sf = next_stack;
1154 				goto continue_with_new_stack_frame;
1155 			}
1156 
1157 			goto continue_with_current_node_stack_frame;
1158 		}
1159 	}
1160 
1161 one_stack_frame_backwards:
1162 	if (NULL != sf->prev) {
1163 		struct btrfsic_stack_frame *const prev = sf->prev;
1164 
1165 		/* the one for the initial block is freed in the caller */
1166 		btrfsic_release_block_ctx(sf->block_ctx);
1167 
1168 		if (sf->error) {
1169 			prev->error = sf->error;
1170 			btrfsic_stack_frame_free(sf);
1171 			sf = prev;
1172 			goto one_stack_frame_backwards;
1173 		}
1174 
1175 		btrfsic_stack_frame_free(sf);
1176 		sf = prev;
1177 		goto continue_with_new_stack_frame;
1178 	} else {
1179 		BUG_ON(&initial_stack_frame != sf);
1180 	}
1181 
1182 	return sf->error;
1183 }
1184 
btrfsic_create_link_to_next_block(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u64 next_bytenr,int limit_nesting,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block ** next_blockp,int force_iodone_flag,int * num_copiesp,int * mirror_nump,struct btrfs_disk_key * disk_key,u64 parent_generation)1185 static int btrfsic_create_link_to_next_block(
1186 		struct btrfsic_state *state,
1187 		struct btrfsic_block *block,
1188 		struct btrfsic_block_data_ctx *block_ctx,
1189 		u64 next_bytenr,
1190 		int limit_nesting,
1191 		struct btrfsic_block_data_ctx *next_block_ctx,
1192 		struct btrfsic_block **next_blockp,
1193 		int force_iodone_flag,
1194 		int *num_copiesp, int *mirror_nump,
1195 		struct btrfs_disk_key *disk_key,
1196 		u64 parent_generation)
1197 {
1198 	struct btrfsic_block *next_block = NULL;
1199 	int ret;
1200 	struct btrfsic_block_link *l;
1201 	int did_alloc_block_link;
1202 	int block_was_created;
1203 
1204 	*next_blockp = NULL;
1205 	if (0 == *num_copiesp) {
1206 		*num_copiesp =
1207 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
1208 				     next_bytenr, PAGE_SIZE);
1209 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1210 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1211 			       (unsigned long long)next_bytenr, *num_copiesp);
1212 		*mirror_nump = 1;
1213 	}
1214 
1215 	if (*mirror_nump > *num_copiesp)
1216 		return 0;
1217 
1218 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1219 		printk(KERN_INFO
1220 		       "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1221 		       *mirror_nump);
1222 	ret = btrfsic_map_block(state, next_bytenr,
1223 				BTRFSIC_BLOCK_SIZE,
1224 				next_block_ctx, *mirror_nump);
1225 	if (ret) {
1226 		printk(KERN_INFO
1227 		       "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1228 		       (unsigned long long)next_bytenr, *mirror_nump);
1229 		btrfsic_release_block_ctx(next_block_ctx);
1230 		*next_blockp = NULL;
1231 		return -1;
1232 	}
1233 
1234 	next_block = btrfsic_block_lookup_or_add(state,
1235 						 next_block_ctx, "referenced ",
1236 						 1, force_iodone_flag,
1237 						 !force_iodone_flag,
1238 						 *mirror_nump,
1239 						 &block_was_created);
1240 	if (NULL == next_block) {
1241 		btrfsic_release_block_ctx(next_block_ctx);
1242 		*next_blockp = NULL;
1243 		return -1;
1244 	}
1245 	if (block_was_created) {
1246 		l = NULL;
1247 		next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1248 	} else {
1249 		if (next_block->logical_bytenr != next_bytenr &&
1250 		    !(!next_block->is_metadata &&
1251 		      0 == next_block->logical_bytenr)) {
1252 			printk(KERN_INFO
1253 			       "Referenced block @%llu (%s/%llu/%d)"
1254 			       " found in hash table, %c,"
1255 			       " bytenr mismatch (!= stored %llu).\n",
1256 			       (unsigned long long)next_bytenr,
1257 			       next_block_ctx->dev->name,
1258 			       (unsigned long long)next_block_ctx->dev_bytenr,
1259 			       *mirror_nump,
1260 			       btrfsic_get_block_type(state, next_block),
1261 			       (unsigned long long)next_block->logical_bytenr);
1262 		} else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1263 			printk(KERN_INFO
1264 			       "Referenced block @%llu (%s/%llu/%d)"
1265 			       " found in hash table, %c.\n",
1266 			       (unsigned long long)next_bytenr,
1267 			       next_block_ctx->dev->name,
1268 			       (unsigned long long)next_block_ctx->dev_bytenr,
1269 			       *mirror_nump,
1270 			       btrfsic_get_block_type(state, next_block));
1271 		next_block->logical_bytenr = next_bytenr;
1272 
1273 		next_block->mirror_num = *mirror_nump;
1274 		l = btrfsic_block_link_hashtable_lookup(
1275 				next_block_ctx->dev->bdev,
1276 				next_block_ctx->dev_bytenr,
1277 				block_ctx->dev->bdev,
1278 				block_ctx->dev_bytenr,
1279 				&state->block_link_hashtable);
1280 	}
1281 
1282 	next_block->disk_key = *disk_key;
1283 	if (NULL == l) {
1284 		l = btrfsic_block_link_alloc();
1285 		if (NULL == l) {
1286 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1287 			btrfsic_release_block_ctx(next_block_ctx);
1288 			*next_blockp = NULL;
1289 			return -1;
1290 		}
1291 
1292 		did_alloc_block_link = 1;
1293 		l->block_ref_to = next_block;
1294 		l->block_ref_from = block;
1295 		l->ref_cnt = 1;
1296 		l->parent_generation = parent_generation;
1297 
1298 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1299 			btrfsic_print_add_link(state, l);
1300 
1301 		list_add(&l->node_ref_to, &block->ref_to_list);
1302 		list_add(&l->node_ref_from, &next_block->ref_from_list);
1303 
1304 		btrfsic_block_link_hashtable_add(l,
1305 						 &state->block_link_hashtable);
1306 	} else {
1307 		did_alloc_block_link = 0;
1308 		if (0 == limit_nesting) {
1309 			l->ref_cnt++;
1310 			l->parent_generation = parent_generation;
1311 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1312 				btrfsic_print_add_link(state, l);
1313 		}
1314 	}
1315 
1316 	if (limit_nesting > 0 && did_alloc_block_link) {
1317 		ret = btrfsic_read_block(state, next_block_ctx);
1318 		if (ret < (int)BTRFSIC_BLOCK_SIZE) {
1319 			printk(KERN_INFO
1320 			       "btrfsic: read block @logical %llu failed!\n",
1321 			       (unsigned long long)next_bytenr);
1322 			btrfsic_release_block_ctx(next_block_ctx);
1323 			*next_blockp = NULL;
1324 			return -1;
1325 		}
1326 
1327 		*next_blockp = next_block;
1328 	} else {
1329 		*next_blockp = NULL;
1330 	}
1331 	(*mirror_nump)++;
1332 
1333 	return 0;
1334 }
1335 
btrfsic_handle_extent_data(struct btrfsic_state * state,struct btrfsic_block * block,struct btrfsic_block_data_ctx * block_ctx,u32 item_offset,int force_iodone_flag)1336 static int btrfsic_handle_extent_data(
1337 		struct btrfsic_state *state,
1338 		struct btrfsic_block *block,
1339 		struct btrfsic_block_data_ctx *block_ctx,
1340 		u32 item_offset, int force_iodone_flag)
1341 {
1342 	int ret;
1343 	struct btrfs_file_extent_item *file_extent_item =
1344 	    (struct btrfs_file_extent_item *)(block_ctx->data +
1345 					      offsetof(struct btrfs_leaf,
1346 						       items) + item_offset);
1347 	u64 next_bytenr =
1348 	    le64_to_cpu(file_extent_item->disk_bytenr) +
1349 	    le64_to_cpu(file_extent_item->offset);
1350 	u64 num_bytes = le64_to_cpu(file_extent_item->num_bytes);
1351 	u64 generation = le64_to_cpu(file_extent_item->generation);
1352 	struct btrfsic_block_link *l;
1353 
1354 	if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1355 		printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1356 		       " offset = %llu, num_bytes = %llu\n",
1357 		       file_extent_item->type,
1358 		       (unsigned long long)
1359 		       le64_to_cpu(file_extent_item->disk_bytenr),
1360 		       (unsigned long long)
1361 		       le64_to_cpu(file_extent_item->offset),
1362 		       (unsigned long long)
1363 		       le64_to_cpu(file_extent_item->num_bytes));
1364 	if (BTRFS_FILE_EXTENT_REG != file_extent_item->type ||
1365 	    ((u64)0) == le64_to_cpu(file_extent_item->disk_bytenr))
1366 		return 0;
1367 	while (num_bytes > 0) {
1368 		u32 chunk_len;
1369 		int num_copies;
1370 		int mirror_num;
1371 
1372 		if (num_bytes > BTRFSIC_BLOCK_SIZE)
1373 			chunk_len = BTRFSIC_BLOCK_SIZE;
1374 		else
1375 			chunk_len = num_bytes;
1376 
1377 		num_copies =
1378 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
1379 				     next_bytenr, PAGE_SIZE);
1380 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1381 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1382 			       (unsigned long long)next_bytenr, num_copies);
1383 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1384 			struct btrfsic_block_data_ctx next_block_ctx;
