1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
handshake(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec)54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
xhci_quiesce(struct xhci_hcd * xhci)75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
xhci_halt(struct xhci_hcd * xhci)99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	return ret;
110 }
111 
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
xhci_start(struct xhci_hcd * xhci)115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 	u32 temp;
118 	int ret;
119 
120 	temp = xhci_readl(xhci, &xhci->op_regs->command);
121 	temp |= (CMD_RUN);
122 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 			temp);
124 	xhci_writel(xhci, temp, &xhci->op_regs->command);
125 
126 	/*
127 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 	 * running.
129 	 */
130 	ret = handshake(xhci, &xhci->op_regs->status,
131 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 	if (ret == -ETIMEDOUT)
133 		xhci_err(xhci, "Host took too long to start, "
134 				"waited %u microseconds.\n",
135 				XHCI_MAX_HALT_USEC);
136 	if (!ret)
137 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 	return ret;
139 }
140 
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
xhci_reset(struct xhci_hcd * xhci)148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 	u32 command;
151 	u32 state;
152 	int ret;
153 
154 	state = xhci_readl(xhci, &xhci->op_regs->status);
155 	if ((state & STS_HALT) == 0) {
156 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 		return 0;
158 	}
159 
160 	xhci_dbg(xhci, "// Reset the HC\n");
161 	command = xhci_readl(xhci, &xhci->op_regs->command);
162 	command |= CMD_RESET;
163 	xhci_writel(xhci, command, &xhci->op_regs->command);
164 
165 	ret = handshake(xhci, &xhci->op_regs->command,
166 			CMD_RESET, 0, 250 * 1000);
167 	if (ret)
168 		return ret;
169 
170 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 	/*
172 	 * xHCI cannot write to any doorbells or operational registers other
173 	 * than status until the "Controller Not Ready" flag is cleared.
174 	 */
175 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177 
178 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181 	int i;
182 
183 	if (!xhci->msix_entries)
184 		return -EINVAL;
185 
186 	for (i = 0; i < xhci->msix_count; i++)
187 		if (xhci->msix_entries[i].vector)
188 			free_irq(xhci->msix_entries[i].vector,
189 					xhci_to_hcd(xhci));
190 	return 0;
191 }
192 
193 /*
194  * Set up MSI
195  */
xhci_setup_msi(struct xhci_hcd * xhci)196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198 	int ret;
199 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200 
201 	ret = pci_enable_msi(pdev);
202 	if (ret) {
203 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
204 		return ret;
205 	}
206 
207 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208 				0, "xhci_hcd", xhci_to_hcd(xhci));
209 	if (ret) {
210 		xhci_dbg(xhci, "disable MSI interrupt\n");
211 		pci_disable_msi(pdev);
212 	}
213 
214 	return ret;
215 }
216 
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
xhci_free_irq(struct xhci_hcd * xhci)221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 	int ret;
225 
226 	/* return if using legacy interrupt */
227 	if (xhci_to_hcd(xhci)->irq >= 0)
228 		return;
229 
230 	ret = xhci_free_msi(xhci);
231 	if (!ret)
232 		return;
233 	if (pdev->irq >= 0)
234 		free_irq(pdev->irq, xhci_to_hcd(xhci));
235 
236 	return;
237 }
238 
239 /*
240  * Set up MSI-X
241  */
xhci_setup_msix(struct xhci_hcd * xhci)242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244 	int i, ret = 0;
245 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
246 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247 
248 	/*
249 	 * calculate number of msi-x vectors supported.
250 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
252 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 	 *   Add additional 1 vector to ensure always available interrupt.
254 	 */
255 	xhci->msix_count = min(num_online_cpus() + 1,
256 				HCS_MAX_INTRS(xhci->hcs_params1));
257 
258 	xhci->msix_entries =
259 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260 				GFP_KERNEL);
261 	if (!xhci->msix_entries) {
262 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263 		return -ENOMEM;
264 	}
265 
266 	for (i = 0; i < xhci->msix_count; i++) {
267 		xhci->msix_entries[i].entry = i;
268 		xhci->msix_entries[i].vector = 0;
269 	}
270 
271 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272 	if (ret) {
273 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
274 		goto free_entries;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		ret = request_irq(xhci->msix_entries[i].vector,
279 				(irq_handler_t)xhci_msi_irq,
280 				0, "xhci_hcd", xhci_to_hcd(xhci));
281 		if (ret)
282 			goto disable_msix;
283 	}
284 
285 	hcd->msix_enabled = 1;
286 	return ret;
287 
288 disable_msix:
289 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
290 	xhci_free_irq(xhci);
291 	pci_disable_msix(pdev);
292 free_entries:
293 	kfree(xhci->msix_entries);
294 	xhci->msix_entries = NULL;
295 	return ret;
296 }
297 
298 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303 
304 	xhci_free_irq(xhci);
305 
306 	if (xhci->msix_entries) {
307 		pci_disable_msix(pdev);
308 		kfree(xhci->msix_entries);
309 		xhci->msix_entries = NULL;
310 	} else {
311 		pci_disable_msi(pdev);
312 	}
313 
314 	hcd->msix_enabled = 0;
315 	return;
316 }
317 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320 	int i;
321 
322 	if (xhci->msix_entries) {
323 		for (i = 0; i < xhci->msix_count; i++)
324 			synchronize_irq(xhci->msix_entries[i].vector);
325 	}
326 }
327 
xhci_try_enable_msi(struct usb_hcd * hcd)328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 	int ret;
333 
334 	/*
335 	 * Some Fresco Logic host controllers advertise MSI, but fail to
336 	 * generate interrupts.  Don't even try to enable MSI.
337 	 */
338 	if (xhci->quirks & XHCI_BROKEN_MSI)
339 		return 0;
340 
341 	/* unregister the legacy interrupt */
342 	if (hcd->irq)
343 		free_irq(hcd->irq, hcd);
344 	hcd->irq = -1;
345 
346 	ret = xhci_setup_msix(xhci);
347 	if (ret)
348 		/* fall back to msi*/
349 		ret = xhci_setup_msi(xhci);
350 
351 	if (!ret)
352 		/* hcd->irq is -1, we have MSI */
353 		return 0;
354 
355 	if (!pdev->irq) {
356 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
357 		return -EINVAL;
358 	}
359 
360 	/* fall back to legacy interrupt*/
361 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
362 			hcd->irq_descr, hcd);
363 	if (ret) {
364 		xhci_err(xhci, "request interrupt %d failed\n",
365 				pdev->irq);
366 		return ret;
367 	}
368 	hcd->irq = pdev->irq;
369 	return 0;
370 }
371 
372 #else
373 
xhci_try_enable_msi(struct usb_hcd * hcd)374 static int xhci_try_enable_msi(struct usb_hcd *hcd)
375 {
376 	return 0;
377 }
378 
xhci_cleanup_msix(struct xhci_hcd * xhci)379 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
380 {
381 }
382 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)383 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
384 {
385 }
386 
387 #endif
388 
389 /*
390  * Initialize memory for HCD and xHC (one-time init).
391  *
392  * Program the PAGESIZE register, initialize the device context array, create
393  * device contexts (?), set up a command ring segment (or two?), create event
394  * ring (one for now).
395  */
xhci_init(struct usb_hcd * hcd)396 int xhci_init(struct usb_hcd *hcd)
397 {
398 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
399 	int retval = 0;
400 
401 	xhci_dbg(xhci, "xhci_init\n");
402 	spin_lock_init(&xhci->lock);
403 	if (xhci->hci_version == 0x95 && link_quirk) {
404 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
405 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
406 	} else {
407 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
408 	}
409 	retval = xhci_mem_init(xhci, GFP_KERNEL);
410 	xhci_dbg(xhci, "Finished xhci_init\n");
411 
412 	return retval;
413 }
414 
415 /*-------------------------------------------------------------------------*/
416 
417 
418 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_event_ring_work(unsigned long arg)419 static void xhci_event_ring_work(unsigned long arg)
420 {
421 	unsigned long flags;
422 	int temp;
423 	u64 temp_64;
424 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
425 	int i, j;
426 
427 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
428 
429 	spin_lock_irqsave(&xhci->lock, flags);
430 	temp = xhci_readl(xhci, &xhci->op_regs->status);
431 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
432 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
433 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
434 		xhci_dbg(xhci, "HW died, polling stopped.\n");
435 		spin_unlock_irqrestore(&xhci->lock, flags);
436 		return;
437 	}
438 
439 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
440 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
441 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
442 	xhci->error_bitmask = 0;
443 	xhci_dbg(xhci, "Event ring:\n");
444 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
445 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
446 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
447 	temp_64 &= ~ERST_PTR_MASK;
448 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
449 	xhci_dbg(xhci, "Command ring:\n");
450 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
451 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
452 	xhci_dbg_cmd_ptrs(xhci);
453 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
454 		if (!xhci->devs[i])
455 			continue;
456 		for (j = 0; j < 31; ++j) {
457 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
458 		}
459 	}
460 	spin_unlock_irqrestore(&xhci->lock, flags);
461 
462 	if (!xhci->zombie)
463 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
464 	else
465 		xhci_dbg(xhci, "Quit polling the event ring.\n");
466 }
467 #endif
468 
xhci_run_finished(struct xhci_hcd * xhci)469 static int xhci_run_finished(struct xhci_hcd *xhci)
470 {
471 	if (xhci_start(xhci)) {
472 		xhci_halt(xhci);
473 		return -ENODEV;
474 	}
475 	xhci->shared_hcd->state = HC_STATE_RUNNING;
476 
477 	if (xhci->quirks & XHCI_NEC_HOST)
478 		xhci_ring_cmd_db(xhci);
479 
480 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
481 	return 0;
482 }
483 
484 /*
485  * Start the HC after it was halted.
486  *
487  * This function is called by the USB core when the HC driver is added.
488  * Its opposite is xhci_stop().
489  *
490  * xhci_init() must be called once before this function can be called.
491  * Reset the HC, enable device slot contexts, program DCBAAP, and
492  * set command ring pointer and event ring pointer.
493  *
494  * Setup MSI-X vectors and enable interrupts.
495  */
xhci_run(struct usb_hcd * hcd)496 int xhci_run(struct usb_hcd *hcd)
497 {
498 	u32 temp;
499 	u64 temp_64;
500 	int ret;
501 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502 
503 	/* Start the xHCI host controller running only after the USB 2.0 roothub
504 	 * is setup.
505 	 */
506 
507 	hcd->uses_new_polling = 1;
508 	if (!usb_hcd_is_primary_hcd(hcd))
509 		return xhci_run_finished(xhci);
510 
511 	xhci_dbg(xhci, "xhci_run\n");
512 
513 	ret = xhci_try_enable_msi(hcd);
514 	if (ret)
515 		return ret;
516 
517 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
518 	init_timer(&xhci->event_ring_timer);
519 	xhci->event_ring_timer.data = (unsigned long) xhci;
520 	xhci->event_ring_timer.function = xhci_event_ring_work;
521 	/* Poll the event ring */
522 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
523 	xhci->zombie = 0;
524 	xhci_dbg(xhci, "Setting event ring polling timer\n");
525 	add_timer(&xhci->event_ring_timer);
526 #endif
527 
528 	xhci_dbg(xhci, "Command ring memory map follows:\n");
529 	xhci_debug_ring(xhci, xhci->cmd_ring);
530 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
531 	xhci_dbg_cmd_ptrs(xhci);
532 
533 	xhci_dbg(xhci, "ERST memory map follows:\n");
534 	xhci_dbg_erst(xhci, &xhci->erst);
535 	xhci_dbg(xhci, "Event ring:\n");
536 	xhci_debug_ring(xhci, xhci->event_ring);
537 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
538 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
539 	temp_64 &= ~ERST_PTR_MASK;
540 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
541 
542 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
543 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
544 	temp &= ~ER_IRQ_INTERVAL_MASK;
545 	temp |= (u32) 160;
546 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
547 
548 	/* Set the HCD state before we enable the irqs */
549 	temp = xhci_readl(xhci, &xhci->op_regs->command);
550 	temp |= (CMD_EIE);
551 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
552 			temp);
553 	xhci_writel(xhci, temp, &xhci->op_regs->command);
554 
555 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
556 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
557 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
558 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
559 			&xhci->ir_set->irq_pending);
560 	xhci_print_ir_set(xhci, 0);
561 
562 	if (xhci->quirks & XHCI_NEC_HOST)
563 		xhci_queue_vendor_command(xhci, 0, 0, 0,
564 				TRB_TYPE(TRB_NEC_GET_FW));
565 
566 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
567 	return 0;
568 }
569 
xhci_only_stop_hcd(struct usb_hcd * hcd)570 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
571 {
572 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
573 
574 	spin_lock_irq(&xhci->lock);
575 	xhci_halt(xhci);
576 
577 	/* The shared_hcd is going to be deallocated shortly (the USB core only
578 	 * calls this function when allocation fails in usb_add_hcd(), or
579 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
580 	 */
581 	xhci->shared_hcd = NULL;
582 	spin_unlock_irq(&xhci->lock);
583 }
584 
585 /*
586  * Stop xHCI driver.
587  *
588  * This function is called by the USB core when the HC driver is removed.
589  * Its opposite is xhci_run().
590  *
591  * Disable device contexts, disable IRQs, and quiesce the HC.
592  * Reset the HC, finish any completed transactions, and cleanup memory.
593  */
xhci_stop(struct usb_hcd * hcd)594 void xhci_stop(struct usb_hcd *hcd)
595 {
596 	u32 temp;
597 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
598 
599 	if (!usb_hcd_is_primary_hcd(hcd)) {
600 		xhci_only_stop_hcd(xhci->shared_hcd);
601 		return;
602 	}
603 
604 	spin_lock_irq(&xhci->lock);
605 	/* Make sure the xHC is halted for a USB3 roothub
606 	 * (xhci_stop() could be called as part of failed init).
607 	 */
608 	xhci_halt(xhci);
609 	xhci_reset(xhci);
610 	spin_unlock_irq(&xhci->lock);
611 
612 	xhci_cleanup_msix(xhci);
613 
614 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
615 	/* Tell the event ring poll function not to reschedule */
616 	xhci->zombie = 1;
617 	del_timer_sync(&xhci->event_ring_timer);
618 #endif
619 
620 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
621 		usb_amd_dev_put();
622 
623 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
624 	temp = xhci_readl(xhci, &xhci->op_regs->status);
625 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
626 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
628 			&xhci->ir_set->irq_pending);
629 	xhci_print_ir_set(xhci, 0);
630 
631 	xhci_dbg(xhci, "cleaning up memory\n");
632 	xhci_mem_cleanup(xhci);
633 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
634 		    xhci_readl(xhci, &xhci->op_regs->status));
635 }
636 
637 /*
638  * Shutdown HC (not bus-specific)
639  *
640  * This is called when the machine is rebooting or halting.  We assume that the
641  * machine will be powered off, and the HC's internal state will be reset.
642  * Don't bother to free memory.
643  *
644  * This will only ever be called with the main usb_hcd (the USB3 roothub).
645  */
xhci_shutdown(struct usb_hcd * hcd)646 void xhci_shutdown(struct usb_hcd *hcd)
647 {
648 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
649 
650 	spin_lock_irq(&xhci->lock);
651 	xhci_halt(xhci);
652 	spin_unlock_irq(&xhci->lock);
653 
654 	xhci_cleanup_msix(xhci);
655 
656 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
657 		    xhci_readl(xhci, &xhci->op_regs->status));
658 }
659 
660 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)661 static void xhci_save_registers(struct xhci_hcd *xhci)
662 {
663 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
664 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
665 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
666 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
667 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
669 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
670 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
671 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
672 }
673 
xhci_restore_registers(struct xhci_hcd * xhci)674 static void xhci_restore_registers(struct xhci_hcd *xhci)
675 {
676 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
677 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
678 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
679 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
680 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
681 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
682 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
683 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
684 }
685 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)686 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
687 {
688 	u64	val_64;
689 
690 	/* step 2: initialize command ring buffer */
691 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
692 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
693 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
694 				      xhci->cmd_ring->dequeue) &
695 		 (u64) ~CMD_RING_RSVD_BITS) |
696 		xhci->cmd_ring->cycle_state;
697 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
698 			(long unsigned long) val_64);
699 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
700 }
701 
702 /*
703  * The whole command ring must be cleared to zero when we suspend the host.
