1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
xhci_segment_alloc(struct xhci_hcd * xhci,gfp_t flags)37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 	struct xhci_segment *seg;
40 	dma_addr_t	dma;
41 
42 	seg = kzalloc(sizeof *seg, flags);
43 	if (!seg)
44 		return NULL;
45 
46 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 	if (!seg->trbs) {
48 		kfree(seg);
49 		return NULL;
50 	}
51 
52 	memset(seg->trbs, 0, SEGMENT_SIZE);
53 	seg->dma = dma;
54 	seg->next = NULL;
55 
56 	return seg;
57 }
58 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)59 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
60 {
61 	if (seg->trbs) {
62 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
63 		seg->trbs = NULL;
64 	}
65 	kfree(seg);
66 }
67 
68 /*
69  * Make the prev segment point to the next segment.
70  *
71  * Change the last TRB in the prev segment to be a Link TRB which points to the
72  * DMA address of the next segment.  The caller needs to set any Link TRB
73  * related flags, such as End TRB, Toggle Cycle, and no snoop.
74  */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,bool link_trbs,bool isoc)75 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
76 		struct xhci_segment *next, bool link_trbs, bool isoc)
77 {
78 	u32 val;
79 
80 	if (!prev || !next)
81 		return;
82 	prev->next = next;
83 	if (link_trbs) {
84 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
85 			cpu_to_le64(next->dma);
86 
87 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
88 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
89 		val &= ~TRB_TYPE_BITMASK;
90 		val |= TRB_TYPE(TRB_LINK);
91 		/* Always set the chain bit with 0.95 hardware */
92 		/* Set chain bit for isoc rings on AMD 0.96 host */
93 		if (xhci_link_trb_quirk(xhci) ||
94 				(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
95 			val |= TRB_CHAIN;
96 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
97 	}
98 }
99 
100 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)101 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
102 {
103 	struct xhci_segment *seg;
104 	struct xhci_segment *first_seg;
105 
106 	if (!ring)
107 		return;
108 	if (ring->first_seg) {
109 		first_seg = ring->first_seg;
110 		seg = first_seg->next;
111 		while (seg != first_seg) {
112 			struct xhci_segment *next = seg->next;
113 			xhci_segment_free(xhci, seg);
114 			seg = next;
115 		}
116 		xhci_segment_free(xhci, first_seg);
117 		ring->first_seg = NULL;
118 	}
119 	kfree(ring);
120 }
121 
xhci_initialize_ring_info(struct xhci_ring * ring)122 static void xhci_initialize_ring_info(struct xhci_ring *ring)
123 {
124 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
125 	ring->enqueue = ring->first_seg->trbs;
126 	ring->enq_seg = ring->first_seg;
127 	ring->dequeue = ring->enqueue;
128 	ring->deq_seg = ring->first_seg;
129 	/* The ring is initialized to 0. The producer must write 1 to the cycle
130 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
131 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
132 	 */
133 	ring->cycle_state = 1;
134 	/* Not necessary for new rings, but needed for re-initialized rings */
135 	ring->enq_updates = 0;
136 	ring->deq_updates = 0;
137 }
138 
139 /**
140  * Create a new ring with zero or more segments.
141  *
142  * Link each segment together into a ring.
143  * Set the end flag and the cycle toggle bit on the last segment.
144  * See section 4.9.1 and figures 15 and 16.
145  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,bool link_trbs,bool isoc,gfp_t flags)146 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
147 		unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
148 {
149 	struct xhci_ring	*ring;
150 	struct xhci_segment	*prev;
151 
152 	ring = kzalloc(sizeof *(ring), flags);
153 	if (!ring)
154 		return NULL;
155 
156 	INIT_LIST_HEAD(&ring->td_list);
157 	if (num_segs == 0)
158 		return ring;
159 
160 	ring->first_seg = xhci_segment_alloc(xhci, flags);
161 	if (!ring->first_seg)
162 		goto fail;
163 	num_segs--;
164 
165 	prev = ring->first_seg;
166 	while (num_segs > 0) {
167 		struct xhci_segment	*next;
168 
169 		next = xhci_segment_alloc(xhci, flags);
170 		if (!next)
171 			goto fail;
172 		xhci_link_segments(xhci, prev, next, link_trbs, isoc);
173 
174 		prev = next;
175 		num_segs--;
176 	}
177 	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
178 
179 	if (link_trbs) {
180 		/* See section 4.9.2.1 and 6.4.4.1 */
181 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
182 			cpu_to_le32(LINK_TOGGLE);
183 	}
184 	xhci_initialize_ring_info(ring);
185 	return ring;
186 
187 fail:
188 	xhci_ring_free(xhci, ring);
189 	return NULL;
190 }
191 
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)192 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
193 		struct xhci_virt_device *virt_dev,
194 		unsigned int ep_index)
195 {
196 	int rings_cached;
197 
198 	rings_cached = virt_dev->num_rings_cached;
199 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
200 		virt_dev->ring_cache[rings_cached] =
201 			virt_dev->eps[ep_index].ring;
202 		virt_dev->num_rings_cached++;
203 		xhci_dbg(xhci, "Cached old ring, "
204 				"%d ring%s cached\n",
205 				virt_dev->num_rings_cached,
206 				(virt_dev->num_rings_cached > 1) ? "s" : "");
207 	} else {
208 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
209 		xhci_dbg(xhci, "Ring cache full (%d rings), "
210 				"freeing ring\n",
211 				virt_dev->num_rings_cached);
212 	}
213 	virt_dev->eps[ep_index].ring = NULL;
214 }
215 
216 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
217  * pointers to the beginning of the ring.
218  */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,bool isoc)219 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
220 		struct xhci_ring *ring, bool isoc)
221 {
222 	struct xhci_segment	*seg = ring->first_seg;
223 	do {
224 		memset(seg->trbs, 0,
225 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
226 		/* All endpoint rings have link TRBs */
227 		xhci_link_segments(xhci, seg, seg->next, 1, isoc);
228 		seg = seg->next;
229 	} while (seg != ring->first_seg);
230 	xhci_initialize_ring_info(ring);
231 	/* td list should be empty since all URBs have been cancelled,
232 	 * but just in case...
233 	 */
234 	INIT_LIST_HEAD(&ring->td_list);
235 }
236 
237 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
238 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)239 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
240 						    int type, gfp_t flags)
241 {
242 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
243 	if (!ctx)
244 		return NULL;
245 
246 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
247 	ctx->type = type;
248 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
249 	if (type == XHCI_CTX_TYPE_INPUT)
250 		ctx->size += CTX_SIZE(xhci->hcc_params);
251 
252 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
253 	memset(ctx->bytes, 0, ctx->size);
254 	return ctx;
255 }
256 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)257 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
258 			     struct xhci_container_ctx *ctx)
259 {
260 	if (!ctx)
261 		return;
262 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
263 	kfree(ctx);
264 }
265 
xhci_get_input_control_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)266 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
267 					      struct xhci_container_ctx *ctx)
268 {
269 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
270 	return (struct xhci_input_control_ctx *)ctx->bytes;
271 }
272 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)273 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
274 					struct xhci_container_ctx *ctx)
275 {
276 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
277 		return (struct xhci_slot_ctx *)ctx->bytes;
278 
279 	return (struct xhci_slot_ctx *)
280 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
281 }
282 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)283 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
284 				    struct xhci_container_ctx *ctx,
285 				    unsigned int ep_index)
286 {
287 	/* increment ep index by offset of start of ep ctx array */
288 	ep_index++;
289 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
290 		ep_index++;
291 
292 	return (struct xhci_ep_ctx *)
293 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
294 }
295 
296 
297 /***************** Streams structures manipulation *************************/
298 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)299 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
300 		unsigned int num_stream_ctxs,
301 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
302 {
303 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
306 		dma_free_coherent(&pdev->dev,
307 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
308 				stream_ctx, dma);
309 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
310 		return dma_pool_free(xhci->small_streams_pool,
311 				stream_ctx, dma);
312 	else
313 		return dma_pool_free(xhci->medium_streams_pool,
314 				stream_ctx, dma);
315 }
316 
317 /*
318  * The stream context array for each endpoint with bulk streams enabled can
319  * vary in size, based on:
320  *  - how many streams the endpoint supports,
321  *  - the maximum primary stream array size the host controller supports,
322  *  - and how many streams the device driver asks for.
323  *
324  * The stream context array must be a power of 2, and can be as small as
325  * 64 bytes or as large as 1MB.
