1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
62 
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
65 
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
68 
69 /* aio_setup
70  *	Creates the slab caches used by the aio routines, panic on
71  *	failure as this is done early during the boot sequence.
72  */
aio_setup(void)73 static int __init aio_setup(void)
74 {
75 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77 
78 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
79 	BUG_ON(!aio_wq);
80 
81 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 
83 	return 0;
84 }
85 __initcall(aio_setup);
86 
aio_free_ring(struct kioctx * ctx)87 static void aio_free_ring(struct kioctx *ctx)
88 {
89 	struct aio_ring_info *info = &ctx->ring_info;
90 	long i;
91 
92 	for (i=0; i<info->nr_pages; i++)
93 		put_page(info->ring_pages[i]);
94 
95 	if (info->mmap_size) {
96 		down_write(&ctx->mm->mmap_sem);
97 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 		up_write(&ctx->mm->mmap_sem);
99 	}
100 
101 	if (info->ring_pages && info->ring_pages != info->internal_pages)
102 		kfree(info->ring_pages);
103 	info->ring_pages = NULL;
104 	info->nr = 0;
105 }
106 
aio_setup_ring(struct kioctx * ctx)107 static int aio_setup_ring(struct kioctx *ctx)
108 {
109 	struct aio_ring *ring;
110 	struct aio_ring_info *info = &ctx->ring_info;
111 	unsigned nr_events = ctx->max_reqs;
112 	unsigned long size;
113 	int nr_pages;
114 
115 	/* Compensate for the ring buffer's head/tail overlap entry */
116 	nr_events += 2;	/* 1 is required, 2 for good luck */
117 
118 	size = sizeof(struct aio_ring);
119 	size += sizeof(struct io_event) * nr_events;
120 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
121 
122 	if (nr_pages < 0)
123 		return -EINVAL;
124 
125 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
126 
127 	info->nr = 0;
128 	info->ring_pages = info->internal_pages;
129 	if (nr_pages > AIO_RING_PAGES) {
130 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 		if (!info->ring_pages)
132 			return -ENOMEM;
133 	}
134 
135 	info->mmap_size = nr_pages * PAGE_SIZE;
136 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 	down_write(&ctx->mm->mmap_sem);
138 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
140 				  0);
141 	if (IS_ERR((void *)info->mmap_base)) {
142 		up_write(&ctx->mm->mmap_sem);
143 		info->mmap_size = 0;
144 		aio_free_ring(ctx);
145 		return -EAGAIN;
146 	}
147 
148 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 	info->nr_pages = get_user_pages(current, ctx->mm,
150 					info->mmap_base, nr_pages,
151 					1, 0, info->ring_pages, NULL);
152 	up_write(&ctx->mm->mmap_sem);
153 
154 	if (unlikely(info->nr_pages != nr_pages)) {
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	ctx->user_id = info->mmap_base;
160 
161 	info->nr = nr_events;		/* trusted copy */
162 
163 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164 	ring->nr = nr_events;	/* user copy */
165 	ring->id = ctx->user_id;
166 	ring->head = ring->tail = 0;
167 	ring->magic = AIO_RING_MAGIC;
168 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 	ring->header_length = sizeof(struct aio_ring);
171 	kunmap_atomic(ring, KM_USER0);
172 
173 	return 0;
174 }
175 
176 
177 /* aio_ring_event: returns a pointer to the event at the given index from
178  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
179  */
180 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
183 
184 #define aio_ring_event(info, nr, km) ({					\
185 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
186 	struct io_event *__event;					\
187 	__event = kmap_atomic(						\
188 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 	__event += pos % AIO_EVENTS_PER_PAGE;				\
190 	__event;							\
191 })
192 
193 #define put_aio_ring_event(event, km) do {	\
194 	struct io_event *__event = (event);	\
195 	(void)__event;				\
196 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 } while(0)
198 
ctx_rcu_free(struct rcu_head * head)199 static void ctx_rcu_free(struct rcu_head *head)
200 {
201 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 	unsigned nr_events = ctx->max_reqs;
203 
204 	kmem_cache_free(kioctx_cachep, ctx);
205 
206 	if (nr_events) {
207 		spin_lock(&aio_nr_lock);
208 		BUG_ON(aio_nr - nr_events > aio_nr);
209 		aio_nr -= nr_events;
210 		spin_unlock(&aio_nr_lock);
211 	}
212 }
213 
214 /* __put_ioctx
215  *	Called when the last user of an aio context has gone away,
216  *	and the struct needs to be freed.
217  */
__put_ioctx(struct kioctx * ctx)218 static void __put_ioctx(struct kioctx *ctx)
219 {
220 	BUG_ON(ctx->reqs_active);
221 
222 	cancel_delayed_work(&ctx->wq);
223 	cancel_work_sync(&ctx->wq.work);
224 	aio_free_ring(ctx);
225 	mmdrop(ctx->mm);
226 	ctx->mm = NULL;
227 	pr_debug("__put_ioctx: freeing %p\n", ctx);
228 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
229 }
230 
try_get_ioctx(struct kioctx * kioctx)231 static inline int try_get_ioctx(struct kioctx *kioctx)
232 {
233 	return atomic_inc_not_zero(&kioctx->users);
234 }
235 
put_ioctx(struct kioctx * kioctx)236 static inline void put_ioctx(struct kioctx *kioctx)
237 {
238 	BUG_ON(atomic_read(&kioctx->users) <= 0);
239 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
240 		__put_ioctx(kioctx);
241 }
242 
243 /* ioctx_alloc
244  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
245  */
ioctx_alloc(unsigned nr_events)246 static struct kioctx *ioctx_alloc(unsigned nr_events)
247 {
248 	struct mm_struct *mm;
249 	struct kioctx *ctx;
250 	int did_sync = 0;
251 
252 	/* Prevent overflows */
253 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
254 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
255 		pr_debug("ENOMEM: nr_events too high\n");
256 		return ERR_PTR(-EINVAL);
257 	}
258 
259 	if ((unsigned long)nr_events > aio_max_nr)
260 		return ERR_PTR(-EAGAIN);
261 
262 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
263 	if (!ctx)
264 		return ERR_PTR(-ENOMEM);
265 
266 	ctx->max_reqs = nr_events;
267 	mm = ctx->mm = current->mm;
268 	atomic_inc(&mm->mm_count);
269 
270 	atomic_set(&ctx->users, 2);
271 	spin_lock_init(&ctx->ctx_lock);
272 	spin_lock_init(&ctx->ring_info.ring_lock);
273 	init_waitqueue_head(&ctx->wait);
274 
275 	INIT_LIST_HEAD(&ctx->active_reqs);
276 	INIT_LIST_HEAD(&ctx->run_list);
277 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
278 
279 	if (aio_setup_ring(ctx) < 0)
280 		goto out_freectx;
281 
282 	/* limit the number of system wide aios */
283 	do {
284 		spin_lock_bh(&aio_nr_lock);
285 		if (aio_nr + nr_events > aio_max_nr ||
286 		    aio_nr + nr_events < aio_nr)
287 			ctx->max_reqs = 0;
288 		else
289 			aio_nr += ctx->max_reqs;
290 		spin_unlock_bh(&aio_nr_lock);
291 		if (ctx->max_reqs || did_sync)
292 			break;
293 
294 		/* wait for rcu callbacks to have completed before giving up */
295 		synchronize_rcu();
296 		did_sync = 1;
297 		ctx->max_reqs = nr_events;
298 	} while (1);
299 
300 	if (ctx->max_reqs == 0)
301 		goto out_cleanup;
302 
303 	/* now link into global list. */
304 	spin_lock(&mm->ioctx_lock);
305 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
306 	spin_unlock(&mm->ioctx_lock);
307 
308 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
309 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
310 	return ctx;
311 
312 out_cleanup:
313 	__put_ioctx(ctx);
314 	return ERR_PTR(-EAGAIN);
315 
316 out_freectx:
317 	mmdrop(mm);
318 	kmem_cache_free(kioctx_cachep, ctx);
319 	ctx = ERR_PTR(-ENOMEM);
320 
321 	dprintk("aio: error allocating ioctx %p\n", ctx);
322 	return ctx;
323 }
324 
325 /* aio_cancel_all
326  *	Cancels all outstanding aio requests on an aio context.  Used
327  *	when the processes owning a context have all exited to encourage
328  *	the rapid destruction of the kioctx.