704  *
705  * The host doesn't save the command ring pointer in the suspend well, so we
706  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
707  * aligned, because of the reserved bits in the command ring dequeue pointer
708  * register.  Therefore, we can't just set the dequeue pointer back in the
709  * middle of the ring (TRBs are 16-byte aligned).
710  */
xhci_clear_command_ring(struct xhci_hcd * xhci)711 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
712 {
713 	struct xhci_ring *ring;
714 	struct xhci_segment *seg;
715 
716 	ring = xhci->cmd_ring;
717 	seg = ring->deq_seg;
718 	do {
719 		memset(seg->trbs, 0,
720 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
721 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
722 			cpu_to_le32(~TRB_CYCLE);
723 		seg = seg->next;
724 	} while (seg != ring->deq_seg);
725 
726 	/* Reset the software enqueue and dequeue pointers */
727 	ring->deq_seg = ring->first_seg;
728 	ring->dequeue = ring->first_seg->trbs;
729 	ring->enq_seg = ring->deq_seg;
730 	ring->enqueue = ring->dequeue;
731 
732 	/*
733 	 * Ring is now zeroed, so the HW should look for change of ownership
734 	 * when the cycle bit is set to 1.
735 	 */
736 	ring->cycle_state = 1;
737 
738 	/*
739 	 * Reset the hardware dequeue pointer.
740 	 * Yes, this will need to be re-written after resume, but we're paranoid
741 	 * and want to make sure the hardware doesn't access bogus memory
742 	 * because, say, the BIOS or an SMI started the host without changing
743 	 * the command ring pointers.
744 	 */
745 	xhci_set_cmd_ring_deq(xhci);
746 }
747 
748 /*
749  * Stop HC (not bus-specific)
750  *
751  * This is called when the machine transition into S3/S4 mode.
752  *
753  */
xhci_suspend(struct xhci_hcd * xhci)754 int xhci_suspend(struct xhci_hcd *xhci)
755 {
756 	int			rc = 0;
757 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
758 	u32			command;
759 
760 	spin_lock_irq(&xhci->lock);
761 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
762 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
763 	/* step 1: stop endpoint */
764 	/* skipped assuming that port suspend has done */
765 
766 	/* step 2: clear Run/Stop bit */
767 	command = xhci_readl(xhci, &xhci->op_regs->command);
768 	command &= ~CMD_RUN;
769 	xhci_writel(xhci, command, &xhci->op_regs->command);
770 	if (handshake(xhci, &xhci->op_regs->status,
771 		      STS_HALT, STS_HALT, 100*100)) {
772 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
773 		spin_unlock_irq(&xhci->lock);
774 		return -ETIMEDOUT;
775 	}
776 	xhci_clear_command_ring(xhci);
777 
778 	/* step 3: save registers */
779 	xhci_save_registers(xhci);
780 
781 	/* step 4: set CSS flag */
782 	command = xhci_readl(xhci, &xhci->op_regs->command);
783 	command |= CMD_CSS;
784 	xhci_writel(xhci, command, &xhci->op_regs->command);
785 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
786 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
787 		spin_unlock_irq(&xhci->lock);
788 		return -ETIMEDOUT;
789 	}
790 	spin_unlock_irq(&xhci->lock);
791 
792 	/* step 5: remove core well power */
793 	/* synchronize irq when using MSI-X */
794 	xhci_msix_sync_irqs(xhci);
795 
796 	return rc;
797 }
798 
799 /*
800  * start xHC (not bus-specific)
801  *
802  * This is called when the machine transition from S3/S4 mode.
803  *
804  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)805 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
806 {
807 	u32			command, temp = 0;
808 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
809 	struct usb_hcd		*secondary_hcd;
810 	int			retval = 0;
811 
812 	/* Wait a bit if either of the roothubs need to settle from the
813 	 * transition into bus suspend.
814 	 */
815 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
816 			time_before(jiffies,
817 				xhci->bus_state[1].next_statechange))
818 		msleep(100);
819 
820 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
821 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
822 
823 	spin_lock_irq(&xhci->lock);
824 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
825 		hibernated = true;
826 
827 	if (!hibernated) {
828 		/* step 1: restore register */
829 		xhci_restore_registers(xhci);
830 		/* step 2: initialize command ring buffer */
831 		xhci_set_cmd_ring_deq(xhci);
832 		/* step 3: restore state and start state*/
833 		/* step 3: set CRS flag */
834 		command = xhci_readl(xhci, &xhci->op_regs->command);
835 		command |= CMD_CRS;
836 		xhci_writel(xhci, command, &xhci->op_regs->command);
837 		if (handshake(xhci, &xhci->op_regs->status,
838 			      STS_RESTORE, 0, 10*100)) {
839 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
840 			spin_unlock_irq(&xhci->lock);
841 			return -ETIMEDOUT;
842 		}
843 		temp = xhci_readl(xhci, &xhci->op_regs->status);
844 	}
845 
846 	/* If restore operation fails, re-initialize the HC during resume */
847 	if ((temp & STS_SRE) || hibernated) {
848 		/* Let the USB core know _both_ roothubs lost power. */
849 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
850 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
851 
852 		xhci_dbg(xhci, "Stop HCD\n");
853 		xhci_halt(xhci);
854 		xhci_reset(xhci);
855 		spin_unlock_irq(&xhci->lock);
856 		xhci_cleanup_msix(xhci);
857 
858 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
859 		/* Tell the event ring poll function not to reschedule */
860 		xhci->zombie = 1;
861 		del_timer_sync(&xhci->event_ring_timer);
862 #endif
863 
864 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
865 		temp = xhci_readl(xhci, &xhci->op_regs->status);
866 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
867 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
868 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
869 				&xhci->ir_set->irq_pending);
870 		xhci_print_ir_set(xhci, 0);
871 
872 		xhci_dbg(xhci, "cleaning up memory\n");
873 		xhci_mem_cleanup(xhci);
874 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
875 			    xhci_readl(xhci, &xhci->op_regs->status));
876 
877 		/* USB core calls the PCI reinit and start functions twice:
878 		 * first with the primary HCD, and then with the secondary HCD.
879 		 * If we don't do the same, the host will never be started.
880 		 */
881 		if (!usb_hcd_is_primary_hcd(hcd))
882 			secondary_hcd = hcd;
883 		else
884 			secondary_hcd = xhci->shared_hcd;
885 
886 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
887 		retval = xhci_init(hcd->primary_hcd);
888 		if (retval)
889 			return retval;
890 		xhci_dbg(xhci, "Start the primary HCD\n");
891 		retval = xhci_run(hcd->primary_hcd);
892 		if (!retval) {
893 			xhci_dbg(xhci, "Start the secondary HCD\n");
894 			retval = xhci_run(secondary_hcd);
895 		}
896 		hcd->state = HC_STATE_SUSPENDED;
897 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
898 		goto done;
899 	}
900 
901 	/* step 4: set Run/Stop bit */
902 	command = xhci_readl(xhci, &xhci->op_regs->command);
903 	command |= CMD_RUN;
904 	xhci_writel(xhci, command, &xhci->op_regs->command);
905 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
906 		  0, 250 * 1000);
907 
908 	/* step 5: walk topology and initialize portsc,
909 	 * portpmsc and portli
910 	 */
911 	/* this is done in bus_resume */
912 
913 	/* step 6: restart each of the previously
914 	 * Running endpoints by ringing their doorbells
915 	 */
916 
917 	spin_unlock_irq(&xhci->lock);
918 
919  done:
920 	if (retval == 0) {
921 		usb_hcd_resume_root_hub(hcd);
922 		usb_hcd_resume_root_hub(xhci->shared_hcd);
923 	}
924 	return retval;
925 }
926 #endif	/* CONFIG_PM */
927 
928 /*-------------------------------------------------------------------------*/
929 
930 /**
931  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
932  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
933  * value to right shift 1 for the bitmask.
934  *
935  * Index  = (epnum * 2) + direction - 1,
936  * where direction = 0 for OUT, 1 for IN.
937  * For control endpoints, the IN index is used (OUT index is unused), so
938  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
939  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)940 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
941 {
942 	unsigned int index;
943 	if (usb_endpoint_xfer_control(desc))
944 		index = (unsigned int) (usb_endpoint_num(desc)*2);
945 	else
946 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
947 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
948 	return index;
949 }
950 
951 /* Find the flag for this endpoint (for use in the control context).  Use the
952  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
953  * bit 1, etc.
954  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)955 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
956 {
957 	return 1 << (xhci_get_endpoint_index(desc) + 1);
958 }
959 
960 /* Find the flag for this endpoint (for use in the control context).  Use the
961  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
962  * bit 1, etc.
963  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)964 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
965 {
966 	return 1 << (ep_index + 1);
967 }
968 
969 /* Compute the last valid endpoint context index.  Basically, this is the
970  * endpoint index plus one.  For slot contexts with more than valid endpoint,
971  * we find the most significant bit set in the added contexts flags.
972  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
973  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
974  */
xhci_last_valid_endpoint(u32 added_ctxs)975 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
976 {
977 	return fls(added_ctxs) - 1;
978 }
979 
980 /* Returns 1 if the arguments are OK;
981  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
982  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)983 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
984 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
985 		const char *func) {
986 	struct xhci_hcd	*xhci;
987 	struct xhci_virt_device	*virt_dev;
988 
989 	if (!hcd || (check_ep && !ep) || !udev) {
990 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
991 				func);
992 		return -EINVAL;
993 	}
994 	if (!udev->parent) {
995 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
996 				func);
997 		return 0;
998 	}
999 
1000 	xhci = hcd_to_xhci(hcd);
1001 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1002 		return -ENODEV;
1003 
1004 	if (check_virt_dev) {
1005 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1006 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1007 						"device\n", func);
1008 			return -EINVAL;
1009 		}
1010 
1011 		virt_dev = xhci->devs[udev->slot_id];
1012 		if (virt_dev->udev != udev) {
1013 			printk(KERN_DEBUG "xHCI %s called with udev and "
1014 					  "virt_dev does not match\n", func);
1015 			return -EINVAL;
1016 		}
1017 	}
1018 
1019 	return 1;
1020 }
1021 
1022 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1023 		struct usb_device *udev, struct xhci_command *command,
1024 		bool ctx_change, bool must_succeed);
1025 
1026 /*
1027  * Full speed devices may have a max packet size greater than 8 bytes, but the
1028  * USB core doesn't know that until it reads the first 8 bytes of the
1029  * descriptor.  If the usb_device's max packet size changes after that point,
1030  * we need to issue an evaluate context command and wait on it.
1031  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1032 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1033 		unsigned int ep_index, struct urb *urb)
1034 {
1035 	struct xhci_container_ctx *in_ctx;
1036 	struct xhci_container_ctx *out_ctx;
1037 	struct xhci_input_control_ctx *ctrl_ctx;
1038 	struct xhci_ep_ctx *ep_ctx;
1039 	int max_packet_size;
1040 	int hw_max_packet_size;
1041 	int ret = 0;
1042 
1043 	out_ctx = xhci->devs[slot_id]->out_ctx;
1044 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1045 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1046 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1047 	if (hw_max_packet_size != max_packet_size) {
1048 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1049 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1050 				max_packet_size);
1051 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1052 				hw_max_packet_size);
1053 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1054 
1055 		/* Set up the modified control endpoint 0 */
1056 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1057 				xhci->devs[slot_id]->out_ctx, ep_index);
1058 		in_ctx = xhci->devs[slot_id]->in_ctx;
1059 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1060 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1061 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1062 
1063 		/* Set up the input context flags for the command */
1064 		/* FIXME: This won't work if a non-default control endpoint
1065 		 * changes max packet sizes.
1066 		 */
1067 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1068 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1069 		ctrl_ctx->drop_flags = 0;
1070 
1071 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1072 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1073 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1074 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1075 
1076 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1077 				true, false);
1078 
1079 		/* Clean up the input context for later use by bandwidth
1080 		 * functions.
1081 		 */
1082 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1083 	}
1084 	return ret;
1085 }
1086 
1087 /*
1088  * non-error returns are a promise to giveback() the urb later
1089  * we drop ownership so next owner (or urb unlink) can get it
1090  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1091 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1092 {
1093 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1094 	struct xhci_td *buffer;
1095 	unsigned long flags;
1096 	int ret = 0;
1097 	unsigned int slot_id, ep_index;
1098 	struct urb_priv	*urb_priv;
1099 	int size, i;
1100 
1101 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1102 					true, true, __func__) <= 0)
1103 		return -EINVAL;
1104 
1105 	slot_id = urb->dev->slot_id;
1106 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1107 
1108 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1109 		if (!in_interrupt())
1110 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1111 		ret = -ESHUTDOWN;
1112 		goto exit;
1113 	}
1114 
1115 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1116 		size = urb->number_of_packets;
1117 	else
1118 		size = 1;
1119 
1120 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1121 				  size * sizeof(struct xhci_td *), mem_flags);
1122 	if (!urb_priv)
1123 		return -ENOMEM;
1124 
1125 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1126 	if (!buffer) {
1127 		kfree(urb_priv);
1128 		return -ENOMEM;
1129 	}
1130 
1131 	for (i = 0; i < size; i++) {
1132 		urb_priv->td[i] = buffer;
1133 		buffer++;
1134 	}
1135 
1136 	urb_priv->length = size;
1137 	urb_priv->td_cnt = 0;
1138 	urb->hcpriv = urb_priv;
1139 
1140 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1141 		/* Check to see if the max packet size for the default control
1142 		 * endpoint changed during FS device enumeration
1143 		 */
1144 		if (urb->dev->speed == USB_SPEED_FULL) {
1145 			ret = xhci_check_maxpacket(xhci, slot_id,
1146 					ep_index, urb);
1147 			if (ret < 0) {
1148 				xhci_urb_free_priv(xhci, urb_priv);
1149 				urb->hcpriv = NULL;
1150 				return ret;
1151 			}
1152 		}
1153 
1154 		/* We have a spinlock and interrupts disabled, so we must pass
1155 		 * atomic context to this function, which may allocate memory.
1156 		 */
1157 		spin_lock_irqsave(&xhci->lock, flags);
1158 		if (xhci->xhc_state & XHCI_STATE_DYING)
1159 			goto dying;
1160 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1161 				slot_id, ep_index);
1162 		if (ret)
1163 			goto free_priv;
1164 		spin_unlock_irqrestore(&xhci->lock, flags);
1165 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1166 		spin_lock_irqsave(&xhci->lock, flags);
1167 		if (xhci->xhc_state & XHCI_STATE_DYING)
1168 			goto dying;
1169 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1170 				EP_GETTING_STREAMS) {
1171 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1172 					"is transitioning to using streams.\n");
1173 			ret = -EINVAL;
1174 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1175 				EP_GETTING_NO_STREAMS) {
1176 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1177 					"is transitioning to "
1178 					"not having streams.\n");
1179 			ret = -EINVAL;
1180 		} else {
1181 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1182 					slot_id, ep_index);
1183 		}
1184 		if (ret)
1185 			goto free_priv;
1186 		spin_unlock_irqrestore(&xhci->lock, flags);
1187 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1188 		spin_lock_irqsave(&xhci->lock, flags);
1189 		if (xhci->xhc_state & XHCI_STATE_DYING)
1190 			goto dying;
1191 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1192 				slot_id, ep_index);
1193 		if (ret)
1194 			goto free_priv;
1195 		spin_unlock_irqrestore(&xhci->lock, flags);
1196 	} else {
1197 		spin_lock_irqsave(&xhci->lock, flags);
1198 		if (xhci->xhc_state & XHCI_STATE_DYING)
1199 			goto dying;
1200 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1201 				slot_id, ep_index);
1202 		if (ret)
1203 			goto free_priv;
1204 		spin_unlock_irqrestore(&xhci->lock, flags);
1205 	}
1206 exit:
1207 	return ret;
1208 dying:
1209 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1210 			"non-responsive xHCI host.\n",
1211 			urb->ep->desc.bEndpointAddress, urb);
1212 	ret = -ESHUTDOWN;
1213 free_priv:
1214 	xhci_urb_free_priv(xhci, urb_priv);
1215 	urb->hcpriv = NULL;
1216 	spin_unlock_irqrestore(&xhci->lock, flags);
1217 	return ret;
1218 }
1219 
1220 /* Get the right ring for the given URB.