1385 			struct btrfsic_block *next_block;
1386 			int block_was_created;
1387 
1388 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1389 				printk(KERN_INFO "btrfsic_handle_extent_data("
1390 				       "mirror_num=%d)\n", mirror_num);
1391 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1392 				printk(KERN_INFO
1393 				       "\tdisk_bytenr = %llu, num_bytes %u\n",
1394 				       (unsigned long long)next_bytenr,
1395 				       chunk_len);
1396 			ret = btrfsic_map_block(state, next_bytenr,
1397 						chunk_len, &next_block_ctx,
1398 						mirror_num);
1399 			if (ret) {
1400 				printk(KERN_INFO
1401 				       "btrfsic: btrfsic_map_block(@%llu,"
1402 				       " mirror=%d) failed!\n",
1403 				       (unsigned long long)next_bytenr,
1404 				       mirror_num);
1405 				return -1;
1406 			}
1407 
1408 			next_block = btrfsic_block_lookup_or_add(
1409 					state,
1410 					&next_block_ctx,
1411 					"referenced ",
1412 					0,
1413 					force_iodone_flag,
1414 					!force_iodone_flag,
1415 					mirror_num,
1416 					&block_was_created);
1417 			if (NULL == next_block) {
1418 				printk(KERN_INFO
1419 				       "btrfsic: error, kmalloc failed!\n");
1420 				btrfsic_release_block_ctx(&next_block_ctx);
1421 				return -1;
1422 			}
1423 			if (!block_was_created) {
1424 				if (next_block->logical_bytenr != next_bytenr &&
1425 				    !(!next_block->is_metadata &&
1426 				      0 == next_block->logical_bytenr)) {
1427 					printk(KERN_INFO
1428 					       "Referenced block"
1429 					       " @%llu (%s/%llu/%d)"
1430 					       " found in hash table, D,"
1431 					       " bytenr mismatch"
1432 					       " (!= stored %llu).\n",
1433 					       (unsigned long long)next_bytenr,
1434 					       next_block_ctx.dev->name,
1435 					       (unsigned long long)
1436 					       next_block_ctx.dev_bytenr,
1437 					       mirror_num,
1438 					       (unsigned long long)
1439 					       next_block->logical_bytenr);
1440 				}
1441 				next_block->logical_bytenr = next_bytenr;
1442 				next_block->mirror_num = mirror_num;
1443 			}
1444 
1445 			l = btrfsic_block_link_lookup_or_add(state,
1446 							     &next_block_ctx,
1447 							     next_block, block,
1448 							     generation);
1449 			btrfsic_release_block_ctx(&next_block_ctx);
1450 			if (NULL == l)
1451 				return -1;
1452 		}
1453 
1454 		next_bytenr += chunk_len;
1455 		num_bytes -= chunk_len;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
btrfsic_map_block(struct btrfsic_state * state,u64 bytenr,u32 len,struct btrfsic_block_data_ctx * block_ctx_out,int mirror_num)1461 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1462 			     struct btrfsic_block_data_ctx *block_ctx_out,
1463 			     int mirror_num)
1464 {
1465 	int ret;
1466 	u64 length;
1467 	struct btrfs_bio *multi = NULL;
1468 	struct btrfs_device *device;
1469 
1470 	length = len;
1471 	ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
1472 			      bytenr, &length, &multi, mirror_num);
1473 
1474 	device = multi->stripes[0].dev;
1475 	block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1476 	block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1477 	block_ctx_out->start = bytenr;
1478 	block_ctx_out->len = len;
1479 	block_ctx_out->data = NULL;
1480 	block_ctx_out->bh = NULL;
1481 
1482 	if (0 == ret)
1483 		kfree(multi);
1484 	if (NULL == block_ctx_out->dev) {
1485 		ret = -ENXIO;
1486 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1487 	}
1488 
1489 	return ret;
1490 }
1491 
btrfsic_map_superblock(struct btrfsic_state * state,u64 bytenr,u32 len,struct block_device * bdev,struct btrfsic_block_data_ctx * block_ctx_out)1492 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1493 				  u32 len, struct block_device *bdev,
1494 				  struct btrfsic_block_data_ctx *block_ctx_out)
1495 {
1496 	block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1497 	block_ctx_out->dev_bytenr = bytenr;
1498 	block_ctx_out->start = bytenr;
1499 	block_ctx_out->len = len;
1500 	block_ctx_out->data = NULL;
1501 	block_ctx_out->bh = NULL;
1502 	if (NULL != block_ctx_out->dev) {
1503 		return 0;
1504 	} else {
1505 		printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1506 		return -ENXIO;
1507 	}
1508 }
1509 
btrfsic_release_block_ctx(struct btrfsic_block_data_ctx * block_ctx)1510 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1511 {
1512 	if (NULL != block_ctx->bh) {
1513 		brelse(block_ctx->bh);
1514 		block_ctx->bh = NULL;
1515 	}
1516 }
1517 
btrfsic_read_block(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx)1518 static int btrfsic_read_block(struct btrfsic_state *state,
1519 			      struct btrfsic_block_data_ctx *block_ctx)
1520 {
1521 	block_ctx->bh = NULL;
1522 	if (block_ctx->dev_bytenr & 4095) {
1523 		printk(KERN_INFO
1524 		       "btrfsic: read_block() with unaligned bytenr %llu\n",
1525 		       (unsigned long long)block_ctx->dev_bytenr);
1526 		return -1;
1527 	}
1528 	if (block_ctx->len > 4096) {
1529 		printk(KERN_INFO
1530 		       "btrfsic: read_block() with too huge size %d\n",
1531 		       block_ctx->len);
1532 		return -1;
1533 	}
1534 
1535 	block_ctx->bh = __bread(block_ctx->dev->bdev,
1536 				block_ctx->dev_bytenr >> 12, 4096);
1537 	if (NULL == block_ctx->bh)
1538 		return -1;
1539 	block_ctx->data = block_ctx->bh->b_data;
1540 
1541 	return block_ctx->len;
1542 }
1543 
btrfsic_dump_database(struct btrfsic_state * state)1544 static void btrfsic_dump_database(struct btrfsic_state *state)
1545 {
1546 	struct list_head *elem_all;
1547 
1548 	BUG_ON(NULL == state);
1549 
1550 	printk(KERN_INFO "all_blocks_list:\n");
1551 	list_for_each(elem_all, &state->all_blocks_list) {
1552 		const struct btrfsic_block *const b_all =
1553 		    list_entry(elem_all, struct btrfsic_block,
1554 			       all_blocks_node);
1555 		struct list_head *elem_ref_to;
1556 		struct list_head *elem_ref_from;
1557 
1558 		printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1559 		       btrfsic_get_block_type(state, b_all),
1560 		       (unsigned long long)b_all->logical_bytenr,
1561 		       b_all->dev_state->name,
1562 		       (unsigned long long)b_all->dev_bytenr,
1563 		       b_all->mirror_num);
1564 
1565 		list_for_each(elem_ref_to, &b_all->ref_to_list) {
1566 			const struct btrfsic_block_link *const l =
1567 			    list_entry(elem_ref_to,
1568 				       struct btrfsic_block_link,
1569 				       node_ref_to);
1570 
1571 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1572 			       " refers %u* to"
1573 			       " %c @%llu (%s/%llu/%d)\n",
1574 			       btrfsic_get_block_type(state, b_all),
1575 			       (unsigned long long)b_all->logical_bytenr,
1576 			       b_all->dev_state->name,
1577 			       (unsigned long long)b_all->dev_bytenr,
1578 			       b_all->mirror_num,
1579 			       l->ref_cnt,
1580 			       btrfsic_get_block_type(state, l->block_ref_to),
1581 			       (unsigned long long)
1582 			       l->block_ref_to->logical_bytenr,
1583 			       l->block_ref_to->dev_state->name,
1584 			       (unsigned long long)l->block_ref_to->dev_bytenr,
1585 			       l->block_ref_to->mirror_num);
1586 		}
1587 
1588 		list_for_each(elem_ref_from, &b_all->ref_from_list) {
1589 			const struct btrfsic_block_link *const l =
1590 			    list_entry(elem_ref_from,
1591 				       struct btrfsic_block_link,
1592 				       node_ref_from);
1593 
1594 			printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1595 			       " is ref %u* from"
1596 			       " %c @%llu (%s/%llu/%d)\n",
1597 			       btrfsic_get_block_type(state, b_all),
1598 			       (unsigned long long)b_all->logical_bytenr,
1599 			       b_all->dev_state->name,
1600 			       (unsigned long long)b_all->dev_bytenr,
1601 			       b_all->mirror_num,
1602 			       l->ref_cnt,
1603 			       btrfsic_get_block_type(state, l->block_ref_from),
1604 			       (unsigned long long)
1605 			       l->block_ref_from->logical_bytenr,
1606 			       l->block_ref_from->dev_state->name,
1607 			       (unsigned long long)
1608 			       l->block_ref_from->dev_bytenr,
1609 			       l->block_ref_from->mirror_num);
1610 		}
1611 
1612 		printk(KERN_INFO "\n");
1613 	}
1614 }
1615 
1616 /*
1617  * Test whether the disk block contains a tree block (leaf or node)
1618  * (note that this test fails for the super block)
1619  */