329  */
aio_cancel_all(struct kioctx * ctx)330 static void aio_cancel_all(struct kioctx *ctx)
331 {
332 	int (*cancel)(struct kiocb *, struct io_event *);
333 	struct io_event res;
334 	spin_lock_irq(&ctx->ctx_lock);
335 	ctx->dead = 1;
336 	while (!list_empty(&ctx->active_reqs)) {
337 		struct list_head *pos = ctx->active_reqs.next;
338 		struct kiocb *iocb = list_kiocb(pos);
339 		list_del_init(&iocb->ki_list);
340 		cancel = iocb->ki_cancel;
341 		kiocbSetCancelled(iocb);
342 		if (cancel) {
343 			iocb->ki_users++;
344 			spin_unlock_irq(&ctx->ctx_lock);
345 			cancel(iocb, &res);
346 			spin_lock_irq(&ctx->ctx_lock);
347 		}
348 	}
349 	spin_unlock_irq(&ctx->ctx_lock);
350 }
351 
wait_for_all_aios(struct kioctx * ctx)352 static void wait_for_all_aios(struct kioctx *ctx)
353 {
354 	struct task_struct *tsk = current;
355 	DECLARE_WAITQUEUE(wait, tsk);
356 
357 	spin_lock_irq(&ctx->ctx_lock);
358 	if (!ctx->reqs_active)
359 		goto out;
360 
361 	add_wait_queue(&ctx->wait, &wait);
362 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
363 	while (ctx->reqs_active) {
364 		spin_unlock_irq(&ctx->ctx_lock);
365 		io_schedule();
366 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
367 		spin_lock_irq(&ctx->ctx_lock);
368 	}
369 	__set_task_state(tsk, TASK_RUNNING);
370 	remove_wait_queue(&ctx->wait, &wait);
371 
372 out:
373 	spin_unlock_irq(&ctx->ctx_lock);
374 }
375 
376 /* wait_on_sync_kiocb:
377  *	Waits on the given sync kiocb to complete.
378  */
wait_on_sync_kiocb(struct kiocb * iocb)379 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
380 {
381 	while (iocb->ki_users) {
382 		set_current_state(TASK_UNINTERRUPTIBLE);
383 		if (!iocb->ki_users)
384 			break;
385 		io_schedule();
386 	}
387 	__set_current_state(TASK_RUNNING);
388 	return iocb->ki_user_data;
389 }
390 EXPORT_SYMBOL(wait_on_sync_kiocb);
391 
392 /* exit_aio: called when the last user of mm goes away.  At this point,
393  * there is no way for any new requests to be submited or any of the
394  * io_* syscalls to be called on the context.  However, there may be
395  * outstanding requests which hold references to the context; as they
396  * go away, they will call put_ioctx and release any pinned memory
397  * associated with the request (held via struct page * references).
398  */
exit_aio(struct mm_struct * mm)399 void exit_aio(struct mm_struct *mm)
400 {
401 	struct kioctx *ctx;
402 
403 	while (!hlist_empty(&mm->ioctx_list)) {
404 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
405 		hlist_del_rcu(&ctx->list);
406 
407 		aio_cancel_all(ctx);
408 
409 		wait_for_all_aios(ctx);
410 		/*
411 		 * Ensure we don't leave the ctx on the aio_wq
412 		 */
413 		cancel_work_sync(&ctx->wq.work);
414 
415 		if (1 != atomic_read(&ctx->users))
416 			printk(KERN_DEBUG
417 				"exit_aio:ioctx still alive: %d %d %d\n",
418 				atomic_read(&ctx->users), ctx->dead,
419 				ctx->reqs_active);
420 		put_ioctx(ctx);
421 	}
422 }
423 
424 /* aio_get_req
425  *	Allocate a slot for an aio request.  Increments the users count
426  * of the kioctx so that the kioctx stays around until all requests are
427  * complete.  Returns NULL if no requests are free.
428  *
429  * Returns with kiocb->users set to 2.  The io submit code path holds
430  * an extra reference while submitting the i/o.
431  * This prevents races between the aio code path referencing the
432  * req (after submitting it) and aio_complete() freeing the req.
433  */
__aio_get_req(struct kioctx * ctx)434 static struct kiocb *__aio_get_req(struct kioctx *ctx)
435 {
436 	struct kiocb *req = NULL;
437 
438 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
439 	if (unlikely(!req))
440 		return NULL;
441 
442 	req->ki_flags = 0;
443 	req->ki_users = 2;
444 	req->ki_key = 0;
445 	req->ki_ctx = ctx;
446 	req->ki_cancel = NULL;
447 	req->ki_retry = NULL;
448 	req->ki_dtor = NULL;
449 	req->private = NULL;
450 	req->ki_iovec = NULL;
451 	INIT_LIST_HEAD(&req->ki_run_list);
452 	req->ki_eventfd = NULL;
453 
454 	return req;
455 }
456 
457 /*
458  * struct kiocb's are allocated in batches to reduce the number of
459  * times the ctx lock is acquired and released.
460  */
461 #define KIOCB_BATCH_SIZE	32L
462 struct kiocb_batch {
463 	struct list_head head;
464 	long count; /* number of requests left to allocate */
465 };
466 
kiocb_batch_init(struct kiocb_batch * batch,long total)467 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
468 {
469 	INIT_LIST_HEAD(&batch->head);
470 	batch->count = total;
471 }
472 
kiocb_batch_free(struct kioctx * ctx,struct kiocb_batch * batch)473 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
474 {
475 	struct kiocb *req, *n;
476 
477 	if (list_empty(&batch->head))
478 		return;
479 
480 	spin_lock_irq(&ctx->ctx_lock);
481 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
482 		list_del(&req->ki_batch);
483 		list_del(&req->ki_list);
484 		kmem_cache_free(kiocb_cachep, req);
485 		ctx->reqs_active--;
486 	}
487 	if (unlikely(!ctx->reqs_active && ctx->dead))
488 		wake_up_all(&ctx->wait);
489 	spin_unlock_irq(&ctx->ctx_lock);
490 }
491 
492 /*
493  * Allocate a batch of kiocbs.  This avoids taking and dropping the
494  * context lock a lot during setup.
495  */
kiocb_batch_refill(struct kioctx * ctx,struct kiocb_batch * batch)496 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
497 {
498 	unsigned short allocated, to_alloc;
499 	long avail;
500 	bool called_fput = false;
501 	struct kiocb *req, *n;
502 	struct aio_ring *ring;
503 
504 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
505 	for (allocated = 0; allocated < to_alloc; allocated++) {
506 		req = __aio_get_req(ctx);
507 		if (!req)
508 			/* allocation failed, go with what we've got */
509 			break;
510 		list_add(&req->ki_batch, &batch->head);
511 	}
512 
513 	if (allocated == 0)
514 		goto out;
515 
516 retry:
517 	spin_lock_irq(&ctx->ctx_lock);
518 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
519 
520 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
521 	BUG_ON(avail < 0);
522 	if (avail == 0 && !called_fput) {
523 		/*
524 		 * Handle a potential starvation case.  It is possible that
525 		 * we hold the last reference on a struct file, causing us
526 		 * to delay the final fput to non-irq context.  In this case,
527 		 * ctx->reqs_active is artificially high.  Calling the fput
528 		 * routine here may free up a slot in the event completion
529 		 * ring, allowing this allocation to succeed.
