1 /*
2  *  linux/drivers/video/mbx/mbxfb.c
3  *
4  *  Copyright (C) 2006-2007 8D Technologies inc
5  *  Raphael Assenat <raph@8d.com>
6  *  	- Added video overlay support
7  *  	- Various improvements
8  *
9  *  Copyright (C) 2006 Compulab, Ltd.
10  *  Mike Rapoport <mike@compulab.co.il>
11  *  	- Creation of driver
12  *
13  *   Based on pxafb.c
14  *
15  * This file is subject to the terms and conditions of the GNU General Public
16  * License.  See the file COPYING in the main directory of this archive for
17  * more details.
18  *
19  *   Intel 2700G (Marathon) Graphics Accelerator Frame Buffer Driver
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/fb.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 
30 #include <asm/io.h>
31 
32 #include <video/mbxfb.h>
33 
34 #include "regs.h"
35 #include "reg_bits.h"
36 
37 static void __iomem *virt_base_2700;
38 
39 #define write_reg(val, reg) do { writel((val), (reg)); } while(0)
40 
41 /* Without this delay, the graphics appears somehow scaled and
42  * there is a lot of jitter in scanlines. This delay is probably
43  * needed only after setting some specific register(s) somewhere,
44  * not all over the place... */
45 #define write_reg_dly(val, reg) do { writel((val), reg); udelay(1000); } while(0)
46 
47 #define MIN_XRES	16
48 #define MIN_YRES	16
49 #define MAX_XRES	2048
50 #define MAX_YRES	2048
51 
52 #define MAX_PALETTES	16
53 
54 /* FIXME: take care of different chip revisions with different sizes
55    of ODFB */
56 #define MEMORY_OFFSET	0x60000
57 
58 struct mbxfb_info {
59 	struct device *dev;
60 
61 	struct resource *fb_res;
62 	struct resource *fb_req;
63 
64 	struct resource *reg_res;
65 	struct resource *reg_req;
66 
67 	void __iomem *fb_virt_addr;
68 	unsigned long fb_phys_addr;
69 
70 	void __iomem *reg_virt_addr;
71 	unsigned long reg_phys_addr;
72 
73 	int (*platform_probe) (struct fb_info * fb);
74 	int (*platform_remove) (struct fb_info * fb);
75 
76 	u32 pseudo_palette[MAX_PALETTES];
77 #ifdef CONFIG_FB_MBX_DEBUG
78 	void *debugfs_data;
79 #endif
80 
81 };
82 
83 static struct fb_var_screeninfo mbxfb_default __devinitdata = {
84 	.xres = 640,
85 	.yres = 480,
86 	.xres_virtual = 640,
87 	.yres_virtual = 480,
88 	.bits_per_pixel = 16,
89 	.red = {11, 5, 0},
90 	.green = {5, 6, 0},
91 	.blue = {0, 5, 0},
92 	.activate = FB_ACTIVATE_TEST,
93 	.height = -1,
94 	.width = -1,
95 	.pixclock = 40000,
96 	.left_margin = 48,
97 	.right_margin = 16,
98 	.upper_margin = 33,
99 	.lower_margin = 10,
100 	.hsync_len = 96,
101 	.vsync_len = 2,
102 	.vmode = FB_VMODE_NONINTERLACED,
103 	.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
104 };
105 
106 static struct fb_fix_screeninfo mbxfb_fix  __devinitdata = {
107 	.id = "MBX",
108 	.type = FB_TYPE_PACKED_PIXELS,
109 	.visual = FB_VISUAL_TRUECOLOR,
110 	.xpanstep = 0,
111 	.ypanstep = 0,
112 	.ywrapstep = 0,
113 	.accel = FB_ACCEL_NONE,
114 };
115 
116 struct pixclock_div {
117 	u8 m;
118 	u8 n;
119 	u8 p;
120 };
121 
mbxfb_get_pixclock(unsigned int pixclock_ps,struct pixclock_div * div)122 static unsigned int mbxfb_get_pixclock(unsigned int pixclock_ps,
123 				       struct pixclock_div *div)
124 {
125 	u8 m, n, p;
126 	unsigned int err = 0;
127 	unsigned int min_err = ~0x0;
128 	unsigned int clk;
129 	unsigned int best_clk = 0;
130 	unsigned int ref_clk = 13000;	/* FIXME: take from platform data */
131 	unsigned int pixclock;
132 
133 	/* convert pixclock to KHz */
134 	pixclock = PICOS2KHZ(pixclock_ps);
135 
136 	/* PLL output freq = (ref_clk * M) / (N * 2^P)
137 	 *
138 	 * M: 1 to 63
139 	 * N: 1 to 7
140 	 * P: 0 to 7
141 	 */
142 
143 	/* RAPH: When N==1, the resulting pixel clock appears to
144 	 * get divided by 2. Preventing N=1 by starting the following
145 	 * loop at 2 prevents this. Is this a bug with my chip
146 	 * revision or something I dont understand? */
147 	for (m = 1; m < 64; m++) {
148 		for (n = 2; n < 8; n++) {
149 			for (p = 0; p < 8; p++) {
150 				clk = (ref_clk * m) / (n * (1 << p));
151 				err = (clk > pixclock) ? (clk - pixclock) :