326  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)327 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
328 		unsigned int num_stream_ctxs, dma_addr_t *dma,
329 		gfp_t mem_flags)
330 {
331 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 
333 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
334 		return dma_alloc_coherent(&pdev->dev,
335 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
336 				dma, mem_flags);
337 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
338 		return dma_pool_alloc(xhci->small_streams_pool,
339 				mem_flags, dma);
340 	else
341 		return dma_pool_alloc(xhci->medium_streams_pool,
342 				mem_flags, dma);
343 }
344 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)345 struct xhci_ring *xhci_dma_to_transfer_ring(
346 		struct xhci_virt_ep *ep,
347 		u64 address)
348 {
349 	if (ep->ep_state & EP_HAS_STREAMS)
350 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
351 				address >> SEGMENT_SHIFT);
352 	return ep->ring;
353 }
354 
355 /* Only use this when you know stream_info is valid */
356 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
dma_to_stream_ring(struct xhci_stream_info * stream_info,u64 address)357 static struct xhci_ring *dma_to_stream_ring(
358 		struct xhci_stream_info *stream_info,
359 		u64 address)
360 {
361 	return radix_tree_lookup(&stream_info->trb_address_map,
362 			address >> SEGMENT_SHIFT);
363 }
364 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
365 
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)366 struct xhci_ring *xhci_stream_id_to_ring(
367 		struct xhci_virt_device *dev,
368 		unsigned int ep_index,
369 		unsigned int stream_id)
370 {
371 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
372 
373 	if (stream_id == 0)
374 		return ep->ring;
375 	if (!ep->stream_info)
376 		return NULL;
377 
378 	if (stream_id > ep->stream_info->num_streams)
379 		return NULL;
380 	return ep->stream_info->stream_rings[stream_id];
381 }
382 
383 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_test_radix_tree(struct xhci_hcd * xhci,unsigned int num_streams,struct xhci_stream_info * stream_info)384 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
385 		unsigned int num_streams,
386 		struct xhci_stream_info *stream_info)
387 {
388 	u32 cur_stream;
389 	struct xhci_ring *cur_ring;
390 	u64 addr;
391 
392 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
393 		struct xhci_ring *mapped_ring;
394 		int trb_size = sizeof(union xhci_trb);
395 
396 		cur_ring = stream_info->stream_rings[cur_stream];
397 		for (addr = cur_ring->first_seg->dma;
398 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
399 				addr += trb_size) {
400 			mapped_ring = dma_to_stream_ring(stream_info, addr);
401 			if (cur_ring != mapped_ring) {
402 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
403 						"didn't map to stream ID %u; "
404 						"mapped to ring %p\n",
405 						(unsigned long long) addr,
406 						cur_stream,
407 						mapped_ring);
408 				return -EINVAL;
409 			}
410 		}
411 		/* One TRB after the end of the ring segment shouldn't return a
412 		 * pointer to the current ring (although it may be a part of a
413 		 * different ring).
414 		 */
415 		mapped_ring = dma_to_stream_ring(stream_info, addr);
416 		if (mapped_ring != cur_ring) {
417 			/* One TRB before should also fail */
418 			addr = cur_ring->first_seg->dma - trb_size;
419 			mapped_ring = dma_to_stream_ring(stream_info, addr);
420 		}
421 		if (mapped_ring == cur_ring) {
422 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
423 					"mapped to valid stream ID %u; "
424 					"mapped ring = %p\n",
425 					(unsigned long long) addr,
426 					cur_stream,
427 					mapped_ring);
428 			return -EINVAL;
429 		}
430 	}
431 	return 0;
432 }
433 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
434 
435 /*
436  * Change an endpoint's internal structure so it supports stream IDs.  The
437  * number of requested streams includes stream 0, which cannot be used by device
438  * drivers.
439  *
440  * The number of stream contexts in the stream context array may be bigger than
441  * the number of streams the driver wants to use.  This is because the number of
442  * stream context array entries must be a power of two.
443  *
444  * We need a radix tree for mapping physical addresses of TRBs to which stream
445  * ID they belong to.  We need to do this because the host controller won't tell
446  * us which stream ring the TRB came from.  We could store the stream ID in an
447  * event data TRB, but that doesn't help us for the cancellation case, since the
448  * endpoint may stop before it reaches that event data TRB.
449  *
450  * The radix tree maps the upper portion of the TRB DMA address to a ring
451  * segment that has the same upper portion of DMA addresses.  For example, say I
452  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
453  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
454  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
455  * pass the radix tree a key to get the right stream ID:
456  *
457  * 	0x10c90fff >> 10 = 0x43243
458  * 	0x10c912c0 >> 10 = 0x43244
459  * 	0x10c91400 >> 10 = 0x43245
460  *
461  * Obviously, only those TRBs with DMA addresses that are within the segment
462  * will make the radix tree return the stream ID for that ring.
463  *
464  * Caveats for the radix tree:
465  *
466  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
467  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
468  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
469  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
470  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
471  * extended systems (where the DMA address can be bigger than 32-bits),
472  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
473  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)474 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
475 		unsigned int num_stream_ctxs,
476 		unsigned int num_streams, gfp_t mem_flags)
477 {
478 	struct xhci_stream_info *stream_info;
479 	u32 cur_stream;
480 	struct xhci_ring *cur_ring;
481 	unsigned long key;
482 	u64 addr;
483 	int ret;
484 
485 	xhci_dbg(xhci, "Allocating %u streams and %u "
486 			"stream context array entries.\n",
487 			num_streams, num_stream_ctxs);
488 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
489 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
490 		return NULL;
491 	}
492 	xhci->cmd_ring_reserved_trbs++;
493 
494 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
495 	if (!stream_info)
496 		goto cleanup_trbs;
497 
498 	stream_info->num_streams = num_streams;
499 	stream_info->num_stream_ctxs = num_stream_ctxs;
500 
501 	/* Initialize the array of virtual pointers to stream rings. */
502 	stream_info->stream_rings = kzalloc(
503 			sizeof(struct xhci_ring *)*num_streams,
504 			mem_flags);
505 	if (!stream_info->stream_rings)
506 		goto cleanup_info;
507 
508 	/* Initialize the array of DMA addresses for stream rings for the HW. */
509 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
510 			num_stream_ctxs, &stream_info->ctx_array_dma,
511 			mem_flags);
512 	if (!stream_info->stream_ctx_array)
513 		goto cleanup_ctx;
514 	memset(stream_info->stream_ctx_array, 0,
515 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
516 
517 	/* Allocate everything needed to free the stream rings later */
518 	stream_info->free_streams_command =
519 		xhci_alloc_command(xhci, true, true, mem_flags);
520 	if (!stream_info->free_streams_command)
521 		goto cleanup_ctx;
522 
523 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
524 
525 	/* Allocate rings for all the streams that the driver will use,
526 	 * and add their segment DMA addresses to the radix tree.
527 	 * Stream 0 is reserved.
528 	 */
529 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
530 		stream_info->stream_rings[cur_stream] =
531 			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
532 		cur_ring = stream_info->stream_rings[cur_stream];
533 		if (!cur_ring)
534 			goto cleanup_rings;
535 		cur_ring->stream_id = cur_stream;
536 		/* Set deq ptr, cycle bit, and stream context type */
537 		addr = cur_ring->first_seg->dma |
538 			SCT_FOR_CTX(SCT_PRI_TR) |
539 			cur_ring->cycle_state;
540 		stream_info->stream_ctx_array[cur_stream].stream_ring =
541 			cpu_to_le64(addr);
542 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
543 				cur_stream, (unsigned long long) addr);
544 
545 		key = (unsigned long)
546 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
547 		ret = radix_tree_insert(&stream_info->trb_address_map,
548 				key, cur_ring);
549 		if (ret) {
550 			xhci_ring_free(xhci, cur_ring);
551 			stream_info->stream_rings[cur_stream] = NULL;
552 			goto cleanup_rings;
553 		}
554 	}
555 	/* Leave the other unused stream ring pointers in the stream context
556 	 * array initialized to zero.  This will cause the xHC to give us an
557 	 * error if the device asks for a stream ID we don't have setup (if it
558 	 * was any other way, the host controller would assume the ring is
559 	 * "empty" and wait forever for data to be queued to that stream ID).
560 	 */
561 #if XHCI_DEBUG
562 	/* Do a little test on the radix tree to make sure it returns the
563 	 * correct values.
564 	 */
565 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
566 		goto cleanup_rings;
567 #endif
568 
569 	return stream_info;
570 
571 cleanup_rings:
572 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
573 		cur_ring = stream_info->stream_rings[cur_stream];
574 		if (cur_ring) {
575 			addr = cur_ring->first_seg->dma;
576 			radix_tree_delete(&stream_info->trb_address_map,
577 					addr >> SEGMENT_SHIFT);
578 			xhci_ring_free(xhci, cur_ring);
579 			stream_info->stream_rings[cur_stream] = NULL;
580 		}
581 	}
582 	xhci_free_command(xhci, stream_info->free_streams_command);
583 cleanup_ctx:
584 	kfree(stream_info->stream_rings);
585 cleanup_info:
586 	kfree(stream_info);
587 cleanup_trbs:
588 	xhci->cmd_ring_reserved_trbs--;
589 	return NULL;
590 }
591 /*
592  * Sets the MaxPStreams field and the Linear Stream Array field.
593  * Sets the dequeue pointer to the stream context array.
594  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)595 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
596 		struct xhci_ep_ctx *ep_ctx,
597 		struct xhci_stream_info *stream_info)
598 {
599 	u32 max_primary_streams;
600 	/* MaxPStreams is the number of stream context array entries, not the
601 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
602 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
603 	 */
604 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
605 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
606 			1 << (max_primary_streams + 1));
607 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
608 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
609 				       | EP_HAS_LSA);
610 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
611 }
612 
613 /*
614  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
615  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
616  * not at the beginning of the ring).