530 		 */
531 		kunmap_atomic(ring);
532 		spin_unlock_irq(&ctx->ctx_lock);
533 		aio_fput_routine(NULL);
534 		called_fput = true;
535 		goto retry;
536 	}
537 
538 	if (avail < allocated) {
539 		/* Trim back the number of requests. */
540 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
541 			list_del(&req->ki_batch);
542 			kmem_cache_free(kiocb_cachep, req);
543 			if (--allocated <= avail)
544 				break;
545 		}
546 	}
547 
548 	batch->count -= allocated;
549 	list_for_each_entry(req, &batch->head, ki_batch) {
550 		list_add(&req->ki_list, &ctx->active_reqs);
551 		ctx->reqs_active++;
552 	}
553 
554 	kunmap_atomic(ring);
555 	spin_unlock_irq(&ctx->ctx_lock);
556 
557 out:
558 	return allocated;
559 }
560 
aio_get_req(struct kioctx * ctx,struct kiocb_batch * batch)561 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
562 					struct kiocb_batch *batch)
563 {
564 	struct kiocb *req;
565 
566 	if (list_empty(&batch->head))
567 		if (kiocb_batch_refill(ctx, batch) == 0)
568 			return NULL;
569 	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
570 	list_del(&req->ki_batch);
571 	return req;
572 }
573 
really_put_req(struct kioctx * ctx,struct kiocb * req)574 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
575 {
576 	assert_spin_locked(&ctx->ctx_lock);
577 
578 	if (req->ki_eventfd != NULL)
579 		eventfd_ctx_put(req->ki_eventfd);
580 	if (req->ki_dtor)
581 		req->ki_dtor(req);
582 	if (req->ki_iovec != &req->ki_inline_vec)
583 		kfree(req->ki_iovec);
584 	kmem_cache_free(kiocb_cachep, req);
585 	ctx->reqs_active--;
586 
587 	if (unlikely(!ctx->reqs_active && ctx->dead))
588 		wake_up_all(&ctx->wait);
589 }
590 
aio_fput_routine(struct work_struct * data)591 static void aio_fput_routine(struct work_struct *data)
592 {
593 	spin_lock_irq(&fput_lock);
594 	while (likely(!list_empty(&fput_head))) {
595 		struct kiocb *req = list_kiocb(fput_head.next);
596 		struct kioctx *ctx = req->ki_ctx;
597 
598 		list_del(&req->ki_list);
599 		spin_unlock_irq(&fput_lock);
600 
601 		/* Complete the fput(s) */
602 		if (req->ki_filp != NULL)
603 			fput(req->ki_filp);
604 
605 		/* Link the iocb into the context's free list */
606 		rcu_read_lock();
607 		spin_lock_irq(&ctx->ctx_lock);
608 		really_put_req(ctx, req);
609 		/*
610 		 * at that point ctx might've been killed, but actual
611 		 * freeing is RCU'd
612 		 */
613 		spin_unlock_irq(&ctx->ctx_lock);
614 		rcu_read_unlock();
615 
616 		spin_lock_irq(&fput_lock);
617 	}
618 	spin_unlock_irq(&fput_lock);
619 }
620 
621 /* __aio_put_req
622  *	Returns true if this put was the last user of the request.
623  */
__aio_put_req(struct kioctx * ctx,struct kiocb * req)624 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
625 {
626 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
627 		req, atomic_long_read(&req->ki_filp->f_count));
628 
629 	assert_spin_locked(&ctx->ctx_lock);
630 
631 	req->ki_users--;
632 	BUG_ON(req->ki_users < 0);
633 	if (likely(req->ki_users))
634 		return 0;
635 	list_del(&req->ki_list);		/* remove from active_reqs */
636 	req->ki_cancel = NULL;
637 	req->ki_retry = NULL;
638 
639 	/*
640 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
641 	 * schedule work in case it is not final fput() time. In normal cases,
642 	 * we would not be holding the last reference to the file*, so
643 	 * this function will be executed w/out any aio kthread wakeup.
644 	 */
645 	if (unlikely(!fput_atomic(req->ki_filp))) {
646 		spin_lock(&fput_lock);
647 		list_add(&req->ki_list, &fput_head);
648 		spin_unlock(&fput_lock);
649 		schedule_work(&fput_work);
650 	} else {
651 		req->ki_filp = NULL;
652 		really_put_req(ctx, req);
653 	}
654 	return 1;
655 }
656 
657 /* aio_put_req
658  *	Returns true if this put was the last user of the kiocb,
659  *	false if the request is still in use.
660  */
aio_put_req(struct kiocb * req)661 int aio_put_req(struct kiocb *req)
662 {
663 	struct kioctx *ctx = req->ki_ctx;
664 	int ret;
665 	spin_lock_irq(&ctx->ctx_lock);
666 	ret = __aio_put_req(ctx, req);
667 	spin_unlock_irq(&ctx->ctx_lock);
668 	return ret;
669 }
670 EXPORT_SYMBOL(aio_put_req);
671 
lookup_ioctx(unsigned long ctx_id)672 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
673 {
674 	struct mm_struct *mm = current->mm;
675 	struct kioctx *ctx, *ret = NULL;
676 	struct hlist_node *n;
677 
678 	rcu_read_lock();
679 
680 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
681 		/*
682 		 * RCU protects us against accessing freed memory but
683 		 * we have to be careful not to get a reference when the
684 		 * reference count already dropped to 0 (ctx->dead test
685 		 * is unreliable because of races).
686 		 */
687 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
688 			ret = ctx;
689 			break;
690 		}
691 	}
692 
693 	rcu_read_unlock();
694 	return ret;
695 }
696 
697 /*
698  * Queue up a kiocb to be retried. Assumes that the kiocb
699  * has already been marked as kicked, and places it on
700  * the retry run list for the corresponding ioctx, if it
701  * isn't already queued. Returns 1 if it actually queued
702  * the kiocb (to tell the caller to activate the work
703  * queue to process it), or 0, if it found that it was
704  * already queued.
705  */
__queue_kicked_iocb(struct kiocb * iocb)706 static inline int __queue_kicked_iocb(struct kiocb *iocb)
707 {
708 	struct kioctx *ctx = iocb->ki_ctx;
709 
710 	assert_spin_locked(&ctx->ctx_lock);
711 
712 	if (list_empty(&iocb->ki_run_list)) {
713 		list_add_tail(&iocb->ki_run_list,
714 			&ctx->run_list);
715 		return 1;
716 	}
717 	return 0;
718 }
719 
720 /* aio_run_iocb
721  *	This is the core aio execution routine. It is
722  *	invoked both for initial i/o submission and
723  *	subsequent retries via the aio_kick_handler.
724  *	Expects to be invoked with iocb->ki_ctx->lock
725  *	already held. The lock is released and reacquired
726  *	as needed during processing.
727  *
728  * Calls the iocb retry method (already setup for the
729  * iocb on initial submission) for operation specific
730  * handling, but takes care of most of common retry
731  * execution details for a given iocb. The retry method
732  * needs to be non-blocking as far as possible, to avoid
733  * holding up other iocbs waiting to be serviced by the
734  * retry kernel thread.
735  *
736  * The trickier parts in this code have to do with
737  * ensuring that only one retry instance is in progress
738  * for a given iocb at any time. Providing that guarantee
739  * simplifies the coding of individual aio operations as
740  * it avoids various potential races.