152 					(pixclock - clk);
153 				if (err < min_err) {
154 					min_err = err;
155 					best_clk = clk;
156 					div->m = m;
157 					div->n = n;
158 					div->p = p;
159 				}
160 			}
161 		}
162 	}
163 	return KHZ2PICOS(best_clk);
164 }
165 
mbxfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)166 static int mbxfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
167 			   u_int trans, struct fb_info *info)
168 {
169 	u32 val, ret = 1;
170 
171 	if (regno < MAX_PALETTES) {
172 		u32 *pal = info->pseudo_palette;
173 
174 		val = (red & 0xf800) | ((green & 0xfc00) >> 5) |
175 			((blue & 0xf800) >> 11);
176 		pal[regno] = val;
177 		ret = 0;
178 	}
179 
180 	return ret;
181 }
182 
mbxfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)183 static int mbxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
184 {
185 	struct pixclock_div div;
186 
187 	var->pixclock = mbxfb_get_pixclock(var->pixclock, &div);
188 
189 	if (var->xres < MIN_XRES)
190 		var->xres = MIN_XRES;
191 	if (var->yres < MIN_YRES)
192 		var->yres = MIN_YRES;
193 	if (var->xres > MAX_XRES)
194 		return -EINVAL;
195 	if (var->yres > MAX_YRES)
196 		return -EINVAL;
197 	var->xres_virtual = max(var->xres_virtual, var->xres);
198 	var->yres_virtual = max(var->yres_virtual, var->yres);
199 
200 	switch (var->bits_per_pixel) {
201 		/* 8 bits-per-pixel is not supported yet */
202 	case 8:
203 		return -EINVAL;
204 	case 16:
205 		var->green.length = (var->green.length == 5) ? 5 : 6;
206 		var->red.length = 5;
207 		var->blue.length = 5;
208 		var->transp.length = 6 - var->green.length;
209 		var->blue.offset = 0;
210 		var->green.offset = 5;
211 		var->red.offset = 5 + var->green.length;
212 		var->transp.offset = (5 + var->red.offset) & 15;
213 		break;
214 	case 24:		/* RGB 888   */
215 	case 32:		/* RGBA 8888 */
216 		var->red.offset = 16;
217 		var->red.length = 8;
218 		var->green.offset = 8;
219 		var->green.length = 8;
220 		var->blue.offset = 0;
221 		var->blue.length = 8;
222 		var->transp.length = var->bits_per_pixel - 24;
223 		var->transp.offset = (var->transp.length) ? 24 : 0;
224 		break;
225 	}
226 	var->red.msb_right = 0;
227 	var->green.msb_right = 0;
228 	var->blue.msb_right = 0;
229 	var->transp.msb_right = 0;
230 
231 	return 0;
232 }
233 
mbxfb_set_par(struct fb_info * info)234 static int mbxfb_set_par(struct fb_info *info)
235 {
236 	struct fb_var_screeninfo *var = &info->var;
237 	struct pixclock_div div;
238 	ushort hbps, ht, hfps, has;
239 	ushort vbps, vt, vfps, vas;
240 	u32 gsctrl = readl(GSCTRL);
241 	u32 gsadr = readl(GSADR);
242 
243 	info->fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
244 
245 	/* setup color mode */
246 	gsctrl &= ~(FMsk(GSCTRL_GPIXFMT));
247 	/* FIXME: add *WORKING* support for 8-bits per color */
248 	if (info->var.bits_per_pixel == 8) {
249 		return -EINVAL;
250 	} else {
251 		fb_dealloc_cmap(&info->cmap);
252 		gsctrl &= ~GSCTRL_LUT_EN;
253 
254 		info->fix.visual = FB_VISUAL_TRUECOLOR;
255 		switch (info->var.bits_per_pixel) {
256 		case 16:
257 			if (info->var.green.length == 5)
258 				gsctrl |= GSCTRL_GPIXFMT_ARGB1555;
259 			else
260 				gsctrl |= GSCTRL_GPIXFMT_RGB565;
261 			break;
262 		case 24:
263 			gsctrl |= GSCTRL_GPIXFMT_RGB888;
264 			break;
265 		case 32:
266 			gsctrl |= GSCTRL_GPIXFMT_ARGB8888;
267 			break;
268 		}
269 	}
270 
271 	/* setup resolution */
272 	gsctrl &= ~(FMsk(GSCTRL_GSWIDTH) | FMsk(GSCTRL_GSHEIGHT));
273 	gsctrl |= Gsctrl_Width(info->var.xres) |
274 		Gsctrl_Height(info->var.yres);
275 	write_reg_dly(gsctrl, GSCTRL);
276 
277 	gsadr &= ~(FMsk(GSADR_SRCSTRIDE));
278 	gsadr |= Gsadr_Srcstride(info->var.xres * info->var.bits_per_pixel /
279 				 (8 * 16) - 1);
280 	write_reg_dly(gsadr, GSADR);
281 
282 	/* setup timings */
283 	var->pixclock = mbxfb_get_pixclock(info->var.pixclock, &div);
284 
285 	write_reg_dly((Disp_Pll_M(div.m) | Disp_Pll_N(div.n) |
286 		Disp_Pll_P(div.p) | DISP_PLL_EN), DISPPLL);
287 
288 	hbps = var->hsync_len;
289 	has = hbps + var->left_margin;
290 	hfps = has + var->xres;