btrfsic_test_for_metadata(struct btrfsic_state * state,const u8 * data,unsigned int size)1620 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1621 				     const u8 *data, unsigned int size)
1622 {
1623 	struct btrfs_header *h;
1624 	u8 csum[BTRFS_CSUM_SIZE];
1625 	u32 crc = ~(u32)0;
1626 	int fail = 0;
1627 	int crc_fail = 0;
1628 
1629 	h = (struct btrfs_header *)data;
1630 
1631 	if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1632 		fail++;
1633 
1634 	crc = crc32c(crc, data + BTRFS_CSUM_SIZE, PAGE_SIZE - BTRFS_CSUM_SIZE);
1635 	btrfs_csum_final(crc, csum);
1636 	if (memcmp(csum, h->csum, state->csum_size))
1637 		crc_fail++;
1638 
1639 	return fail || crc_fail;
1640 }
1641 
btrfsic_process_written_block(struct btrfsic_dev_state * dev_state,u64 dev_bytenr,u8 * mapped_data,unsigned int len,struct bio * bio,int * bio_is_patched,struct buffer_head * bh,int submit_bio_bh_rw)1642 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1643 					  u64 dev_bytenr,
1644 					  u8 *mapped_data, unsigned int len,
1645 					  struct bio *bio,
1646 					  int *bio_is_patched,
1647 					  struct buffer_head *bh,
1648 					  int submit_bio_bh_rw)
1649 {
1650 	int is_metadata;
1651 	struct btrfsic_block *block;
1652 	struct btrfsic_block_data_ctx block_ctx;
1653 	int ret;
1654 	struct btrfsic_state *state = dev_state->state;
1655 	struct block_device *bdev = dev_state->bdev;
1656 
1657 	WARN_ON(len > PAGE_SIZE);
1658 	is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_data, len));
1659 	if (NULL != bio_is_patched)
1660 		*bio_is_patched = 0;
1661 
1662 	block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1663 					       &state->block_hashtable);
1664 	if (NULL != block) {
1665 		u64 bytenr = 0;
1666 		struct list_head *elem_ref_to;
1667 		struct list_head *tmp_ref_to;
1668 
1669 		if (block->is_superblock) {
1670 			bytenr = le64_to_cpu(((struct btrfs_super_block *)
1671 					      mapped_data)->bytenr);
1672 			is_metadata = 1;
1673 			if (state->print_mask &
1674 			    BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1675 				printk(KERN_INFO
1676 				       "[before new superblock is written]:\n");
1677 				btrfsic_dump_tree_sub(state, block, 0);
1678 			}
1679 		}
1680 		if (is_metadata) {
1681 			if (!block->is_superblock) {
1682 				bytenr = le64_to_cpu(((struct btrfs_header *)
1683 						      mapped_data)->bytenr);
1684 				btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1685 							       dev_state,
1686 							       dev_bytenr,
1687 							       mapped_data);
1688 			}
1689 			if (block->logical_bytenr != bytenr) {
1690 				printk(KERN_INFO
1691 				       "Written block @%llu (%s/%llu/%d)"
1692 				       " found in hash table, %c,"
1693 				       " bytenr mismatch"
1694 				       " (!= stored %llu).\n",
1695 				       (unsigned long long)bytenr,
1696 				       dev_state->name,
1697 				       (unsigned long long)dev_bytenr,
1698 				       block->mirror_num,
1699 				       btrfsic_get_block_type(state, block),
1700 				       (unsigned long long)
1701 				       block->logical_bytenr);
1702 				block->logical_bytenr = bytenr;
1703 			} else if (state->print_mask &
1704 				   BTRFSIC_PRINT_MASK_VERBOSE)
1705 				printk(KERN_INFO
1706 				       "Written block @%llu (%s/%llu/%d)"
1707 				       " found in hash table, %c.\n",
1708 				       (unsigned long long)bytenr,
1709 				       dev_state->name,
1710 				       (unsigned long long)dev_bytenr,
1711 				       block->mirror_num,
1712 				       btrfsic_get_block_type(state, block));
1713 		} else {
1714 			bytenr = block->logical_bytenr;
1715 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1716 				printk(KERN_INFO
1717 				       "Written block @%llu (%s/%llu/%d)"
1718 				       " found in hash table, %c.\n",
1719 				       (unsigned long long)bytenr,
1720 				       dev_state->name,
1721 				       (unsigned long long)dev_bytenr,
1722 				       block->mirror_num,
1723 				       btrfsic_get_block_type(state, block));
1724 		}
1725 
1726 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1727 			printk(KERN_INFO
1728 			       "ref_to_list: %cE, ref_from_list: %cE\n",
1729 			       list_empty(&block->ref_to_list) ? ' ' : '!',
1730 			       list_empty(&block->ref_from_list) ? ' ' : '!');
1731 		if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1732 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1733 			       " @%llu (%s/%llu/%d), old(gen=%llu,"
1734 			       " objectid=%llu, type=%d, offset=%llu),"
1735 			       " new(gen=%llu),"
1736 			       " which is referenced by most recent superblock"
1737 			       " (superblockgen=%llu)!\n",
1738 			       btrfsic_get_block_type(state, block),
1739 			       (unsigned long long)bytenr,
1740 			       dev_state->name,
1741 			       (unsigned long long)dev_bytenr,
1742 			       block->mirror_num,
1743 			       (unsigned long long)block->generation,
1744 			       (unsigned long long)
1745 			       le64_to_cpu(block->disk_key.objectid),
1746 			       block->disk_key.type,
1747 			       (unsigned long long)
1748 			       le64_to_cpu(block->disk_key.offset),
1749 			       (unsigned long long)
1750 			       le64_to_cpu(((struct btrfs_header *)
1751 					    mapped_data)->generation),
1752 			       (unsigned long long)
1753 			       state->max_superblock_generation);
1754 			btrfsic_dump_tree(state);
1755 		}
1756 
1757 		if (!block->is_iodone && !block->never_written) {
1758 			printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1759 			       " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1760 			       " which is not yet iodone!\n",
1761 			       btrfsic_get_block_type(state, block),
1762 			       (unsigned long long)bytenr,
1763 			       dev_state->name,
1764 			       (unsigned long long)dev_bytenr,
1765 			       block->mirror_num,
1766 			       (unsigned long long)block->generation,
1767 			       (unsigned long long)
1768 			       le64_to_cpu(((struct btrfs_header *)
1769 					    mapped_data)->generation));
1770 			/* it would not be safe to go on */
1771 			btrfsic_dump_tree(state);
1772 			return;
1773 		}
1774 
1775 		/*
1776 		 * Clear all references of this block. Do not free
1777 		 * the block itself even if is not referenced anymore
1778 		 * because it still carries valueable information
1779 		 * like whether it was ever written and IO completed.
1780 		 */
1781 		list_for_each_safe(elem_ref_to, tmp_ref_to,
1782 				   &block->ref_to_list) {
1783 			struct btrfsic_block_link *const l =
1784 			    list_entry(elem_ref_to,
1785 				       struct btrfsic_block_link,
1786 				       node_ref_to);
1787 
1788 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1789 				btrfsic_print_rem_link(state, l);
1790 			l->ref_cnt--;
1791 			if (0 == l->ref_cnt) {
1792 				list_del(&l->node_ref_to);
1793 				list_del(&l->node_ref_from);
1794 				btrfsic_block_link_hashtable_remove(l);
1795 				btrfsic_block_link_free(l);
1796 			}
1797 		}
1798 
1799 		if (block->is_superblock)
1800 			ret = btrfsic_map_superblock(state, bytenr, len,
1801 						     bdev, &block_ctx);
1802 		else
1803 			ret = btrfsic_map_block(state, bytenr, len,
1804 						&block_ctx, 0);
1805 		if (ret) {
1806 			printk(KERN_INFO
1807 			       "btrfsic: btrfsic_map_block(root @%llu)"
1808 			       " failed!\n", (unsigned long long)bytenr);
1809 			return;
1810 		}
1811 		block_ctx.data = mapped_data;
1812 		/* the following is required in case of writes to mirrors,
1813 		 * use the same that was used for the lookup */
1814 		block_ctx.dev = dev_state;
1815 		block_ctx.dev_bytenr = dev_bytenr;
1816 
1817 		if (is_metadata || state->include_extent_data) {
1818 			block->never_written = 0;
1819 			block->iodone_w_error = 0;
1820 			if (NULL != bio) {
1821 				block->is_iodone = 0;
1822 				BUG_ON(NULL == bio_is_patched);
1823 				if (!*bio_is_patched) {
1824 					block->orig_bio_bh_private =
1825 					    bio->bi_private;
1826 					block->orig_bio_bh_end_io.bio =
1827 					    bio->bi_end_io;
1828 					block->next_in_same_bio = NULL;
1829 					bio->bi_private = block;
1830 					bio->bi_end_io = btrfsic_bio_end_io;
1831 					*bio_is_patched = 1;
1832 				} else {
1833 					struct btrfsic_block *chained_block =
1834 					    (struct btrfsic_block *)
1835 					    bio->bi_private;
1836 
1837 					BUG_ON(NULL == chained_block);
1838 					block->orig_bio_bh_private =
1839 					    chained_block->orig_bio_bh_private;
1840 					block->orig_bio_bh_end_io.bio =
1841 					    chained_block->orig_bio_bh_end_io.