741  */
aio_run_iocb(struct kiocb * iocb)742 static ssize_t aio_run_iocb(struct kiocb *iocb)
743 {
744 	struct kioctx	*ctx = iocb->ki_ctx;
745 	ssize_t (*retry)(struct kiocb *);
746 	ssize_t ret;
747 
748 	if (!(retry = iocb->ki_retry)) {
749 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
750 		return 0;
751 	}
752 
753 	/*
754 	 * We don't want the next retry iteration for this
755 	 * operation to start until this one has returned and
756 	 * updated the iocb state. However, wait_queue functions
757 	 * can trigger a kick_iocb from interrupt context in the
758 	 * meantime, indicating that data is available for the next
759 	 * iteration. We want to remember that and enable the
760 	 * next retry iteration _after_ we are through with
761 	 * this one.
762 	 *
763 	 * So, in order to be able to register a "kick", but
764 	 * prevent it from being queued now, we clear the kick
765 	 * flag, but make the kick code *think* that the iocb is
766 	 * still on the run list until we are actually done.
767 	 * When we are done with this iteration, we check if
768 	 * the iocb was kicked in the meantime and if so, queue
769 	 * it up afresh.
770 	 */
771 
772 	kiocbClearKicked(iocb);
773 
774 	/*
775 	 * This is so that aio_complete knows it doesn't need to
776 	 * pull the iocb off the run list (We can't just call
777 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
778 	 * queue this on the run list yet)
779 	 */
780 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
781 	spin_unlock_irq(&ctx->ctx_lock);
782 
783 	/* Quit retrying if the i/o has been cancelled */
784 	if (kiocbIsCancelled(iocb)) {
785 		ret = -EINTR;
786 		aio_complete(iocb, ret, 0);
787 		/* must not access the iocb after this */
788 		goto out;
789 	}
790 
791 	/*
792 	 * Now we are all set to call the retry method in async
793 	 * context.
794 	 */
795 	ret = retry(iocb);
796 
797 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
798 		/*
799 		 * There's no easy way to restart the syscall since other AIO's
800 		 * may be already running. Just fail this IO with EINTR.
801 		 */
802 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
803 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
804 			ret = -EINTR;
805 		aio_complete(iocb, ret, 0);
806 	}
807 out:
808 	spin_lock_irq(&ctx->ctx_lock);
809 
810 	if (-EIOCBRETRY == ret) {
811 		/*
812 		 * OK, now that we are done with this iteration
813 		 * and know that there is more left to go,
814 		 * this is where we let go so that a subsequent
815 		 * "kick" can start the next iteration
816 		 */
817 
818 		/* will make __queue_kicked_iocb succeed from here on */
819 		INIT_LIST_HEAD(&iocb->ki_run_list);
820 		/* we must queue the next iteration ourselves, if it
821 		 * has already been kicked */
822 		if (kiocbIsKicked(iocb)) {
823 			__queue_kicked_iocb(iocb);
824 
825 			/*
826 			 * __queue_kicked_iocb will always return 1 here, because
827 			 * iocb->ki_run_list is empty at this point so it should
828 			 * be safe to unconditionally queue the context into the
829 			 * work queue.
830 			 */
831 			aio_queue_work(ctx);
832 		}
833 	}
834 	return ret;
835 }
836 
837 /*
838  * __aio_run_iocbs:
839  * 	Process all pending retries queued on the ioctx
840  * 	run list.
841  * Assumes it is operating within the aio issuer's mm
842  * context.
843  */
__aio_run_iocbs(struct kioctx * ctx)844 static int __aio_run_iocbs(struct kioctx *ctx)
845 {
846 	struct kiocb *iocb;
847 	struct list_head run_list;
848 
849 	assert_spin_locked(&ctx->ctx_lock);
850 
851 	list_replace_init(&ctx->run_list, &run_list);
852 	while (!list_empty(&run_list)) {
853 		iocb = list_entry(run_list.next, struct kiocb,
854 			ki_run_list);
855 		list_del(&iocb->ki_run_list);
856 		/*
857 		 * Hold an extra reference while retrying i/o.
858 		 */
859 		iocb->ki_users++;       /* grab extra reference */
860 		aio_run_iocb(iocb);
861 		__aio_put_req(ctx, iocb);
862  	}
863 	if (!list_empty(&ctx->run_list))
864 		return 1;
865 	return 0;
866 }
867 
aio_queue_work(struct kioctx * ctx)868 static void aio_queue_work(struct kioctx * ctx)
869 {
870 	unsigned long timeout;
871 	/*
872 	 * if someone is waiting, get the work started right
873 	 * away, otherwise, use a longer delay
874 	 */
875 	smp_mb();
876 	if (waitqueue_active(&ctx->wait))
877 		timeout = 1;
878 	else
879 		timeout = HZ/10;
880 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
881 }
882 
883 /*
884  * aio_run_all_iocbs:
885  *	Process all pending retries queued on the ioctx
886  *	run list, and keep running them until the list
887  *	stays empty.
888  * Assumes it is operating within the aio issuer's mm context.
889  */
aio_run_all_iocbs(struct kioctx * ctx)890 static inline void aio_run_all_iocbs(struct kioctx *ctx)
891 {
892 	spin_lock_irq(&ctx->ctx_lock);
893 	while (__aio_run_iocbs(ctx))
894 		;
895 	spin_unlock_irq(&ctx->ctx_lock);
896 }
897 
898 /*
899  * aio_kick_handler:
900  * 	Work queue handler triggered to process pending
901  * 	retries on an ioctx. Takes on the aio issuer's
902  *	mm context before running the iocbs, so that
903  *	copy_xxx_user operates on the issuer's address
904  *      space.
905  * Run on aiod's context.
906  */
aio_kick_handler(struct work_struct * work)907 static void aio_kick_handler(struct work_struct *work)
908 {
909 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
910 	mm_segment_t oldfs = get_fs();
911 	struct mm_struct *mm;
912 	int requeue;
913 
914 	set_fs(USER_DS);
915 	use_mm(ctx->mm);
916 	spin_lock_irq(&ctx->ctx_lock);
917 	requeue =__aio_run_iocbs(ctx);
918 	mm = ctx->mm;
919 	spin_unlock_irq(&ctx->ctx_lock);
920  	unuse_mm(mm);
921 	set_fs(oldfs);
922 	/*
923 	 * we're in a worker thread already, don't use queue_delayed_work,
924 	 */
925 	if (requeue)
926 		queue_delayed_work(aio_wq, &ctx->wq, 0);
927 }
928 
929 
930 /*
931  * Called by kick_iocb to queue the kiocb for retry
932  * and if required activate the aio work queue to process
933  * it
934  */
try_queue_kicked_iocb(struct kiocb * iocb)935 static void try_queue_kicked_iocb(struct kiocb *iocb)
936 {
937  	struct kioctx	*ctx = iocb->ki_ctx;
938 	unsigned long flags;
939 	int run = 0;
940 
941 	spin_lock_irqsave(&ctx->ctx_lock, flags);
942 	/* set this inside the lock so that we can't race with aio_run_iocb()
943 	 * testing it and putting the iocb on the run list under the lock */
944 	if (!kiocbTryKick(iocb))
945 		run = __queue_kicked_iocb(iocb);
946 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
947 	if (run)
948 		aio_queue_work(ctx);
949 }
950 
951 /*
952  * kick_iocb:
953  *      Called typically from a wait queue callback context
954  *      to trigger a retry of the iocb.
955  *      The retry is usually executed by aio workqueue
956  *      threads (See aio_kick_handler).