291 	ht = hfps + var->right_margin;
292 
293 	vbps = var->vsync_len;
294 	vas = vbps + var->upper_margin;
295 	vfps = vas + var->yres;
296 	vt = vfps + var->lower_margin;
297 
298 	write_reg_dly((Dht01_Hbps(hbps) | Dht01_Ht(ht)), DHT01);
299 	write_reg_dly((Dht02_Hlbs(has) | Dht02_Has(has)), DHT02);
300 	write_reg_dly((Dht03_Hfps(hfps) | Dht03_Hrbs(hfps)), DHT03);
301 	write_reg_dly((Dhdet_Hdes(has) | Dhdet_Hdef(hfps)), DHDET);
302 
303 	write_reg_dly((Dvt01_Vbps(vbps) | Dvt01_Vt(vt)), DVT01);
304 	write_reg_dly((Dvt02_Vtbs(vas) | Dvt02_Vas(vas)), DVT02);
305 	write_reg_dly((Dvt03_Vfps(vfps) | Dvt03_Vbbs(vfps)), DVT03);
306 	write_reg_dly((Dvdet_Vdes(vas) | Dvdet_Vdef(vfps)), DVDET);
307 	write_reg_dly((Dvectrl_Vevent(vfps) | Dvectrl_Vfetch(vbps)), DVECTRL);
308 
309 	write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL);
310 
311 	write_reg_dly(DINTRE_VEVENT0_EN, DINTRE);
312 
313 	return 0;
314 }
315 
mbxfb_blank(int blank,struct fb_info * info)316 static int mbxfb_blank(int blank, struct fb_info *info)
317 {
318 	switch (blank) {
319 	case FB_BLANK_POWERDOWN:
320 	case FB_BLANK_VSYNC_SUSPEND:
321 	case FB_BLANK_HSYNC_SUSPEND:
322 	case FB_BLANK_NORMAL:
323 		write_reg_dly((readl(DSCTRL) & ~DSCTRL_SYNCGEN_EN), DSCTRL);
324 		write_reg_dly((readl(PIXCLK) & ~PIXCLK_EN), PIXCLK);
325 		write_reg_dly((readl(VOVRCLK) & ~VOVRCLK_EN), VOVRCLK);
326 		break;
327 	case FB_BLANK_UNBLANK:
328 		write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL);
329 		write_reg_dly((readl(PIXCLK) | PIXCLK_EN), PIXCLK);
330 		break;
331 	}
332 	return 0;
333 }
334 
mbxfb_setupOverlay(struct mbxfb_overlaySetup * set)335 static int mbxfb_setupOverlay(struct mbxfb_overlaySetup *set)
336 {
337 	u32 vsctrl, vscadr, vsadr;
338 	u32 sssize, spoctrl, shctrl;
339 	u32 vubase, vvbase;
340 	u32 vovrclk;
341 
342 	if (set->scaled_width==0 || set->scaled_height==0)
343 		return -EINVAL;
344 
345 	/* read registers which have reserved bits
346 	 * so we can write them back as-is. */
347 	vovrclk = readl(VOVRCLK);
348 	vsctrl = readl(VSCTRL);
349 	vscadr = readl(VSCADR);
350 	vubase = readl(VUBASE);
351 	vvbase = readl(VVBASE);
352 	shctrl = readl(SHCTRL);
353 
354 	spoctrl = readl(SPOCTRL);
355 	sssize = readl(SSSIZE);
356 
357 	vsctrl &= ~(	FMsk(VSCTRL_VSWIDTH) |
358 					FMsk(VSCTRL_VSHEIGHT) |
359 					FMsk(VSCTRL_VPIXFMT) |
360 					VSCTRL_GAMMA_EN | VSCTRL_CSC_EN |
361 					VSCTRL_COSITED );
362 	vsctrl |= Vsctrl_Width(set->width) | Vsctrl_Height(set->height) |
363 				VSCTRL_CSC_EN;
364 
365 	vscadr &= ~(VSCADR_STR_EN | FMsk(VSCADR_VBASE_ADR) );
366 	vubase &= ~(VUBASE_UVHALFSTR | FMsk(VUBASE_UBASE_ADR));
367 	vvbase &= ~(FMsk(VVBASE_VBASE_ADR));
368 
369 	switch (set->fmt) {
370 	case MBXFB_FMT_YUV16:
371 		vsctrl |= VSCTRL_VPIXFMT_YUV12;
372 
373 		set->Y_stride = ((set->width) + 0xf ) & ~0xf;
374 		break;
375 	case MBXFB_FMT_YUV12:
376 		vsctrl |= VSCTRL_VPIXFMT_YUV12;
377 
378 		set->Y_stride = ((set->width) + 0xf ) & ~0xf;
379 		vubase |= VUBASE_UVHALFSTR;
380 
381 		break;
382 	case MBXFB_FMT_UY0VY1:
383 		vsctrl |= VSCTRL_VPIXFMT_UY0VY1;
384 		set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
385 		break;
386 	case MBXFB_FMT_VY0UY1:
387 		vsctrl |= VSCTRL_VPIXFMT_VY0UY1;
388 		set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
389 		break;
390 	case MBXFB_FMT_Y0UY1V:
391 		vsctrl |= VSCTRL_VPIXFMT_Y0UY1V;
392 		set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
393 		break;
394 	case MBXFB_FMT_Y0VY1U:
395 		vsctrl |= VSCTRL_VPIXFMT_Y0VY1U;
396 		set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
397 			break;
398 	default:
399 		return -EINVAL;
400 	}
401 
402 	/* VSCTRL has the bits which sets the Video Pixel Format.
403 	 * When passing from a packed to planar format,
404 	 * if we write VSCTRL first, VVBASE and VUBASE would
405 	 * be zero if we would not set them here. (And then,
406 	 * the chips hangs and only a reset seems to fix it).
407 	 *
408 	 * If course, the values calculated here have no meaning
409 	 * for packed formats.