617  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)618 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
619 		struct xhci_ep_ctx *ep_ctx,
620 		struct xhci_virt_ep *ep)
621 {
622 	dma_addr_t addr;
623 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
624 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
625 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
626 }
627 
628 /* Frees all stream contexts associated with the endpoint,
629  *
630  * Caller should fix the endpoint context streams fields.
631  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)632 void xhci_free_stream_info(struct xhci_hcd *xhci,
633 		struct xhci_stream_info *stream_info)
634 {
635 	int cur_stream;
636 	struct xhci_ring *cur_ring;
637 	dma_addr_t addr;
638 
639 	if (!stream_info)
640 		return;
641 
642 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
643 			cur_stream++) {
644 		cur_ring = stream_info->stream_rings[cur_stream];
645 		if (cur_ring) {
646 			addr = cur_ring->first_seg->dma;
647 			radix_tree_delete(&stream_info->trb_address_map,
648 					addr >> SEGMENT_SHIFT);
649 			xhci_ring_free(xhci, cur_ring);
650 			stream_info->stream_rings[cur_stream] = NULL;
651 		}
652 	}
653 	xhci_free_command(xhci, stream_info->free_streams_command);
654 	xhci->cmd_ring_reserved_trbs--;
655 	if (stream_info->stream_ctx_array)
656 		xhci_free_stream_ctx(xhci,
657 				stream_info->num_stream_ctxs,
658 				stream_info->stream_ctx_array,
659 				stream_info->ctx_array_dma);
660 
661 	if (stream_info)
662 		kfree(stream_info->stream_rings);
663 	kfree(stream_info);
664 }
665 
666 
667 /***************** Device context manipulation *************************/
668 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)669 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
670 		struct xhci_virt_ep *ep)
671 {
672 	init_timer(&ep->stop_cmd_timer);
673 	ep->stop_cmd_timer.data = (unsigned long) ep;
674 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
675 	ep->xhci = xhci;
676 }
677 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)678 static void xhci_free_tt_info(struct xhci_hcd *xhci,
679 		struct xhci_virt_device *virt_dev,
680 		int slot_id)
681 {
682 	struct list_head *tt;
683 	struct list_head *tt_list_head;
684 	struct list_head *tt_next;
685 	struct xhci_tt_bw_info *tt_info;
686 
687 	/* If the device never made it past the Set Address stage,
688 	 * it may not have the real_port set correctly.
689 	 */
690 	if (virt_dev->real_port == 0 ||
691 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
692 		xhci_dbg(xhci, "Bad real port.\n");
693 		return;
694 	}
695 
696 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
697 	if (list_empty(tt_list_head))
698 		return;
699 
700 	list_for_each(tt, tt_list_head) {
701 		tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
702 		if (tt_info->slot_id == slot_id)
703 			break;
704 	}
705 	/* Cautionary measure in case the hub was disconnected before we
706 	 * stored the TT information.
707 	 */
708 	if (tt_info->slot_id != slot_id)
709 		return;
710 
711 	tt_next = tt->next;
712 	tt_info = list_entry(tt, struct xhci_tt_bw_info,
713 			tt_list);
714 	/* Multi-TT hubs will have more than one entry */
715 	do {
716 		list_del(tt);
717 		kfree(tt_info);
718 		tt = tt_next;
719 		if (list_empty(tt_list_head))
720 			break;
721 		tt_next = tt->next;
722 		tt_info = list_entry(tt, struct xhci_tt_bw_info,
723 				tt_list);
724 	} while (tt_info->slot_id == slot_id);
725 }
726 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)727 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
728 		struct xhci_virt_device *virt_dev,
729 		struct usb_device *hdev,
730 		struct usb_tt *tt, gfp_t mem_flags)
731 {
732 	struct xhci_tt_bw_info		*tt_info;
733 	unsigned int			num_ports;
734 	int				i, j;
735 
736 	if (!tt->multi)
737 		num_ports = 1;
738 	else
739 		num_ports = hdev->maxchild;
740 
741 	for (i = 0; i < num_ports; i++, tt_info++) {
742 		struct xhci_interval_bw_table *bw_table;
743 
744 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
745 		if (!tt_info)
746 			goto free_tts;
747 		INIT_LIST_HEAD(&tt_info->tt_list);
748 		list_add(&tt_info->tt_list,
749 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
750 		tt_info->slot_id = virt_dev->udev->slot_id;
751 		if (tt->multi)
752 			tt_info->ttport = i+1;
753 		bw_table = &tt_info->bw_table;
754 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
755 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
756 	}
757 	return 0;
758 
759 free_tts:
760 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
761 	return -ENOMEM;
762 }
763 
764 
765 /* All the xhci_tds in the ring's TD list should be freed at this point.
766  * Should be called with xhci->lock held if there is any chance the TT lists
767  * will be manipulated by the configure endpoint, allocate device, or update
768  * hub functions while this function is removing the TT entries from the list.
769  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)770 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
771 {
772 	struct xhci_virt_device *dev;
773 	int i;
774 	int old_active_eps = 0;
775 
776 	/* Slot ID 0 is reserved */
777 	if (slot_id == 0 || !xhci->devs[slot_id])
778 		return;
779 
780 	dev = xhci->devs[slot_id];
781 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
782 	if (!dev)
783 		return;
784 
785 	if (dev->tt_info)
786 		old_active_eps = dev->tt_info->active_eps;
787 
788 	for (i = 0; i < 31; ++i) {
789 		if (dev->eps[i].ring)
790 			xhci_ring_free(xhci, dev->eps[i].ring);
791 		if (dev->eps[i].stream_info)
792 			xhci_free_stream_info(xhci,
793 					dev->eps[i].stream_info);
794 		/* Endpoints on the TT/root port lists should have been removed
795 		 * when usb_disable_device() was called for the device.
796 		 * We can't drop them anyway, because the udev might have gone
797 		 * away by this point, and we can't tell what speed it was.
798 		 */
799 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
800 			xhci_warn(xhci, "Slot %u endpoint %u "
801 					"not removed from BW list!\n",
802 					slot_id, i);
803 	}
804 	/* If this is a hub, free the TT(s) from the TT list */
805 	xhci_free_tt_info(xhci, dev, slot_id);
806 	/* If necessary, update the number of active TTs on this root port */
807 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
808 
809 	if (dev->ring_cache) {
810 		for (i = 0; i < dev->num_rings_cached; i++)
811 			xhci_ring_free(xhci, dev->ring_cache[i]);
812 		kfree(dev->ring_cache);
813 	}
814 
815 	if (dev->in_ctx)
816 		xhci_free_container_ctx(xhci, dev->in_ctx);
817 	if (dev->out_ctx)
818 		xhci_free_container_ctx(xhci, dev->out_ctx);
819 
820 	kfree(xhci->devs[slot_id]);
821 	xhci->devs[slot_id] = NULL;
822 }
823 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)824 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
825 		struct usb_device *udev, gfp_t flags)
826 {
827 	struct xhci_virt_device *dev;
828 	int i;
829 
830 	/* Slot ID 0 is reserved */
831 	if (slot_id == 0 || xhci->devs[slot_id]) {
832 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
833 		return 0;
834 	}
835 
836 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
837 	if (!xhci->devs[slot_id])
838 		return 0;
839 	dev = xhci->devs[slot_id];
840 
841 	/* Allocate the (output) device context that will be used in the HC. */
842 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
843 	if (!dev->out_ctx)
844 		goto fail;
845 
846 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
847 			(unsigned long long)dev->out_ctx->dma);
848 
849 	/* Allocate the (input) device context for address device command */
850 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
851 	if (!dev->in_ctx)
852 		goto fail;
853 
854 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
855 			(unsigned long long)dev->in_ctx->dma);
856 
857 	/* Initialize the cancellation list and watchdog timers for each ep */
858 	for (i = 0; i < 31; i++) {
859 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
860 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
861 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
862 	}
863 
864 	/* Allocate endpoint 0 ring */
865 	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
866 	if (!dev->eps[0].ring)
867 		goto fail;
868 
869 	/* Allocate pointers to the ring cache */
870 	dev->ring_cache = kzalloc(
871 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
872 			flags);
873 	if (!dev->ring_cache)
874 		goto fail;
875 	dev->num_rings_cached = 0;
876 
877 	init_completion(&dev->cmd_completion);
878 	INIT_LIST_HEAD(&dev->cmd_list);
879 	dev->udev = udev;
880 
881 	/* Point to output device context in dcbaa. */
882 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
883 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
884 		 slot_id,
885 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
886 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
887 
888 	return 1;
889 fail:
890 	xhci_free_virt_device(xhci, slot_id);
891 	return 0;
892 }
893 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)894 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
895 		struct usb_device *udev)
896 {
897 	struct xhci_virt_device *virt_dev;
898 	struct xhci_ep_ctx	*ep0_ctx;
899 	struct xhci_ring	*ep_ring;
900 
901 	virt_dev = xhci->devs[udev->slot_id];
902 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
903 	ep_ring = virt_dev->eps[0].ring;
904 	/*
905 	 * FIXME we don't keep track of the dequeue pointer very well after a
906 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
907 	 * host to our enqueue pointer.  This should only be called after a
908 	 * configured device has reset, so all control transfers should have
909 	 * been completed or cancelled before the reset.