1221  * If the endpoint supports streams, boundary check the URB's stream ID.
1222  * If the endpoint doesn't support streams, return the singular endpoint ring.
1223  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1224 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1225 		struct urb *urb)
1226 {
1227 	unsigned int slot_id;
1228 	unsigned int ep_index;
1229 	unsigned int stream_id;
1230 	struct xhci_virt_ep *ep;
1231 
1232 	slot_id = urb->dev->slot_id;
1233 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1234 	stream_id = urb->stream_id;
1235 	ep = &xhci->devs[slot_id]->eps[ep_index];
1236 	/* Common case: no streams */
1237 	if (!(ep->ep_state & EP_HAS_STREAMS))
1238 		return ep->ring;
1239 
1240 	if (stream_id == 0) {
1241 		xhci_warn(xhci,
1242 				"WARN: Slot ID %u, ep index %u has streams, "
1243 				"but URB has no stream ID.\n",
1244 				slot_id, ep_index);
1245 		return NULL;
1246 	}
1247 
1248 	if (stream_id < ep->stream_info->num_streams)
1249 		return ep->stream_info->stream_rings[stream_id];
1250 
1251 	xhci_warn(xhci,
1252 			"WARN: Slot ID %u, ep index %u has "
1253 			"stream IDs 1 to %u allocated, "
1254 			"but stream ID %u is requested.\n",
1255 			slot_id, ep_index,
1256 			ep->stream_info->num_streams - 1,
1257 			stream_id);
1258 	return NULL;
1259 }
1260 
1261 /*
1262  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1263  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1264  * should pick up where it left off in the TD, unless a Set Transfer Ring
1265  * Dequeue Pointer is issued.
1266  *
1267  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1268  * the ring.  Since the ring is a contiguous structure, they can't be physically
1269  * removed.  Instead, there are two options:
1270  *
1271  *  1) If the HC is in the middle of processing the URB to be canceled, we
1272  *     simply move the ring's dequeue pointer past those TRBs using the Set
1273  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1274  *     when drivers timeout on the last submitted URB and attempt to cancel.
1275  *
1276  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1277  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1278  *     HC will need to invalidate the any TRBs it has cached after the stop
1279  *     endpoint command, as noted in the xHCI 0.95 errata.
1280  *
1281  *  3) The TD may have completed by the time the Stop Endpoint Command
1282  *     completes, so software needs to handle that case too.
1283  *
1284  * This function should protect against the TD enqueueing code ringing the
1285  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1286  * It also needs to account for multiple cancellations on happening at the same
1287  * time for the same endpoint.
1288  *
1289  * Note that this function can be called in any context, or so says
1290  * usb_hcd_unlink_urb()
1291  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1292 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1293 {
1294 	unsigned long flags;
1295 	int ret, i;
1296 	u32 temp;
1297 	struct xhci_hcd *xhci;
1298 	struct urb_priv	*urb_priv;
1299 	struct xhci_td *td;
1300 	unsigned int ep_index;
1301 	struct xhci_ring *ep_ring;
1302 	struct xhci_virt_ep *ep;
1303 
1304 	xhci = hcd_to_xhci(hcd);
1305 	spin_lock_irqsave(&xhci->lock, flags);
1306 	/* Make sure the URB hasn't completed or been unlinked already */
1307 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1308 	if (ret || !urb->hcpriv)
1309 		goto done;
1310 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1311 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1312 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1313 		urb_priv = urb->hcpriv;
1314 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1315 			td = urb_priv->td[i];
1316 			if (!list_empty(&td->td_list))
1317 				list_del_init(&td->td_list);
1318 			if (!list_empty(&td->cancelled_td_list))
1319 				list_del_init(&td->cancelled_td_list);
1320 		}
1321 
1322 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1323 		spin_unlock_irqrestore(&xhci->lock, flags);
1324 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1325 		xhci_urb_free_priv(xhci, urb_priv);
1326 		return ret;
1327 	}
1328 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1329 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1330 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1331 				"non-responsive xHCI host.\n",
1332 				urb->ep->desc.bEndpointAddress, urb);
1333 		/* Let the stop endpoint command watchdog timer (which set this
1334 		 * state) finish cleaning up the endpoint TD lists.  We must
1335 		 * have caught it in the middle of dropping a lock and giving
1336 		 * back an URB.
1337 		 */
1338 		goto done;
1339 	}
1340 
1341 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1342 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1343 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1344 	if (!ep_ring) {
1345 		ret = -EINVAL;
1346 		goto done;
1347 	}
1348 
1349 	urb_priv = urb->hcpriv;
1350 	i = urb_priv->td_cnt;
1351 	if (i < urb_priv->length)
1352 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1353 				"starting at offset 0x%llx\n",
1354 				urb, urb->dev->devpath,
1355 				urb->ep->desc.bEndpointAddress,
1356 				(unsigned long long) xhci_trb_virt_to_dma(
1357 					urb_priv->td[i]->start_seg,
1358 					urb_priv->td[i]->first_trb));
1359 
1360 	for (; i < urb_priv->length; i++) {
1361 		td = urb_priv->td[i];
1362 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1363 	}
1364 
1365 	/* Queue a stop endpoint command, but only if this is
1366 	 * the first cancellation to be handled.
1367 	 */
1368 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1369 		ep->ep_state |= EP_HALT_PENDING;
1370 		ep->stop_cmds_pending++;
1371 		ep->stop_cmd_timer.expires = jiffies +
1372 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1373 		add_timer(&ep->stop_cmd_timer);
1374 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1375 		xhci_ring_cmd_db(xhci);
1376 	}
1377 done:
1378 	spin_unlock_irqrestore(&xhci->lock, flags);
1379 	return ret;
1380 }
1381 
1382 /* Drop an endpoint from a new bandwidth configuration for this device.
1383  * Only one call to this function is allowed per endpoint before
1384  * check_bandwidth() or reset_bandwidth() must be called.
1385  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1386  * add the endpoint to the schedule with possibly new parameters denoted by a
1387  * different endpoint descriptor in usb_host_endpoint.
1388  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1389  * not allowed.
1390  *
1391  * The USB core will not allow URBs to be queued to an endpoint that is being
1392  * disabled, so there's no need for mutual exclusion to protect
1393  * the xhci->devs[slot_id] structure.
1394  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1395 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1396 		struct usb_host_endpoint *ep)
1397 {
1398 	struct xhci_hcd *xhci;
1399 	struct xhci_container_ctx *in_ctx, *out_ctx;
1400 	struct xhci_input_control_ctx *ctrl_ctx;
1401 	struct xhci_slot_ctx *slot_ctx;
1402 	unsigned int last_ctx;
1403 	unsigned int ep_index;
1404 	struct xhci_ep_ctx *ep_ctx;
1405 	u32 drop_flag;
1406 	u32 new_add_flags, new_drop_flags, new_slot_info;
1407 	int ret;
1408 
1409 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1410 	if (ret <= 0)
1411 		return ret;
1412 	xhci = hcd_to_xhci(hcd);
1413 	if (xhci->xhc_state & XHCI_STATE_DYING)
1414 		return -ENODEV;
1415 
1416 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1417 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1418 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1419 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1420 				__func__, drop_flag);
1421 		return 0;
1422 	}
1423 
1424 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1425 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1426 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1427 	ep_index = xhci_get_endpoint_index(&ep->desc);
1428 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1429 	/* If the HC already knows the endpoint is disabled,
1430 	 * or the HCD has noted it is disabled, ignore this request
1431 	 */
1432 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1433 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1434 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1435 	    xhci_get_endpoint_flag(&ep->desc)) {
1436 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1437 				__func__, ep);
1438 		return 0;
1439 	}
1440 
1441 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1442 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1443 
1444 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1445 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1446 
1447 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1448 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1449 	/* Update the last valid endpoint context, if we deleted the last one */
1450 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1451 	    LAST_CTX(last_ctx)) {
1452 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1453 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1454 	}
1455 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1456 
1457 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1458 
1459 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1460 			(unsigned int) ep->desc.bEndpointAddress,
1461 			udev->slot_id,
1462 			(unsigned int) new_drop_flags,
1463 			(unsigned int) new_add_flags,
1464 			(unsigned int) new_slot_info);
1465 	return 0;
1466 }
1467 
1468 /* Add an endpoint to a new possible bandwidth configuration for this device.
1469  * Only one call to this function is allowed per endpoint before
1470  * check_bandwidth() or reset_bandwidth() must be called.
1471  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1472  * add the endpoint to the schedule with possibly new parameters denoted by a
1473  * different endpoint descriptor in usb_host_endpoint.
1474  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1475  * not allowed.
1476  *
1477  * The USB core will not allow URBs to be queued to an endpoint until the
1478  * configuration or alt setting is installed in the device, so there's no need
1479  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1480  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1481 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1482 		struct usb_host_endpoint *ep)
1483 {
1484 	struct xhci_hcd *xhci;
1485 	struct xhci_container_ctx *in_ctx, *out_ctx;
1486 	unsigned int ep_index;
1487 	struct xhci_ep_ctx *ep_ctx;
1488 	struct xhci_slot_ctx *slot_ctx;
1489 	struct xhci_input_control_ctx *ctrl_ctx;
1490 	u32 added_ctxs;
1491 	unsigned int last_ctx;
1492 	u32 new_add_flags, new_drop_flags, new_slot_info;
1493 	struct xhci_virt_device *virt_dev;
1494 	int ret = 0;
1495 
1496 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1497 	if (ret <= 0) {
1498 		/* So we won't queue a reset ep command for a root hub */
1499 		ep->hcpriv = NULL;
1500 		return ret;
1501 	}
1502 	xhci = hcd_to_xhci(hcd);
1503 	if (xhci->xhc_state & XHCI_STATE_DYING)
1504 		return -ENODEV;
1505 
1506 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1507 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1508 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1509 		/* FIXME when we have to issue an evaluate endpoint command to
1510 		 * deal with ep0 max packet size changing once we get the
1511 		 * descriptors
1512 		 */
1513 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1514 				__func__, added_ctxs);
1515 		return 0;
1516 	}
1517 
1518 	virt_dev = xhci->devs[udev->slot_id];
1519 	in_ctx = virt_dev->in_ctx;
1520 	out_ctx = virt_dev->out_ctx;
1521 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1522 	ep_index = xhci_get_endpoint_index(&ep->desc);
1523 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1524 
1525 	/* If this endpoint is already in use, and the upper layers are trying
1526 	 * to add it again without dropping it, reject the addition.
1527 	 */
1528 	if (virt_dev->eps[ep_index].ring &&
1529 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1530 				xhci_get_endpoint_flag(&ep->desc))) {
1531 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1532 				"without dropping it.\n",
1533 				(unsigned int) ep->desc.bEndpointAddress);
1534 		return -EINVAL;
1535 	}
1536 
1537 	/* If the HCD has already noted the endpoint is enabled,
1538 	 * ignore this request.
1539 	 */
1540 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1541 	    xhci_get_endpoint_flag(&ep->desc)) {
1542 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1543 				__func__, ep);
1544 		return 0;
1545 	}
1546 
1547 	/*
1548 	 * Configuration and alternate setting changes must be done in
1549 	 * process context, not interrupt context (or so documenation
1550 	 * for usb_set_interface() and usb_set_configuration() claim).
1551 	 */
1552 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1553 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1554 				__func__, ep->desc.bEndpointAddress);
1555 		return -ENOMEM;
1556 	}
1557 
1558 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1559 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1560 
1561 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1562 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1563 	 * this re-adds a new state for the endpoint from the new endpoint
1564 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1565 	 * drop flags alone.
1566 	 */
1567 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1568 
1569 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1570 	/* Update the last valid endpoint context, if we just added one past */
1571 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1572 	    LAST_CTX(last_ctx)) {
1573 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1574 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1575 	}
1576 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1577 
1578 	/* Store the usb_device pointer for later use */
1579 	ep->hcpriv = udev;
1580 
1581 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1582 			(unsigned int) ep->desc.bEndpointAddress,
1583 			udev->slot_id,
1584 			(unsigned int) new_drop_flags,
1585 			(unsigned int) new_add_flags,
1586 			(unsigned int) new_slot_info);
1587 	return 0;
1588 }
1589 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1590 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1591 {
1592 	struct xhci_input_control_ctx *ctrl_ctx;
1593 	struct xhci_ep_ctx *ep_ctx;
1594 	struct xhci_slot_ctx *slot_ctx;
1595 	int i;
1596 
1597 	/* When a device's add flag and drop flag are zero, any subsequent
1598 	 * configure endpoint command will leave that endpoint's state
1599 	 * untouched.  Make sure we don't leave any old state in the input
1600 	 * endpoint contexts.
1601 	 */
1602 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1603 	ctrl_ctx->drop_flags = 0;
1604 	ctrl_ctx->add_flags = 0;
1605 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1606 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1607 	/* Endpoint 0 is always valid */
1608 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1609 	for (i = 1; i < 31; ++i) {
1610 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1611 		ep_ctx->ep_info = 0;
1612 		ep_ctx->ep_info2 = 0;
1613 		ep_ctx->deq = 0;
1614 		ep_ctx->tx_info = 0;
1615 	}
1616 }
1617 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1618 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1619 		struct usb_device *udev, u32 *cmd_status)
1620 {
1621 	int ret;
1622 
1623 	switch (*cmd_status) {
1624 	case COMP_ENOMEM:
1625 		dev_warn(&udev->dev, "Not enough host controller resources "
1626 				"for new device state.\n");
1627 		ret = -ENOMEM;
1628 		/* FIXME: can we allocate more resources for the HC? */
1629 		break;
1630 	case COMP_BW_ERR:
1631 	case COMP_2ND_BW_ERR:
1632 		dev_warn(&udev->dev, "Not enough bandwidth "
1633 				"for new device state.\n");
1634 		ret = -ENOSPC;
1635 		/* FIXME: can we go back to the old state? */
1636 		break;
1637 	case COMP_TRB_ERR:
1638 		/* the HCD set up something wrong */
1639 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1640 				"add flag = 1, "
1641 				"and endpoint is not disabled.\n");
1642 		ret = -EINVAL;
1643 		break;
1644 	case COMP_DEV_ERR:
1645 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1646 				"configure command.\n");
1647 		ret = -ENODEV;
1648 		break;
1649 	case COMP_SUCCESS:
1650 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1651 		ret = 0;
1652 		break;
1653 	default:
1654 		xhci_err(xhci, "ERROR: unexpected command completion "
1655 				"code 0x%x.\n", *cmd_status);
1656 		ret = -EINVAL;
1657 		break;
1658 	}
1659 	return ret;
1660 }
1661 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1662 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1663 		struct usb_device *udev, u32 *cmd_status)
1664 {
1665 	int ret;
1666 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1667 
1668 	switch (*cmd_status) {
1669 	case COMP_EINVAL:
1670 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1671 				"context command.\n");
1672 		ret = -EINVAL;
1673 		break;
1674 	case COMP_EBADSLT:
1675 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1676 				"evaluate context command.\n");
1677 	case COMP_CTX_STATE:
1678 		dev_warn(&udev->dev, "WARN: invalid context state for "
1679 				"evaluate context command.\n");
1680 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1681 		ret = -EINVAL;
1682 		break;
1683 	case COMP_DEV_ERR:
1684 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1685 				"context command.\n");
1686 		ret = -ENODEV;
1687 		break;
1688 	case COMP_MEL_ERR:
1689 		/* Max Exit Latency too large error */
1690 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1691 		ret = -EINVAL;
1692 		break;
1693 	case COMP_SUCCESS:
1694 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1695 		ret = 0;
1696 		break;
1697 	default:
1698 		xhci_err(xhci, "ERROR: unexpected command completion "
1699 				"code 0x%x.\n", *cmd_status);
1700 		ret = -EINVAL;
1701 		break;
1702 	}
1703 	return ret;
1704 }
1705 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1706 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1707 		struct xhci_container_ctx *in_ctx)
1708 {
1709 	struct xhci_input_control_ctx *ctrl_ctx;
1710 	u32 valid_add_flags;
1711 	u32 valid_drop_flags;
1712 
1713 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1714 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1715 	 * (bit 1).  The default control endpoint is added during the Address
1716 	 * Device command and is never removed until the slot is disabled.