410 	 */
411 	set->UV_stride = ((set->width/2) + 0x7 ) & ~0x7;
412 		set->U_offset = set->height * set->Y_stride;
413 		set->V_offset = set->U_offset +
414 						set->height * set->UV_stride;
415 	vubase |= Vubase_Ubase_Adr(
416 			(0x60000 + set->mem_offset + set->U_offset)>>3);
417 	vvbase |= Vvbase_Vbase_Adr(
418 			(0x60000 + set->mem_offset + set->V_offset)>>3);
419 
420 
421 	vscadr |= Vscadr_Vbase_Adr((0x60000 + set->mem_offset)>>4);
422 
423 	if (set->enable)
424 		vscadr |= VSCADR_STR_EN;
425 
426 
427 	vsadr = Vsadr_Srcstride((set->Y_stride)/16-1) |
428 		Vsadr_Xstart(set->x) | Vsadr_Ystart(set->y);
429 
430 	sssize &= ~(FMsk(SSSIZE_SC_WIDTH) | FMsk(SSSIZE_SC_HEIGHT));
431 	sssize = Sssize_Sc_Width(set->scaled_width-1) |
432 			Sssize_Sc_Height(set->scaled_height-1);
433 
434 	spoctrl &= ~(SPOCTRL_H_SC_BP | SPOCTRL_V_SC_BP |
435 			SPOCTRL_HV_SC_OR | SPOCTRL_VS_UR_C |
436 			FMsk(SPOCTRL_VPITCH));
437 	spoctrl |= Spoctrl_Vpitch((set->height<<11)/set->scaled_height);
438 
439 	/* Bypass horiz/vert scaler when same size */
440 	if (set->scaled_width == set->width)
441 		spoctrl |= SPOCTRL_H_SC_BP;
442 	if (set->scaled_height == set->height)
443 		spoctrl |= SPOCTRL_V_SC_BP;
444 
445 	shctrl &= ~(FMsk(SHCTRL_HPITCH) | SHCTRL_HDECIM);
446 	shctrl |= Shctrl_Hpitch((set->width<<11)/set->scaled_width);
447 
448 	/* Video plane registers */
449 	write_reg(vsctrl, VSCTRL);
450 	write_reg(vscadr, VSCADR);
451 	write_reg(vubase, VUBASE);
452 	write_reg(vvbase, VVBASE);
453 	write_reg(vsadr, VSADR);
454 
455 	/* Video scaler registers */
456 	write_reg(sssize, SSSIZE);
457 	write_reg(spoctrl, SPOCTRL);
458 	write_reg(shctrl, SHCTRL);
459 
460 	/* Clock */
461 	if (set->enable)
462 		vovrclk |= 1;
463 	else
464 		vovrclk &= ~1;
465 
466 	write_reg(vovrclk, VOVRCLK);
467 
468 	return 0;
469 }
470 
mbxfb_ioctl_planeorder(struct mbxfb_planeorder * porder)471 static int mbxfb_ioctl_planeorder(struct mbxfb_planeorder *porder)
472 {
473 	unsigned long gscadr, vscadr;
474 
475 	if (porder->bottom == porder->top)
476 		return -EINVAL;
477 
478 	gscadr = readl(GSCADR);
479 	vscadr = readl(VSCADR);
480 
481 	gscadr &= ~(FMsk(GSCADR_BLEND_POS));
482 	vscadr &= ~(FMsk(VSCADR_BLEND_POS));
483 
484 	switch (porder->bottom) {
485 	case MBXFB_PLANE_GRAPHICS:
486 		gscadr |= GSCADR_BLEND_GFX;
487 		break;
488 	case MBXFB_PLANE_VIDEO:
489 		vscadr |= VSCADR_BLEND_GFX;
490 		break;
491 	default:
492 		return -EINVAL;
493 	}
494 
495 	switch (porder->top) {
496 	case MBXFB_PLANE_GRAPHICS:
497 		gscadr |= GSCADR_BLEND_VID;
498 		break;
499 	case MBXFB_PLANE_VIDEO:
500 		vscadr |= GSCADR_BLEND_VID;
501 		break;
502 	default:
503 		return -EINVAL;
504 	}
505 
506 	write_reg_dly(vscadr, VSCADR);
507 	write_reg_dly(gscadr, GSCADR);
508 
509 	return 0;
510 
511 }
512 
mbxfb_ioctl_alphactl(struct mbxfb_alphaCtl * alpha)513 static int mbxfb_ioctl_alphactl(struct mbxfb_alphaCtl *alpha)
514 {
515 	unsigned long vscadr, vbbase, vcmsk;
516 	unsigned long gscadr, gbbase, gdrctrl;
517 
518 	vbbase = Vbbase_Glalpha(alpha->overlay_global_alpha) |
519 				Vbbase_Colkey(alpha->overlay_colorkey);
520 
521 	gbbase = Gbbase_Glalpha(alpha->graphics_global_alpha) |
522 				Gbbase_Colkey(alpha->graphics_colorkey);
523 
524 	vcmsk = readl(VCMSK);
525 	vcmsk &= ~(FMsk(VCMSK_COLKEY_M));
526 	vcmsk |= Vcmsk_colkey_m(alpha->overlay_colorkey_mask);
527 
528 	gdrctrl = readl(GDRCTRL);
529 	gdrctrl &= ~(FMsk(GDRCTRL_COLKEYM));
530 	gdrctrl |= Gdrctrl_Colkeym(alpha->graphics_colorkey_mask);
531 
532 	vscadr = readl(VSCADR);
533 	vscadr &= ~(FMsk(VSCADR_BLEND_M) | VSCADR_COLKEYSRC | VSCADR_COLKEY_EN);
534 
535 	gscadr = readl(GSCADR);
536 	gscadr &= ~(FMsk(GSCADR_BLEND_M) | GSCADR_COLKEY_EN | GSCADR_COLKEYSRC);
537 
538 	switch (alpha->overlay_colorkey_mode) {
539 	case MBXFB_COLORKEY_DISABLED:
540 		break;
541 	case MBXFB_COLORKEY_PREVIOUS:
542 		vscadr |= VSCADR_COLKEY_EN;
543 		break;