910 	 */
911 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
912 							ep_ring->enqueue)
913 				   | ep_ring->cycle_state);
914 }
915 
916 /*
917  * The xHCI roothub may have ports of differing speeds in any order in the port
918  * status registers.  xhci->port_array provides an array of the port speed for
919  * each offset into the port status registers.
920  *
921  * The xHCI hardware wants to know the roothub port number that the USB device
922  * is attached to (or the roothub port its ancestor hub is attached to).  All we
923  * know is the index of that port under either the USB 2.0 or the USB 3.0
924  * roothub, but that doesn't give us the real index into the HW port status
925  * registers.  Scan through the xHCI roothub port array, looking for the Nth
926  * entry of the correct port speed.  Return the port number of that entry.
927  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)928 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
929 		struct usb_device *udev)
930 {
931 	struct usb_device *top_dev;
932 	unsigned int num_similar_speed_ports;
933 	unsigned int faked_port_num;
934 	int i;
935 
936 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
937 			top_dev = top_dev->parent)
938 		/* Found device below root hub */;
939 	faked_port_num = top_dev->portnum;
940 	for (i = 0, num_similar_speed_ports = 0;
941 			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
942 		u8 port_speed = xhci->port_array[i];
943 
944 		/*
945 		 * Skip ports that don't have known speeds, or have duplicate
946 		 * Extended Capabilities port speed entries.
947 		 */
948 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
949 			continue;
950 
951 		/*
952 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
953 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
954 		 * matches the device speed, it's a similar speed port.
955 		 */
956 		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
957 			num_similar_speed_ports++;
958 		if (num_similar_speed_ports == faked_port_num)
959 			/* Roothub ports are numbered from 1 to N */
960 			return i+1;
961 	}
962 	return 0;
963 }
964 
965 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)966 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
967 {
968 	struct xhci_virt_device *dev;
969 	struct xhci_ep_ctx	*ep0_ctx;
970 	struct xhci_slot_ctx    *slot_ctx;
971 	u32			port_num;
972 	struct usb_device *top_dev;
973 
974 	dev = xhci->devs[udev->slot_id];
975 	/* Slot ID 0 is reserved */
976 	if (udev->slot_id == 0 || !dev) {
977 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
978 				udev->slot_id);
979 		return -EINVAL;
980 	}
981 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
982 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
983 
984 	/* 3) Only the control endpoint is valid - one endpoint context */
985 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
986 	switch (udev->speed) {
987 	case USB_SPEED_SUPER:
988 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
989 		break;
990 	case USB_SPEED_HIGH:
991 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
992 		break;
993 	case USB_SPEED_FULL:
994 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
995 		break;
996 	case USB_SPEED_LOW:
997 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
998 		break;
999 	case USB_SPEED_WIRELESS:
1000 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1001 		return -EINVAL;
1002 		break;
1003 	default:
1004 		/* Speed was set earlier, this shouldn't happen. */
1005 		BUG();
1006 	}
1007 	/* Find the root hub port this device is under */
1008 	port_num = xhci_find_real_port_number(xhci, udev);
1009 	if (!port_num)
1010 		return -EINVAL;
1011 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1012 	/* Set the port number in the virtual_device to the faked port number */
1013 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1014 			top_dev = top_dev->parent)
1015 		/* Found device below root hub */;
1016 	dev->fake_port = top_dev->portnum;
1017 	dev->real_port = port_num;
1018 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1019 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1020 
1021 	/* Find the right bandwidth table that this device will be a part of.
1022 	 * If this is a full speed device attached directly to a root port (or a
1023 	 * decendent of one), it counts as a primary bandwidth domain, not a
1024 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1025 	 * will never be created for the HS root hub.
1026 	 */
1027 	if (!udev->tt || !udev->tt->hub->parent) {
1028 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1029 	} else {
1030 		struct xhci_root_port_bw_info *rh_bw;
1031 		struct xhci_tt_bw_info *tt_bw;
1032 
1033 		rh_bw = &xhci->rh_bw[port_num - 1];
1034 		/* Find the right TT. */
1035 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1036 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1037 				continue;
1038 
1039 			if (!dev->udev->tt->multi ||
1040 					(udev->tt->multi &&
1041 					 tt_bw->ttport == dev->udev->ttport)) {
1042 				dev->bw_table = &tt_bw->bw_table;
1043 				dev->tt_info = tt_bw;
1044 				break;
1045 			}
1046 		}
1047 		if (!dev->tt_info)
1048 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1049 	}
1050 
1051 	/* Is this a LS/FS device under an external HS hub? */
1052 	if (udev->tt && udev->tt->hub->parent) {
1053 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1054 						(udev->ttport << 8));
1055 		if (udev->tt->multi)
1056 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1057 	}
1058 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1059 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1060 
1061 	/* Step 4 - ring already allocated */
1062 	/* Step 5 */
1063 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1064 	/*
1065 	 * XXX: Not sure about wireless USB devices.
1066 	 */
1067 	switch (udev->speed) {
1068 	case USB_SPEED_SUPER:
1069 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1070 		break;
1071 	case USB_SPEED_HIGH:
1072 	/* USB core guesses at a 64-byte max packet first for FS devices */
1073 	case USB_SPEED_FULL:
1074 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1075 		break;
1076 	case USB_SPEED_LOW:
1077 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1078 		break;
1079 	case USB_SPEED_WIRELESS:
1080 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1081 		return -EINVAL;
1082 		break;
1083 	default:
1084 		/* New speed? */
1085 		BUG();
1086 	}
1087 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1088 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1089 
1090 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1091 				   dev->eps[0].ring->cycle_state);
1092 
1093 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Convert interval expressed as 2^(bInterval - 1) == interval into
1100  * straight exponent value 2^n == interval.
1101  *
1102  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1103 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1104 		struct usb_host_endpoint *ep)
1105 {
1106 	unsigned int interval;
1107 
1108 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1109 	if (interval != ep->desc.bInterval - 1)
1110 		dev_warn(&udev->dev,
1111 			 "ep %#x - rounding interval to %d %sframes\n",
1112 			 ep->desc.bEndpointAddress,
1113 			 1 << interval,
1114 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1115 
1116 	if (udev->speed == USB_SPEED_FULL) {
1117 		/*
1118 		 * Full speed isoc endpoints specify interval in frames,
1119 		 * not microframes. We are using microframes everywhere,
1120 		 * so adjust accordingly.
1121 		 */
1122 		interval += 3;	/* 1 frame = 2^3 uframes */
1123 	}
1124 
1125 	return interval;
1126 }
1127 
1128 /*
1129  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1130  * microframes, rounded down to nearest power of 2.
1131  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1132 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1133 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1134 		unsigned int min_exponent, unsigned int max_exponent)
1135 {
1136 	unsigned int interval;
1137 
1138 	interval = fls(desc_interval) - 1;
1139 	interval = clamp_val(interval, min_exponent, max_exponent);
1140 	if ((1 << interval) != desc_interval)
1141 		dev_warn(&udev->dev,
1142 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1143 			 ep->desc.bEndpointAddress,
1144 			 1 << interval,
1145 			 desc_interval);
1146 
1147 	return interval;
1148 }
1149 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1150 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1151 		struct usb_host_endpoint *ep)
1152 {
1153 	return xhci_microframes_to_exponent(udev, ep,
1154 			ep->desc.bInterval, 0, 15);
1155 }
1156 
1157 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1158 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1159 		struct usb_host_endpoint *ep)
1160 {
1161 	return xhci_microframes_to_exponent(udev, ep,
1162 			ep->desc.bInterval * 8, 3, 10);
1163 }
1164 
1165 /* Return the polling or NAK interval.
1166  *
1167  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1168  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1169  *
1170  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1171  * is set to 0.
1172  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1173 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1174 		struct usb_host_endpoint *ep)
1175 {
1176 	unsigned int interval = 0;
1177 
1178 	switch (udev->speed) {
1179 	case USB_SPEED_HIGH:
1180 		/* Max NAK rate */
1181 		if (usb_endpoint_xfer_control(&ep->desc) ||
1182 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1183 			interval = xhci_parse_microframe_interval(udev, ep);
1184 			break;
1185 		}
1186 		/* Fall through - SS and HS isoc/int have same decoding */
1187 
1188 	case USB_SPEED_SUPER:
1189 		if (usb_endpoint_xfer_int(&ep->desc) ||
1190 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1191 			interval = xhci_parse_exponent_interval(udev, ep);
1192 		}
1193 		break;
1194 
1195 	case USB_SPEED_FULL:
1196 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1197 			interval = xhci_parse_exponent_interval(udev, ep);
1198 			break;
1199 		}
1200 		/*
1201 		 * Fall through for interrupt endpoint interval decoding
1202 		 * since it uses the same rules as low speed interrupt
1203 		 * endpoints.
1204 		 */
1205 
1206 	case USB_SPEED_LOW:
1207 		if (usb_endpoint_xfer_int(&ep->desc) ||
1208 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1209 
1210 			interval = xhci_parse_frame_interval(udev, ep);
1211 		}
1212 		break;
1213 
1214 	default:
1215 		BUG();
1216 	}
1217 	return EP_INTERVAL(interval);
1218 }
1219 
1220 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1221  * High speed endpoint descriptors can define "the number of additional
1222  * transaction opportunities per microframe", but that goes in the Max Burst
1223  * endpoint context field.
