1 /*
2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3  *
4  *  Copyright (C) 2002 - 2011  Paul Mundt
5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6  *
7  * based off of the old drivers/char/sh-sci.c by:
8  *
9  *   Copyright (C) 1999, 2000  Niibe Yutaka
10  *   Copyright (C) 2000  Sugioka Toshinobu
11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12  *   Modified to support SecureEdge. David McCullough (2002)
13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14  *   Removed SH7300 support (Jul 2007).
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License.  See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #undef DEBUG
25 
26 #include <linux/module.h>
27 #include <linux/errno.h>
28 #include <linux/timer.h>
29 #include <linux/interrupt.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial.h>
33 #include <linux/major.h>
34 #include <linux/string.h>
35 #include <linux/sysrq.h>
36 #include <linux/ioport.h>
37 #include <linux/mm.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/console.h>
41 #include <linux/platform_device.h>
42 #include <linux/serial_sci.h>
43 #include <linux/notifier.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/cpufreq.h>
46 #include <linux/clk.h>
47 #include <linux/ctype.h>
48 #include <linux/err.h>
49 #include <linux/dmaengine.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/scatterlist.h>
52 #include <linux/slab.h>
53 #include <linux/gpio.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "sh-sci.h"
60 
61 struct sci_port {
62 	struct uart_port	port;
63 
64 	/* Platform configuration */
65 	struct plat_sci_port	*cfg;
66 
67 	/* Break timer */
68 	struct timer_list	break_timer;
69 	int			break_flag;
70 
71 	/* Interface clock */
72 	struct clk		*iclk;
73 	/* Function clock */
74 	struct clk		*fclk;
75 
76 	char			*irqstr[SCIx_NR_IRQS];
77 	char			*gpiostr[SCIx_NR_FNS];
78 
79 	struct dma_chan			*chan_tx;
80 	struct dma_chan			*chan_rx;
81 
82 #ifdef CONFIG_SERIAL_SH_SCI_DMA
83 	struct dma_async_tx_descriptor	*desc_tx;
84 	struct dma_async_tx_descriptor	*desc_rx[2];
85 	dma_cookie_t			cookie_tx;
86 	dma_cookie_t			cookie_rx[2];
87 	dma_cookie_t			active_rx;
88 	struct scatterlist		sg_tx;
89 	unsigned int			sg_len_tx;
90 	struct scatterlist		sg_rx[2];
91 	size_t				buf_len_rx;
92 	struct sh_dmae_slave		param_tx;
93 	struct sh_dmae_slave		param_rx;
94 	struct work_struct		work_tx;
95 	struct work_struct		work_rx;
96 	struct timer_list		rx_timer;
97 	unsigned int			rx_timeout;
98 #endif
99 
100 	struct notifier_block		freq_transition;
101 
102 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
103 	unsigned short saved_smr;
104 	unsigned short saved_fcr;
105 	unsigned char saved_brr;
106 #endif
107 };
108 
109 /* Function prototypes */
110 static void sci_start_tx(struct uart_port *port);
111 static void sci_stop_tx(struct uart_port *port);
112 static void sci_start_rx(struct uart_port *port);
113 
114 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
115 
116 static struct sci_port sci_ports[SCI_NPORTS];
117 static struct uart_driver sci_uart_driver;
118 
119 static inline struct sci_port *
to_sci_port(struct uart_port * uart)120 to_sci_port(struct uart_port *uart)
121 {
122 	return container_of(uart, struct sci_port, port);
123 }
124 
125 struct plat_sci_reg {
126 	u8 offset, size;
127 };
128 
129 /* Helper for invalidating specific entries of an inherited map. */
130 #define sci_reg_invalid	{ .offset = 0, .size = 0 }
131 
132 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
133 	[SCIx_PROBE_REGTYPE] = {
134 		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
135 	},
136 
137 	/*
138 	 * Common SCI definitions, dependent on the port's regshift
139 	 * value.
140 	 */
141 	[SCIx_SCI_REGTYPE] = {
142 		[SCSMR]		= { 0x00,  8 },
143 		[SCBRR]		= { 0x01,  8 },
144 		[SCSCR]		= { 0x02,  8 },
145 		[SCxTDR]	= { 0x03,  8 },
146 		[SCxSR]		= { 0x04,  8 },
147 		[SCxRDR]	= { 0x05,  8 },
148 		[SCFCR]		= sci_reg_invalid,
149 		[SCFDR]		= sci_reg_invalid,
150 		[SCTFDR]	= sci_reg_invalid,
151 		[SCRFDR]	= sci_reg_invalid,
152 		[SCSPTR]	= sci_reg_invalid,
153 		[SCLSR]		= sci_reg_invalid,
154 	},
155 
156 	/*
157 	 * Common definitions for legacy IrDA ports, dependent on
158 	 * regshift value.