1717 	 */
1718 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1719 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1720 
1721 	/* Use hweight32 to count the number of ones in the add flags, or
1722 	 * number of endpoints added.  Don't count endpoints that are changed
1723 	 * (both added and dropped).
1724 	 */
1725 	return hweight32(valid_add_flags) -
1726 		hweight32(valid_add_flags & valid_drop_flags);
1727 }
1728 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1729 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1730 		struct xhci_container_ctx *in_ctx)
1731 {
1732 	struct xhci_input_control_ctx *ctrl_ctx;
1733 	u32 valid_add_flags;
1734 	u32 valid_drop_flags;
1735 
1736 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1737 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1738 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1739 
1740 	return hweight32(valid_drop_flags) -
1741 		hweight32(valid_add_flags & valid_drop_flags);
1742 }
1743 
1744 /*
1745  * We need to reserve the new number of endpoints before the configure endpoint
1746  * command completes.  We can't subtract the dropped endpoints from the number
1747  * of active endpoints until the command completes because we can oversubscribe
1748  * the host in this case:
1749  *
1750  *  - the first configure endpoint command drops more endpoints than it adds
1751  *  - a second configure endpoint command that adds more endpoints is queued
1752  *  - the first configure endpoint command fails, so the config is unchanged
1753  *  - the second command may succeed, even though there isn't enough resources
1754  *
1755  * Must be called with xhci->lock held.
1756  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1757 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1758 		struct xhci_container_ctx *in_ctx)
1759 {
1760 	u32 added_eps;
1761 
1762 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1763 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1764 		xhci_dbg(xhci, "Not enough ep ctxs: "
1765 				"%u active, need to add %u, limit is %u.\n",
1766 				xhci->num_active_eps, added_eps,
1767 				xhci->limit_active_eps);
1768 		return -ENOMEM;
1769 	}
1770 	xhci->num_active_eps += added_eps;
1771 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1772 			xhci->num_active_eps);
1773 	return 0;
1774 }
1775 
1776 /*
1777  * The configure endpoint was failed by the xHC for some other reason, so we
1778  * need to revert the resources that failed configuration would have used.
1779  *
1780  * Must be called with xhci->lock held.
1781  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1782 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1783 		struct xhci_container_ctx *in_ctx)
1784 {
1785 	u32 num_failed_eps;
1786 
1787 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1788 	xhci->num_active_eps -= num_failed_eps;
1789 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1790 			num_failed_eps,
1791 			xhci->num_active_eps);
1792 }
1793 
1794 /*
1795  * Now that the command has completed, clean up the active endpoint count by
1796  * subtracting out the endpoints that were dropped (but not changed).
1797  *
1798  * Must be called with xhci->lock held.
1799  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1800 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1801 		struct xhci_container_ctx *in_ctx)
1802 {
1803 	u32 num_dropped_eps;
1804 
1805 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1806 	xhci->num_active_eps -= num_dropped_eps;
1807 	if (num_dropped_eps)
1808 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1809 				num_dropped_eps,
1810 				xhci->num_active_eps);
1811 }
1812 
xhci_get_block_size(struct usb_device * udev)1813 unsigned int xhci_get_block_size(struct usb_device *udev)
1814 {
1815 	switch (udev->speed) {
1816 	case USB_SPEED_LOW:
1817 	case USB_SPEED_FULL:
1818 		return FS_BLOCK;
1819 	case USB_SPEED_HIGH:
1820 		return HS_BLOCK;
1821 	case USB_SPEED_SUPER:
1822 		return SS_BLOCK;
1823 	case USB_SPEED_UNKNOWN:
1824 	case USB_SPEED_WIRELESS:
1825 	default:
1826 		/* Should never happen */
1827 		return 1;
1828 	}
1829 }
1830 
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)1831 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1832 {
1833 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1834 		return LS_OVERHEAD;
1835 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1836 		return FS_OVERHEAD;
1837 	return HS_OVERHEAD;
1838 }
1839 
1840 /* If we are changing a LS/FS device under a HS hub,
1841  * make sure (if we are activating a new TT) that the HS bus has enough
1842  * bandwidth for this new TT.
1843  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)1844 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1845 		struct xhci_virt_device *virt_dev,
1846 		int old_active_eps)
1847 {
1848 	struct xhci_interval_bw_table *bw_table;
1849 	struct xhci_tt_bw_info *tt_info;
1850 
1851 	/* Find the bandwidth table for the root port this TT is attached to. */
1852 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1853 	tt_info = virt_dev->tt_info;
1854 	/* If this TT already had active endpoints, the bandwidth for this TT
1855 	 * has already been added.  Removing all periodic endpoints (and thus
1856 	 * making the TT enactive) will only decrease the bandwidth used.
1857 	 */
1858 	if (old_active_eps)
1859 		return 0;
1860 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1861 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1862 			return -ENOMEM;
1863 		return 0;
1864 	}
1865 	/* Not sure why we would have no new active endpoints...
1866 	 *
1867 	 * Maybe because of an Evaluate Context change for a hub update or a
1868 	 * control endpoint 0 max packet size change?
1869 	 * FIXME: skip the bandwidth calculation in that case.
1870 	 */
1871 	return 0;
1872 }
1873 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1874 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1875 		struct xhci_virt_device *virt_dev)
1876 {
1877 	unsigned int bw_reserved;
1878 
1879 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1880 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1881 		return -ENOMEM;
1882 
1883 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1884 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1885 		return -ENOMEM;
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * This algorithm is a very conservative estimate of the worst-case scheduling
1892  * scenario for any one interval.  The hardware dynamically schedules the
1893  * packets, so we can't tell which microframe could be the limiting factor in
1894  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1895  *
1896  * Obviously, we can't solve an NP complete problem to find the minimum worst
1897  * case scenario.  Instead, we come up with an estimate that is no less than
1898  * the worst case bandwidth used for any one microframe, but may be an
1899  * over-estimate.
1900  *
1901  * We walk the requirements for each endpoint by interval, starting with the
1902  * smallest interval, and place packets in the schedule where there is only one
1903  * possible way to schedule packets for that interval.  In order to simplify
1904  * this algorithm, we record the largest max packet size for each interval, and
1905  * assume all packets will be that size.
1906  *
1907  * For interval 0, we obviously must schedule all packets for each interval.
1908  * The bandwidth for interval 0 is just the amount of data to be transmitted
1909  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1910  * the number of packets).
1911  *
1912  * For interval 1, we have two possible microframes to schedule those packets
1913  * in.  For this algorithm, if we can schedule the same number of packets for
1914  * each possible scheduling opportunity (each microframe), we will do so.  The
1915  * remaining number of packets will be saved to be transmitted in the gaps in
1916  * the next interval's scheduling sequence.
1917  *
1918  * As we move those remaining packets to be scheduled with interval 2 packets,
1919  * we have to double the number of remaining packets to transmit.  This is
1920  * because the intervals are actually powers of 2, and we would be transmitting
1921  * the previous interval's packets twice in this interval.  We also have to be
1922  * sure that when we look at the largest max packet size for this interval, we
1923  * also look at the largest max packet size for the remaining packets and take
1924  * the greater of the two.
1925  *
1926  * The algorithm continues to evenly distribute packets in each scheduling
1927  * opportunity, and push the remaining packets out, until we get to the last
1928  * interval.  Then those packets and their associated overhead are just added
1929  * to the bandwidth used.
1930  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)1931 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1932 		struct xhci_virt_device *virt_dev,
1933 		int old_active_eps)
1934 {
1935 	unsigned int bw_reserved;
1936 	unsigned int max_bandwidth;
1937 	unsigned int bw_used;
1938 	unsigned int block_size;
1939 	struct xhci_interval_bw_table *bw_table;
1940 	unsigned int packet_size = 0;
1941 	unsigned int overhead = 0;
1942 	unsigned int packets_transmitted = 0;
1943 	unsigned int packets_remaining = 0;
1944 	unsigned int i;
1945 
1946 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1947 		return xhci_check_ss_bw(xhci, virt_dev);
1948 
1949 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1950 		max_bandwidth = HS_BW_LIMIT;
1951 		/* Convert percent of bus BW reserved to blocks reserved */
1952 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1953 	} else {
1954 		max_bandwidth = FS_BW_LIMIT;
1955 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1956 	}
1957 
1958 	bw_table = virt_dev->bw_table;
1959 	/* We need to translate the max packet size and max ESIT payloads into
1960 	 * the units the hardware uses.
1961 	 */
1962 	block_size = xhci_get_block_size(virt_dev->udev);
1963 
1964 	/* If we are manipulating a LS/FS device under a HS hub, double check
1965 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1966 	 */
1967 	if (virt_dev->tt_info) {
1968 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1969 				virt_dev->real_port);
1970 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1971 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1972 					"newly activated TT.\n");
1973 			return -ENOMEM;
1974 		}
1975 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1976 				virt_dev->tt_info->slot_id,
1977 				virt_dev->tt_info->ttport);
1978 	} else {
1979 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1980 				virt_dev->real_port);
1981 	}
1982 
1983 	/* Add in how much bandwidth will be used for interval zero, or the
1984 	 * rounded max ESIT payload + number of packets * largest overhead.
1985 	 */
1986 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1987 		bw_table->interval_bw[0].num_packets *
1988 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1989 
1990 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1991 		unsigned int bw_added;
1992 		unsigned int largest_mps;
1993 		unsigned int interval_overhead;
1994 
1995 		/*
1996 		 * How many packets could we transmit in this interval?
1997 		 * If packets didn't fit in the previous interval, we will need
1998 		 * to transmit that many packets twice within this interval.
1999 		 */
2000 		packets_remaining = 2 * packets_remaining +
2001 			bw_table->interval_bw[i].num_packets;
2002 
2003 		/* Find the largest max packet size of this or the previous
2004 		 * interval.
2005 		 */
2006 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2007 			largest_mps = 0;
2008 		else {
2009 			struct xhci_virt_ep *virt_ep;
2010 			struct list_head *ep_entry;
2011 
2012 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2013 			virt_ep = list_entry(ep_entry,
2014 					struct xhci_virt_ep, bw_endpoint_list);
2015 			/* Convert to blocks, rounding up */
2016 			largest_mps = DIV_ROUND_UP(
2017 					virt_ep->bw_info.max_packet_size,
2018 					block_size);
2019 		}
2020 		if (largest_mps > packet_size)
2021 			packet_size = largest_mps;
2022 
2023 		/* Use the larger overhead of this or the previous interval. */
2024 		interval_overhead = xhci_get_largest_overhead(
2025 				&bw_table->interval_bw[i]);
2026 		if (interval_overhead > overhead)
2027 			overhead = interval_overhead;
2028 
2029 		/* How many packets can we evenly distribute across
2030 		 * (1 << (i + 1)) possible scheduling opportunities?
2031 		 */
2032 		packets_transmitted = packets_remaining >> (i + 1);
2033 
2034 		/* Add in the bandwidth used for those scheduled packets */
2035 		bw_added = packets_transmitted * (overhead + packet_size);
2036 
2037 		/* How many packets do we have remaining to transmit? */
2038 		packets_remaining = packets_remaining % (1 << (i + 1));
2039 
2040 		/* What largest max packet size should those packets have? */
2041 		/* If we've transmitted all packets, don't carry over the
2042 		 * largest packet size.
2043 		 */
2044 		if (packets_remaining == 0) {
2045 			packet_size = 0;
2046 			overhead = 0;
2047 		} else if (packets_transmitted > 0) {
2048 			/* Otherwise if we do have remaining packets, and we've
2049 			 * scheduled some packets in this interval, take the
2050 			 * largest max packet size from endpoints with this
2051 			 * interval.
2052 			 */
2053 			packet_size = largest_mps;
2054 			overhead = interval_overhead;
2055 		}
2056 		/* Otherwise carry over packet_size and overhead from the last
2057 		 * time we had a remainder.
2058 		 */
2059 		bw_used += bw_added;
2060 		if (bw_used > max_bandwidth) {
2061 			xhci_warn(xhci, "Not enough bandwidth. "
2062 					"Proposed: %u, Max: %u\n",
2063 				bw_used, max_bandwidth);
2064 			return -ENOMEM;
2065 		}
2066 	}
2067 	/*
2068 	 * Ok, we know we have some packets left over after even-handedly
2069 	 * scheduling interval 15.  We don't know which microframes they will
2070 	 * fit into, so we over-schedule and say they will be scheduled every
2071 	 * microframe.
2072 	 */
2073 	if (packets_remaining > 0)
2074 		bw_used += overhead + packet_size;
2075 
2076 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2077 		unsigned int port_index = virt_dev->real_port - 1;
2078 
2079 		/* OK, we're manipulating a HS device attached to a
2080 		 * root port bandwidth domain.  Include the number of active TTs
2081 		 * in the bandwidth used.
2082 		 */
2083 		bw_used += TT_HS_OVERHEAD *
2084 			xhci->rh_bw[port_index].num_active_tts;
2085 	}
2086 
2087 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2088 		"Available: %u " "percent\n",
2089 		bw_used, max_bandwidth, bw_reserved,
2090 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2091 		max_bandwidth);
2092 
2093 	bw_used += bw_reserved;
2094 	if (bw_used > max_bandwidth) {
2095 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2096 				bw_used, max_bandwidth);
2097 		return -ENOMEM;
2098 	}
2099 
2100 	bw_table->bw_used = bw_used;
2101 	return 0;
2102 }
2103 
xhci_is_async_ep(unsigned int ep_type)2104 static bool xhci_is_async_ep(unsigned int ep_type)
2105 {
2106 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2107 					ep_type != ISOC_IN_EP &&
2108 					ep_type != INT_IN_EP);
2109 }
2110 
xhci_is_sync_in_ep(unsigned int ep_type)2111 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2112 {
2113 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2114 }
2115 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2116 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2117 {
2118 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2119 
2120 	if (ep_bw->ep_interval == 0)
2121 		return SS_OVERHEAD_BURST +
2122 			(ep_bw->mult * ep_bw->num_packets *
2123 					(SS_OVERHEAD + mps));
2124 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2125 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2126 				1 << ep_bw->ep_interval);
2127 
2128 }
2129 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2130 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2131 		struct xhci_bw_info *ep_bw,
2132 		struct xhci_interval_bw_table *bw_table,
2133 		struct usb_device *udev,
2134 		struct xhci_virt_ep *virt_ep,
2135 		struct xhci_tt_bw_info *tt_info)
2136 {
2137 	struct xhci_interval_bw	*interval_bw;
2138 	int normalized_interval;
2139 
2140 	if (xhci_is_async_ep(ep_bw->type))
2141 		return;
2142 
2143 	if (udev->speed == USB_SPEED_SUPER) {
2144 		if (xhci_is_sync_in_ep(ep_bw->type))
2145 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2146 				xhci_get_ss_bw_consumed(ep_bw);
2147 		else
2148 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2149 				xhci_get_ss_bw_consumed(ep_bw);
2150 		return;
2151 	}
2152 
2153 	/* SuperSpeed endpoints never get added to intervals in the table, so
2154 	 * this check is only valid for HS/FS/LS devices.