1224  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1225 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1226 		struct usb_host_endpoint *ep)
1227 {
1228 	if (udev->speed != USB_SPEED_SUPER ||
1229 			!usb_endpoint_xfer_isoc(&ep->desc))
1230 		return 0;
1231 	return ep->ss_ep_comp.bmAttributes;
1232 }
1233 
xhci_get_endpoint_type(struct usb_device * udev,struct usb_host_endpoint * ep)1234 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1235 		struct usb_host_endpoint *ep)
1236 {
1237 	int in;
1238 	u32 type;
1239 
1240 	in = usb_endpoint_dir_in(&ep->desc);
1241 	if (usb_endpoint_xfer_control(&ep->desc)) {
1242 		type = EP_TYPE(CTRL_EP);
1243 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1244 		if (in)
1245 			type = EP_TYPE(BULK_IN_EP);
1246 		else
1247 			type = EP_TYPE(BULK_OUT_EP);
1248 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1249 		if (in)
1250 			type = EP_TYPE(ISOC_IN_EP);
1251 		else
1252 			type = EP_TYPE(ISOC_OUT_EP);
1253 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1254 		if (in)
1255 			type = EP_TYPE(INT_IN_EP);
1256 		else
1257 			type = EP_TYPE(INT_OUT_EP);
1258 	} else {
1259 		BUG();
1260 	}
1261 	return type;
1262 }
1263 
1264 /* Return the maximum endpoint service interval time (ESIT) payload.
1265  * Basically, this is the maxpacket size, multiplied by the burst size
1266  * and mult size.
1267  */
xhci_get_max_esit_payload(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1268 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1269 		struct usb_device *udev,
1270 		struct usb_host_endpoint *ep)
1271 {
1272 	int max_burst;
1273 	int max_packet;
1274 
1275 	/* Only applies for interrupt or isochronous endpoints */
1276 	if (usb_endpoint_xfer_control(&ep->desc) ||
1277 			usb_endpoint_xfer_bulk(&ep->desc))
1278 		return 0;
1279 
1280 	if (udev->speed == USB_SPEED_SUPER)
1281 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1282 
1283 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1284 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1285 	/* A 0 in max burst means 1 transfer per ESIT */
1286 	return max_packet * (max_burst + 1);
1287 }
1288 
1289 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1290  * Drivers will have to call usb_alloc_streams() to do that.
1291  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1292 int xhci_endpoint_init(struct xhci_hcd *xhci,
1293 		struct xhci_virt_device *virt_dev,
1294 		struct usb_device *udev,
1295 		struct usb_host_endpoint *ep,
1296 		gfp_t mem_flags)
1297 {
1298 	unsigned int ep_index;
1299 	struct xhci_ep_ctx *ep_ctx;
1300 	struct xhci_ring *ep_ring;
1301 	unsigned int max_packet;
1302 	unsigned int max_burst;
1303 	u32 max_esit_payload;
1304 
1305 	ep_index = xhci_get_endpoint_index(&ep->desc);
1306 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1307 
1308 	/* Set up the endpoint ring */
1309 	/*
1310 	 * Isochronous endpoint ring needs bigger size because one isoc URB
1311 	 * carries multiple packets and it will insert multiple tds to the
1312 	 * ring.
1313 	 * This should be replaced with dynamic ring resizing in the future.
1314 	 */
1315 	if (usb_endpoint_xfer_isoc(&ep->desc))
1316 		virt_dev->eps[ep_index].new_ring =
1317 			xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1318 	else
1319 		virt_dev->eps[ep_index].new_ring =
1320 			xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1321 	if (!virt_dev->eps[ep_index].new_ring) {
1322 		/* Attempt to use the ring cache */
1323 		if (virt_dev->num_rings_cached == 0)
1324 			return -ENOMEM;
1325 		virt_dev->eps[ep_index].new_ring =
1326 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1327 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1328 		virt_dev->num_rings_cached--;
1329 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1330 			usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1331 	}
1332 	virt_dev->eps[ep_index].skip = false;
1333 	ep_ring = virt_dev->eps[ep_index].new_ring;
1334 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1335 
1336 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1337 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1338 
1339 	/* FIXME dig Mult and streams info out of ep companion desc */
1340 
1341 	/* Allow 3 retries for everything but isoc;
1342 	 * CErr shall be set to 0 for Isoch endpoints.
1343 	 */
1344 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1345 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1346 	else
1347 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1348 
1349 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1350 
1351 	/* Set the max packet size and max burst */
1352 	switch (udev->speed) {
1353 	case USB_SPEED_SUPER:
1354 		max_packet = usb_endpoint_maxp(&ep->desc);
1355 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1356 		/* dig out max burst from ep companion desc */
1357 		max_packet = ep->ss_ep_comp.bMaxBurst;
1358 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1359 		break;
1360 	case USB_SPEED_HIGH:
1361 		/* bits 11:12 specify the number of additional transaction
1362 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1363 		 */
1364 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1365 				usb_endpoint_xfer_int(&ep->desc)) {
1366 			max_burst = (usb_endpoint_maxp(&ep->desc)
1367 				     & 0x1800) >> 11;
1368 			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1369 		}
1370 		/* Fall through */
1371 	case USB_SPEED_FULL:
1372 	case USB_SPEED_LOW:
1373 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1374 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1375 		break;
1376 	default:
1377 		BUG();
1378 	}
1379 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1380 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1381 
1382 	/*
1383 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1384 	 * endpoints, as the driver gives us no clue how big each scatter gather
1385 	 * list entry (or buffer) is going to be.
1386 	 *
1387 	 * For isochronous and interrupt endpoints, we set it to the max
1388 	 * available, until we have new API in the USB core to allow drivers to
1389 	 * declare how much bandwidth they actually need.
1390 	 *
1391 	 * Normally, it would be calculated by taking the total of the buffer
1392 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1393 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1394 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1395 	 * transfers, we're basically dividing by 1.
1396 	 *
1397 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1398 	 * be set to 8 for control endpoints.
1399 	 */
1400 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1401 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1402 	else
1403 		ep_ctx->tx_info |=
1404 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1405 
1406 	/* FIXME Debug endpoint context */
1407 	return 0;
1408 }
1409 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1410 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1411 		struct xhci_virt_device *virt_dev,
1412 		struct usb_host_endpoint *ep)
1413 {
1414 	unsigned int ep_index;
1415 	struct xhci_ep_ctx *ep_ctx;
1416 
1417 	ep_index = xhci_get_endpoint_index(&ep->desc);
1418 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1419 
1420 	ep_ctx->ep_info = 0;
1421 	ep_ctx->ep_info2 = 0;
1422 	ep_ctx->deq = 0;
1423 	ep_ctx->tx_info = 0;
1424 	/* Don't free the endpoint ring until the set interface or configuration
1425 	 * request succeeds.
1426 	 */
1427 }
1428 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1429 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1430 {
1431 	bw_info->ep_interval = 0;
1432 	bw_info->mult = 0;
1433 	bw_info->num_packets = 0;
1434 	bw_info->max_packet_size = 0;
1435 	bw_info->type = 0;
1436 	bw_info->max_esit_payload = 0;
1437 }
1438 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1439 void xhci_update_bw_info(struct xhci_hcd *xhci,
1440 		struct xhci_container_ctx *in_ctx,
1441 		struct xhci_input_control_ctx *ctrl_ctx,
1442 		struct xhci_virt_device *virt_dev)
1443 {
1444 	struct xhci_bw_info *bw_info;
1445 	struct xhci_ep_ctx *ep_ctx;
1446 	unsigned int ep_type;
1447 	int i;
1448 
1449 	for (i = 1; i < 31; ++i) {
1450 		bw_info = &virt_dev->eps[i].bw_info;
1451 
1452 		/* We can't tell what endpoint type is being dropped, but
1453 		 * unconditionally clearing the bandwidth info for non-periodic
1454 		 * endpoints should be harmless because the info will never be
1455 		 * set in the first place.
1456 		 */
1457 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1458 			/* Dropped endpoint */
1459 			xhci_clear_endpoint_bw_info(bw_info);
1460 			continue;
1461 		}
1462 
1463 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1464 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1465 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1466 
1467 			/* Ignore non-periodic endpoints */
1468 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1469 					ep_type != ISOC_IN_EP &&
1470 					ep_type != INT_IN_EP)
1471 				continue;
1472 
1473 			/* Added or changed endpoint */
1474 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1475 					le32_to_cpu(ep_ctx->ep_info));
1476 			/* Number of packets and mult are zero-based in the
1477 			 * input context, but we want one-based for the
1478 			 * interval table.
1479 			 */
1480 			bw_info->mult = CTX_TO_EP_MULT(
1481 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1482 			bw_info->num_packets = CTX_TO_MAX_BURST(
1483 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1484 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1485 					le32_to_cpu(ep_ctx->ep_info2));
1486 			bw_info->type = ep_type;
1487 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1488 					le32_to_cpu(ep_ctx->tx_info));
1489 		}
1490 	}
1491 }
1492 
1493 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1494  * Useful when you want to change one particular aspect of the endpoint and then
1495  * issue a configure endpoint command.