1842 					    bio;
1843 					block->next_in_same_bio = chained_block;
1844 					bio->bi_private = block;
1845 				}
1846 			} else if (NULL != bh) {
1847 				block->is_iodone = 0;
1848 				block->orig_bio_bh_private = bh->b_private;
1849 				block->orig_bio_bh_end_io.bh = bh->b_end_io;
1850 				block->next_in_same_bio = NULL;
1851 				bh->b_private = block;
1852 				bh->b_end_io = btrfsic_bh_end_io;
1853 			} else {
1854 				block->is_iodone = 1;
1855 				block->orig_bio_bh_private = NULL;
1856 				block->orig_bio_bh_end_io.bio = NULL;
1857 				block->next_in_same_bio = NULL;
1858 			}
1859 		}
1860 
1861 		block->flush_gen = dev_state->last_flush_gen + 1;
1862 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1863 		if (is_metadata) {
1864 			block->logical_bytenr = bytenr;
1865 			block->is_metadata = 1;
1866 			if (block->is_superblock) {
1867 				ret = btrfsic_process_written_superblock(
1868 						state,
1869 						block,
1870 						(struct btrfs_super_block *)
1871 						mapped_data);
1872 				if (state->print_mask &
1873 				    BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1874 					printk(KERN_INFO
1875 					"[after new superblock is written]:\n");
1876 					btrfsic_dump_tree_sub(state, block, 0);
1877 				}
1878 			} else {
1879 				block->mirror_num = 0;	/* unknown */
1880 				ret = btrfsic_process_metablock(
1881 						state,
1882 						block,
1883 						&block_ctx,
1884 						(struct btrfs_header *)
1885 						block_ctx.data,
1886 						0, 0);
1887 			}
1888 			if (ret)
1889 				printk(KERN_INFO
1890 				       "btrfsic: btrfsic_process_metablock"
1891 				       "(root @%llu) failed!\n",
1892 				       (unsigned long long)dev_bytenr);
1893 		} else {
1894 			block->is_metadata = 0;
1895 			block->mirror_num = 0;	/* unknown */
1896 			block->generation = BTRFSIC_GENERATION_UNKNOWN;
1897 			if (!state->include_extent_data
1898 			    && list_empty(&block->ref_from_list)) {
1899 				/*
1900 				 * disk block is overwritten with extent
1901 				 * data (not meta data) and we are configured
1902 				 * to not include extent data: take the
1903 				 * chance and free the block's memory
1904 				 */
1905 				btrfsic_block_hashtable_remove(block);
1906 				list_del(&block->all_blocks_node);
1907 				btrfsic_block_free(block);
1908 			}
1909 		}
1910 		btrfsic_release_block_ctx(&block_ctx);
1911 	} else {
1912 		/* block has not been found in hash table */
1913 		u64 bytenr;
1914 
1915 		if (!is_metadata) {
1916 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1917 				printk(KERN_INFO "Written block (%s/%llu/?)"
1918 				       " !found in hash table, D.\n",
1919 				       dev_state->name,
1920 				       (unsigned long long)dev_bytenr);
1921 			if (!state->include_extent_data)
1922 				return;	/* ignore that written D block */
1923 
1924 			/* this is getting ugly for the
1925 			 * include_extent_data case... */
1926 			bytenr = 0;	/* unknown */
1927 			block_ctx.start = bytenr;
1928 			block_ctx.len = len;
1929 			block_ctx.bh = NULL;
1930 		} else {
1931 			bytenr = le64_to_cpu(((struct btrfs_header *)
1932 					      mapped_data)->bytenr);
1933 			btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
1934 						       dev_bytenr,
1935 						       mapped_data);
1936 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1937 				printk(KERN_INFO
1938 				       "Written block @%llu (%s/%llu/?)"
1939 				       " !found in hash table, M.\n",
1940 				       (unsigned long long)bytenr,
1941 				       dev_state->name,
1942 				       (unsigned long long)dev_bytenr);
1943 
1944 			ret = btrfsic_map_block(state, bytenr, len, &block_ctx,
1945 						0);
1946 			if (ret) {
1947 				printk(KERN_INFO
1948 				       "btrfsic: btrfsic_map_block(root @%llu)"
1949 				       " failed!\n",
1950 				       (unsigned long long)dev_bytenr);
1951 				return;
1952 			}
1953 		}
1954 		block_ctx.data = mapped_data;
1955 		/* the following is required in case of writes to mirrors,
1956 		 * use the same that was used for the lookup */
1957 		block_ctx.dev = dev_state;
1958 		block_ctx.dev_bytenr = dev_bytenr;
1959 
1960 		block = btrfsic_block_alloc();
1961 		if (NULL == block) {
1962 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1963 			btrfsic_release_block_ctx(&block_ctx);
1964 			return;
1965 		}
1966 		block->dev_state = dev_state;
1967 		block->dev_bytenr = dev_bytenr;
1968 		block->logical_bytenr = bytenr;
1969 		block->is_metadata = is_metadata;
1970 		block->never_written = 0;
1971 		block->iodone_w_error = 0;
1972 		block->mirror_num = 0;	/* unknown */
1973 		block->flush_gen = dev_state->last_flush_gen + 1;
1974 		block->submit_bio_bh_rw = submit_bio_bh_rw;
1975 		if (NULL != bio) {
1976 			block->is_iodone = 0;
1977 			BUG_ON(NULL == bio_is_patched);
1978 			if (!*bio_is_patched) {
1979 				block->orig_bio_bh_private = bio->bi_private;
1980 				block->orig_bio_bh_end_io.bio = bio->bi_end_io;
1981 				block->next_in_same_bio = NULL;
1982 				bio->bi_private = block;
1983 				bio->bi_end_io = btrfsic_bio_end_io;
1984 				*bio_is_patched = 1;
1985 			} else {
1986 				struct btrfsic_block *chained_block =
1987 				    (struct btrfsic_block *)
1988 				    bio->bi_private;
1989 
1990 				BUG_ON(NULL == chained_block);
1991 				block->orig_bio_bh_private =
1992 				    chained_block->orig_bio_bh_private;
1993 				block->orig_bio_bh_end_io.bio =
1994 				    chained_block->orig_bio_bh_end_io.bio;
1995 				block->next_in_same_bio = chained_block;
1996 				bio->bi_private = block;
1997 			}
1998 		} else if (NULL != bh) {
1999 			block->is_iodone = 0;
2000 			block->orig_bio_bh_private = bh->b_private;
2001 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2002 			block->next_in_same_bio = NULL;
2003 			bh->b_private = block;
2004 			bh->b_end_io = btrfsic_bh_end_io;
2005 		} else {
2006 			block->is_iodone = 1;
2007 			block->orig_bio_bh_private = NULL;
2008 			block->orig_bio_bh_end_io.bio = NULL;
2009 			block->next_in_same_bio = NULL;
2010 		}
2011 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2012 			printk(KERN_INFO
2013 			       "New written %c-block @%llu (%s/%llu/%d)\n",
2014 			       is_metadata ? 'M' : 'D',
2015 			       (unsigned long long)block->logical_bytenr,
2016 			       block->dev_state->name,
2017 			       (unsigned long long)block->dev_bytenr,
2018 			       block->mirror_num);
2019 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2020 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2021 
2022 		if (is_metadata) {
2023 			ret = btrfsic_process_metablock(state, block,
2024 							&block_ctx,
2025 							(struct btrfs_header *)
2026 							block_ctx.data, 0, 0);
2027 			if (ret)
2028 				printk(KERN_INFO
2029 				       "btrfsic: process_metablock(root @%llu)"
2030 				       " failed!\n",
2031 				       (unsigned long long)dev_bytenr);
2032 		}
2033 		btrfsic_release_block_ctx(&block_ctx);
2034 	}
2035 }
2036 
btrfsic_bio_end_io(struct bio * bp,int bio_error_status)2037 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2038 {
2039 	struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2040 	int iodone_w_error;
2041 
2042 	/* mutex is not held! This is not save if IO is not yet completed
2043 	 * on umount */
2044 	iodone_w_error = 0;
2045 	if (bio_error_status)
2046 		iodone_w_error = 1;
2047 
2048 	BUG_ON(NULL == block);
2049 	bp->bi_private = block->orig_bio_bh_private;
2050 	bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2051 
2052 	do {
2053 		struct btrfsic_block *next_block;
2054 		struct btrfsic_dev_state *const dev_state = block->dev_state;
2055 
2056 		if ((dev_state->state->print_mask &
2057 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2058 			printk(KERN_INFO
2059 			       "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2060 			       bio_error_status,
2061 			       btrfsic_get_block_type(dev_state->state, block),
2062 			       (unsigned long long)block->logical_bytenr,
2063 			       dev_state->name,
2064 			       (unsigned long long)block->dev_bytenr,
2065 			       block->mirror_num);
2066 		next_block = block->next_in_same_bio;
2067 		block->iodone_w_error = iodone_w_error;
2068 		if (block->submit_bio_bh_rw & REQ_FLUSH) {
2069 			dev_state->last_flush_gen++;
2070 			if ((dev_state->state->print_mask &
2071 			     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2072 				printk(KERN_INFO
2073 				       "bio_end_io() new %s flush_gen=%llu\n",
2074 				       dev_state->name,
2075 				       (unsigned long long)
2076 				       dev_state->last_flush_gen);
2077 		}
2078 		if (block->submit_bio_bh_rw & REQ_FUA)
2079 			block->flush_gen = 0; /* FUA completed means block is