2155 	 */
2156 	if (list_empty(&virt_ep->bw_endpoint_list))
2157 		return;
2158 	/* For LS/FS devices, we need to translate the interval expressed in
2159 	 * microframes to frames.
2160 	 */
2161 	if (udev->speed == USB_SPEED_HIGH)
2162 		normalized_interval = ep_bw->ep_interval;
2163 	else
2164 		normalized_interval = ep_bw->ep_interval - 3;
2165 
2166 	if (normalized_interval == 0)
2167 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2168 	interval_bw = &bw_table->interval_bw[normalized_interval];
2169 	interval_bw->num_packets -= ep_bw->num_packets;
2170 	switch (udev->speed) {
2171 	case USB_SPEED_LOW:
2172 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2173 		break;
2174 	case USB_SPEED_FULL:
2175 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2176 		break;
2177 	case USB_SPEED_HIGH:
2178 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2179 		break;
2180 	case USB_SPEED_SUPER:
2181 	case USB_SPEED_UNKNOWN:
2182 	case USB_SPEED_WIRELESS:
2183 		/* Should never happen because only LS/FS/HS endpoints will get
2184 		 * added to the endpoint list.
2185 		 */
2186 		return;
2187 	}
2188 	if (tt_info)
2189 		tt_info->active_eps -= 1;
2190 	list_del_init(&virt_ep->bw_endpoint_list);
2191 }
2192 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2193 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2194 		struct xhci_bw_info *ep_bw,
2195 		struct xhci_interval_bw_table *bw_table,
2196 		struct usb_device *udev,
2197 		struct xhci_virt_ep *virt_ep,
2198 		struct xhci_tt_bw_info *tt_info)
2199 {
2200 	struct xhci_interval_bw	*interval_bw;
2201 	struct xhci_virt_ep *smaller_ep;
2202 	int normalized_interval;
2203 
2204 	if (xhci_is_async_ep(ep_bw->type))
2205 		return;
2206 
2207 	if (udev->speed == USB_SPEED_SUPER) {
2208 		if (xhci_is_sync_in_ep(ep_bw->type))
2209 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2210 				xhci_get_ss_bw_consumed(ep_bw);
2211 		else
2212 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2213 				xhci_get_ss_bw_consumed(ep_bw);
2214 		return;
2215 	}
2216 
2217 	/* For LS/FS devices, we need to translate the interval expressed in
2218 	 * microframes to frames.
2219 	 */
2220 	if (udev->speed == USB_SPEED_HIGH)
2221 		normalized_interval = ep_bw->ep_interval;
2222 	else
2223 		normalized_interval = ep_bw->ep_interval - 3;
2224 
2225 	if (normalized_interval == 0)
2226 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2227 	interval_bw = &bw_table->interval_bw[normalized_interval];
2228 	interval_bw->num_packets += ep_bw->num_packets;
2229 	switch (udev->speed) {
2230 	case USB_SPEED_LOW:
2231 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2232 		break;
2233 	case USB_SPEED_FULL:
2234 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2235 		break;
2236 	case USB_SPEED_HIGH:
2237 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2238 		break;
2239 	case USB_SPEED_SUPER:
2240 	case USB_SPEED_UNKNOWN:
2241 	case USB_SPEED_WIRELESS:
2242 		/* Should never happen because only LS/FS/HS endpoints will get
2243 		 * added to the endpoint list.
2244 		 */
2245 		return;
2246 	}
2247 
2248 	if (tt_info)
2249 		tt_info->active_eps += 1;
2250 	/* Insert the endpoint into the list, largest max packet size first. */
2251 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2252 			bw_endpoint_list) {
2253 		if (ep_bw->max_packet_size >=
2254 				smaller_ep->bw_info.max_packet_size) {
2255 			/* Add the new ep before the smaller endpoint */
2256 			list_add_tail(&virt_ep->bw_endpoint_list,
2257 					&smaller_ep->bw_endpoint_list);
2258 			return;
2259 		}
2260 	}
2261 	/* Add the new endpoint at the end of the list. */
2262 	list_add_tail(&virt_ep->bw_endpoint_list,
2263 			&interval_bw->endpoints);
2264 }
2265 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2266 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2267 		struct xhci_virt_device *virt_dev,
2268 		int old_active_eps)
2269 {
2270 	struct xhci_root_port_bw_info *rh_bw_info;
2271 	if (!virt_dev->tt_info)
2272 		return;
2273 
2274 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2275 	if (old_active_eps == 0 &&
2276 				virt_dev->tt_info->active_eps != 0) {
2277 		rh_bw_info->num_active_tts += 1;
2278 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2279 	} else if (old_active_eps != 0 &&
2280 				virt_dev->tt_info->active_eps == 0) {
2281 		rh_bw_info->num_active_tts -= 1;
2282 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2283 	}
2284 }
2285 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2286 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2287 		struct xhci_virt_device *virt_dev,
2288 		struct xhci_container_ctx *in_ctx)
2289 {
2290 	struct xhci_bw_info ep_bw_info[31];
2291 	int i;
2292 	struct xhci_input_control_ctx *ctrl_ctx;
2293 	int old_active_eps = 0;
2294 
2295 	if (virt_dev->tt_info)
2296 		old_active_eps = virt_dev->tt_info->active_eps;
2297 
2298 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2299 
2300 	for (i = 0; i < 31; i++) {
2301 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2302 			continue;
2303 
2304 		/* Make a copy of the BW info in case we need to revert this */
2305 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2306 				sizeof(ep_bw_info[i]));
2307 		/* Drop the endpoint from the interval table if the endpoint is
2308 		 * being dropped or changed.
2309 		 */
2310 		if (EP_IS_DROPPED(ctrl_ctx, i))
2311 			xhci_drop_ep_from_interval_table(xhci,
2312 					&virt_dev->eps[i].bw_info,
2313 					virt_dev->bw_table,
2314 					virt_dev->udev,
2315 					&virt_dev->eps[i],
2316 					virt_dev->tt_info);
2317 	}
2318 	/* Overwrite the information stored in the endpoints' bw_info */
2319 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2320 	for (i = 0; i < 31; i++) {
2321 		/* Add any changed or added endpoints to the interval table */
2322 		if (EP_IS_ADDED(ctrl_ctx, i))
2323 			xhci_add_ep_to_interval_table(xhci,
2324 					&virt_dev->eps[i].bw_info,
2325 					virt_dev->bw_table,
2326 					virt_dev->udev,
2327 					&virt_dev->eps[i],
2328 					virt_dev->tt_info);
2329 	}
2330 
2331 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2332 		/* Ok, this fits in the bandwidth we have.
2333 		 * Update the number of active TTs.
2334 		 */
2335 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2336 		return 0;
2337 	}
2338 
2339 	/* We don't have enough bandwidth for this, revert the stored info. */
2340 	for (i = 0; i < 31; i++) {
2341 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2342 			continue;
2343 
2344 		/* Drop the new copies of any added or changed endpoints from
2345 		 * the interval table.
2346 		 */
2347 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2348 			xhci_drop_ep_from_interval_table(xhci,
2349 					&virt_dev->eps[i].bw_info,
2350 					virt_dev->bw_table,
2351 					virt_dev->udev,
2352 					&virt_dev->eps[i],
2353 					virt_dev->tt_info);
2354 		}
2355 		/* Revert the endpoint back to its old information */
2356 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2357 				sizeof(ep_bw_info[i]));
2358 		/* Add any changed or dropped endpoints back into the table */
2359 		if (EP_IS_DROPPED(ctrl_ctx, i))
2360 			xhci_add_ep_to_interval_table(xhci,
2361 					&virt_dev->eps[i].bw_info,
2362 					virt_dev->bw_table,
2363 					virt_dev->udev,
2364 					&virt_dev->eps[i],
2365 					virt_dev->tt_info);
2366 	}
2367 	return -ENOMEM;
2368 }
2369 
2370 
2371 /* Issue a configure endpoint command or evaluate context command
2372  * and wait for it to finish.
2373  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2374 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2375 		struct usb_device *udev,
2376 		struct xhci_command *command,
2377 		bool ctx_change, bool must_succeed)
2378 {
2379 	int ret;
2380 	int timeleft;
2381 	unsigned long flags;
2382 	struct xhci_container_ctx *in_ctx;
2383 	struct completion *cmd_completion;
2384 	u32 *cmd_status;
2385 	struct xhci_virt_device *virt_dev;
2386 
2387 	spin_lock_irqsave(&xhci->lock, flags);
2388 	virt_dev = xhci->devs[udev->slot_id];
2389 
2390 	if (command)
2391 		in_ctx = command->in_ctx;
2392 	else
2393 		in_ctx = virt_dev->in_ctx;
2394 
2395 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2396 			xhci_reserve_host_resources(xhci, in_ctx)) {
2397 		spin_unlock_irqrestore(&xhci->lock, flags);
2398 		xhci_warn(xhci, "Not enough host resources, "
2399 				"active endpoint contexts = %u\n",
2400 				xhci->num_active_eps);
2401 		return -ENOMEM;
2402 	}
2403 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2404 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2405 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2406 			xhci_free_host_resources(xhci, in_ctx);
2407 		spin_unlock_irqrestore(&xhci->lock, flags);
2408 		xhci_warn(xhci, "Not enough bandwidth\n");
2409 		return -ENOMEM;
2410 	}
2411 
2412 	if (command) {
2413 		cmd_completion = command->completion;
2414 		cmd_status = &command->status;
2415 		command->command_trb = xhci->cmd_ring->enqueue;
2416 
2417 		/* Enqueue pointer can be left pointing to the link TRB,
2418 		 * we must handle that
2419 		 */
2420 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2421 			command->command_trb =
2422 				xhci->cmd_ring->enq_seg->next->trbs;
2423 
2424 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2425 	} else {
2426 		cmd_completion = &virt_dev->cmd_completion;
2427 		cmd_status = &virt_dev->cmd_status;
2428 	}
2429 	init_completion(cmd_completion);
2430 
2431 	if (!ctx_change)
2432 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2433 				udev->slot_id, must_succeed);
2434 	else
2435 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2436 				udev->slot_id);
2437 	if (ret < 0) {
2438 		if (command)
2439 			list_del(&command->cmd_list);
2440 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2441 			xhci_free_host_resources(xhci, in_ctx);
2442 		spin_unlock_irqrestore(&xhci->lock, flags);
2443 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2444 		return -ENOMEM;
2445 	}
2446 	xhci_ring_cmd_db(xhci);
2447 	spin_unlock_irqrestore(&xhci->lock, flags);
2448 
2449 	/* Wait for the configure endpoint command to complete */
2450 	timeleft = wait_for_completion_interruptible_timeout(
2451 			cmd_completion,
2452 			USB_CTRL_SET_TIMEOUT);
2453 	if (timeleft <= 0) {
2454 		xhci_warn(xhci, "%s while waiting for %s command\n",
2455 				timeleft == 0 ? "Timeout" : "Signal",
2456 				ctx_change == 0 ?
2457 					"configure endpoint" :
2458 					"evaluate context");
2459 		/* FIXME cancel the configure endpoint command */
2460 		return -ETIME;
2461 	}
2462 
2463 	if (!ctx_change)
2464 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2465 	else
2466 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2467 
2468 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2469 		spin_lock_irqsave(&xhci->lock, flags);
2470 		/* If the command failed, remove the reserved resources.
2471 		 * Otherwise, clean up the estimate to include dropped eps.
2472 		 */
2473 		if (ret)
2474 			xhci_free_host_resources(xhci, in_ctx);
2475 		else
2476 			xhci_finish_resource_reservation(xhci, in_ctx);
2477 		spin_unlock_irqrestore(&xhci->lock, flags);
2478 	}
2479 	return ret;
2480 }
2481 
2482 /* Called after one or more calls to xhci_add_endpoint() or
2483  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2484  * to call xhci_reset_bandwidth().
2485  *
2486  * Since we are in the middle of changing either configuration or
2487  * installing a new alt setting, the USB core won't allow URBs to be
2488  * enqueued for any endpoint on the old config or interface.  Nothing
2489  * else should be touching the xhci->devs[slot_id] structure, so we
2490  * don't need to take the xhci->lock for manipulating that.
2491  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2492 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2493 {
2494 	int i;
2495 	int ret = 0;
2496 	struct xhci_hcd *xhci;
2497 	struct xhci_virt_device	*virt_dev;
2498 	struct xhci_input_control_ctx *ctrl_ctx;
2499 	struct xhci_slot_ctx *slot_ctx;
2500 
2501 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2502 	if (ret <= 0)
2503 		return ret;
2504 	xhci = hcd_to_xhci(hcd);
2505 	if (xhci->xhc_state & XHCI_STATE_DYING)
2506 		return -ENODEV;
2507 
2508 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2509 	virt_dev = xhci->devs[udev->slot_id];
2510 
2511 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2512 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2513 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2514 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2515 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2516 
2517 	/* Don't issue the command if there's no endpoints to update. */
2518 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2519 			ctrl_ctx->drop_flags == 0)
2520 		return 0;
2521 
2522 	xhci_dbg(xhci, "New Input Control Context:\n");
2523 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2524 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2525 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2526 
2527 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2528 			false, false);
2529 	if (ret) {
2530 		/* Callee should call reset_bandwidth() */
2531 		return ret;
2532 	}
2533 
2534 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2535 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2536 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2537 
2538 	/* Free any rings that were dropped, but not changed. */
2539 	for (i = 1; i < 31; ++i) {
2540 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2541 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2542 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2543 	}
2544 	xhci_zero_in_ctx(xhci, virt_dev);
2545 	/*
2546 	 * Install any rings for completely new endpoints or changed endpoints,
2547 	 * and free or cache any old rings from changed endpoints.
2548 	 */
2549 	for (i = 1; i < 31; ++i) {
2550 		if (!virt_dev->eps[i].new_ring)
2551 			continue;
2552 		/* Only cache or free the old ring if it exists.
2553 		 * It may not if this is the first add of an endpoint.