1496  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1497 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1498 		struct xhci_container_ctx *in_ctx,
1499 		struct xhci_container_ctx *out_ctx,
1500 		unsigned int ep_index)
1501 {
1502 	struct xhci_ep_ctx *out_ep_ctx;
1503 	struct xhci_ep_ctx *in_ep_ctx;
1504 
1505 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1506 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1507 
1508 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1509 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1510 	in_ep_ctx->deq = out_ep_ctx->deq;
1511 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1512 }
1513 
1514 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1515  * Useful when you want to change one particular aspect of the endpoint and then
1516  * issue a configure endpoint command.  Only the context entries field matters,
1517  * but we'll copy the whole thing anyway.
1518  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1519 void xhci_slot_copy(struct xhci_hcd *xhci,
1520 		struct xhci_container_ctx *in_ctx,
1521 		struct xhci_container_ctx *out_ctx)
1522 {
1523 	struct xhci_slot_ctx *in_slot_ctx;
1524 	struct xhci_slot_ctx *out_slot_ctx;
1525 
1526 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1527 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1528 
1529 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1530 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1531 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1532 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1533 }
1534 
1535 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1536 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1537 {
1538 	int i;
1539 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1540 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1541 
1542 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1543 
1544 	if (!num_sp)
1545 		return 0;
1546 
1547 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1548 	if (!xhci->scratchpad)
1549 		goto fail_sp;
1550 
1551 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1552 				     num_sp * sizeof(u64),
1553 				     &xhci->scratchpad->sp_dma, flags);
1554 	if (!xhci->scratchpad->sp_array)
1555 		goto fail_sp2;
1556 
1557 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1558 	if (!xhci->scratchpad->sp_buffers)
1559 		goto fail_sp3;
1560 
1561 	xhci->scratchpad->sp_dma_buffers =
1562 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1563 
1564 	if (!xhci->scratchpad->sp_dma_buffers)
1565 		goto fail_sp4;
1566 
1567 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1568 	for (i = 0; i < num_sp; i++) {
1569 		dma_addr_t dma;
1570 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1571 				flags);
1572 		if (!buf)
1573 			goto fail_sp5;
1574 
1575 		xhci->scratchpad->sp_array[i] = dma;
1576 		xhci->scratchpad->sp_buffers[i] = buf;
1577 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1578 	}
1579 
1580 	return 0;
1581 
1582  fail_sp5:
1583 	for (i = i - 1; i >= 0; i--) {
1584 		dma_free_coherent(dev, xhci->page_size,
1585 				    xhci->scratchpad->sp_buffers[i],
1586 				    xhci->scratchpad->sp_dma_buffers[i]);
1587 	}
1588 	kfree(xhci->scratchpad->sp_dma_buffers);
1589 
1590  fail_sp4:
1591 	kfree(xhci->scratchpad->sp_buffers);
1592 
1593  fail_sp3:
1594 	dma_free_coherent(dev, num_sp * sizeof(u64),
1595 			    xhci->scratchpad->sp_array,
1596 			    xhci->scratchpad->sp_dma);
1597 
1598  fail_sp2:
1599 	kfree(xhci->scratchpad);
1600 	xhci->scratchpad = NULL;
1601 
1602  fail_sp:
1603 	return -ENOMEM;
1604 }
1605 
scratchpad_free(struct xhci_hcd * xhci)1606 static void scratchpad_free(struct xhci_hcd *xhci)
1607 {
1608 	int num_sp;
1609 	int i;
1610 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1611 
1612 	if (!xhci->scratchpad)
1613 		return;
1614 
1615 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1616 
1617 	for (i = 0; i < num_sp; i++) {
1618 		dma_free_coherent(&pdev->dev, xhci->page_size,
1619 				    xhci->scratchpad->sp_buffers[i],
1620 				    xhci->scratchpad->sp_dma_buffers[i]);
1621 	}
1622 	kfree(xhci->scratchpad->sp_dma_buffers);
1623 	kfree(xhci->scratchpad->sp_buffers);
1624 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1625 			    xhci->scratchpad->sp_array,
1626 			    xhci->scratchpad->sp_dma);
1627 	kfree(xhci->scratchpad);
1628 	xhci->scratchpad = NULL;
1629 }
1630 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1631 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1632 		bool allocate_in_ctx, bool allocate_completion,
1633 		gfp_t mem_flags)
1634 {
1635 	struct xhci_command *command;
1636 
1637 	command = kzalloc(sizeof(*command), mem_flags);
1638 	if (!command)
1639 		return NULL;
1640 
1641 	if (allocate_in_ctx) {
1642 		command->in_ctx =
1643 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1644 					mem_flags);
1645 		if (!command->in_ctx) {
1646 			kfree(command);
1647 			return NULL;
1648 		}
1649 	}
1650 
1651 	if (allocate_completion) {
1652 		command->completion =
1653 			kzalloc(sizeof(struct completion), mem_flags);
1654 		if (!command->completion) {
1655 			xhci_free_container_ctx(xhci, command->in_ctx);
1656 			kfree(command);
1657 			return NULL;
1658 		}
1659 		init_completion(command->completion);
1660 	}
1661 
1662 	command->status = 0;
1663 	INIT_LIST_HEAD(&command->cmd_list);
1664 	return command;
1665 }
1666 
xhci_urb_free_priv(struct xhci_hcd * xhci,struct urb_priv * urb_priv)1667 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1668 {
1669 	if (urb_priv) {
1670 		kfree(urb_priv->td[0]);
1671 		kfree(urb_priv);
1672 	}
1673 }
1674 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1675 void xhci_free_command(struct xhci_hcd *xhci,
1676 		struct xhci_command *command)
1677 {
1678 	xhci_free_container_ctx(xhci,
1679 			command->in_ctx);
1680 	kfree(command->completion);
1681 	kfree(command);
1682 }
1683 
xhci_mem_cleanup(struct xhci_hcd * xhci)1684 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1685 {
1686 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1687 	struct dev_info	*dev_info, *next;
1688 	unsigned long	flags;
1689 	int size;
1690 	int i;
1691 
1692 	/* Free the Event Ring Segment Table and the actual Event Ring */
1693 	if (xhci->ir_set) {
1694 		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1695 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1696 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1697 	}
1698 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1699 	if (xhci->erst.entries)
1700 		dma_free_coherent(&pdev->dev, size,
1701 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1702 	xhci->erst.entries = NULL;
1703 	xhci_dbg(xhci, "Freed ERST\n");
1704 	if (xhci->event_ring)
1705 		xhci_ring_free(xhci, xhci->event_ring);
1706 	xhci->event_ring = NULL;
1707 	xhci_dbg(xhci, "Freed event ring\n");
1708 
1709 	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1710 	if (xhci->cmd_ring)
1711 		xhci_ring_free(xhci, xhci->cmd_ring);
1712 	xhci->cmd_ring = NULL;
1713 	xhci_dbg(xhci, "Freed command ring\n");
1714 
1715 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1716 		xhci_free_virt_device(xhci, i);
1717 
1718 	if (xhci->segment_pool)
1719 		dma_pool_destroy(xhci->segment_pool);
1720 	xhci->segment_pool = NULL;
1721 	xhci_dbg(xhci, "Freed segment pool\n");
1722 
1723 	if (xhci->device_pool)
1724 		dma_pool_destroy(xhci->device_pool);
1725 	xhci->device_pool = NULL;
1726 	xhci_dbg(xhci, "Freed device context pool\n");
1727 
1728 	if (xhci->small_streams_pool)
1729 		dma_pool_destroy(xhci->small_streams_pool);
1730 	xhci->small_streams_pool = NULL;
1731 	xhci_dbg(xhci, "Freed small stream array pool\n");
1732 
1733 	if (xhci->medium_streams_pool)
1734 		dma_pool_destroy(xhci->medium_streams_pool);
1735 	xhci->medium_streams_pool = NULL;
1736 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1737 
1738 	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1739 	if (xhci->dcbaa)
1740 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1741 				xhci->dcbaa, xhci->dcbaa->dma);
1742 	xhci->dcbaa = NULL;
1743 
1744 	scratchpad_free(xhci);
1745 
1746 	spin_lock_irqsave(&xhci->lock, flags);
1747 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1748 		list_del(&dev_info->list);
1749 		kfree(dev_info);
1750 	}
1751 	spin_unlock_irqrestore(&xhci->lock, flags);
1752 
1753 	xhci->num_usb2_ports = 0;
1754 	xhci->num_usb3_ports = 0;
1755 	kfree(xhci->usb2_ports);
1756 	kfree(xhci->usb3_ports);
1757 	kfree(xhci->port_array);
1758 	kfree(xhci->rh_bw);
1759 
1760 	xhci->page_size = 0;
1761 	xhci->page_shift = 0;
1762 	xhci->bus_state[0].bus_suspended = 0;
1763 	xhci->bus_state[1].bus_suspended = 0;
1764 }
1765 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1766 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1767 		struct xhci_segment *input_seg,
1768 		union xhci_trb *start_trb,
1769 		union xhci_trb *end_trb,
1770 		dma_addr_t input_dma,
1771 		struct xhci_segment *result_seg,
1772 		char *test_name, int test_number)
1773 {
1774 	unsigned long long start_dma;
1775 	unsigned long long end_dma;
1776 	struct xhci_segment *seg;
1777 
1778 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1779 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1780 
1781 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1782 	if (seg != result_seg) {
1783 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1784 				test_name, test_number);
1785 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1786 				"input DMA 0x%llx\n",
1787 				input_seg,
1788 				(unsigned long long) input_dma);
1789 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1790 				"ending TRB %p (0x%llx DMA)\n",
1791 				start_trb, start_dma,
1792 				end_trb, end_dma);
1793 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1794 				result_seg, seg);
1795 		return -1;
1796 	}
1797 	return 0;
1798 }
1799 
1800 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci,gfp_t mem_flags)1801 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1802 {