2080 					       * on disk */
2081 		block->is_iodone = 1; /* for FLUSH, this releases the block */
2082 		block = next_block;
2083 	} while (NULL != block);
2084 
2085 	bp->bi_end_io(bp, bio_error_status);
2086 }
2087 
btrfsic_bh_end_io(struct buffer_head * bh,int uptodate)2088 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2089 {
2090 	struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2091 	int iodone_w_error = !uptodate;
2092 	struct btrfsic_dev_state *dev_state;
2093 
2094 	BUG_ON(NULL == block);
2095 	dev_state = block->dev_state;
2096 	if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2097 		printk(KERN_INFO
2098 		       "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2099 		       iodone_w_error,
2100 		       btrfsic_get_block_type(dev_state->state, block),
2101 		       (unsigned long long)block->logical_bytenr,
2102 		       block->dev_state->name,
2103 		       (unsigned long long)block->dev_bytenr,
2104 		       block->mirror_num);
2105 
2106 	block->iodone_w_error = iodone_w_error;
2107 	if (block->submit_bio_bh_rw & REQ_FLUSH) {
2108 		dev_state->last_flush_gen++;
2109 		if ((dev_state->state->print_mask &
2110 		     BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2111 			printk(KERN_INFO
2112 			       "bh_end_io() new %s flush_gen=%llu\n",
2113 			       dev_state->name,
2114 			       (unsigned long long)dev_state->last_flush_gen);
2115 	}
2116 	if (block->submit_bio_bh_rw & REQ_FUA)
2117 		block->flush_gen = 0; /* FUA completed means block is on disk */
2118 
2119 	bh->b_private = block->orig_bio_bh_private;
2120 	bh->b_end_io = block->orig_bio_bh_end_io.bh;
2121 	block->is_iodone = 1; /* for FLUSH, this releases the block */
2122 	bh->b_end_io(bh, uptodate);
2123 }
2124 
btrfsic_process_written_superblock(struct btrfsic_state * state,struct btrfsic_block * const superblock,struct btrfs_super_block * const super_hdr)2125 static int btrfsic_process_written_superblock(
2126 		struct btrfsic_state *state,
2127 		struct btrfsic_block *const superblock,
2128 		struct btrfs_super_block *const super_hdr)
2129 {
2130 	int pass;
2131 
2132 	superblock->generation = btrfs_super_generation(super_hdr);
2133 	if (!(superblock->generation > state->max_superblock_generation ||
2134 	      0 == state->max_superblock_generation)) {
2135 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2136 			printk(KERN_INFO
2137 			       "btrfsic: superblock @%llu (%s/%llu/%d)"
2138 			       " with old gen %llu <= %llu\n",
2139 			       (unsigned long long)superblock->logical_bytenr,
2140 			       superblock->dev_state->name,
2141 			       (unsigned long long)superblock->dev_bytenr,
2142 			       superblock->mirror_num,
2143 			       (unsigned long long)
2144 			       btrfs_super_generation(super_hdr),
2145 			       (unsigned long long)
2146 			       state->max_superblock_generation);
2147 	} else {
2148 		if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2149 			printk(KERN_INFO
2150 			       "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2151 			       " with new gen %llu > %llu\n",
2152 			       (unsigned long long)superblock->logical_bytenr,
2153 			       superblock->dev_state->name,
2154 			       (unsigned long long)superblock->dev_bytenr,
2155 			       superblock->mirror_num,
2156 			       (unsigned long long)
2157 			       btrfs_super_generation(super_hdr),
2158 			       (unsigned long long)
2159 			       state->max_superblock_generation);
2160 
2161 		state->max_superblock_generation =
2162 		    btrfs_super_generation(super_hdr);
2163 		state->latest_superblock = superblock;
2164 	}
2165 
2166 	for (pass = 0; pass < 3; pass++) {
2167 		int ret;
2168 		u64 next_bytenr;
2169 		struct btrfsic_block *next_block;
2170 		struct btrfsic_block_data_ctx tmp_next_block_ctx;
2171 		struct btrfsic_block_link *l;
2172 		int num_copies;
2173 		int mirror_num;
2174 		const char *additional_string = NULL;
2175 		struct btrfs_disk_key tmp_disk_key;
2176 
2177 		tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2178 		tmp_disk_key.offset = 0;
2179 
2180 		switch (pass) {
2181 		case 0:
2182 			tmp_disk_key.objectid =
2183 			    cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2184 			additional_string = "root ";
2185 			next_bytenr = btrfs_super_root(super_hdr);
2186 			if (state->print_mask &
2187 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2188 				printk(KERN_INFO "root@%llu\n",
2189 				       (unsigned long long)next_bytenr);
2190 			break;
2191 		case 1:
2192 			tmp_disk_key.objectid =
2193 			    cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2194 			additional_string = "chunk ";
2195 			next_bytenr = btrfs_super_chunk_root(super_hdr);
2196 			if (state->print_mask &
2197 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2198 				printk(KERN_INFO "chunk@%llu\n",
2199 				       (unsigned long long)next_bytenr);
2200 			break;
2201 		case 2:
2202 			tmp_disk_key.objectid =
2203 			    cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2204 			additional_string = "log ";
2205 			next_bytenr = btrfs_super_log_root(super_hdr);
2206 			if (0 == next_bytenr)
2207 				continue;
2208 			if (state->print_mask &
2209 			    BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2210 				printk(KERN_INFO "log@%llu\n",
2211 				       (unsigned long long)next_bytenr);
2212 			break;
2213 		}
2214 
2215 		num_copies =
2216 		    btrfs_num_copies(&state->root->fs_info->mapping_tree,
2217 				     next_bytenr, PAGE_SIZE);
2218 		if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2219 			printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2220 			       (unsigned long long)next_bytenr, num_copies);
2221 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2222 			int was_created;
2223 
2224 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2225 				printk(KERN_INFO
2226 				       "btrfsic_process_written_superblock("
2227 				       "mirror_num=%d)\n", mirror_num);
2228 			ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
2229 						&tmp_next_block_ctx,
2230 						mirror_num);
2231 			if (ret) {
2232 				printk(KERN_INFO
2233 				       "btrfsic: btrfsic_map_block(@%llu,"
2234 				       " mirror=%d) failed!\n",
2235 				       (unsigned long long)next_bytenr,
2236 				       mirror_num);
2237 				return -1;
2238 			}
2239 
2240 			next_block = btrfsic_block_lookup_or_add(
2241 					state,
2242 					&tmp_next_block_ctx,
2243 					additional_string,
2244 					1, 0, 1,
2245 					mirror_num,
2246 					&was_created);
2247 			if (NULL == next_block) {
2248 				printk(KERN_INFO
2249 				       "btrfsic: error, kmalloc failed!\n");
2250 				btrfsic_release_block_ctx(&tmp_next_block_ctx);
2251 				return -1;
2252 			}
2253 
2254 			next_block->disk_key = tmp_disk_key;
2255 			if (was_created)
2256 				next_block->generation =
2257 				    BTRFSIC_GENERATION_UNKNOWN;
2258 			l = btrfsic_block_link_lookup_or_add(
2259 					state,
2260 					&tmp_next_block_ctx,
2261 					next_block,
2262 					superblock,
2263 					BTRFSIC_GENERATION_UNKNOWN);
2264 			btrfsic_release_block_ctx(&tmp_next_block_ctx);
2265 			if (NULL == l)
2266 				return -1;
2267 		}
2268 	}
2269 
2270 	if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2271 		WARN_ON(1);
2272 		btrfsic_dump_tree(state);
2273 	}
2274 
2275 	return 0;
2276 }
2277 
btrfsic_check_all_ref_blocks(struct btrfsic_state * state,struct btrfsic_block * const block,int recursion_level)2278 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2279 					struct btrfsic_block *const block,
2280 					int recursion_level)
2281 {
2282 	struct list_head *elem_ref_to;
2283 	int ret = 0;
2284 
2285 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2286 		/*
2287 		 * Note that this situation can happen and does not
2288 		 * indicate an error in regular cases. It happens
2289 		 * when disk blocks are freed and later reused.
2290 		 * The check-integrity module is not aware of any
2291 		 * block free operations, it just recognizes block
2292 		 * write operations. Therefore it keeps the linkage
2293 		 * information for a block until a block is
2294 		 * rewritten. This can temporarily cause incorrect
2295 		 * and even circular linkage informations. This
2296 		 * causes no harm unless such blocks are referenced
2297 		 * by the most recent super block.
2298 		 */
2299 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2300 			printk(KERN_INFO
2301 			       "btrfsic: abort cyclic linkage (case 1).\n");
2302 
2303 		return ret;
2304 	}
2305 
2306 	/*
2307 	 * This algorithm is recursive because the amount of used stack
2308 	 * space is very small and the max recursion depth is limited.