957  */
kick_iocb(struct kiocb * iocb)958 void kick_iocb(struct kiocb *iocb)
959 {
960 	/* sync iocbs are easy: they can only ever be executing from a
961 	 * single context. */
962 	if (is_sync_kiocb(iocb)) {
963 		kiocbSetKicked(iocb);
964 	        wake_up_process(iocb->ki_obj.tsk);
965 		return;
966 	}
967 
968 	try_queue_kicked_iocb(iocb);
969 }
970 EXPORT_SYMBOL(kick_iocb);
971 
972 /* aio_complete
973  *	Called when the io request on the given iocb is complete.
974  *	Returns true if this is the last user of the request.  The
975  *	only other user of the request can be the cancellation code.
976  */
aio_complete(struct kiocb * iocb,long res,long res2)977 int aio_complete(struct kiocb *iocb, long res, long res2)
978 {
979 	struct kioctx	*ctx = iocb->ki_ctx;
980 	struct aio_ring_info	*info;
981 	struct aio_ring	*ring;
982 	struct io_event	*event;
983 	unsigned long	flags;
984 	unsigned long	tail;
985 	int		ret;
986 
987 	/*
988 	 * Special case handling for sync iocbs:
989 	 *  - events go directly into the iocb for fast handling
990 	 *  - the sync task with the iocb in its stack holds the single iocb
991 	 *    ref, no other paths have a way to get another ref
992 	 *  - the sync task helpfully left a reference to itself in the iocb
993 	 */
994 	if (is_sync_kiocb(iocb)) {
995 		BUG_ON(iocb->ki_users != 1);
996 		iocb->ki_user_data = res;
997 		iocb->ki_users = 0;
998 		wake_up_process(iocb->ki_obj.tsk);
999 		return 1;
1000 	}
1001 
1002 	info = &ctx->ring_info;
1003 
1004 	/* add a completion event to the ring buffer.
1005 	 * must be done holding ctx->ctx_lock to prevent
1006 	 * other code from messing with the tail
1007 	 * pointer since we might be called from irq
1008 	 * context.
1009 	 */
1010 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1011 
1012 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
1013 		list_del_init(&iocb->ki_run_list);
1014 
1015 	/*
1016 	 * cancelled requests don't get events, userland was given one
1017 	 * when the event got cancelled.
1018 	 */
1019 	if (kiocbIsCancelled(iocb))
1020 		goto put_rq;
1021 
1022 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
1023 
1024 	tail = info->tail;
1025 	event = aio_ring_event(info, tail, KM_IRQ0);
1026 	if (++tail >= info->nr)
1027 		tail = 0;
1028 
1029 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1030 	event->data = iocb->ki_user_data;
1031 	event->res = res;
1032 	event->res2 = res2;
1033 
1034 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1035 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1036 		res, res2);
1037 
1038 	/* after flagging the request as done, we
1039 	 * must never even look at it again
1040 	 */
1041 	smp_wmb();	/* make event visible before updating tail */
1042 
1043 	info->tail = tail;
1044 	ring->tail = tail;
1045 
1046 	put_aio_ring_event(event, KM_IRQ0);
1047 	kunmap_atomic(ring, KM_IRQ1);
1048 
1049 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1050 
1051 	/*
1052 	 * Check if the user asked us to deliver the result through an
1053 	 * eventfd. The eventfd_signal() function is safe to be called
1054 	 * from IRQ context.
1055 	 */
1056 	if (iocb->ki_eventfd != NULL)
1057 		eventfd_signal(iocb->ki_eventfd, 1);
1058 
1059 put_rq:
1060 	/* everything turned out well, dispose of the aiocb. */
1061 	ret = __aio_put_req(ctx, iocb);
1062 
1063 	/*
1064 	 * We have to order our ring_info tail store above and test
1065 	 * of the wait list below outside the wait lock.  This is
1066 	 * like in wake_up_bit() where clearing a bit has to be
1067 	 * ordered with the unlocked test.
1068 	 */
1069 	smp_mb();
1070 
1071 	if (waitqueue_active(&ctx->wait))
1072 		wake_up(&ctx->wait);
1073 
1074 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL(aio_complete);
1078 
1079 /* aio_read_evt
1080  *	Pull an event off of the ioctx's event ring.  Returns the number of
1081  *	events fetched (0 or 1 ;-)
1082  *	FIXME: make this use cmpxchg.
1083  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1084  */
aio_read_evt(struct kioctx * ioctx,struct io_event * ent)1085 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1086 {
1087 	struct aio_ring_info *info = &ioctx->ring_info;
1088 	struct aio_ring *ring;
1089 	unsigned long head;
1090 	int ret = 0;
1091 
1092 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1093 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1094 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1095 		 (unsigned long)ring->nr);
1096 
1097 	if (ring->head == ring->tail)
1098 		goto out;
1099 
1100 	spin_lock(&info->ring_lock);
1101 
1102 	head = ring->head % info->nr;
1103 	if (head != ring->tail) {
1104 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1105 		*ent = *evp;
1106 		head = (head + 1) % info->nr;
1107 		smp_mb(); /* finish reading the event before updatng the head */
1108 		ring->head = head;
1109 		ret = 1;
1110 		put_aio_ring_event(evp, KM_USER1);
1111 	}
1112 	spin_unlock(&info->ring_lock);
1113 
1114 out:
1115 	kunmap_atomic(ring, KM_USER0);
1116 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1117 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1118 	return ret;
1119 }
1120 
1121 struct aio_timeout {
1122 	struct timer_list	timer;
1123 	int			timed_out;
1124 	struct task_struct	*p;
1125 };
1126 
timeout_func(unsigned long data)1127 static void timeout_func(unsigned long data)
1128 {
1129 	struct aio_timeout *to = (struct aio_timeout *)data;
1130 
1131 	to->timed_out = 1;
1132 	wake_up_process(to->p);
1133 }
1134 
init_timeout(struct aio_timeout * to)1135 static inline void init_timeout(struct aio_timeout *to)
1136 {
1137 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1138 	to->timed_out = 0;
1139 	to->p = current;
1140 }
1141 
set_timeout(long start_jiffies,struct aio_timeout * to,const struct timespec * ts)1142 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1143 			       const struct timespec *ts)
1144 {
1145 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1146 	if (time_after(to->timer.expires, jiffies))
1147 		add_timer(&to->timer);
1148 	else
1149 		to->timed_out = 1;
1150 }
1151 
clear_timeout(struct aio_timeout * to)1152 static inline void clear_timeout(struct aio_timeout *to)
1153 {
1154 	del_singleshot_timer_sync(&to->timer);
1155 }
1156 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1157 static int read_events(struct kioctx *ctx,
1158 			long min_nr, long nr,
1159 			struct io_event __user *event,
1160 			struct timespec __user *timeout)
1161 {
1162 	long			start_jiffies = jiffies;
1163 	struct task_struct	*tsk = current;
1164 	DECLARE_WAITQUEUE(wait, tsk);
1165 	int			ret;
1166 	int			i = 0;
1167 	struct io_event		ent;
1168 	struct aio_timeout	to;
1169 	int			retry = 0;
1170 
1171 	/* needed to zero any padding within an entry (there shouldn't be
1172 	 * any, but C is fun!