544 	case MBXFB_COLORKEY_CURRENT:
545 		vscadr |= VSCADR_COLKEY_EN | VSCADR_COLKEYSRC;
546 		break;
547 	default:
548 		return -EINVAL;
549 	}
550 
551 	switch (alpha->overlay_blend_mode) {
552 	case MBXFB_ALPHABLEND_NONE:
553 		vscadr |= VSCADR_BLEND_NONE;
554 		break;
555 	case MBXFB_ALPHABLEND_GLOBAL:
556 		vscadr |= VSCADR_BLEND_GLOB;
557 		break;
558 	case MBXFB_ALPHABLEND_PIXEL:
559 		vscadr |= VSCADR_BLEND_PIX;
560 		break;
561 	default:
562 		return -EINVAL;
563 	}
564 
565 	switch (alpha->graphics_colorkey_mode) {
566 	case MBXFB_COLORKEY_DISABLED:
567 		break;
568 	case MBXFB_COLORKEY_PREVIOUS:
569 		gscadr |= GSCADR_COLKEY_EN;
570 		break;
571 	case MBXFB_COLORKEY_CURRENT:
572 		gscadr |= GSCADR_COLKEY_EN | GSCADR_COLKEYSRC;
573 		break;
574 	default:
575 		return -EINVAL;
576 	}
577 
578 	switch (alpha->graphics_blend_mode) {
579 	case MBXFB_ALPHABLEND_NONE:
580 		gscadr |= GSCADR_BLEND_NONE;
581 		break;
582 	case MBXFB_ALPHABLEND_GLOBAL:
583 		gscadr |= GSCADR_BLEND_GLOB;
584 		break;
585 	case MBXFB_ALPHABLEND_PIXEL:
586 		gscadr |= GSCADR_BLEND_PIX;
587 		break;
588 	default:
589 		return -EINVAL;
590 	}
591 
592 	write_reg_dly(vbbase, VBBASE);
593 	write_reg_dly(gbbase, GBBASE);
594 	write_reg_dly(vcmsk, VCMSK);
595 	write_reg_dly(gdrctrl, GDRCTRL);
596 	write_reg_dly(gscadr, GSCADR);
597 	write_reg_dly(vscadr, VSCADR);
598 
599 	return 0;
600 }
601 
mbxfb_ioctl(struct fb_info * info,unsigned int cmd,unsigned long arg)602 static int mbxfb_ioctl(struct fb_info *info, unsigned int cmd,
603 				unsigned long arg)
604 {
605 	struct mbxfb_overlaySetup	setup;
606 	struct mbxfb_planeorder 	porder;
607 	struct mbxfb_alphaCtl 		alpha;
608 	struct mbxfb_reg			reg;
609 	int res;
610 	__u32 tmp;
611 
612 	switch (cmd)
613 	{
614 		case MBXFB_IOCX_OVERLAY:
615 			if (copy_from_user(&setup, (void __user*)arg,
616 						sizeof(struct mbxfb_overlaySetup)))
617 				return -EFAULT;
618 
619 			res = mbxfb_setupOverlay(&setup);
620 			if (res)
621 				return res;
622 
623 			if (copy_to_user((void __user*)arg, &setup,
624 						sizeof(struct mbxfb_overlaySetup)))
625 				return -EFAULT;
626 
627 			return 0;
628 
629 		case MBXFB_IOCS_PLANEORDER:
630 			if (copy_from_user(&porder, (void __user*)arg,
631 					sizeof(struct mbxfb_planeorder)))
632 			return -EFAULT;
633 
634 			return mbxfb_ioctl_planeorder(&porder);
635 
636 		case MBXFB_IOCS_ALPHA:
637 			if (copy_from_user(&alpha, (void __user*)arg,
638 					sizeof(struct mbxfb_alphaCtl)))
639 			return -EFAULT;
640 
641 			return mbxfb_ioctl_alphactl(&alpha);
642 
643 		case MBXFB_IOCS_REG:
644 			if (copy_from_user(&reg, (void __user*)arg,
645 						sizeof(struct mbxfb_reg)))
646 				return -EFAULT;
647 
648 			if (reg.addr >= 0x10000) /* regs are from 0x3fe0000 to 0x3feffff */
649 				return -EINVAL;
650 
651 			tmp = readl(virt_base_2700 + reg.addr);
652 			tmp &= ~reg.mask;
653 			tmp |= reg.val & reg.mask;
654 			writel(tmp, virt_base_2700 + reg.addr);
655 
656 			return 0;
657 		case MBXFB_IOCX_REG:
658 			if (copy_from_user(&reg, (void __user*)arg,
659 						sizeof(struct mbxfb_reg)))
660 				return -EFAULT;
661 
662 			if (reg.addr >= 0x10000)	/* regs are from 0x3fe0000 to 0x3feffff */
663 				return -EINVAL;
664 			reg.val = readl(virt_base_2700 + reg.addr);
665 
666 			if (copy_to_user((void __user*)arg, &reg,
667 						sizeof(struct mbxfb_reg)))
668 				return -EFAULT;
669 
670 			return 0;
671 	}
672 	return -EINVAL;
673 }
674 
675 static struct fb_ops mbxfb_ops = {
676 	.owner = THIS_MODULE,
677 	.fb_check_var = mbxfb_check_var,
678 	.fb_set_par = mbxfb_set_par,
679 	.fb_setcolreg = mbxfb_setcolreg,
680 	.fb_fillrect = cfb_fillrect,
681 	.fb_copyarea = cfb_copyarea,
682 	.fb_imageblit = cfb_imageblit,
683 	.fb_blank = mbxfb_blank,
684 	.fb_ioctl = mbxfb_ioctl,
685 };
686 
687 /*
688   Enable external SDRAM controller. Assume that all clocks are active
689   by now.