2309 	 */
2310 	list_for_each(elem_ref_to, &block->ref_to_list) {
2311 		const struct btrfsic_block_link *const l =
2312 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2313 			       node_ref_to);
2314 
2315 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2316 			printk(KERN_INFO
2317 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2318 			       " %u* refers to %c @%llu (%s/%llu/%d)\n",
2319 			       recursion_level,
2320 			       btrfsic_get_block_type(state, block),
2321 			       (unsigned long long)block->logical_bytenr,
2322 			       block->dev_state->name,
2323 			       (unsigned long long)block->dev_bytenr,
2324 			       block->mirror_num,
2325 			       l->ref_cnt,
2326 			       btrfsic_get_block_type(state, l->block_ref_to),
2327 			       (unsigned long long)
2328 			       l->block_ref_to->logical_bytenr,
2329 			       l->block_ref_to->dev_state->name,
2330 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2331 			       l->block_ref_to->mirror_num);
2332 		if (l->block_ref_to->never_written) {
2333 			printk(KERN_INFO "btrfs: attempt to write superblock"
2334 			       " which references block %c @%llu (%s/%llu/%d)"
2335 			       " which is never written!\n",
2336 			       btrfsic_get_block_type(state, l->block_ref_to),
2337 			       (unsigned long long)
2338 			       l->block_ref_to->logical_bytenr,
2339 			       l->block_ref_to->dev_state->name,
2340 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2341 			       l->block_ref_to->mirror_num);
2342 			ret = -1;
2343 		} else if (!l->block_ref_to->is_iodone) {
2344 			printk(KERN_INFO "btrfs: attempt to write superblock"
2345 			       " which references block %c @%llu (%s/%llu/%d)"
2346 			       " which is not yet iodone!\n",
2347 			       btrfsic_get_block_type(state, l->block_ref_to),
2348 			       (unsigned long long)
2349 			       l->block_ref_to->logical_bytenr,
2350 			       l->block_ref_to->dev_state->name,
2351 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2352 			       l->block_ref_to->mirror_num);
2353 			ret = -1;
2354 		} else if (l->parent_generation !=
2355 			   l->block_ref_to->generation &&
2356 			   BTRFSIC_GENERATION_UNKNOWN !=
2357 			   l->parent_generation &&
2358 			   BTRFSIC_GENERATION_UNKNOWN !=
2359 			   l->block_ref_to->generation) {
2360 			printk(KERN_INFO "btrfs: attempt to write superblock"
2361 			       " which references block %c @%llu (%s/%llu/%d)"
2362 			       " with generation %llu !="
2363 			       " parent generation %llu!\n",
2364 			       btrfsic_get_block_type(state, l->block_ref_to),
2365 			       (unsigned long long)
2366 			       l->block_ref_to->logical_bytenr,
2367 			       l->block_ref_to->dev_state->name,
2368 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2369 			       l->block_ref_to->mirror_num,
2370 			       (unsigned long long)l->block_ref_to->generation,
2371 			       (unsigned long long)l->parent_generation);
2372 			ret = -1;
2373 		} else if (l->block_ref_to->flush_gen >
2374 			   l->block_ref_to->dev_state->last_flush_gen) {
2375 			printk(KERN_INFO "btrfs: attempt to write superblock"
2376 			       " which references block %c @%llu (%s/%llu/%d)"
2377 			       " which is not flushed out of disk's write cache"
2378 			       " (block flush_gen=%llu,"
2379 			       " dev->flush_gen=%llu)!\n",
2380 			       btrfsic_get_block_type(state, l->block_ref_to),
2381 			       (unsigned long long)
2382 			       l->block_ref_to->logical_bytenr,
2383 			       l->block_ref_to->dev_state->name,
2384 			       (unsigned long long)l->block_ref_to->dev_bytenr,
2385 			       l->block_ref_to->mirror_num,
2386 			       (unsigned long long)block->flush_gen,
2387 			       (unsigned long long)
2388 			       l->block_ref_to->dev_state->last_flush_gen);
2389 			ret = -1;
2390 		} else if (-1 == btrfsic_check_all_ref_blocks(state,
2391 							      l->block_ref_to,
2392 							      recursion_level +
2393 							      1)) {
2394 			ret = -1;
2395 		}
2396 	}
2397 
2398 	return ret;
2399 }
2400 
btrfsic_is_block_ref_by_superblock(const struct btrfsic_state * state,const struct btrfsic_block * block,int recursion_level)2401 static int btrfsic_is_block_ref_by_superblock(
2402 		const struct btrfsic_state *state,
2403 		const struct btrfsic_block *block,
2404 		int recursion_level)
2405 {
2406 	struct list_head *elem_ref_from;
2407 
2408 	if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2409 		/* refer to comment at "abort cyclic linkage (case 1)" */
2410 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2411 			printk(KERN_INFO
2412 			       "btrfsic: abort cyclic linkage (case 2).\n");
2413 
2414 		return 0;
2415 	}
2416 
2417 	/*
2418 	 * This algorithm is recursive because the amount of used stack space
2419 	 * is very small and the max recursion depth is limited.
2420 	 */
2421 	list_for_each(elem_ref_from, &block->ref_from_list) {
2422 		const struct btrfsic_block_link *const l =
2423 		    list_entry(elem_ref_from, struct btrfsic_block_link,
2424 			       node_ref_from);
2425 
2426 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2427 			printk(KERN_INFO
2428 			       "rl=%d, %c @%llu (%s/%llu/%d)"
2429 			       " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2430 			       recursion_level,
2431 			       btrfsic_get_block_type(state, block),
2432 			       (unsigned long long)block->logical_bytenr,
2433 			       block->dev_state->name,
2434 			       (unsigned long long)block->dev_bytenr,
2435 			       block->mirror_num,
2436 			       l->ref_cnt,
2437 			       btrfsic_get_block_type(state, l->block_ref_from),
2438 			       (unsigned long long)
2439 			       l->block_ref_from->logical_bytenr,
2440 			       l->block_ref_from->dev_state->name,
2441 			       (unsigned long long)
2442 			       l->block_ref_from->dev_bytenr,
2443 			       l->block_ref_from->mirror_num);
2444 		if (l->block_ref_from->is_superblock &&
2445 		    state->latest_superblock->dev_bytenr ==
2446 		    l->block_ref_from->dev_bytenr &&
2447 		    state->latest_superblock->dev_state->bdev ==
2448 		    l->block_ref_from->dev_state->bdev)
2449 			return 1;
2450 		else if (btrfsic_is_block_ref_by_superblock(state,
2451 							    l->block_ref_from,
2452 							    recursion_level +
2453 							    1))
2454 			return 1;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
btrfsic_print_add_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2460 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2461 				   const struct btrfsic_block_link *l)
2462 {
2463 	printk(KERN_INFO
2464 	       "Add %u* link from %c @%llu (%s/%llu/%d)"
2465 	       " to %c @%llu (%s/%llu/%d).\n",
2466 	       l->ref_cnt,
2467 	       btrfsic_get_block_type(state, l->block_ref_from),
2468 	       (unsigned long long)l->block_ref_from->logical_bytenr,
2469 	       l->block_ref_from->dev_state->name,
2470 	       (unsigned long long)l->block_ref_from->dev_bytenr,
2471 	       l->block_ref_from->mirror_num,
2472 	       btrfsic_get_block_type(state, l->block_ref_to),
2473 	       (unsigned long long)l->block_ref_to->logical_bytenr,
2474 	       l->block_ref_to->dev_state->name,
2475 	       (unsigned long long)l->block_ref_to->dev_bytenr,
2476 	       l->block_ref_to->mirror_num);
2477 }
2478 
btrfsic_print_rem_link(const struct btrfsic_state * state,const struct btrfsic_block_link * l)2479 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2480 				   const struct btrfsic_block_link *l)
2481 {
2482 	printk(KERN_INFO
2483 	       "Rem %u* link from %c @%llu (%s/%llu/%d)"
2484 	       " to %c @%llu (%s/%llu/%d).\n",
2485 	       l->ref_cnt,
2486 	       btrfsic_get_block_type(state, l->block_ref_from),
2487 	       (unsigned long long)l->block_ref_from->logical_bytenr,
2488 	       l->block_ref_from->dev_state->name,
2489 	       (unsigned long long)l->block_ref_from->dev_bytenr,
2490 	       l->block_ref_from->mirror_num,
2491 	       btrfsic_get_block_type(state, l->block_ref_to),
2492 	       (unsigned long long)l->block_ref_to->logical_bytenr,
2493 	       l->block_ref_to->dev_state->name,
2494 	       (unsigned long long)l->block_ref_to->dev_bytenr,
2495 	       l->block_ref_to->mirror_num);
2496 }
2497 
btrfsic_get_block_type(const struct btrfsic_state * state,const struct btrfsic_block * block)2498 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2499 				   const struct btrfsic_block *block)
2500 {
2501 	if (block->is_superblock &&
2502 	    state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2503 	    state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2504 		return 'S';
2505 	else if (block->is_superblock)
2506 		return 's';
2507 	else if (block->is_metadata)
2508 		return 'M';
2509 	else
2510 		return 'D';
2511 }
2512 
btrfsic_dump_tree(const struct btrfsic_state * state)2513 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2514 {
2515 	btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2516 }
2517 
btrfsic_dump_tree_sub(const struct btrfsic_state * state,const struct btrfsic_block * block,int indent_level)2518 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2519 				  const struct btrfsic_block *block,
2520 				  int indent_level)
2521 {
2522 	struct list_head *elem_ref_to;
2523 	int indent_add;
2524 	static char buf[80];
2525 	int cursor_position;
2526 
2527 	/*
2528 	 * Should better fill an on-stack buffer with a complete line and
2529 	 * dump it at once when it is time to print a newline character.
2530 	 */
2531 
2532 	/*
2533 	 * This algorithm is recursive because the amount of used stack space
2534 	 * is very small and the max recursion depth is limited.