2554 		 */
2555 		if (virt_dev->eps[i].ring) {
2556 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2557 		}
2558 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2559 		virt_dev->eps[i].new_ring = NULL;
2560 	}
2561 
2562 	return ret;
2563 }
2564 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2565 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2566 {
2567 	struct xhci_hcd *xhci;
2568 	struct xhci_virt_device	*virt_dev;
2569 	int i, ret;
2570 
2571 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2572 	if (ret <= 0)
2573 		return;
2574 	xhci = hcd_to_xhci(hcd);
2575 
2576 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2577 	virt_dev = xhci->devs[udev->slot_id];
2578 	/* Free any rings allocated for added endpoints */
2579 	for (i = 0; i < 31; ++i) {
2580 		if (virt_dev->eps[i].new_ring) {
2581 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2582 			virt_dev->eps[i].new_ring = NULL;
2583 		}
2584 	}
2585 	xhci_zero_in_ctx(xhci, virt_dev);
2586 }
2587 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,u32 add_flags,u32 drop_flags)2588 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2589 		struct xhci_container_ctx *in_ctx,
2590 		struct xhci_container_ctx *out_ctx,
2591 		u32 add_flags, u32 drop_flags)
2592 {
2593 	struct xhci_input_control_ctx *ctrl_ctx;
2594 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2595 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2596 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2597 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2598 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2599 
2600 	xhci_dbg(xhci, "Input Context:\n");
2601 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2602 }
2603 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2604 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2605 		unsigned int slot_id, unsigned int ep_index,
2606 		struct xhci_dequeue_state *deq_state)
2607 {
2608 	struct xhci_container_ctx *in_ctx;
2609 	struct xhci_ep_ctx *ep_ctx;
2610 	u32 added_ctxs;
2611 	dma_addr_t addr;
2612 
2613 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2614 			xhci->devs[slot_id]->out_ctx, ep_index);
2615 	in_ctx = xhci->devs[slot_id]->in_ctx;
2616 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2617 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2618 			deq_state->new_deq_ptr);
2619 	if (addr == 0) {
2620 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2621 				"reset ep command\n");
2622 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2623 				deq_state->new_deq_seg,
2624 				deq_state->new_deq_ptr);
2625 		return;
2626 	}
2627 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2628 
2629 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2630 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2631 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2632 }
2633 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,struct usb_device * udev,unsigned int ep_index)2634 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2635 		struct usb_device *udev, unsigned int ep_index)
2636 {
2637 	struct xhci_dequeue_state deq_state;
2638 	struct xhci_virt_ep *ep;
2639 
2640 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2641 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2642 	/* We need to move the HW's dequeue pointer past this TD,
2643 	 * or it will attempt to resend it on the next doorbell ring.
2644 	 */
2645 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2646 			ep_index, ep->stopped_stream, ep->stopped_td,
2647 			&deq_state);
2648 
2649 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2650 	 * issue a configure endpoint command later.
2651 	 */
2652 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2653 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2654 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2655 				ep_index, ep->stopped_stream, &deq_state);
2656 	} else {
2657 		/* Better hope no one uses the input context between now and the
2658 		 * reset endpoint completion!
2659 		 * XXX: No idea how this hardware will react when stream rings
2660 		 * are enabled.
2661 		 */
2662 		xhci_dbg(xhci, "Setting up input context for "
2663 				"configure endpoint command\n");
2664 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2665 				ep_index, &deq_state);
2666 	}
2667 }
2668 
2669 /* Deal with stalled endpoints.  The core should have sent the control message
2670  * to clear the halt condition.  However, we need to make the xHCI hardware
2671  * reset its sequence number, since a device will expect a sequence number of
2672  * zero after the halt condition is cleared.
2673  * Context: in_interrupt
2674  */
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2675 void xhci_endpoint_reset(struct usb_hcd *hcd,
2676 		struct usb_host_endpoint *ep)
2677 {
2678 	struct xhci_hcd *xhci;
2679 	struct usb_device *udev;
2680 	unsigned int ep_index;
2681 	unsigned long flags;
2682 	int ret;
2683 	struct xhci_virt_ep *virt_ep;
2684 
2685 	xhci = hcd_to_xhci(hcd);
2686 	udev = (struct usb_device *) ep->hcpriv;
2687 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2688 	 * with xhci_add_endpoint()
2689 	 */
2690 	if (!ep->hcpriv)
2691 		return;
2692 	ep_index = xhci_get_endpoint_index(&ep->desc);
2693 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2694 	if (!virt_ep->stopped_td) {
2695 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2696 				ep->desc.bEndpointAddress);
2697 		return;
2698 	}
2699 	if (usb_endpoint_xfer_control(&ep->desc)) {
2700 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2701 		return;
2702 	}
2703 
2704 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2705 	spin_lock_irqsave(&xhci->lock, flags);
2706 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2707 	/*
2708 	 * Can't change the ring dequeue pointer until it's transitioned to the
2709 	 * stopped state, which is only upon a successful reset endpoint
2710 	 * command.  Better hope that last command worked!
2711 	 */
2712 	if (!ret) {
2713 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2714 		kfree(virt_ep->stopped_td);
2715 		xhci_ring_cmd_db(xhci);
2716 	}
2717 	virt_ep->stopped_td = NULL;
2718 	virt_ep->stopped_trb = NULL;
2719 	virt_ep->stopped_stream = 0;
2720 	spin_unlock_irqrestore(&xhci->lock, flags);
2721 
2722 	if (ret)
2723 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2724 }
2725 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)2726 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2727 		struct usb_device *udev, struct usb_host_endpoint *ep,
2728 		unsigned int slot_id)
2729 {
2730 	int ret;
2731 	unsigned int ep_index;
2732 	unsigned int ep_state;
2733 
2734 	if (!ep)
2735 		return -EINVAL;
2736 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2737 	if (ret <= 0)
2738 		return -EINVAL;
2739 	if (ep->ss_ep_comp.bmAttributes == 0) {
2740 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2741 				" descriptor for ep 0x%x does not support streams\n",
2742 				ep->desc.bEndpointAddress);
2743 		return -EINVAL;
2744 	}
2745 
2746 	ep_index = xhci_get_endpoint_index(&ep->desc);
2747 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2748 	if (ep_state & EP_HAS_STREAMS ||
2749 			ep_state & EP_GETTING_STREAMS) {
2750 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2751 				"already has streams set up.\n",
2752 				ep->desc.bEndpointAddress);
2753 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2754 				"dynamic stream context array reallocation.\n");
2755 		return -EINVAL;
2756 	}
2757 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2758 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2759 				"endpoint 0x%x; URBs are pending.\n",
2760 				ep->desc.bEndpointAddress);
2761 		return -EINVAL;
2762 	}
2763 	return 0;
2764 }
2765 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)2766 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2767 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2768 {
2769 	unsigned int max_streams;
2770 
2771 	/* The stream context array size must be a power of two */
2772 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2773 	/*
2774 	 * Find out how many primary stream array entries the host controller
2775 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2776 	 * level page entries), but that's an optional feature for xHCI host
2777 	 * controllers. xHCs must support at least 4 stream IDs.
2778 	 */
2779 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2780 	if (*num_stream_ctxs > max_streams) {
2781 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2782 				max_streams);
2783 		*num_stream_ctxs = max_streams;
2784 		*num_streams = max_streams;
2785 	}
2786 }
2787 
2788 /* Returns an error code if one of the endpoint already has streams.
2789  * This does not change any data structures, it only checks and gathers
2790  * information.
2791  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)2792 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2793 		struct usb_device *udev,
2794 		struct usb_host_endpoint **eps, unsigned int num_eps,
2795 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2796 {
2797 	unsigned int max_streams;
2798 	unsigned int endpoint_flag;
2799 	int i;
2800 	int ret;
2801 
2802 	for (i = 0; i < num_eps; i++) {
2803 		ret = xhci_check_streams_endpoint(xhci, udev,
2804 				eps[i], udev->slot_id);
2805 		if (ret < 0)
2806 			return ret;
2807 
2808 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2809 		if (max_streams < (*num_streams - 1)) {
2810 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2811 					eps[i]->desc.bEndpointAddress,
2812 					max_streams);
2813 			*num_streams = max_streams+1;
2814 		}
2815 
2816 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2817 		if (*changed_ep_bitmask & endpoint_flag)
2818 			return -EINVAL;
2819 		*changed_ep_bitmask |= endpoint_flag;
2820 	}
2821 	return 0;
2822 }
2823 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)2824 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2825 		struct usb_device *udev,
2826 		struct usb_host_endpoint **eps, unsigned int num_eps)
2827 {
2828 	u32 changed_ep_bitmask = 0;
2829 	unsigned int slot_id;
2830 	unsigned int ep_index;
2831 	unsigned int ep_state;
2832 	int i;
2833 
2834 	slot_id = udev->slot_id;
2835 	if (!xhci->devs[slot_id])
2836 		return 0;
2837 
2838 	for (i = 0; i < num_eps; i++) {
2839 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2840 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2841 		/* Are streams already being freed for the endpoint? */
2842 		if (ep_state & EP_GETTING_NO_STREAMS) {
2843 			xhci_warn(xhci, "WARN Can't disable streams for "
2844 					"endpoint 0x%x\n, "
2845 					"streams are being disabled already.",
2846 					eps[i]->desc.bEndpointAddress);
2847 			return 0;
2848 		}
2849 		/* Are there actually any streams to free? */
2850 		if (!(ep_state & EP_HAS_STREAMS) &&
2851 				!(ep_state & EP_GETTING_STREAMS)) {
2852 			xhci_warn(xhci, "WARN Can't disable streams for "
2853 					"endpoint 0x%x\n, "
2854 					"streams are already disabled!",
2855 					eps[i]->desc.bEndpointAddress);
2856 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2857 					"with non-streams endpoint\n");
2858 			return 0;
2859 		}
2860 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2861 	}
2862 	return changed_ep_bitmask;
2863 }
2864 
2865 /*
2866  * The USB device drivers use this function (though the HCD interface in USB
2867  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2868  * coordinate mass storage command queueing across multiple endpoints (basically
2869  * a stream ID == a task ID).
2870  *
2871  * Setting up streams involves allocating the same size stream context array
2872  * for each endpoint and issuing a configure endpoint command for all endpoints.
2873  *
2874  * Don't allow the call to succeed if one endpoint only supports one stream
2875  * (which means it doesn't support streams at all).
2876  *
2877  * Drivers may get less stream IDs than they asked for, if the host controller
2878  * hardware or endpoints claim they can't support the number of requested
2879  * stream IDs.
2880  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2881 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2882 		struct usb_host_endpoint **eps, unsigned int num_eps,
2883 		unsigned int num_streams, gfp_t mem_flags)
2884 {
2885 	int i, ret;
2886 	struct xhci_hcd *xhci;
2887 	struct xhci_virt_device *vdev;
2888 	struct xhci_command *config_cmd;
2889 	unsigned int ep_index;
2890 	unsigned int num_stream_ctxs;
2891 	unsigned long flags;
2892 	u32 changed_ep_bitmask = 0;
2893 
2894 	if (!eps)
2895 		return -EINVAL;
2896 
2897 	/* Add one to the number of streams requested to account for
2898 	 * stream 0 that is reserved for xHCI usage.
2899 	 */
2900 	num_streams += 1;
2901 	xhci = hcd_to_xhci(hcd);
2902 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2903 			num_streams);
2904 
2905 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2906 	if (!config_cmd) {
2907 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2908 		return -ENOMEM;
2909 	}
2910 
2911 	/* Check to make sure all endpoints are not already configured for
2912 	 * streams.  While we're at it, find the maximum number of streams that
2913 	 * all the endpoints will support and check for duplicate endpoints.
2914 	 */
2915 	spin_lock_irqsave(&xhci->lock, flags);
2916 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2917 			num_eps, &num_streams, &changed_ep_bitmask);
2918 	if (ret < 0) {
2919 		xhci_free_command(xhci, config_cmd);
2920 		spin_unlock_irqrestore(&xhci->lock, flags);
2921 		return ret;
2922 	}
2923 	if (num_streams <= 1) {
2924 		xhci_warn(xhci, "WARN: endpoints can't handle "
2925 				"more than one stream.\n");
2926 		xhci_free_command(xhci, config_cmd);
2927 		spin_unlock_irqrestore(&xhci->lock, flags);
2928 		return -EINVAL;
2929 	}
2930 	vdev = xhci->devs[udev->slot_id];
2931 	/* Mark each endpoint as being in transition, so
2932 	 * xhci_urb_enqueue() will reject all URBs.
2933 	 */
2934 	for (i = 0; i < num_eps; i++) {
2935 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2936 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2937 	}
2938 	spin_unlock_irqrestore(&xhci->lock, flags);
2939 
2940 	/* Setup internal data structures and allocate HW data structures for
2941 	 * streams (but don't install the HW structures in the input context
2942 	 * until we're sure all memory allocation succeeded).
2943 	 */
2944 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2945 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2946 			num_stream_ctxs, num_streams);
2947 
2948 	for (i = 0; i < num_eps; i++) {
2949 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2950 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2951 				num_stream_ctxs,
2952 				num_streams, mem_flags);
2953 		if (!vdev->eps[ep_index].stream_info)
2954 			goto cleanup;
2955 		/* Set maxPstreams in endpoint context and update deq ptr to
2956 		 * point to stream context array. FIXME
2957 		 */
2958 	}
2959 
2960 	/* Set up the input context for a configure endpoint command. */
2961 	for (i = 0; i < num_eps; i++) {
2962 		struct xhci_ep_ctx *ep_ctx;
2963 
2964 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2965 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2966 
2967 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2968 				vdev->out_ctx, ep_index);
2969 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2970 				vdev->eps[ep_index].stream_info);
2971 	}
2972 	/* Tell the HW to drop its old copy of the endpoint context info
2973 	 * and add the updated copy from the input context.
2974 	 */
2975 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2976 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2977 
2978 	/* Issue and wait for the configure endpoint command */
2979 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2980 			false, false);
2981 
2982 	/* xHC rejected the configure endpoint command for some reason, so we
2983 	 * leave the old ring intact and free our internal streams data
2984 	 * structure.
2985 	 */
2986 	if (ret < 0)
2987 		goto cleanup;
2988 
2989 	spin_lock_irqsave(&xhci->lock, flags);
2990 	for (i = 0; i < num_eps; i++) {
2991 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2992 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2993 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2994 			 udev->slot_id, ep_index);
2995 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2996 	}
2997 	xhci_free_command(xhci, config_cmd);
2998 	spin_unlock_irqrestore(&xhci->lock, flags);
2999 
3000 	/* Subtract 1 for stream 0, which drivers can't use */
3001 	return num_streams - 1;
3002 
3003 cleanup:
3004 	/* If it didn't work, free the streams! */
3005 	for (i = 0; i < num_eps; i++) {
3006 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3007 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3008 		vdev->eps[ep_index].stream_info = NULL;
3009 		/* FIXME Unset maxPstreams in endpoint context and
3010 		 * update deq ptr to point to normal string ring.
3011 		 */
3012 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3013 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3014 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3015 	}
3016 	xhci_free_command(xhci, config_cmd);
3017 	return -ENOMEM;
3018 }
3019 
3020 /* Transition the endpoint from using streams to being a "normal" endpoint
3021  * without streams.
3022  *
3023  * Modify the endpoint context state, submit a configure endpoint command,
3024  * and free all endpoint rings for streams if that completes successfully.
3025  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3026 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3027 		struct usb_host_endpoint **eps, unsigned int num_eps,
3028 		gfp_t mem_flags)
3029 {
3030 	int i, ret;
3031 	struct xhci_hcd *xhci;
3032 	struct xhci_virt_device *vdev;
3033 	struct xhci_command *command;
3034 	unsigned int ep_index;
3035 	unsigned long flags;
3036 	u32 changed_ep_bitmask;
3037 
3038 	xhci = hcd_to_xhci(hcd);
3039 	vdev = xhci->devs[udev->slot_id];
3040 
3041 	/* Set up a configure endpoint command to remove the streams rings */
3042 	spin_lock_irqsave(&xhci->lock, flags);
3043 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3044 			udev, eps, num_eps);
3045 	if (changed_ep_bitmask == 0) {
3046 		spin_unlock_irqrestore(&xhci->lock, flags);
3047 		return -EINVAL;
3048 	}
3049 
3050 	/* Use the xhci_command structure from the first endpoint.  We may have
3051 	 * allocated too many, but the driver may call xhci_free_streams() for
3052 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3053 	 */
3054 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3055 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3056 	for (i = 0; i < num_eps; i++) {
3057 		struct xhci_ep_ctx *ep_ctx;
3058 
3059 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3060 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3061 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3062 			EP_GETTING_NO_STREAMS;
3063 
3064 		xhci_endpoint_copy(xhci, command->in_ctx,
3065 				vdev->out_ctx, ep_index);
3066 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3067 				&vdev->eps[ep_index]);
3068 	}
3069 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3070 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3071 	spin_unlock_irqrestore(&xhci->lock, flags);
3072 
3073 	/* Issue and wait for the configure endpoint command,
3074 	 * which must succeed.