1173 	 */
1174 	memset(&ent, 0, sizeof(ent));
1175 retry:
1176 	ret = 0;
1177 	while (likely(i < nr)) {
1178 		ret = aio_read_evt(ctx, &ent);
1179 		if (unlikely(ret <= 0))
1180 			break;
1181 
1182 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1183 			ent.data, ent.obj, ent.res, ent.res2);
1184 
1185 		/* Could we split the check in two? */
1186 		ret = -EFAULT;
1187 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1188 			dprintk("aio: lost an event due to EFAULT.\n");
1189 			break;
1190 		}
1191 		ret = 0;
1192 
1193 		/* Good, event copied to userland, update counts. */
1194 		event ++;
1195 		i ++;
1196 	}
1197 
1198 	if (min_nr <= i)
1199 		return i;
1200 	if (ret)
1201 		return ret;
1202 
1203 	/* End fast path */
1204 
1205 	/* racey check, but it gets redone */
1206 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1207 		retry = 1;
1208 		aio_run_all_iocbs(ctx);
1209 		goto retry;
1210 	}
1211 
1212 	init_timeout(&to);
1213 	if (timeout) {
1214 		struct timespec	ts;
1215 		ret = -EFAULT;
1216 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1217 			goto out;
1218 
1219 		set_timeout(start_jiffies, &to, &ts);
1220 	}
1221 
1222 	while (likely(i < nr)) {
1223 		add_wait_queue_exclusive(&ctx->wait, &wait);
1224 		do {
1225 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1226 			ret = aio_read_evt(ctx, &ent);
1227 			if (ret)
1228 				break;
1229 			if (min_nr <= i)
1230 				break;
1231 			if (unlikely(ctx->dead)) {
1232 				ret = -EINVAL;
1233 				break;
1234 			}
1235 			if (to.timed_out)	/* Only check after read evt */
1236 				break;
1237 			/* Try to only show up in io wait if there are ops
1238 			 *  in flight */
1239 			if (ctx->reqs_active)
1240 				io_schedule();
1241 			else
1242 				schedule();
1243 			if (signal_pending(tsk)) {
1244 				ret = -EINTR;
1245 				break;
1246 			}
1247 			/*ret = aio_read_evt(ctx, &ent);*/
1248 		} while (1) ;
1249 
1250 		set_task_state(tsk, TASK_RUNNING);
1251 		remove_wait_queue(&ctx->wait, &wait);
1252 
1253 		if (unlikely(ret <= 0))
1254 			break;
1255 
1256 		ret = -EFAULT;
1257 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1258 			dprintk("aio: lost an event due to EFAULT.\n");
1259 			break;
1260 		}
1261 
1262 		/* Good, event copied to userland, update counts. */
1263 		event ++;
1264 		i ++;
1265 	}
1266 
1267 	if (timeout)
1268 		clear_timeout(&to);
1269 out:
1270 	destroy_timer_on_stack(&to.timer);
1271 	return i ? i : ret;
1272 }
1273 
1274 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1275  * against races with itself via ->dead.
1276  */
io_destroy(struct kioctx * ioctx)1277 static void io_destroy(struct kioctx *ioctx)
1278 {
1279 	struct mm_struct *mm = current->mm;
1280 	int was_dead;
1281 
1282 	/* delete the entry from the list is someone else hasn't already */
1283 	spin_lock(&mm->ioctx_lock);
1284 	was_dead = ioctx->dead;
1285 	ioctx->dead = 1;
1286 	hlist_del_rcu(&ioctx->list);
1287 	spin_unlock(&mm->ioctx_lock);
1288 
1289 	dprintk("aio_release(%p)\n", ioctx);
1290 	if (likely(!was_dead))
1291 		put_ioctx(ioctx);	/* twice for the list */
1292 
1293 	aio_cancel_all(ioctx);
1294 	wait_for_all_aios(ioctx);
1295 
1296 	/*
1297 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1298 	 * by other CPUs at this point.  Right now, we rely on the
1299 	 * locking done by the above calls to ensure this consistency.
1300 	 */
1301 	wake_up_all(&ioctx->wait);
1302 	put_ioctx(ioctx);	/* once for the lookup */
1303 }
1304 
1305 /* sys_io_setup:
1306  *	Create an aio_context capable of receiving at least nr_events.
1307  *	ctxp must not point to an aio_context that already exists, and
1308  *	must be initialized to 0 prior to the call.  On successful
1309  *	creation of the aio_context, *ctxp is filled in with the resulting
1310  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1311  *	if the specified nr_events exceeds internal limits.  May fail
1312  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1313  *	of available events.  May fail with -ENOMEM if insufficient kernel
1314  *	resources are available.  May fail with -EFAULT if an invalid
1315  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1316  *	implemented.
1317  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1318 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1319 {
1320 	struct kioctx *ioctx = NULL;
1321 	unsigned long ctx;
1322 	long ret;
1323 
1324 	ret = get_user(ctx, ctxp);
1325 	if (unlikely(ret))
1326 		goto out;
1327 
1328 	ret = -EINVAL;
1329 	if (unlikely(ctx || nr_events == 0)) {
1330 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1331 		         ctx, nr_events);
1332 		goto out;
1333 	}
1334 
1335 	ioctx = ioctx_alloc(nr_events);
1336 	ret = PTR_ERR(ioctx);
1337 	if (!IS_ERR(ioctx)) {
1338 		ret = put_user(ioctx->user_id, ctxp);
1339 		if (!ret) {
1340 			put_ioctx(ioctx);
1341 			return 0;
1342 		}
1343 		io_destroy(ioctx);
1344 	}
1345 
1346 out:
1347 	return ret;
1348 }
1349 
1350 /* sys_io_destroy:
1351  *	Destroy the aio_context specified.  May cancel any outstanding
1352  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1353  *	implemented.  May fail with -EINVAL if the context pointed to
1354  *	is invalid.
1355  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1356 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1357 {
1358 	struct kioctx *ioctx = lookup_ioctx(ctx);
1359 	if (likely(NULL != ioctx)) {
1360 		io_destroy(ioctx);
1361 		return 0;
1362 	}
1363 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1364 	return -EINVAL;
1365 }
1366 
aio_advance_iovec(struct kiocb * iocb,ssize_t ret)1367 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1368 {
1369 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1370 
1371 	BUG_ON(ret <= 0);
1372 
1373 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1374 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1375 		iov->iov_base += this;
1376 		iov->iov_len -= this;
1377 		iocb->ki_left -= this;
1378 		ret -= this;
1379 		if (iov->iov_len == 0) {
1380 			iocb->ki_cur_seg++;
1381 			iov++;
1382 		}
1383 	}
1384 
1385 	/* the caller should not have done more io than what fit in
1386 	 * the remaining iovecs */
1387 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1388 }
1389 
aio_rw_vect_retry(struct kiocb * iocb)1390 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1391 {
1392 	struct file *file = iocb->ki_filp;
1393 	struct address_space *mapping = file->f_mapping;
1394 	struct inode *inode = mapping->host;
1395 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1396 			 unsigned long, loff_t);
1397 	ssize_t ret = 0;
1398 	unsigned short opcode;
1399 
1400 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1401 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1402 		rw_op = file->f_op->aio_read;
1403 		opcode = IOCB_CMD_PREADV;
1404 	} else {
1405 		rw_op = file->f_op->aio_write;
1406 		opcode = IOCB_CMD_PWRITEV;
1407 	}
1408 
1409 	/* This matches the pread()/pwrite() logic */