1803 	struct {
1804 		dma_addr_t		input_dma;
1805 		struct xhci_segment	*result_seg;
1806 	} simple_test_vector [] = {
1807 		/* A zeroed DMA field should fail */
1808 		{ 0, NULL },
1809 		/* One TRB before the ring start should fail */
1810 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1811 		/* One byte before the ring start should fail */
1812 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1813 		/* Starting TRB should succeed */
1814 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1815 		/* Ending TRB should succeed */
1816 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1817 			xhci->event_ring->first_seg },
1818 		/* One byte after the ring end should fail */
1819 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1820 		/* One TRB after the ring end should fail */
1821 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1822 		/* An address of all ones should fail */
1823 		{ (dma_addr_t) (~0), NULL },
1824 	};
1825 	struct {
1826 		struct xhci_segment	*input_seg;
1827 		union xhci_trb		*start_trb;
1828 		union xhci_trb		*end_trb;
1829 		dma_addr_t		input_dma;
1830 		struct xhci_segment	*result_seg;
1831 	} complex_test_vector [] = {
1832 		/* Test feeding a valid DMA address from a different ring */
1833 		{	.input_seg = xhci->event_ring->first_seg,
1834 			.start_trb = xhci->event_ring->first_seg->trbs,
1835 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1836 			.input_dma = xhci->cmd_ring->first_seg->dma,
1837 			.result_seg = NULL,
1838 		},
1839 		/* Test feeding a valid end TRB from a different ring */
1840 		{	.input_seg = xhci->event_ring->first_seg,
1841 			.start_trb = xhci->event_ring->first_seg->trbs,
1842 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1843 			.input_dma = xhci->cmd_ring->first_seg->dma,
1844 			.result_seg = NULL,
1845 		},
1846 		/* Test feeding a valid start and end TRB from a different ring */
1847 		{	.input_seg = xhci->event_ring->first_seg,
1848 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1849 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1850 			.input_dma = xhci->cmd_ring->first_seg->dma,
1851 			.result_seg = NULL,
1852 		},
1853 		/* TRB in this ring, but after this TD */
1854 		{	.input_seg = xhci->event_ring->first_seg,
1855 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1856 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1857 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1858 			.result_seg = NULL,
1859 		},
1860 		/* TRB in this ring, but before this TD */
1861 		{	.input_seg = xhci->event_ring->first_seg,
1862 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1863 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1864 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1865 			.result_seg = NULL,
1866 		},
1867 		/* TRB in this ring, but after this wrapped TD */
1868 		{	.input_seg = xhci->event_ring->first_seg,
1869 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1870 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1871 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1872 			.result_seg = NULL,
1873 		},
1874 		/* TRB in this ring, but before this wrapped TD */
1875 		{	.input_seg = xhci->event_ring->first_seg,
1876 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1877 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1878 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1879 			.result_seg = NULL,
1880 		},
1881 		/* TRB not in this ring, and we have a wrapped TD */
1882 		{	.input_seg = xhci->event_ring->first_seg,
1883 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1884 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1885 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1886 			.result_seg = NULL,
1887 		},
1888 	};
1889 
1890 	unsigned int num_tests;
1891 	int i, ret;
1892 
1893 	num_tests = ARRAY_SIZE(simple_test_vector);
1894 	for (i = 0; i < num_tests; i++) {
1895 		ret = xhci_test_trb_in_td(xhci,
1896 				xhci->event_ring->first_seg,
1897 				xhci->event_ring->first_seg->trbs,
1898 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1899 				simple_test_vector[i].input_dma,
1900 				simple_test_vector[i].result_seg,
1901 				"Simple", i);
1902 		if (ret < 0)
1903 			return ret;
1904 	}
1905 
1906 	num_tests = ARRAY_SIZE(complex_test_vector);
1907 	for (i = 0; i < num_tests; i++) {
1908 		ret = xhci_test_trb_in_td(xhci,
1909 				complex_test_vector[i].input_seg,
1910 				complex_test_vector[i].start_trb,
1911 				complex_test_vector[i].end_trb,
1912 				complex_test_vector[i].input_dma,
1913 				complex_test_vector[i].result_seg,
1914 				"Complex", i);
1915 		if (ret < 0)
1916 			return ret;
1917 	}
1918 	xhci_dbg(xhci, "TRB math tests passed.\n");
1919 	return 0;
1920 }
1921 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)1922 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1923 {
1924 	u64 temp;
1925 	dma_addr_t deq;
1926 
1927 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1928 			xhci->event_ring->dequeue);
1929 	if (deq == 0 && !in_interrupt())
1930 		xhci_warn(xhci, "WARN something wrong with SW event ring "
1931 				"dequeue ptr.\n");
1932 	/* Update HC event ring dequeue pointer */
1933 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1934 	temp &= ERST_PTR_MASK;
1935 	/* Don't clear the EHB bit (which is RW1C) because
1936 	 * there might be more events to service.
1937 	 */
1938 	temp &= ~ERST_EHB;
1939 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1940 			"preserving EHB bit\n");
1941 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1942 			&xhci->ir_set->erst_dequeue);
1943 }
1944 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,u8 major_revision)1945 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1946 		__le32 __iomem *addr, u8 major_revision)
1947 {
1948 	u32 temp, port_offset, port_count;
1949 	int i;
1950 
1951 	if (major_revision > 0x03) {
1952 		xhci_warn(xhci, "Ignoring unknown port speed, "
1953 				"Ext Cap %p, revision = 0x%x\n",
1954 				addr, major_revision);
1955 		/* Ignoring port protocol we can't understand. FIXME */
1956 		return;
1957 	}
1958 
1959 	/* Port offset and count in the third dword, see section 7.2 */
1960 	temp = xhci_readl(xhci, addr + 2);
1961 	port_offset = XHCI_EXT_PORT_OFF(temp);
1962 	port_count = XHCI_EXT_PORT_COUNT(temp);
1963 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1964 			"count = %u, revision = 0x%x\n",
1965 			addr, port_offset, port_count, major_revision);
1966 	/* Port count includes the current port offset */
1967 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1968 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1969 		return;
1970 
1971 	/* Check the host's USB2 LPM capability */
1972 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1973 			(temp & XHCI_L1C)) {
1974 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1975 		xhci->sw_lpm_support = 1;
1976 	}
1977 
1978 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1979 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1980 		xhci->sw_lpm_support = 1;
1981 		if (temp & XHCI_HLC) {
1982 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1983 			xhci->hw_lpm_support = 1;
1984 		}
1985 	}
1986 
1987 	port_offset--;
1988 	for (i = port_offset; i < (port_offset + port_count); i++) {
1989 		/* Duplicate entry.  Ignore the port if the revisions differ. */
1990 		if (xhci->port_array[i] != 0) {
1991 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1992 					" port %u\n", addr, i);
1993 			xhci_warn(xhci, "Port was marked as USB %u, "
1994 					"duplicated as USB %u\n",
1995 					xhci->port_array[i], major_revision);
1996 			/* Only adjust the roothub port counts if we haven't
1997 			 * found a similar duplicate.
1998 			 */
1999 			if (xhci->port_array[i] != major_revision &&
2000 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2001 				if (xhci->port_array[i] == 0x03)
2002 					xhci->num_usb3_ports--;
2003 				else
2004 					xhci->num_usb2_ports--;
2005 				xhci->port_array[i] = DUPLICATE_ENTRY;
2006 			}
2007 			/* FIXME: Should we disable the port? */
2008 			continue;
2009 		}
2010 		xhci->port_array[i] = major_revision;
2011 		if (major_revision == 0x03)
2012 			xhci->num_usb3_ports++;
2013 		else
2014 			xhci->num_usb2_ports++;
2015 	}
2016 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2017 }
2018 
2019 /*
2020  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2021  * specify what speeds each port is supposed to be.  We can't count on the port
2022  * speed bits in the PORTSC register being correct until a device is connected,
2023  * but we need to set up the two fake roothubs with the correct number of USB
2024  * 3.0 and USB 2.0 ports at host controller initialization time.
2025  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2026 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2027 {
2028 	__le32 __iomem *addr;
2029 	u32 offset;
2030 	unsigned int num_ports;
2031 	int i, j, port_index;
2032 
2033 	addr = &xhci->cap_regs->hcc_params;
2034 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2035 	if (offset == 0) {
2036 		xhci_err(xhci, "No Extended Capability registers, "
2037 				"unable to set up roothub.\n");
2038 		return -ENODEV;
2039 	}
2040 
2041 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2042 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2043 	if (!xhci->port_array)
2044 		return -ENOMEM;
2045 
2046 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2047 	if (!xhci->rh_bw)
2048 		return -ENOMEM;
2049 	for (i = 0; i < num_ports; i++) {
2050 		struct xhci_interval_bw_table *bw_table;
2051 
2052 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2053 		bw_table = &xhci->rh_bw[i].bw_table;
2054 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2055 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2056 	}
2057 
2058 	/*
2059 	 * For whatever reason, the first capability offset is from the
2060 	 * capability register base, not from the HCCPARAMS register.