3075 	 */
3076 	ret = xhci_configure_endpoint(xhci, udev, command,
3077 			false, true);
3078 
3079 	/* xHC rejected the configure endpoint command for some reason, so we
3080 	 * leave the streams rings intact.
3081 	 */
3082 	if (ret < 0)
3083 		return ret;
3084 
3085 	spin_lock_irqsave(&xhci->lock, flags);
3086 	for (i = 0; i < num_eps; i++) {
3087 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3089 		vdev->eps[ep_index].stream_info = NULL;
3090 		/* FIXME Unset maxPstreams in endpoint context and
3091 		 * update deq ptr to point to normal string ring.
3092 		 */
3093 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3094 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3095 	}
3096 	spin_unlock_irqrestore(&xhci->lock, flags);
3097 
3098 	return 0;
3099 }
3100 
3101 /*
3102  * Deletes endpoint resources for endpoints that were active before a Reset
3103  * Device command, or a Disable Slot command.  The Reset Device command leaves
3104  * the control endpoint intact, whereas the Disable Slot command deletes it.
3105  *
3106  * Must be called with xhci->lock held.
3107  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3108 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3109 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3110 {
3111 	int i;
3112 	unsigned int num_dropped_eps = 0;
3113 	unsigned int drop_flags = 0;
3114 
3115 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3116 		if (virt_dev->eps[i].ring) {
3117 			drop_flags |= 1 << i;
3118 			num_dropped_eps++;
3119 		}
3120 	}
3121 	xhci->num_active_eps -= num_dropped_eps;
3122 	if (num_dropped_eps)
3123 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3124 				"%u now active.\n",
3125 				num_dropped_eps, drop_flags,
3126 				xhci->num_active_eps);
3127 }
3128 
3129 /*
3130  * This submits a Reset Device Command, which will set the device state to 0,
3131  * set the device address to 0, and disable all the endpoints except the default
3132  * control endpoint.  The USB core should come back and call
3133  * xhci_address_device(), and then re-set up the configuration.  If this is
3134  * called because of a usb_reset_and_verify_device(), then the old alternate
3135  * settings will be re-installed through the normal bandwidth allocation
3136  * functions.
3137  *
3138  * Wait for the Reset Device command to finish.  Remove all structures
3139  * associated with the endpoints that were disabled.  Clear the input device
3140  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3141  *
3142  * If the virt_dev to be reset does not exist or does not match the udev,
3143  * it means the device is lost, possibly due to the xHC restore error and
3144  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3145  * re-allocate the device.
3146  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3147 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3148 {
3149 	int ret, i;
3150 	unsigned long flags;
3151 	struct xhci_hcd *xhci;
3152 	unsigned int slot_id;
3153 	struct xhci_virt_device *virt_dev;
3154 	struct xhci_command *reset_device_cmd;
3155 	int timeleft;
3156 	int last_freed_endpoint;
3157 	struct xhci_slot_ctx *slot_ctx;
3158 	int old_active_eps = 0;
3159 
3160 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3161 	if (ret <= 0)
3162 		return ret;
3163 	xhci = hcd_to_xhci(hcd);
3164 	slot_id = udev->slot_id;
3165 	virt_dev = xhci->devs[slot_id];
3166 	if (!virt_dev) {
3167 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3168 				"not exist. Re-allocate the device\n", slot_id);
3169 		ret = xhci_alloc_dev(hcd, udev);
3170 		if (ret == 1)
3171 			return 0;
3172 		else
3173 			return -EINVAL;
3174 	}
3175 
3176 	if (virt_dev->udev != udev) {
3177 		/* If the virt_dev and the udev does not match, this virt_dev
3178 		 * may belong to another udev.
3179 		 * Re-allocate the device.
3180 		 */
3181 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3182 				"not match the udev. Re-allocate the device\n",
3183 				slot_id);
3184 		ret = xhci_alloc_dev(hcd, udev);
3185 		if (ret == 1)
3186 			return 0;
3187 		else
3188 			return -EINVAL;
3189 	}
3190 
3191 	/* If device is not setup, there is no point in resetting it */
3192 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3193 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3194 						SLOT_STATE_DISABLED)
3195 		return 0;
3196 
3197 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3198 	/* Allocate the command structure that holds the struct completion.
3199 	 * Assume we're in process context, since the normal device reset
3200 	 * process has to wait for the device anyway.  Storage devices are
3201 	 * reset as part of error handling, so use GFP_NOIO instead of
3202 	 * GFP_KERNEL.
3203 	 */
3204 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3205 	if (!reset_device_cmd) {
3206 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3207 		return -ENOMEM;
3208 	}
3209 
3210 	/* Attempt to submit the Reset Device command to the command ring */
3211 	spin_lock_irqsave(&xhci->lock, flags);
3212 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3213 
3214 	/* Enqueue pointer can be left pointing to the link TRB,
3215 	 * we must handle that
3216 	 */
3217 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3218 		reset_device_cmd->command_trb =
3219 			xhci->cmd_ring->enq_seg->next->trbs;
3220 
3221 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3222 	ret = xhci_queue_reset_device(xhci, slot_id);
3223 	if (ret) {
3224 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3225 		list_del(&reset_device_cmd->cmd_list);
3226 		spin_unlock_irqrestore(&xhci->lock, flags);
3227 		goto command_cleanup;
3228 	}
3229 	xhci_ring_cmd_db(xhci);
3230 	spin_unlock_irqrestore(&xhci->lock, flags);
3231 
3232 	/* Wait for the Reset Device command to finish */
3233 	timeleft = wait_for_completion_interruptible_timeout(
3234 			reset_device_cmd->completion,
3235 			USB_CTRL_SET_TIMEOUT);
3236 	if (timeleft <= 0) {
3237 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3238 				timeleft == 0 ? "Timeout" : "Signal");
3239 		spin_lock_irqsave(&xhci->lock, flags);
3240 		/* The timeout might have raced with the event ring handler, so
3241 		 * only delete from the list if the item isn't poisoned.
3242 		 */
3243 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3244 			list_del(&reset_device_cmd->cmd_list);
3245 		spin_unlock_irqrestore(&xhci->lock, flags);
3246 		ret = -ETIME;
3247 		goto command_cleanup;
3248 	}
3249 
3250 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3251 	 * unless we tried to reset a slot ID that wasn't enabled,
3252 	 * or the device wasn't in the addressed or configured state.
3253 	 */
3254 	ret = reset_device_cmd->status;
3255 	switch (ret) {
3256 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3257 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3258 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3259 				slot_id,
3260 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3261 		xhci_info(xhci, "Not freeing device rings.\n");
3262 		/* Don't treat this as an error.  May change my mind later. */
3263 		ret = 0;
3264 		goto command_cleanup;
3265 	case COMP_SUCCESS:
3266 		xhci_dbg(xhci, "Successful reset device command.\n");
3267 		break;
3268 	default:
3269 		if (xhci_is_vendor_info_code(xhci, ret))
3270 			break;
3271 		xhci_warn(xhci, "Unknown completion code %u for "
3272 				"reset device command.\n", ret);
3273 		ret = -EINVAL;
3274 		goto command_cleanup;
3275 	}
3276 
3277 	/* Free up host controller endpoint resources */
3278 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3279 		spin_lock_irqsave(&xhci->lock, flags);
3280 		/* Don't delete the default control endpoint resources */
3281 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3282 		spin_unlock_irqrestore(&xhci->lock, flags);
3283 	}
3284 
3285 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3286 	last_freed_endpoint = 1;
3287 	for (i = 1; i < 31; ++i) {
3288 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3289 
3290 		if (ep->ep_state & EP_HAS_STREAMS) {
3291 			xhci_free_stream_info(xhci, ep->stream_info);
3292 			ep->stream_info = NULL;
3293 			ep->ep_state &= ~EP_HAS_STREAMS;
3294 		}
3295 
3296 		if (ep->ring) {
3297 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3298 			last_freed_endpoint = i;
3299 		}
3300 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3301 			xhci_drop_ep_from_interval_table(xhci,
3302 					&virt_dev->eps[i].bw_info,
3303 					virt_dev->bw_table,
3304 					udev,
3305 					&virt_dev->eps[i],
3306 					virt_dev->tt_info);
3307 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3308 	}
3309 	/* If necessary, update the number of active TTs on this root port */
3310 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3311 
3312 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3313 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3314 	ret = 0;
3315 
3316 command_cleanup:
3317 	xhci_free_command(xhci, reset_device_cmd);
3318 	return ret;
3319 }
3320 
3321 /*
3322  * At this point, the struct usb_device is about to go away, the device has
3323  * disconnected, and all traffic has been stopped and the endpoints have been
3324  * disabled.  Free any HC data structures associated with that device.
3325  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3326 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3327 {
3328 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3329 	struct xhci_virt_device *virt_dev;
3330 	unsigned long flags;
3331 	u32 state;
3332 	int i, ret;
3333 
3334 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3335 	/* If the host is halted due to driver unload, we still need to free the
3336 	 * device.
3337 	 */
3338 	if (ret <= 0 && ret != -ENODEV)
3339 		return;
3340 
3341 	virt_dev = xhci->devs[udev->slot_id];
3342 
3343 	/* Stop any wayward timer functions (which may grab the lock) */
3344 	for (i = 0; i < 31; ++i) {
3345 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3346 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3347 	}
3348 
3349 	if (udev->usb2_hw_lpm_enabled) {
3350 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3351 		udev->usb2_hw_lpm_enabled = 0;
3352 	}
3353 
3354 	spin_lock_irqsave(&xhci->lock, flags);
3355 	/* Don't disable the slot if the host controller is dead. */
3356 	state = xhci_readl(xhci, &xhci->op_regs->status);
3357 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3358 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3359 		xhci_free_virt_device(xhci, udev->slot_id);
3360 		spin_unlock_irqrestore(&xhci->lock, flags);
3361 		return;
3362 	}
3363 
3364 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3365 		spin_unlock_irqrestore(&xhci->lock, flags);
3366 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3367 		return;
3368 	}
3369 	xhci_ring_cmd_db(xhci);
3370 	spin_unlock_irqrestore(&xhci->lock, flags);
3371 	/*
3372 	 * Event command completion handler will free any data structures
3373 	 * associated with the slot.  XXX Can free sleep?
3374 	 */
3375 }
3376 
3377 /*
3378  * Checks if we have enough host controller resources for the default control
3379  * endpoint.
3380  *
3381  * Must be called with xhci->lock held.
3382  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3383 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3384 {
3385 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3386 		xhci_dbg(xhci, "Not enough ep ctxs: "
3387 				"%u active, need to add 1, limit is %u.\n",
3388 				xhci->num_active_eps, xhci->limit_active_eps);
3389 		return -ENOMEM;
3390 	}
3391 	xhci->num_active_eps += 1;
3392 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3393 			xhci->num_active_eps);
3394 	return 0;
3395 }
3396 
3397 
3398 /*
3399  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3400  * timed out, or allocating memory failed.  Returns 1 on success.
3401  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3402 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3403 {
3404 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3405 	unsigned long flags;
3406 	int timeleft;
3407 	int ret;
3408 
3409 	spin_lock_irqsave(&xhci->lock, flags);
3410 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3411 	if (ret) {
3412 		spin_unlock_irqrestore(&xhci->lock, flags);
3413 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3414 		return 0;
3415 	}
3416 	xhci_ring_cmd_db(xhci);
3417 	spin_unlock_irqrestore(&xhci->lock, flags);
3418 
3419 	/* XXX: how much time for xHC slot assignment? */
3420 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3421 			USB_CTRL_SET_TIMEOUT);
3422 	if (timeleft <= 0) {
3423 		xhci_warn(xhci, "%s while waiting for a slot\n",
3424 				timeleft == 0 ? "Timeout" : "Signal");
3425 		/* FIXME cancel the enable slot request */
3426 		return 0;
3427 	}
3428 
3429 	if (!xhci->slot_id) {
3430 		xhci_err(xhci, "Error while assigning device slot ID\n");
3431 		return 0;
3432 	}
3433 
3434 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3435 		spin_lock_irqsave(&xhci->lock, flags);
3436 		ret = xhci_reserve_host_control_ep_resources(xhci);
3437 		if (ret) {
3438 			spin_unlock_irqrestore(&xhci->lock, flags);
3439 			xhci_warn(xhci, "Not enough host resources, "
3440 					"active endpoint contexts = %u\n",
3441 					xhci->num_active_eps);
3442 			goto disable_slot;
3443 		}
3444 		spin_unlock_irqrestore(&xhci->lock, flags);
3445 	}
3446 	/* Use GFP_NOIO, since this function can be called from
3447 	 * xhci_discover_or_reset_device(), which may be called as part of
3448 	 * mass storage driver error handling.
3449 	 */
3450 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3451 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3452 		goto disable_slot;
3453 	}
3454 	udev->slot_id = xhci->slot_id;
3455 	/* Is this a LS or FS device under a HS hub? */
3456 	/* Hub or peripherial? */
3457 	return 1;
3458 
3459 disable_slot:
3460 	/* Disable slot, if we can do it without mem alloc */
3461 	spin_lock_irqsave(&xhci->lock, flags);
3462 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3463 		xhci_ring_cmd_db(xhci);
3464 	spin_unlock_irqrestore(&xhci->lock, flags);
3465 	return 0;
3466 }
3467 
3468 /*
3469  * Issue an Address Device command (which will issue a SetAddress request to
3470  * the device).
3471  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3472  * we should only issue and wait on one address command at the same time.
3473  *
3474  * We add one to the device address issued by the hardware because the USB core
3475  * uses address 1 for the root hubs (even though they're not really devices).
3476  */
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3477 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3478 {
3479 	unsigned long flags;
3480 	int timeleft;
3481 	struct xhci_virt_device *virt_dev;
3482 	int ret = 0;
3483 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3484 	struct xhci_slot_ctx *slot_ctx;
3485 	struct xhci_input_control_ctx *ctrl_ctx;
3486 	u64 temp_64;
3487 
3488 	if (!udev->slot_id) {
3489 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3490 		return -EINVAL;
3491 	}
3492 
3493 	virt_dev = xhci->devs[udev->slot_id];
3494 
3495 	if (WARN_ON(!virt_dev)) {
3496 		/*
3497 		 * In plug/unplug torture test with an NEC controller,
3498 		 * a zero-dereference was observed once due to virt_dev = 0.
3499 		 * Print useful debug rather than crash if it is observed again!
3500 		 */
3501 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3502 			udev->slot_id);
3503 		return -EINVAL;
3504 	}
3505 
3506 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3507 	/*
3508 	 * If this is the first Set Address since device plug-in or
3509 	 * virt_device realloaction after a resume with an xHCI power loss,
3510 	 * then set up the slot context.
3511 	 */
3512 	if (!slot_ctx->dev_info)
3513 		xhci_setup_addressable_virt_dev(xhci, udev);
3514 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3515 	else
3516 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3517 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3518 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3519 	ctrl_ctx->drop_flags = 0;
3520 
3521 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3522 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3523 
3524 	spin_lock_irqsave(&xhci->lock, flags);
3525 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3526 					udev->slot_id);
3527 	if (ret) {
3528 		spin_unlock_irqrestore(&xhci->lock, flags);
3529 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3530 		return ret;
3531 	}
3532 	xhci_ring_cmd_db(xhci);
3533 	spin_unlock_irqrestore(&xhci->lock, flags);
3534 
3535 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3536 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3537 			USB_CTRL_SET_TIMEOUT);
3538 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3539 	 * the SetAddress() "recovery interval" required by USB and aborting the
3540 	 * command on a timeout.