1410 	if (iocb->ki_pos < 0)
1411 		return -EINVAL;
1412 
1413 	do {
1414 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1415 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1416 			    iocb->ki_pos);
1417 		if (ret > 0)
1418 			aio_advance_iovec(iocb, ret);
1419 
1420 	/* retry all partial writes.  retry partial reads as long as its a
1421 	 * regular file. */
1422 	} while (ret > 0 && iocb->ki_left > 0 &&
1423 		 (opcode == IOCB_CMD_PWRITEV ||
1424 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1425 
1426 	/* This means we must have transferred all that we could */
1427 	/* No need to retry anymore */
1428 	if ((ret == 0) || (iocb->ki_left == 0))
1429 		ret = iocb->ki_nbytes - iocb->ki_left;
1430 
1431 	/* If we managed to write some out we return that, rather than
1432 	 * the eventual error. */
1433 	if (opcode == IOCB_CMD_PWRITEV
1434 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1435 	    && iocb->ki_nbytes - iocb->ki_left)
1436 		ret = iocb->ki_nbytes - iocb->ki_left;
1437 
1438 	return ret;
1439 }
1440 
aio_fdsync(struct kiocb * iocb)1441 static ssize_t aio_fdsync(struct kiocb *iocb)
1442 {
1443 	struct file *file = iocb->ki_filp;
1444 	ssize_t ret = -EINVAL;
1445 
1446 	if (file->f_op->aio_fsync)
1447 		ret = file->f_op->aio_fsync(iocb, 1);
1448 	return ret;
1449 }
1450 
aio_fsync(struct kiocb * iocb)1451 static ssize_t aio_fsync(struct kiocb *iocb)
1452 {
1453 	struct file *file = iocb->ki_filp;
1454 	ssize_t ret = -EINVAL;
1455 
1456 	if (file->f_op->aio_fsync)
1457 		ret = file->f_op->aio_fsync(iocb, 0);
1458 	return ret;
1459 }
1460 
aio_setup_vectored_rw(int type,struct kiocb * kiocb,bool compat)1461 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1462 {
1463 	ssize_t ret;
1464 
1465 #ifdef CONFIG_COMPAT
1466 	if (compat)
1467 		ret = compat_rw_copy_check_uvector(type,
1468 				(struct compat_iovec __user *)kiocb->ki_buf,
1469 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1470 				&kiocb->ki_iovec, 1);
1471 	else
1472 #endif
1473 		ret = rw_copy_check_uvector(type,
1474 				(struct iovec __user *)kiocb->ki_buf,
1475 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1476 				&kiocb->ki_iovec, 1);
1477 	if (ret < 0)
1478 		goto out;
1479 
1480 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1481 	kiocb->ki_cur_seg = 0;
1482 	/* ki_nbytes/left now reflect bytes instead of segs */
1483 	kiocb->ki_nbytes = ret;
1484 	kiocb->ki_left = ret;
1485 
1486 	ret = 0;
1487 out:
1488 	return ret;
1489 }
1490 
aio_setup_single_vector(struct kiocb * kiocb)1491 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1492 {
1493 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1494 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1495 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1496 	kiocb->ki_nr_segs = 1;
1497 	kiocb->ki_cur_seg = 0;
1498 	return 0;
1499 }
1500 
1501 /*
1502  * aio_setup_iocb:
1503  *	Performs the initial checks and aio retry method
1504  *	setup for the kiocb at the time of io submission.
1505  */
aio_setup_iocb(struct kiocb * kiocb,bool compat)1506 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1507 {
1508 	struct file *file = kiocb->ki_filp;
1509 	ssize_t ret = 0;
1510 
1511 	switch (kiocb->ki_opcode) {
1512 	case IOCB_CMD_PREAD:
1513 		ret = -EBADF;
1514 		if (unlikely(!(file->f_mode & FMODE_READ)))
1515 			break;
1516 		ret = -EFAULT;
1517 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1518 			kiocb->ki_left)))
1519 			break;
1520 		ret = security_file_permission(file, MAY_READ);
1521 		if (unlikely(ret))
1522 			break;
1523 		ret = aio_setup_single_vector(kiocb);
1524 		if (ret)
1525 			break;
1526 		ret = -EINVAL;
1527 		if (file->f_op->aio_read)
1528 			kiocb->ki_retry = aio_rw_vect_retry;
1529 		break;
1530 	case IOCB_CMD_PWRITE:
1531 		ret = -EBADF;
1532 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1533 			break;
1534 		ret = -EFAULT;
1535 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1536 			kiocb->ki_left)))
1537 			break;
1538 		ret = security_file_permission(file, MAY_WRITE);
1539 		if (unlikely(ret))
1540 			break;
1541 		ret = aio_setup_single_vector(kiocb);
1542 		if (ret)
1543 			break;
1544 		ret = -EINVAL;
1545 		if (file->f_op->aio_write)
1546 			kiocb->ki_retry = aio_rw_vect_retry;
1547 		break;
1548 	case IOCB_CMD_PREADV:
1549 		ret = -EBADF;
1550 		if (unlikely(!(file->f_mode & FMODE_READ)))
1551 			break;
1552 		ret = security_file_permission(file, MAY_READ);
1553 		if (unlikely(ret))
1554 			break;
1555 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1556 		if (ret)
1557 			break;
1558 		ret = -EINVAL;
1559 		if (file->f_op->aio_read)
1560 			kiocb->ki_retry = aio_rw_vect_retry;
1561 		break;
1562 	case IOCB_CMD_PWRITEV:
1563 		ret = -EBADF;
1564 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1565 			break;
1566 		ret = security_file_permission(file, MAY_WRITE);
1567 		if (unlikely(ret))
1568 			break;
1569 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1570 		if (ret)
1571 			break;
1572 		ret = -EINVAL;
1573 		if (file->f_op->aio_write)
1574 			kiocb->ki_retry = aio_rw_vect_retry;
1575 		break;
1576 	case IOCB_CMD_FDSYNC:
1577 		ret = -EINVAL;
1578 		if (file->f_op->aio_fsync)
1579 			kiocb->ki_retry = aio_fdsync;
1580 		break;
1581 	case IOCB_CMD_FSYNC:
1582 		ret = -EINVAL;
1583 		if (file->f_op->aio_fsync)
1584 			kiocb->ki_retry = aio_fsync;
1585 		break;
1586 	default:
1587 		dprintk("EINVAL: io_submit: no operation provided\n");
1588 		ret = -EINVAL;
1589 	}
1590 
1591 	if (!kiocb->ki_retry)
1592 		return ret;
1593 
1594 	return 0;
1595 }
1596 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb,struct kiocb_batch * batch,bool compat)1597 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1598 			 struct iocb *iocb, struct kiocb_batch *batch,
1599 			 bool compat)
1600 {
1601 	struct kiocb *req;
1602 	struct file *file;
1603 	ssize_t ret;
1604 
1605 	/* enforce forwards compatibility on users */
1606 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1607 		pr_debug("EINVAL: io_submit: reserve field set\n");
1608 		return -EINVAL;
1609 	}
1610 
1611 	/* prevent overflows */
1612 	if (unlikely(
1613 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1614 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1615 	    ((ssize_t)iocb->aio_nbytes < 0)
1616 	   )) {
1617 		pr_debug("EINVAL: io_submit: overflow check\n");
1618 		return -EINVAL;
1619 	}
1620 
1621 	file = fget(iocb->aio_fildes);
1622 	if (unlikely(!file))
1623 		return -EBADF;
1624 
1625 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1626 	if (unlikely(!req)) {
1627 		fput(file);
1628 		return -EAGAIN;
1629 	}
1630 	req->ki_filp = file;
1631 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1632 		/*
1633 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1634 		 * instance of the file* now. The file descriptor must be
1635 		 * an eventfd() fd, and will be signaled for each completed
1636 		 * event using the eventfd_signal() function.