690 */
setup_memc(struct fb_info * fbi)691 static void __devinit setup_memc(struct fb_info *fbi)
692 {
693 	unsigned long tmp;
694 	int i;
695 
696 	/* FIXME: use platform specific parameters */
697 	/* setup SDRAM controller */
698 	write_reg_dly((LMCFG_LMC_DS | LMCFG_LMC_TS | LMCFG_LMD_TS |
699 		LMCFG_LMA_TS),
700 	       LMCFG);
701 
702 	write_reg_dly(LMPWR_MC_PWR_ACT, LMPWR);
703 
704 	/* setup SDRAM timings */
705 	write_reg_dly((Lmtim_Tras(7) | Lmtim_Trp(3) | Lmtim_Trcd(3) |
706 		Lmtim_Trc(9) | Lmtim_Tdpl(2)),
707 	       LMTIM);
708 	/* setup SDRAM refresh rate */
709 	write_reg_dly(0xc2b, LMREFRESH);
710 	/* setup SDRAM type parameters */
711 	write_reg_dly((LMTYPE_CASLAT_3 | LMTYPE_BKSZ_2 | LMTYPE_ROWSZ_11 |
712 		LMTYPE_COLSZ_8),
713 	       LMTYPE);
714 	/* enable memory controller */
715 	write_reg_dly(LMPWR_MC_PWR_ACT, LMPWR);
716 	/* perform dummy reads */
717 	for ( i = 0; i < 16; i++ ) {
718 		tmp = readl(fbi->screen_base);
719 	}
720 }
721 
enable_clocks(struct fb_info * fbi)722 static void enable_clocks(struct fb_info *fbi)
723 {
724 	/* enable clocks */
725 	write_reg_dly(SYSCLKSRC_PLL_2, SYSCLKSRC);
726 	write_reg_dly(PIXCLKSRC_PLL_1, PIXCLKSRC);
727 	write_reg_dly(0x00000000, CLKSLEEP);
728 
729 	/* PLL output = (Frefclk * M) / (N * 2^P )
730 	 *
731 	 * M: 0x17, N: 0x3, P: 0x0 == 100 Mhz!
732 	 * M: 0xb, N: 0x1, P: 0x1 == 71 Mhz
733 	 * */
734 	write_reg_dly((Core_Pll_M(0xb) | Core_Pll_N(0x1) | Core_Pll_P(0x1) |
735 		CORE_PLL_EN),
736 	       COREPLL);
737 
738 	write_reg_dly((Disp_Pll_M(0x1b) | Disp_Pll_N(0x7) | Disp_Pll_P(0x1) |
739 		DISP_PLL_EN),
740 	       DISPPLL);
741 
742 	write_reg_dly(0x00000000, VOVRCLK);
743 	write_reg_dly(PIXCLK_EN, PIXCLK);
744 	write_reg_dly(MEMCLK_EN, MEMCLK);
745 	write_reg_dly(0x00000001, M24CLK);
746 	write_reg_dly(0x00000001, MBXCLK);
747 	write_reg_dly(SDCLK_EN, SDCLK);
748 	write_reg_dly(0x00000001, PIXCLKDIV);
749 }
750 
setup_graphics(struct fb_info * fbi)751 static void __devinit setup_graphics(struct fb_info *fbi)
752 {
753 	unsigned long gsctrl;
754 	unsigned long vscadr;
755 
756 	gsctrl = GSCTRL_GAMMA_EN | Gsctrl_Width(fbi->var.xres) |
757 		Gsctrl_Height(fbi->var.yres);
758 	switch (fbi->var.bits_per_pixel) {
759 	case 16:
760 		if (fbi->var.green.length == 5)
761 			gsctrl |= GSCTRL_GPIXFMT_ARGB1555;
762 		else
763 			gsctrl |= GSCTRL_GPIXFMT_RGB565;
764 		break;
765 	case 24:
766 		gsctrl |= GSCTRL_GPIXFMT_RGB888;
767 		break;
768 	case 32:
769 		gsctrl |= GSCTRL_GPIXFMT_ARGB8888;
770 		break;
771 	}
772 
773 	write_reg_dly(gsctrl, GSCTRL);
774 	write_reg_dly(0x00000000, GBBASE);
775 	write_reg_dly(0x00ffffff, GDRCTRL);
776 	write_reg_dly((GSCADR_STR_EN | Gscadr_Gbase_Adr(0x6000)), GSCADR);
777 	write_reg_dly(0x00000000, GPLUT);
778 
779 	vscadr = readl(VSCADR);
780 	vscadr &= ~(FMsk(VSCADR_BLEND_POS) | FMsk(VSCADR_BLEND_M));
781 	vscadr |= VSCADR_BLEND_VID | VSCADR_BLEND_NONE;
782 	write_reg_dly(vscadr, VSCADR);
783 }
784 
setup_display(struct fb_info * fbi)785 static void __devinit setup_display(struct fb_info *fbi)
786 {
787 	unsigned long dsctrl = 0;
788 
789 	dsctrl = DSCTRL_BLNK_POL;
790 	if (fbi->var.sync & FB_SYNC_HOR_HIGH_ACT)
791 		dsctrl |= DSCTRL_HS_POL;
792 	if (fbi->var.sync & FB_SYNC_VERT_HIGH_ACT)
793 		dsctrl |= DSCTRL_VS_POL;
794 	write_reg_dly(dsctrl, DSCTRL);
795 	write_reg_dly(0xd0303010, DMCTRL);
796 	write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL);
797 }
798 
enable_controller(struct fb_info * fbi)799 static void __devinit enable_controller(struct fb_info *fbi)
800 {
801 	u32 svctrl, shctrl;
802 
803 	write_reg_dly(SYSRST_RST, SYSRST);
804 
805 	/* setup a timeout, raise drive strength */
806 	write_reg_dly(0xffffff0c, SYSCFG);
807 
808 	enable_clocks(fbi);