2535 	 */
2536 	indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2537 			     btrfsic_get_block_type(state, block),
2538 			     (unsigned long long)block->logical_bytenr,
2539 			     block->dev_state->name,
2540 			     (unsigned long long)block->dev_bytenr,
2541 			     block->mirror_num);
2542 	if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2543 		printk("[...]\n");
2544 		return;
2545 	}
2546 	printk(buf);
2547 	indent_level += indent_add;
2548 	if (list_empty(&block->ref_to_list)) {
2549 		printk("\n");
2550 		return;
2551 	}
2552 	if (block->mirror_num > 1 &&
2553 	    !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2554 		printk(" [...]\n");
2555 		return;
2556 	}
2557 
2558 	cursor_position = indent_level;
2559 	list_for_each(elem_ref_to, &block->ref_to_list) {
2560 		const struct btrfsic_block_link *const l =
2561 		    list_entry(elem_ref_to, struct btrfsic_block_link,
2562 			       node_ref_to);
2563 
2564 		while (cursor_position < indent_level) {
2565 			printk(" ");
2566 			cursor_position++;
2567 		}
2568 		if (l->ref_cnt > 1)
2569 			indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2570 		else
2571 			indent_add = sprintf(buf, " --> ");
2572 		if (indent_level + indent_add >
2573 		    BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2574 			printk("[...]\n");
2575 			cursor_position = 0;
2576 			continue;
2577 		}
2578 
2579 		printk(buf);
2580 
2581 		btrfsic_dump_tree_sub(state, l->block_ref_to,
2582 				      indent_level + indent_add);
2583 		cursor_position = 0;
2584 	}
2585 }
2586 
btrfsic_block_link_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * next_block_ctx,struct btrfsic_block * next_block,struct btrfsic_block * from_block,u64 parent_generation)2587 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2588 		struct btrfsic_state *state,
2589 		struct btrfsic_block_data_ctx *next_block_ctx,
2590 		struct btrfsic_block *next_block,
2591 		struct btrfsic_block *from_block,
2592 		u64 parent_generation)
2593 {
2594 	struct btrfsic_block_link *l;
2595 
2596 	l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2597 						next_block_ctx->dev_bytenr,
2598 						from_block->dev_state->bdev,
2599 						from_block->dev_bytenr,
2600 						&state->block_link_hashtable);
2601 	if (NULL == l) {
2602 		l = btrfsic_block_link_alloc();
2603 		if (NULL == l) {
2604 			printk(KERN_INFO
2605 			       "btrfsic: error, kmalloc" " failed!\n");
2606 			return NULL;
2607 		}
2608 
2609 		l->block_ref_to = next_block;
2610 		l->block_ref_from = from_block;
2611 		l->ref_cnt = 1;
2612 		l->parent_generation = parent_generation;
2613 
2614 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2615 			btrfsic_print_add_link(state, l);
2616 
2617 		list_add(&l->node_ref_to, &from_block->ref_to_list);
2618 		list_add(&l->node_ref_from, &next_block->ref_from_list);
2619 
2620 		btrfsic_block_link_hashtable_add(l,
2621 						 &state->block_link_hashtable);
2622 	} else {
2623 		l->ref_cnt++;
2624 		l->parent_generation = parent_generation;
2625 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2626 			btrfsic_print_add_link(state, l);
2627 	}
2628 
2629 	return l;
2630 }
2631 
btrfsic_block_lookup_or_add(struct btrfsic_state * state,struct btrfsic_block_data_ctx * block_ctx,const char * additional_string,int is_metadata,int is_iodone,int never_written,int mirror_num,int * was_created)2632 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2633 		struct btrfsic_state *state,
2634 		struct btrfsic_block_data_ctx *block_ctx,
2635 		const char *additional_string,
2636 		int is_metadata,
2637 		int is_iodone,
2638 		int never_written,
2639 		int mirror_num,
2640 		int *was_created)
2641 {
2642 	struct btrfsic_block *block;
2643 
2644 	block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2645 					       block_ctx->dev_bytenr,
2646 					       &state->block_hashtable);
2647 	if (NULL == block) {
2648 		struct btrfsic_dev_state *dev_state;
2649 
2650 		block = btrfsic_block_alloc();
2651 		if (NULL == block) {
2652 			printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2653 			return NULL;
2654 		}
2655 		dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2656 		if (NULL == dev_state) {
2657 			printk(KERN_INFO
2658 			       "btrfsic: error, lookup dev_state failed!\n");
2659 			btrfsic_block_free(block);
2660 			return NULL;
2661 		}
2662 		block->dev_state = dev_state;
2663 		block->dev_bytenr = block_ctx->dev_bytenr;
2664 		block->logical_bytenr = block_ctx->start;
2665 		block->is_metadata = is_metadata;
2666 		block->is_iodone = is_iodone;
2667 		block->never_written = never_written;
2668 		block->mirror_num = mirror_num;
2669 		if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2670 			printk(KERN_INFO
2671 			       "New %s%c-block @%llu (%s/%llu/%d)\n",
2672 			       additional_string,
2673 			       btrfsic_get_block_type(state, block),
2674 			       (unsigned long long)block->logical_bytenr,
2675 			       dev_state->name,
2676 			       (unsigned long long)block->dev_bytenr,
2677 			       mirror_num);
2678 		list_add(&block->all_blocks_node, &state->all_blocks_list);
2679 		btrfsic_block_hashtable_add(block, &state->block_hashtable);
2680 		if (NULL != was_created)
2681 			*was_created = 1;
2682 	} else {
2683 		if (NULL != was_created)
2684 			*was_created = 0;
2685 	}
2686 
2687 	return block;
2688 }
2689 
btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state * state,u64 bytenr,struct btrfsic_dev_state * dev_state,u64 dev_bytenr,char * data)2690 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2691 					   u64 bytenr,
2692 					   struct btrfsic_dev_state *dev_state,
2693 					   u64 dev_bytenr, char *data)
2694 {
2695 	int num_copies;
2696 	int mirror_num;
2697 	int ret;
2698 	struct btrfsic_block_data_ctx block_ctx;
2699 	int match = 0;
2700 
2701 	num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
2702 				      bytenr, PAGE_SIZE);
2703 
2704 	for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2705 		ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
2706 					&block_ctx, mirror_num);
2707 		if (ret) {
2708 			printk(KERN_INFO "btrfsic:"
2709 			       " btrfsic_map_block(logical @%llu,"
2710 			       " mirror %d) failed!\n",
2711 			       (unsigned long long)bytenr, mirror_num);
2712 			continue;
2713 		}
2714 
2715 		if (dev_state->bdev == block_ctx.dev->bdev &&
2716 		    dev_bytenr == block_ctx.dev_bytenr) {
2717 			match++;
2718 			btrfsic_release_block_ctx(&block_ctx);
2719 			break;
2720 		}
2721 		btrfsic_release_block_ctx(&block_ctx);
2722 	}
2723 
2724 	if (!match) {
2725 		printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2726 		       " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2727 		       " phys_bytenr=%llu)!\n",
2728 		       (unsigned long long)bytenr, dev_state->name,
2729 		       (unsigned long long)dev_bytenr);
2730 		for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2731 			ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
2732 						&block_ctx, mirror_num);
2733 			if (ret)
2734 				continue;
2735 
2736 			printk(KERN_INFO "Read logical bytenr @%llu maps to"
2737 			       " (%s/%llu/%d)\n",
2738 			       (unsigned long long)bytenr,
2739 			       block_ctx.dev->name,
2740 			       (unsigned long long)block_ctx.dev_bytenr,
2741 			       mirror_num);
2742 		}
2743 		WARN_ON(1);
2744 	}
2745 }
2746 
btrfsic_dev_state_lookup(struct block_device * bdev)2747 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2748 		struct block_device *bdev)
2749 {
2750 	struct btrfsic_dev_state *ds;
2751 
2752 	ds = btrfsic_dev_state_hashtable_lookup(bdev,
2753 						&btrfsic_dev_state_hashtable);
2754 	return ds;
2755 }
2756 
btrfsic_submit_bh(int rw,struct buffer_head * bh)2757 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2758 {
2759 	struct btrfsic_dev_state *dev_state;
2760 
2761 	if (!btrfsic_is_initialized)
2762 		return submit_bh(rw, bh);
2763 
2764 	mutex_lock(&btrfsic_mutex);
2765 	/* since btrfsic_submit_bh() might also be called before
2766 	 * btrfsic_mount(), this might return NULL */
2767 	dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2768 
2769 	/* Only called to write the superblock (incl. FLUSH/FUA) */
2770 	if (NULL != dev_state &&
2771 	    (rw & WRITE) && bh->b_size > 0) {
2772 		u64 dev_bytenr;
2773 
2774 		dev_bytenr = 4096 * bh->b_blocknr;
2775 		if (dev_state->state->print_mask &
2776 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2777 			printk(KERN_INFO
2778 			       "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
2779 			       " size=%lu, data=%p, bdev=%p)\n",
2780 			       rw, (unsigned long)bh->b_blocknr,
2781 			       (unsigned long long)dev_bytenr,
2782 			       (unsigned long)bh->b_size, bh->b_data,
2783 			       bh->b_bdev);
2784 		btrfsic_process_written_block(dev_state, dev_bytenr,
2785 					      bh->b_data, bh->b_size, NULL,
2786 					      NULL, bh, rw);
2787 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2788 		if (dev_state->state->print_mask &
2789 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2790 			printk(KERN_INFO
2791 			       "submit_bh(rw=0x%x) FLUSH, bdev=%p)\n",
2792 			       rw, bh->b_bdev);
2793 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2794 			if ((dev_state->state->print_mask &