3541 	 */
3542 	if (timeleft <= 0) {
3543 		xhci_warn(xhci, "%s while waiting for address device command\n",
3544 				timeleft == 0 ? "Timeout" : "Signal");
3545 		/* FIXME cancel the address device command */
3546 		return -ETIME;
3547 	}
3548 
3549 	switch (virt_dev->cmd_status) {
3550 	case COMP_CTX_STATE:
3551 	case COMP_EBADSLT:
3552 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3553 				udev->slot_id);
3554 		ret = -EINVAL;
3555 		break;
3556 	case COMP_TX_ERR:
3557 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3558 		ret = -EPROTO;
3559 		break;
3560 	case COMP_DEV_ERR:
3561 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3562 				"device command.\n");
3563 		ret = -ENODEV;
3564 		break;
3565 	case COMP_SUCCESS:
3566 		xhci_dbg(xhci, "Successful Address Device command\n");
3567 		break;
3568 	default:
3569 		xhci_err(xhci, "ERROR: unexpected command completion "
3570 				"code 0x%x.\n", virt_dev->cmd_status);
3571 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3572 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3573 		ret = -EINVAL;
3574 		break;
3575 	}
3576 	if (ret) {
3577 		return ret;
3578 	}
3579 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3580 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3581 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3582 		 udev->slot_id,
3583 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3584 		 (unsigned long long)
3585 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3586 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3587 			(unsigned long long)virt_dev->out_ctx->dma);
3588 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3589 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3590 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3591 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3592 	/*
3593 	 * USB core uses address 1 for the roothubs, so we add one to the
3594 	 * address given back to us by the HC.
3595 	 */
3596 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3597 	/* Use kernel assigned address for devices; store xHC assigned
3598 	 * address locally. */
3599 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3600 		+ 1;
3601 	/* Zero the input context control for later use */
3602 	ctrl_ctx->add_flags = 0;
3603 	ctrl_ctx->drop_flags = 0;
3604 
3605 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3606 
3607 	return 0;
3608 }
3609 
3610 #ifdef CONFIG_USB_SUSPEND
3611 
3612 /* BESL to HIRD Encoding array for USB2 LPM */
3613 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3614 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3615 
3616 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(int u2del,bool use_besl)3617 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3618 {
3619 	int hird;
3620 
3621 	if (use_besl) {
3622 		for (hird = 0; hird < 16; hird++) {
3623 			if (xhci_besl_encoding[hird] >= u2del)
3624 				break;
3625 		}
3626 	} else {
3627 		if (u2del <= 50)
3628 			hird = 0;
3629 		else
3630 			hird = (u2del - 51) / 75 + 1;
3631 
3632 		if (hird > 15)
3633 			hird = 15;
3634 	}
3635 
3636 	return hird;
3637 }
3638 
xhci_usb2_software_lpm_test(struct usb_hcd * hcd,struct usb_device * udev)3639 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3640 					struct usb_device *udev)
3641 {
3642 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3643 	struct dev_info	*dev_info;
3644 	__le32 __iomem	**port_array;
3645 	__le32 __iomem	*addr, *pm_addr;
3646 	u32		temp, dev_id;
3647 	unsigned int	port_num;
3648 	unsigned long	flags;
3649 	int		u2del, hird;
3650 	int		ret;
3651 
3652 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3653 			!udev->lpm_capable)
3654 		return -EINVAL;
3655 
3656 	/* we only support lpm for non-hub device connected to root hub yet */
3657 	if (!udev->parent || udev->parent->parent ||
3658 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3659 		return -EINVAL;
3660 
3661 	spin_lock_irqsave(&xhci->lock, flags);
3662 
3663 	/* Look for devices in lpm_failed_devs list */
3664 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3665 			le16_to_cpu(udev->descriptor.idProduct);
3666 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3667 		if (dev_info->dev_id == dev_id) {
3668 			ret = -EINVAL;
3669 			goto finish;
3670 		}
3671 	}
3672 
3673 	port_array = xhci->usb2_ports;
3674 	port_num = udev->portnum - 1;
3675 
3676 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3677 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3678 		ret = -EINVAL;
3679 		goto finish;
3680 	}
3681 
3682 	/*
3683 	 * Test USB 2.0 software LPM.
3684 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3685 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3686 	 * in the June 2011 errata release.
3687 	 */
3688 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3689 	/*
3690 	 * Set L1 Device Slot and HIRD/BESL.
3691 	 * Check device's USB 2.0 extension descriptor to determine whether
3692 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3693 	 */
3694 	pm_addr = port_array[port_num] + 1;
3695 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3696 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3697 		hird = xhci_calculate_hird_besl(u2del, 1);
3698 	else
3699 		hird = xhci_calculate_hird_besl(u2del, 0);
3700 
3701 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3702 	xhci_writel(xhci, temp, pm_addr);
3703 
3704 	/* Set port link state to U2(L1) */
3705 	addr = port_array[port_num];
3706 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3707 
3708 	/* wait for ACK */
3709 	spin_unlock_irqrestore(&xhci->lock, flags);
3710 	msleep(10);
3711 	spin_lock_irqsave(&xhci->lock, flags);
3712 
3713 	/* Check L1 Status */
3714 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3715 	if (ret != -ETIMEDOUT) {
3716 		/* enter L1 successfully */
3717 		temp = xhci_readl(xhci, addr);
3718 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3719 				port_num, temp);
3720 		ret = 0;
3721 	} else {
3722 		temp = xhci_readl(xhci, pm_addr);
3723 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3724 				port_num, temp & PORT_L1S_MASK);
3725 		ret = -EINVAL;
3726 	}
3727 
3728 	/* Resume the port */
3729 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3730 
3731 	spin_unlock_irqrestore(&xhci->lock, flags);
3732 	msleep(10);
3733 	spin_lock_irqsave(&xhci->lock, flags);
3734 
3735 	/* Clear PLC */
3736 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3737 
3738 	/* Check PORTSC to make sure the device is in the right state */
3739 	if (!ret) {
3740 		temp = xhci_readl(xhci, addr);
3741 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3742 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3743 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3744 			xhci_dbg(xhci, "port L1 resume fail\n");
3745 			ret = -EINVAL;
3746 		}
3747 	}
3748 
3749 	if (ret) {
3750 		/* Insert dev to lpm_failed_devs list */
3751 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3752 				"re-enumerate\n");
3753 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3754 		if (!dev_info) {
3755 			ret = -ENOMEM;
3756 			goto finish;
3757 		}
3758 		dev_info->dev_id = dev_id;
3759 		INIT_LIST_HEAD(&dev_info->list);
3760 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3761 	} else {
3762 		xhci_ring_device(xhci, udev->slot_id);
3763 	}
3764 
3765 finish:
3766 	spin_unlock_irqrestore(&xhci->lock, flags);
3767 	return ret;
3768 }
3769 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)3770 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3771 			struct usb_device *udev, int enable)
3772 {
3773 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3774 	__le32 __iomem	**port_array;
3775 	__le32 __iomem	*pm_addr;
3776 	u32		temp;
3777 	unsigned int	port_num;
3778 	unsigned long	flags;
3779 	int		u2del, hird;
3780 
3781 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3782 			!udev->lpm_capable)
3783 		return -EPERM;
3784 
3785 	if (!udev->parent || udev->parent->parent ||
3786 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3787 		return -EPERM;
3788 
3789 	if (udev->usb2_hw_lpm_capable != 1)
3790 		return -EPERM;
3791 
3792 	spin_lock_irqsave(&xhci->lock, flags);
3793 
3794 	port_array = xhci->usb2_ports;
3795 	port_num = udev->portnum - 1;
3796 	pm_addr = port_array[port_num] + 1;
3797 	temp = xhci_readl(xhci, pm_addr);
3798 
3799 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3800 			enable ? "enable" : "disable", port_num);
3801 
3802 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3803 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3804 		hird = xhci_calculate_hird_besl(u2del, 1);
3805 	else
3806 		hird = xhci_calculate_hird_besl(u2del, 0);
3807 
3808 	if (enable) {
3809 		temp &= ~PORT_HIRD_MASK;
3810 		temp |= PORT_HIRD(hird) | PORT_RWE;
3811 		xhci_writel(xhci, temp, pm_addr);
3812 		temp = xhci_readl(xhci, pm_addr);
3813 		temp |= PORT_HLE;
3814 		xhci_writel(xhci, temp, pm_addr);
3815 	} else {
3816 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3817 		xhci_writel(xhci, temp, pm_addr);
3818 	}
3819 
3820 	spin_unlock_irqrestore(&xhci->lock, flags);
3821 	return 0;
3822 }
3823 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)3824 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3825 {
3826 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3827 	int		ret;
3828 
3829 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3830 	if (!ret) {
3831 		xhci_dbg(xhci, "software LPM test succeed\n");
3832 		if (xhci->hw_lpm_support == 1) {
3833 			udev->usb2_hw_lpm_capable = 1;
3834 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3835 			if (!ret)
3836 				udev->usb2_hw_lpm_enabled = 1;
3837 		}
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 #else
3844 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)3845 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3846 				struct usb_device *udev, int enable)
3847 {
3848 	return 0;
3849 }
3850 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)3851 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3852 {
3853 	return 0;
3854 }
3855 
3856 #endif /* CONFIG_USB_SUSPEND */
3857 
3858 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3859  * internal data structures for the device.
3860  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)3861 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3862 			struct usb_tt *tt, gfp_t mem_flags)
3863 {
3864 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3865 	struct xhci_virt_device *vdev;
3866 	struct xhci_command *config_cmd;
3867 	struct xhci_input_control_ctx *ctrl_ctx;
3868 	struct xhci_slot_ctx *slot_ctx;
3869 	unsigned long flags;
3870 	unsigned think_time;
3871 	int ret;
3872 
3873 	/* Ignore root hubs */
3874 	if (!hdev->parent)
3875 		return 0;
3876 
3877 	vdev = xhci->devs[hdev->slot_id];
3878 	if (!vdev) {
3879 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3880 		return -EINVAL;
3881 	}
3882 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3883 	if (!config_cmd) {
3884 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3885 		return -ENOMEM;
3886 	}
3887 
3888 	spin_lock_irqsave(&xhci->lock, flags);
3889 	if (hdev->speed == USB_SPEED_HIGH &&
3890 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3891 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3892 		xhci_free_command(xhci, config_cmd);
3893 		spin_unlock_irqrestore(&xhci->lock, flags);
3894 		return -ENOMEM;
3895 	}
3896 
3897 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3898 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3899 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3900 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3901 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3902 	if (tt->multi)
3903 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3904 	if (xhci->hci_version > 0x95) {
3905 		xhci_dbg(xhci, "xHCI version %x needs hub "
3906 				"TT think time and number of ports\n",
3907 				(unsigned int) xhci->hci_version);
3908 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3909 		/* Set TT think time - convert from ns to FS bit times.
3910 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3911 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3912 		 *
3913 		 * xHCI 1.0: this field shall be 0 if the device is not a
3914 		 * High-spped hub.
3915 		 */
3916 		think_time = tt->think_time;
3917 		if (think_time != 0)
3918 			think_time = (think_time / 666) - 1;
3919 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3920 			slot_ctx->tt_info |=
3921 				cpu_to_le32(TT_THINK_TIME(think_time));
3922 	} else {
3923 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3924 				"TT think time or number of ports\n",
3925 				(unsigned int) xhci->hci_version);
3926 	}
3927 	slot_ctx->dev_state = 0;
3928 	spin_unlock_irqrestore(&xhci->lock, flags);
3929 
3930 	xhci_dbg(xhci, "Set up %s for hub device.\n",
3931 			(xhci->hci_version > 0x95) ?
3932 			"configure endpoint" : "evaluate context");
3933 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3934 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3935 
3936 	/* Issue and wait for the configure endpoint or
3937 	 * evaluate context command.
3938 	 */
3939 	if (xhci->hci_version > 0x95)
3940 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3941 				false, false);
3942 	else
3943 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3944 				true, false);
3945 
3946 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3947 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3948 
3949 	xhci_free_command(xhci, config_cmd);
3950 	return ret;
3951 }
3952 
xhci_get_frame(struct usb_hcd * hcd)3953 int xhci_get_frame(struct usb_hcd *hcd)
3954 {
3955 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3956 	/* EHCI mods by the periodic size.  Why? */
3957 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3958 }
3959 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)3960 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3961 {
3962 	struct xhci_hcd		*xhci;
3963 	struct device		*dev = hcd->self.controller;
3964 	int			retval;
3965 	u32			temp;
3966 
3967 	hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3968 
3969 	if (usb_hcd_is_primary_hcd(hcd)) {
3970 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3971 		if (!xhci)
3972 			return -ENOMEM;
3973 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3974 		xhci->main_hcd = hcd;
3975 		/* Mark the first roothub as being USB 2.0.
3976 		 * The xHCI driver will register the USB 3.0 roothub.
3977 		 */
3978 		hcd->speed = HCD_USB2;
3979 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
3980 		/*
3981 		 * USB 2.0 roothub under xHCI has an integrated TT,
3982 		 * (rate matching hub) as opposed to having an OHCI/UHCI
3983 		 * companion controller.
3984 		 */
3985 		hcd->has_tt = 1;
3986 	} else {
3987 		/* xHCI private pointer was set in xhci_pci_probe for the second
3988 		 * registered roothub.
3989 		 */
3990 		xhci = hcd_to_xhci(hcd);
3991 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3992 		if (HCC_64BIT_ADDR(temp)) {
3993 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3994 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3995 		} else {
3996 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3997 		}
3998 		return 0;
3999 	}
4000 
4001 	xhci->cap_regs = hcd->regs;
4002 	xhci->op_regs = hcd->regs +
4003 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4004 	xhci->run_regs = hcd->regs +
4005 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4006 	/* Cache read-only capability registers */
4007 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4008 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4009 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4010 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4011 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4012 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4013 	xhci_print_registers(xhci);
4014 
4015 	get_quirks(dev, xhci);
4016 
4017 	/* Make sure the HC is halted. */
4018 	retval = xhci_halt(xhci);
4019 	if (retval)
4020 		goto error;
4021 
4022 	xhci_dbg(xhci, "Resetting HCD\n");
4023 	/* Reset the internal HC memory state and registers. */
4024 	retval = xhci_reset(xhci);
4025 	if (retval)
4026 		goto error;
4027 	xhci_dbg(xhci, "Reset complete\n");
4028 
4029 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4030 	if (HCC_64BIT_ADDR(temp)) {
4031 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4032 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4033 	} else {
4034 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4035 	}
4036 
4037 	xhci_dbg(xhci, "Calling HCD init\n");
4038 	/* Initialize HCD and host controller data structures. */
4039 	retval = xhci_init(hcd);
4040 	if (retval)
4041 		goto error;
4042 	xhci_dbg(xhci, "Called HCD init\n");
4043 	return 0;
4044 error:
4045 	kfree(xhci);
4046 	return retval;
4047 }
4048 
4049 MODULE_DESCRIPTION(DRIVER_DESC);
4050 MODULE_AUTHOR(DRIVER_AUTHOR);
4051 MODULE_LICENSE("GPL");
4052 
xhci_hcd_init(void)4053 static int __init xhci_hcd_init(void)
4054 {
4055 	int retval;
4056 
4057 	retval = xhci_register_pci();
4058 	if (retval < 0) {
4059 		printk(KERN_DEBUG "Problem registering PCI driver.");
4060 		return retval;
4061 	}
4062 	/*
4063 	 * Check the compiler generated sizes of structures that must be laid
4064 	 * out in specific ways for hardware access.
4065 	 */
4066 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4067 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4068 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4069 	/* xhci_device_control has eight fields, and also
4070 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4071 	 */
4072 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4073 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4074 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4075 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4076 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4077 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4078 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4079 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4080 	return 0;
4081 }
4082 module_init(xhci_hcd_init);
4083 
xhci_hcd_cleanup(void)4084 static void __exit xhci_hcd_cleanup(void)
4085 {
4086 	xhci_unregister_pci();
4087 }
4088 module_exit(xhci_hcd_cleanup);
4089