809 	setup_memc(fbi);
810 	setup_graphics(fbi);
811 	setup_display(fbi);
812 
813 	shctrl = readl(SHCTRL);
814 	shctrl &= ~(FMsk(SHCTRL_HINITIAL));
815 	shctrl |= Shctrl_Hinitial(4<<11);
816 	writel(shctrl, SHCTRL);
817 
818 	svctrl = Svctrl_Initial1(1<<10) | Svctrl_Initial2(1<<10);
819 	writel(svctrl, SVCTRL);
820 
821 	writel(SPOCTRL_H_SC_BP | SPOCTRL_V_SC_BP | SPOCTRL_VORDER_4TAP
822 			, SPOCTRL);
823 
824 	/* Those coefficients are good for scaling up. For scaling
825 	 * down, the application has to calculate them. */
826 	write_reg(0xff000100, VSCOEFF0);
827 	write_reg(0xfdfcfdfe, VSCOEFF1);
828 	write_reg(0x170d0500, VSCOEFF2);
829 	write_reg(0x3d372d22, VSCOEFF3);
830 	write_reg(0x00000040, VSCOEFF4);
831 
832 	write_reg(0xff010100, HSCOEFF0);
833 	write_reg(0x00000000, HSCOEFF1);
834 	write_reg(0x02010000, HSCOEFF2);
835 	write_reg(0x01020302, HSCOEFF3);
836 	write_reg(0xf9fbfe00, HSCOEFF4);
837 	write_reg(0xfbf7f6f7, HSCOEFF5);
838 	write_reg(0x1c110700, HSCOEFF6);
839 	write_reg(0x3e393127, HSCOEFF7);
840 	write_reg(0x00000040, HSCOEFF8);
841 
842 }
843 
844 #ifdef CONFIG_PM
845 /*
846  * Power management hooks.  Note that we won't be called from IRQ context,
847  * unlike the blank functions above, so we may sleep.
848  */
mbxfb_suspend(struct platform_device * dev,pm_message_t state)849 static int mbxfb_suspend(struct platform_device *dev, pm_message_t state)
850 {
851 	/* make frame buffer memory enter self-refresh mode */
852 	write_reg_dly(LMPWR_MC_PWR_SRM, LMPWR);
853 	while (readl(LMPWRSTAT) != LMPWRSTAT_MC_PWR_SRM)
854 		; /* empty statement */
855 
856 	/* reset the device, since it's initial state is 'mostly sleeping' */
857 	write_reg_dly(SYSRST_RST, SYSRST);
858 	return 0;
859 }
860 
mbxfb_resume(struct platform_device * dev)861 static int mbxfb_resume(struct platform_device *dev)
862 {
863 	struct fb_info *fbi = platform_get_drvdata(dev);
864 
865 	enable_clocks(fbi);
866 /* 	setup_graphics(fbi); */
867 /* 	setup_display(fbi); */
868 
869 	write_reg_dly((readl(DSCTRL) | DSCTRL_SYNCGEN_EN), DSCTRL);
870 	return 0;
871 }
872 #else
873 #define mbxfb_suspend	NULL
874 #define mbxfb_resume	NULL
875 #endif
876 
877 /* debugfs entries */
878 #ifndef CONFIG_FB_MBX_DEBUG
879 #define mbxfb_debugfs_init(x)	do {} while(0)
880 #define mbxfb_debugfs_remove(x)	do {} while(0)
881 #endif
882 
883 #define res_size(_r) (((_r)->end - (_r)->start) + 1)
884 
mbxfb_probe(struct platform_device * dev)885 static int __devinit mbxfb_probe(struct platform_device *dev)
886 {
887 	int ret;
888 	struct fb_info *fbi;
889 	struct mbxfb_info *mfbi;
890 	struct mbxfb_platform_data *pdata;
891 
892 	dev_dbg(&dev->dev, "mbxfb_probe\n");
893 
894 	pdata = dev->dev.platform_data;
895 	if (!pdata) {
896 		dev_err(&dev->dev, "platform data is required\n");
897 		return -EINVAL;
898 	}
899 
900 	fbi = framebuffer_alloc(sizeof(struct mbxfb_info), &dev->dev);
901 	if (fbi == NULL) {
902 		dev_err(&dev->dev, "framebuffer_alloc failed\n");
903 		return -ENOMEM;
904 	}
905 
906 	mfbi = fbi->par;
907 	fbi->pseudo_palette = mfbi->pseudo_palette;
908 
909 
910 	if (pdata->probe)
911 		mfbi->platform_probe = pdata->probe;
912 	if (pdata->remove)
913 		mfbi->platform_remove = pdata->remove;
914 
915 	mfbi->fb_res = platform_get_resource(dev, IORESOURCE_MEM, 0);
916 	mfbi->reg_res = platform_get_resource(dev, IORESOURCE_MEM, 1);
917 
918 	if (!mfbi->fb_res || !mfbi->reg_res) {
919 		dev_err(&dev->dev, "no resources found\n");
920 		ret = -ENODEV;
921 		goto err1;
922 	}
923 
924 	mfbi->fb_req = request_mem_region(mfbi->fb_res->start,
925 					  res_size(mfbi->fb_res), dev->name);
926 	if (mfbi->fb_req == NULL) {
927 		dev_err(&dev->dev, "failed to claim framebuffer memory\n");