2795 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2796 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2797 				printk(KERN_INFO
2798 				       "btrfsic_submit_bh(%s) with FLUSH"
2799 				       " but dummy block already in use"
2800 				       " (ignored)!\n",
2801 				       dev_state->name);
2802 		} else {
2803 			struct btrfsic_block *const block =
2804 				&dev_state->dummy_block_for_bio_bh_flush;
2805 
2806 			block->is_iodone = 0;
2807 			block->never_written = 0;
2808 			block->iodone_w_error = 0;
2809 			block->flush_gen = dev_state->last_flush_gen + 1;
2810 			block->submit_bio_bh_rw = rw;
2811 			block->orig_bio_bh_private = bh->b_private;
2812 			block->orig_bio_bh_end_io.bh = bh->b_end_io;
2813 			block->next_in_same_bio = NULL;
2814 			bh->b_private = block;
2815 			bh->b_end_io = btrfsic_bh_end_io;
2816 		}
2817 	}
2818 	mutex_unlock(&btrfsic_mutex);
2819 	return submit_bh(rw, bh);
2820 }
2821 
btrfsic_submit_bio(int rw,struct bio * bio)2822 void btrfsic_submit_bio(int rw, struct bio *bio)
2823 {
2824 	struct btrfsic_dev_state *dev_state;
2825 
2826 	if (!btrfsic_is_initialized) {
2827 		submit_bio(rw, bio);
2828 		return;
2829 	}
2830 
2831 	mutex_lock(&btrfsic_mutex);
2832 	/* since btrfsic_submit_bio() is also called before
2833 	 * btrfsic_mount(), this might return NULL */
2834 	dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2835 	if (NULL != dev_state &&
2836 	    (rw & WRITE) && NULL != bio->bi_io_vec) {
2837 		unsigned int i;
2838 		u64 dev_bytenr;
2839 		int bio_is_patched;
2840 
2841 		dev_bytenr = 512 * bio->bi_sector;
2842 		bio_is_patched = 0;
2843 		if (dev_state->state->print_mask &
2844 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2845 			printk(KERN_INFO
2846 			       "submit_bio(rw=0x%x, bi_vcnt=%u,"
2847 			       " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
2848 			       rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
2849 			       (unsigned long long)dev_bytenr,
2850 			       bio->bi_bdev);
2851 
2852 		for (i = 0; i < bio->bi_vcnt; i++) {
2853 			u8 *mapped_data;
2854 
2855 			mapped_data = kmap(bio->bi_io_vec[i].bv_page);
2856 			if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2857 			     BTRFSIC_PRINT_MASK_VERBOSE) ==
2858 			    (dev_state->state->print_mask &
2859 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2860 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2861 				printk(KERN_INFO
2862 				       "#%u: page=%p, mapped=%p, len=%u,"
2863 				       " offset=%u\n",
2864 				       i, bio->bi_io_vec[i].bv_page,
2865 				       mapped_data,
2866 				       bio->bi_io_vec[i].bv_len,
2867 				       bio->bi_io_vec[i].bv_offset);
2868 			btrfsic_process_written_block(dev_state, dev_bytenr,
2869 						      mapped_data,
2870 						      bio->bi_io_vec[i].bv_len,
2871 						      bio, &bio_is_patched,
2872 						      NULL, rw);
2873 			kunmap(bio->bi_io_vec[i].bv_page);
2874 			dev_bytenr += bio->bi_io_vec[i].bv_len;
2875 		}
2876 	} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2877 		if (dev_state->state->print_mask &
2878 		    BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2879 			printk(KERN_INFO
2880 			       "submit_bio(rw=0x%x) FLUSH, bdev=%p)\n",
2881 			       rw, bio->bi_bdev);
2882 		if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2883 			if ((dev_state->state->print_mask &
2884 			     (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2885 			      BTRFSIC_PRINT_MASK_VERBOSE)))
2886 				printk(KERN_INFO
2887 				       "btrfsic_submit_bio(%s) with FLUSH"
2888 				       " but dummy block already in use"
2889 				       " (ignored)!\n",
2890 				       dev_state->name);
2891 		} else {
2892 			struct btrfsic_block *const block =
2893 				&dev_state->dummy_block_for_bio_bh_flush;
2894 
2895 			block->is_iodone = 0;
2896 			block->never_written = 0;
2897 			block->iodone_w_error = 0;
2898 			block->flush_gen = dev_state->last_flush_gen + 1;
2899 			block->submit_bio_bh_rw = rw;
2900 			block->orig_bio_bh_private = bio->bi_private;
2901 			block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2902 			block->next_in_same_bio = NULL;
2903 			bio->bi_private = block;
2904 			bio->bi_end_io = btrfsic_bio_end_io;
2905 		}
2906 	}
2907 	mutex_unlock(&btrfsic_mutex);
2908 
2909 	submit_bio(rw, bio);
2910 }
2911 
btrfsic_mount(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,int including_extent_data,u32 print_mask)2912 int btrfsic_mount(struct btrfs_root *root,
2913 		  struct btrfs_fs_devices *fs_devices,
2914 		  int including_extent_data, u32 print_mask)
2915 {
2916 	int ret;
2917 	struct btrfsic_state *state;
2918 	struct list_head *dev_head = &fs_devices->devices;
2919 	struct btrfs_device *device;
2920 
2921 	state = kzalloc(sizeof(*state), GFP_NOFS);
2922 	if (NULL == state) {
2923 		printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
2924 		return -1;
2925 	}
2926 
2927 	if (!btrfsic_is_initialized) {
2928 		mutex_init(&btrfsic_mutex);
2929 		btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2930 		btrfsic_is_initialized = 1;
2931 	}
2932 	mutex_lock(&btrfsic_mutex);
2933 	state->root = root;
2934 	state->print_mask = print_mask;
2935 	state->include_extent_data = including_extent_data;
2936 	state->csum_size = 0;
2937 	INIT_LIST_HEAD(&state->all_blocks_list);
2938 	btrfsic_block_hashtable_init(&state->block_hashtable);
2939 	btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2940 	state->max_superblock_generation = 0;
2941 	state->latest_superblock = NULL;
2942 
2943 	list_for_each_entry(device, dev_head, dev_list) {
2944 		struct btrfsic_dev_state *ds;
2945 		char *p;
2946 
2947 		if (!device->bdev || !device->name)
2948 			continue;
2949 
2950 		ds = btrfsic_dev_state_alloc();
2951 		if (NULL == ds) {
2952 			printk(KERN_INFO
2953 			       "btrfs check-integrity: kmalloc() failed!\n");
2954 			mutex_unlock(&btrfsic_mutex);
2955 			return -1;
2956 		}
2957 		ds->bdev = device->bdev;
2958 		ds->state = state;
2959 		bdevname(ds->bdev, ds->name);
2960 		ds->name[BDEVNAME_SIZE - 1] = '\0';
2961 		for (p = ds->name; *p != '\0'; p++);
2962 		while (p > ds->name && *p != '/')
2963 			p--;
2964 		if (*p == '/')
2965 			p++;
2966 		strlcpy(ds->name, p, sizeof(ds->name));
2967 		btrfsic_dev_state_hashtable_add(ds,
2968 						&btrfsic_dev_state_hashtable);
2969 	}
2970 
2971 	ret = btrfsic_process_superblock(state, fs_devices);
2972 	if (0 != ret) {
2973 		mutex_unlock(&btrfsic_mutex);
2974 		btrfsic_unmount(root, fs_devices);
2975 		return ret;
2976 	}
2977 
2978 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2979 		btrfsic_dump_database(state);
2980 	if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2981 		btrfsic_dump_tree(state);
2982 
2983 	mutex_unlock(&btrfsic_mutex);
2984 	return 0;
2985 }
2986 
btrfsic_unmount(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices)2987 void btrfsic_unmount(struct btrfs_root *root,
2988 		     struct btrfs_fs_devices *fs_devices)
2989 {
2990 	struct list_head *elem_all;
2991 	struct list_head *tmp_all;
2992 	struct btrfsic_state *state;
2993 	struct list_head *dev_head = &fs_devices->devices;
2994 	struct btrfs_device *device;
2995 
2996 	if (!btrfsic_is_initialized)
2997 		return;
2998 
2999 	mutex_lock(&btrfsic_mutex);
3000 
3001 	state = NULL;
3002 	list_for_each_entry(device, dev_head, dev_list) {
3003 		struct btrfsic_dev_state *ds;
3004 
3005 		if (!device->bdev || !device->name)
3006 			continue;
3007 
3008 		ds = btrfsic_dev_state_hashtable_lookup(
3009 				device->bdev,
3010 				&btrfsic_dev_state_hashtable);
3011 		if (NULL != ds) {
3012 			state = ds->state;
3013 			btrfsic_dev_state_hashtable_remove(ds);
3014 			btrfsic_dev_state_free(ds);
3015 		}
3016 	}
3017 
3018 	if (NULL == state) {
3019 		printk(KERN_INFO
3020 		       "btrfsic: error, cannot find state information"
3021 		       " on umount!\n");
3022 		mutex_unlock(&btrfsic_mutex);
3023 		return;
3024 	}
3025 
3026 	/*
3027 	 * Don't care about keeping the lists' state up to date,
3028 	 * just free all memory that was allocated dynamically.
3029 	 * Free the blocks and the block_links.
3030 	 */
3031 	list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3032 		struct btrfsic_block *const b_all =
3033 		    list_entry(elem_all, struct btrfsic_block,
3034 			       all_blocks_node);
3035 		struct list_head *elem_ref_to;
3036 		struct list_head *tmp_ref_to;
3037 
3038 		list_for_each_safe(elem_ref_to, tmp_ref_to,
3039 				   &b_all->ref_to_list) {
3040 			struct btrfsic_block_link *const l =
3041 			    list_entry(elem_ref_to,
3042 				       struct btrfsic_block_link,
3043 				       node_ref_to);
3044 
3045 			if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3046 				btrfsic_print_rem_link(state, l);
3047 
3048 			l->ref_cnt--;
3049 			if (0 == l->ref_cnt)
3050 				btrfsic_block_link_free(l);
3051 		}
3052 
3053 		if (b_all->is_iodone)
3054 			btrfsic_block_free(b_all);
3055 		else
3056 			printk(KERN_INFO "btrfs: attempt to free %c-block"
3057 			       " @%llu (%s/%llu/%d) on umount which is"
3058 			       " not yet iodone!\n",
3059 			       btrfsic_get_block_type(state, b_all),
3060 			       (unsigned long long)b_all->logical_bytenr,
3061 			       b_all->dev_state->name,
3062 			       (unsigned long long)b_all->dev_bytenr,
3063 			       b_all->mirror_num);
3064 	}
3065 
3066 	mutex_unlock(&btrfsic_mutex);
3067 
3068 	kfree(state);
3069 }
3070