2061 	 * See section 5.3.6 for offset calculation.
2062 	 */
2063 	addr = &xhci->cap_regs->hc_capbase + offset;
2064 	while (1) {
2065 		u32 cap_id;
2066 
2067 		cap_id = xhci_readl(xhci, addr);
2068 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2069 			xhci_add_in_port(xhci, num_ports, addr,
2070 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2071 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2072 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2073 				== num_ports)
2074 			break;
2075 		/*
2076 		 * Once you're into the Extended Capabilities, the offset is
2077 		 * always relative to the register holding the offset.
2078 		 */
2079 		addr += offset;
2080 	}
2081 
2082 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2083 		xhci_warn(xhci, "No ports on the roothubs?\n");
2084 		return -ENODEV;
2085 	}
2086 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2087 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2088 
2089 	/* Place limits on the number of roothub ports so that the hub
2090 	 * descriptors aren't longer than the USB core will allocate.
2091 	 */
2092 	if (xhci->num_usb3_ports > 15) {
2093 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2094 		xhci->num_usb3_ports = 15;
2095 	}
2096 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2097 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2098 				USB_MAXCHILDREN);
2099 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2100 	}
2101 
2102 	/*
2103 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2104 	 * Not sure how the USB core will handle a hub with no ports...
2105 	 */
2106 	if (xhci->num_usb2_ports) {
2107 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2108 				xhci->num_usb2_ports, flags);
2109 		if (!xhci->usb2_ports)
2110 			return -ENOMEM;
2111 
2112 		port_index = 0;
2113 		for (i = 0; i < num_ports; i++) {
2114 			if (xhci->port_array[i] == 0x03 ||
2115 					xhci->port_array[i] == 0 ||
2116 					xhci->port_array[i] == DUPLICATE_ENTRY)
2117 				continue;
2118 
2119 			xhci->usb2_ports[port_index] =
2120 				&xhci->op_regs->port_status_base +
2121 				NUM_PORT_REGS*i;
2122 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2123 					"addr = %p\n", i,
2124 					xhci->usb2_ports[port_index]);
2125 			port_index++;
2126 			if (port_index == xhci->num_usb2_ports)
2127 				break;
2128 		}
2129 	}
2130 	if (xhci->num_usb3_ports) {
2131 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2132 				xhci->num_usb3_ports, flags);
2133 		if (!xhci->usb3_ports)
2134 			return -ENOMEM;
2135 
2136 		port_index = 0;
2137 		for (i = 0; i < num_ports; i++)
2138 			if (xhci->port_array[i] == 0x03) {
2139 				xhci->usb3_ports[port_index] =
2140 					&xhci->op_regs->port_status_base +
2141 					NUM_PORT_REGS*i;
2142 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2143 						"addr = %p\n", i,
2144 						xhci->usb3_ports[port_index]);
2145 				port_index++;
2146 				if (port_index == xhci->num_usb3_ports)
2147 					break;
2148 			}
2149 	}
2150 	return 0;
2151 }
2152 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2153 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2154 {
2155 	dma_addr_t	dma;
2156 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2157 	unsigned int	val, val2;
2158 	u64		val_64;
2159 	struct xhci_segment	*seg;
2160 	u32 page_size;
2161 	int i;
2162 
2163 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2164 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2165 	for (i = 0; i < 16; i++) {
2166 		if ((0x1 & page_size) != 0)
2167 			break;
2168 		page_size = page_size >> 1;
2169 	}
2170 	if (i < 16)
2171 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2172 	else
2173 		xhci_warn(xhci, "WARN: no supported page size\n");
2174 	/* Use 4K pages, since that's common and the minimum the HC supports */
2175 	xhci->page_shift = 12;
2176 	xhci->page_size = 1 << xhci->page_shift;
2177 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2178 
2179 	/*
2180 	 * Program the Number of Device Slots Enabled field in the CONFIG
2181 	 * register with the max value of slots the HC can handle.
2182 	 */
2183 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2184 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2185 			(unsigned int) val);
2186 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2187 	val |= (val2 & ~HCS_SLOTS_MASK);
2188 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2189 			(unsigned int) val);
2190 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2191 
2192 	/*
2193 	 * Section 5.4.8 - doorbell array must be
2194 	 * "physically contiguous and 64-byte (cache line) aligned".
2195 	 */
2196 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2197 			GFP_KERNEL);
2198 	if (!xhci->dcbaa)
2199 		goto fail;
2200 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2201 	xhci->dcbaa->dma = dma;
2202 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2203 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2204 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2205 
2206 	/*
2207 	 * Initialize the ring segment pool.  The ring must be a contiguous
2208 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2209 	 * however, the command ring segment needs 64-byte aligned segments,
2210 	 * so we pick the greater alignment need.
2211 	 */
2212 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2213 			SEGMENT_SIZE, 64, xhci->page_size);
2214 
2215 	/* See Table 46 and Note on Figure 55 */
2216 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2217 			2112, 64, xhci->page_size);
2218 	if (!xhci->segment_pool || !xhci->device_pool)
2219 		goto fail;
2220 
2221 	/* Linear stream context arrays don't have any boundary restrictions,
2222 	 * and only need to be 16-byte aligned.
2223 	 */
2224 	xhci->small_streams_pool =
2225 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2226 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2227 	xhci->medium_streams_pool =
2228 		dma_pool_create("xHCI 1KB stream ctx arrays",
2229 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2230 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2231 	 * will be allocated with dma_alloc_coherent()
2232 	 */
2233 
2234 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2235 		goto fail;
2236 
2237 	/* Set up the command ring to have one segments for now. */
2238 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2239 	if (!xhci->cmd_ring)
2240 		goto fail;
2241 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2242 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2243 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2244 
2245 	/* Set the address in the Command Ring Control register */
2246 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2247 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2248 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2249 		xhci->cmd_ring->cycle_state;
2250 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2251 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2252 	xhci_dbg_cmd_ptrs(xhci);
2253 
2254 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2255 	val &= DBOFF_MASK;
2256 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2257 			" from cap regs base addr\n", val);
2258 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2259 	xhci_dbg_regs(xhci);
2260 	xhci_print_run_regs(xhci);
2261 	/* Set ir_set to interrupt register set 0 */
2262 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2263 
2264 	/*
2265 	 * Event ring setup: Allocate a normal ring, but also setup
2266 	 * the event ring segment table (ERST).  Section 4.9.3.
2267 	 */
2268 	xhci_dbg(xhci, "// Allocating event ring\n");
2269 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2270 						flags);
2271 	if (!xhci->event_ring)
2272 		goto fail;
2273 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2274 		goto fail;
2275 
2276 	xhci->erst.entries = dma_alloc_coherent(dev,
2277 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2278 			GFP_KERNEL);
2279 	if (!xhci->erst.entries)
2280 		goto fail;
2281 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2282 			(unsigned long long)dma);
2283 
2284 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2285 	xhci->erst.num_entries = ERST_NUM_SEGS;
2286 	xhci->erst.erst_dma_addr = dma;
2287 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2288 			xhci->erst.num_entries,
2289 			xhci->erst.entries,
2290 			(unsigned long long)xhci->erst.erst_dma_addr);
2291 
2292 	/* set ring base address and size for each segment table entry */
2293 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2294 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2295 		entry->seg_addr = cpu_to_le64(seg->dma);
2296 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2297 		entry->rsvd = 0;
2298 		seg = seg->next;
2299 	}
2300 
2301 	/* set ERST count with the number of entries in the segment table */
2302 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2303 	val &= ERST_SIZE_MASK;
2304 	val |= ERST_NUM_SEGS;
2305 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2306 			val);
2307 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2308 
2309 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2310 	/* set the segment table base address */
2311 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2312 			(unsigned long long)xhci->erst.erst_dma_addr);
2313 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2314 	val_64 &= ERST_PTR_MASK;
2315 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2316 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2317 
2318 	/* Set the event ring dequeue address */
2319 	xhci_set_hc_event_deq(xhci);
2320 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2321 	xhci_print_ir_set(xhci, 0);
2322 
2323 	/*
2324 	 * XXX: Might need to set the Interrupter Moderation Register to
2325 	 * something other than the default (~1ms minimum between interrupts).
2326 	 * See section 5.5.1.2.
2327 	 */
2328 	init_completion(&xhci->addr_dev);
2329 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2330 		xhci->devs[i] = NULL;
2331 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2332 		xhci->bus_state[0].resume_done[i] = 0;
2333 		xhci->bus_state[1].resume_done[i] = 0;
2334 	}
2335 
2336 	if (scratchpad_alloc(xhci, flags))
2337 		goto fail;
2338 	if (xhci_setup_port_arrays(xhci, flags))
2339 		goto fail;
2340 
2341 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2342 
2343 	return 0;
2344 
2345 fail:
2346 	xhci_warn(xhci, "Couldn't initialize memory\n");
2347 	xhci_mem_cleanup(xhci);
2348 	return -ENOMEM;
2349 }
2350