928 		ret = -EINVAL;
929 		goto err1;
930 	}
931 	mfbi->fb_phys_addr = mfbi->fb_res->start;
932 
933 	mfbi->reg_req = request_mem_region(mfbi->reg_res->start,
934 					   res_size(mfbi->reg_res), dev->name);
935 	if (mfbi->reg_req == NULL) {
936 		dev_err(&dev->dev, "failed to claim Marathon registers\n");
937 		ret = -EINVAL;
938 		goto err2;
939 	}
940 	mfbi->reg_phys_addr = mfbi->reg_res->start;
941 
942 	mfbi->reg_virt_addr = ioremap_nocache(mfbi->reg_phys_addr,
943 					      res_size(mfbi->reg_req));
944 	if (!mfbi->reg_virt_addr) {
945 		dev_err(&dev->dev, "failed to ioremap Marathon registers\n");
946 		ret = -EINVAL;
947 		goto err3;
948 	}
949 	virt_base_2700 = mfbi->reg_virt_addr;
950 
951 	mfbi->fb_virt_addr = ioremap_nocache(mfbi->fb_phys_addr,
952 					     res_size(mfbi->fb_req));
953 	if (!mfbi->reg_virt_addr) {
954 		dev_err(&dev->dev, "failed to ioremap frame buffer\n");
955 		ret = -EINVAL;
956 		goto err4;
957 	}
958 
959 	fbi->screen_base = (char __iomem *)(mfbi->fb_virt_addr + 0x60000);
960 	fbi->screen_size = pdata->memsize;
961 	fbi->fbops = &mbxfb_ops;
962 
963 	fbi->var = mbxfb_default;
964 	fbi->fix = mbxfb_fix;
965 	fbi->fix.smem_start = mfbi->fb_phys_addr + 0x60000;
966 	fbi->fix.smem_len = pdata->memsize;
967 	fbi->fix.line_length = mbxfb_default.xres_virtual *
968 					mbxfb_default.bits_per_pixel / 8;
969 
970 	ret = fb_alloc_cmap(&fbi->cmap, 256, 0);
971 	if (ret < 0) {
972 		dev_err(&dev->dev, "fb_alloc_cmap failed\n");
973 		ret = -EINVAL;
974 		goto err5;
975 	}
976 
977 	platform_set_drvdata(dev, fbi);
978 
979 	printk(KERN_INFO "fb%d: mbx frame buffer device\n", fbi->node);
980 
981 	if (mfbi->platform_probe)
982 		mfbi->platform_probe(fbi);
983 
984 	enable_controller(fbi);
985 
986 	mbxfb_debugfs_init(fbi);
987 
988 	ret = register_framebuffer(fbi);
989 	if (ret < 0) {
990 		dev_err(&dev->dev, "register_framebuffer failed\n");
991 		ret = -EINVAL;
992 		goto err6;
993 	}
994 
995 	return 0;
996 
997 err6:
998 	fb_dealloc_cmap(&fbi->cmap);
999 err5:
1000 	iounmap(mfbi->fb_virt_addr);
1001 err4:
1002 	iounmap(mfbi->reg_virt_addr);
1003 err3:
1004 	release_mem_region(mfbi->reg_res->start, res_size(mfbi->reg_res));
1005 err2:
1006 	release_mem_region(mfbi->fb_res->start, res_size(mfbi->fb_res));
1007 err1:
1008 	framebuffer_release(fbi);
1009 
1010 	return ret;
1011 }
1012 
mbxfb_remove(struct platform_device * dev)1013 static int __devexit mbxfb_remove(struct platform_device *dev)
1014 {
1015 	struct fb_info *fbi = platform_get_drvdata(dev);
1016 
1017 	write_reg_dly(SYSRST_RST, SYSRST);
1018 
1019 	mbxfb_debugfs_remove(fbi);
1020 
1021 	if (fbi) {
1022 		struct mbxfb_info *mfbi = fbi->par;
1023 
1024 		unregister_framebuffer(fbi);
1025 		if (mfbi) {
1026 			if (mfbi->platform_remove)
1027 				mfbi->platform_remove(fbi);
1028 
1029 			if (mfbi->fb_virt_addr)
1030 				iounmap(mfbi->fb_virt_addr);
1031 			if (mfbi->reg_virt_addr)
1032 				iounmap(mfbi->reg_virt_addr);
1033 			if (mfbi->reg_req)
1034 				release_mem_region(mfbi->reg_req->start,
1035 						   res_size(mfbi->reg_req));
1036 			if (mfbi->fb_req)
1037 				release_mem_region(mfbi->fb_req->start,
1038 						   res_size(mfbi->fb_req));
1039 		}
1040 		framebuffer_release(fbi);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static struct platform_driver mbxfb_driver = {
1047 	.probe = mbxfb_probe,
1048 	.remove = mbxfb_remove,
1049 	.suspend = mbxfb_suspend,
1050 	.resume = mbxfb_resume,
1051 	.driver = {
1052 		.name = "mbx-fb",
1053 	},
1054 };
1055 
1056 module_platform_driver(mbxfb_driver);
1057 
1058 MODULE_DESCRIPTION("loadable framebuffer driver for Marathon device");
1059 MODULE_AUTHOR("Mike Rapoport, Compulab");
1060 MODULE_LICENSE("GPL");
1061