1637 		 */
1638 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1639 		if (IS_ERR(req->ki_eventfd)) {
1640 			ret = PTR_ERR(req->ki_eventfd);
1641 			req->ki_eventfd = NULL;
1642 			goto out_put_req;
1643 		}
1644 	}
1645 
1646 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1647 	if (unlikely(ret)) {
1648 		dprintk("EFAULT: aio_key\n");
1649 		goto out_put_req;
1650 	}
1651 
1652 	req->ki_obj.user = user_iocb;
1653 	req->ki_user_data = iocb->aio_data;
1654 	req->ki_pos = iocb->aio_offset;
1655 
1656 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1657 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1658 	req->ki_opcode = iocb->aio_lio_opcode;
1659 
1660 	ret = aio_setup_iocb(req, compat);
1661 
1662 	if (ret)
1663 		goto out_put_req;
1664 
1665 	spin_lock_irq(&ctx->ctx_lock);
1666 	/*
1667 	 * We could have raced with io_destroy() and are currently holding a
1668 	 * reference to ctx which should be destroyed. We cannot submit IO
1669 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1670 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1671 	 * for outstanding IO and the barrier between these two is realized by
1672 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1673 	 * increment ctx->reqs_active before checking for ctx->dead and the
1674 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1675 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1676 	 * finish.
1677 	 */
1678 	if (ctx->dead) {
1679 		spin_unlock_irq(&ctx->ctx_lock);
1680 		ret = -EINVAL;
1681 		goto out_put_req;
1682 	}
1683 	aio_run_iocb(req);
1684 	if (!list_empty(&ctx->run_list)) {
1685 		/* drain the run list */
1686 		while (__aio_run_iocbs(ctx))
1687 			;
1688 	}
1689 	spin_unlock_irq(&ctx->ctx_lock);
1690 
1691 	aio_put_req(req);	/* drop extra ref to req */
1692 	return 0;
1693 
1694 out_put_req:
1695 	aio_put_req(req);	/* drop extra ref to req */
1696 	aio_put_req(req);	/* drop i/o ref to req */
1697 	return ret;
1698 }
1699 
do_io_submit(aio_context_t ctx_id,long nr,struct iocb __user * __user * iocbpp,bool compat)1700 long do_io_submit(aio_context_t ctx_id, long nr,
1701 		  struct iocb __user *__user *iocbpp, bool compat)
1702 {
1703 	struct kioctx *ctx;
1704 	long ret = 0;
1705 	int i = 0;
1706 	struct blk_plug plug;
1707 	struct kiocb_batch batch;
1708 
1709 	if (unlikely(nr < 0))
1710 		return -EINVAL;
1711 
1712 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1713 		nr = LONG_MAX/sizeof(*iocbpp);
1714 
1715 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1716 		return -EFAULT;
1717 
1718 	ctx = lookup_ioctx(ctx_id);
1719 	if (unlikely(!ctx)) {
1720 		pr_debug("EINVAL: io_submit: invalid context id\n");
1721 		return -EINVAL;
1722 	}
1723 
1724 	kiocb_batch_init(&batch, nr);
1725 
1726 	blk_start_plug(&plug);
1727 
1728 	/*
1729 	 * AKPM: should this return a partial result if some of the IOs were
1730 	 * successfully submitted?
1731 	 */
1732 	for (i=0; i<nr; i++) {
1733 		struct iocb __user *user_iocb;
1734 		struct iocb tmp;
1735 
1736 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1737 			ret = -EFAULT;
1738 			break;
1739 		}
1740 
1741 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1742 			ret = -EFAULT;
1743 			break;
1744 		}
1745 
1746 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1747 		if (ret)
1748 			break;
1749 	}
1750 	blk_finish_plug(&plug);
1751 
1752 	kiocb_batch_free(ctx, &batch);
1753 	put_ioctx(ctx);
1754 	return i ? i : ret;
1755 }
1756 
1757 /* sys_io_submit:
1758  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1759  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1760  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1761  *	*iocbpp[0] is not properly initialized, if the operation specified
1762  *	is invalid for the file descriptor in the iocb.  May fail with
1763  *	-EFAULT if any of the data structures point to invalid data.  May
1764  *	fail with -EBADF if the file descriptor specified in the first
1765  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1766  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1767  *	fail with -ENOSYS if not implemented.
1768  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1769 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1770 		struct iocb __user * __user *, iocbpp)
1771 {
1772 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1773 }
1774 
1775 /* lookup_kiocb
1776  *	Finds a given iocb for cancellation.
1777  */
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1778 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1779 				  u32 key)
1780 {
1781 	struct list_head *pos;
1782 
1783 	assert_spin_locked(&ctx->ctx_lock);
1784 
1785 	/* TODO: use a hash or array, this sucks. */
1786 	list_for_each(pos, &ctx->active_reqs) {
1787 		struct kiocb *kiocb = list_kiocb(pos);
1788 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1789 			return kiocb;
1790 	}
1791 	return NULL;
1792 }
1793 
1794 /* sys_io_cancel:
1795  *	Attempts to cancel an iocb previously passed to io_submit.  If
1796  *	the operation is successfully cancelled, the resulting event is
1797  *	copied into the memory pointed to by result without being placed
1798  *	into the completion queue and 0 is returned.  May fail with
1799  *	-EFAULT if any of the data structures pointed to are invalid.
1800  *	May fail with -EINVAL if aio_context specified by ctx_id is
1801  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1802  *	cancelled.  Will fail with -ENOSYS if not implemented.
1803  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1804 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1805 		struct io_event __user *, result)
1806 {
1807 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1808 	struct kioctx *ctx;
1809 	struct kiocb *kiocb;
1810 	u32 key;
1811 	int ret;
1812 
1813 	ret = get_user(key, &iocb->aio_key);
1814 	if (unlikely(ret))
1815 		return -EFAULT;
1816 
1817 	ctx = lookup_ioctx(ctx_id);
1818 	if (unlikely(!ctx))
1819 		return -EINVAL;
1820 
1821 	spin_lock_irq(&ctx->ctx_lock);
1822 	ret = -EAGAIN;
1823 	kiocb = lookup_kiocb(ctx, iocb, key);
1824 	if (kiocb && kiocb->ki_cancel) {
1825 		cancel = kiocb->ki_cancel;
1826 		kiocb->ki_users ++;
1827 		kiocbSetCancelled(kiocb);
1828 	} else
1829 		cancel = NULL;
1830 	spin_unlock_irq(&ctx->ctx_lock);
1831 
1832 	if (NULL != cancel) {
1833 		struct io_event tmp;
1834 		pr_debug("calling cancel\n");
1835 		memset(&tmp, 0, sizeof(tmp));
1836 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1837 		tmp.data = kiocb->ki_user_data;
1838 		ret = cancel(kiocb, &tmp);
1839 		if (!ret) {
1840 			/* Cancellation succeeded -- copy the result
1841 			 * into the user's buffer.
1842 			 */
1843 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1844 				ret = -EFAULT;
1845 		}
1846 	} else
1847 		ret = -EINVAL;
1848 
1849 	put_ioctx(ctx);
1850 
1851 	return ret;
1852 }
1853 
1854 /* io_getevents:
1855  *	Attempts to read at least min_nr events and up to nr events from
1856  *	the completion queue for the aio_context specified by ctx_id. If
1857  *	it succeeds, the number of read events is returned. May fail with
1858  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1859  *	out of range, if timeout is out of range.  May fail with -EFAULT
1860  *	if any of the memory specified is invalid.  May return 0 or
1861  *	< min_nr if the timeout specified by timeout has elapsed
1862  *	before sufficient events are available, where timeout == NULL
1863  *	specifies an infinite timeout. Note that the timeout pointed to by
1864  *	timeout is relative and will be updated if not NULL and the
1865  *	operation blocks. Will fail with -ENOSYS if not implemented.
1866  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1867 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1868 		long, min_nr,
1869 		long, nr,
1870 		struct io_event __user *, events,
1871 		struct timespec __user *, timeout)
1872 {
1873 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1874 	long ret = -EINVAL;
1875 
1876 	if (likely(ioctx)) {
1877 		if (likely(min_nr <= nr && min_nr >= 0))
1878 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1879 		put_ioctx(ioctx);
1880 	}
1881 
1882 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1883 	return ret;
1884 }
1885