159 	 */
160 	[SCIx_IRDA_REGTYPE] = {
161 		[SCSMR]		= { 0x00,  8 },
162 		[SCBRR]		= { 0x01,  8 },
163 		[SCSCR]		= { 0x02,  8 },
164 		[SCxTDR]	= { 0x03,  8 },
165 		[SCxSR]		= { 0x04,  8 },
166 		[SCxRDR]	= { 0x05,  8 },
167 		[SCFCR]		= { 0x06,  8 },
168 		[SCFDR]		= { 0x07, 16 },
169 		[SCTFDR]	= sci_reg_invalid,
170 		[SCRFDR]	= sci_reg_invalid,
171 		[SCSPTR]	= sci_reg_invalid,
172 		[SCLSR]		= sci_reg_invalid,
173 	},
174 
175 	/*
176 	 * Common SCIFA definitions.
177 	 */
178 	[SCIx_SCIFA_REGTYPE] = {
179 		[SCSMR]		= { 0x00, 16 },
180 		[SCBRR]		= { 0x04,  8 },
181 		[SCSCR]		= { 0x08, 16 },
182 		[SCxTDR]	= { 0x20,  8 },
183 		[SCxSR]		= { 0x14, 16 },
184 		[SCxRDR]	= { 0x24,  8 },
185 		[SCFCR]		= { 0x18, 16 },
186 		[SCFDR]		= { 0x1c, 16 },
187 		[SCTFDR]	= sci_reg_invalid,
188 		[SCRFDR]	= sci_reg_invalid,
189 		[SCSPTR]	= sci_reg_invalid,
190 		[SCLSR]		= sci_reg_invalid,
191 	},
192 
193 	/*
194 	 * Common SCIFB definitions.
195 	 */
196 	[SCIx_SCIFB_REGTYPE] = {
197 		[SCSMR]		= { 0x00, 16 },
198 		[SCBRR]		= { 0x04,  8 },
199 		[SCSCR]		= { 0x08, 16 },
200 		[SCxTDR]	= { 0x40,  8 },
201 		[SCxSR]		= { 0x14, 16 },
202 		[SCxRDR]	= { 0x60,  8 },
203 		[SCFCR]		= { 0x18, 16 },
204 		[SCFDR]		= { 0x1c, 16 },
205 		[SCTFDR]	= sci_reg_invalid,
206 		[SCRFDR]	= sci_reg_invalid,
207 		[SCSPTR]	= sci_reg_invalid,
208 		[SCLSR]		= sci_reg_invalid,
209 	},
210 
211 	/*
212 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
213 	 * count registers.
214 	 */
215 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
216 		[SCSMR]		= { 0x00, 16 },
217 		[SCBRR]		= { 0x04,  8 },
218 		[SCSCR]		= { 0x08, 16 },
219 		[SCxTDR]	= { 0x0c,  8 },
220 		[SCxSR]		= { 0x10, 16 },
221 		[SCxRDR]	= { 0x14,  8 },
222 		[SCFCR]		= { 0x18, 16 },
223 		[SCFDR]		= { 0x1c, 16 },
224 		[SCTFDR]	= sci_reg_invalid,
225 		[SCRFDR]	= sci_reg_invalid,
226 		[SCSPTR]	= { 0x20, 16 },
227 		[SCLSR]		= { 0x24, 16 },
228 	},
229 
230 	/*
231 	 * Common SH-3 SCIF definitions.
232 	 */
233 	[SCIx_SH3_SCIF_REGTYPE] = {
234 		[SCSMR]		= { 0x00,  8 },
235 		[SCBRR]		= { 0x02,  8 },
236 		[SCSCR]		= { 0x04,  8 },
237 		[SCxTDR]	= { 0x06,  8 },
238 		[SCxSR]		= { 0x08, 16 },
239 		[SCxRDR]	= { 0x0a,  8 },
240 		[SCFCR]		= { 0x0c,  8 },
241 		[SCFDR]		= { 0x0e, 16 },
242 		[SCTFDR]	= sci_reg_invalid,
243 		[SCRFDR]	= sci_reg_invalid,
244 		[SCSPTR]	= sci_reg_invalid,
245 		[SCLSR]		= sci_reg_invalid,
246 	},
247 
248 	/*
249 	 * Common SH-4(A) SCIF(B) definitions.
250 	 */
251 	[SCIx_SH4_SCIF_REGTYPE] = {
252 		[SCSMR]		= { 0x00, 16 },
253 		[SCBRR]		= { 0x04,  8 },
254 		[SCSCR]		= { 0x08, 16 },
255 		[SCxTDR]	= { 0x0c,  8 },
256 		[SCxSR]		= { 0x10, 16 },
257 		[SCxRDR]	= { 0x14,  8 },
258 		[SCFCR]		= { 0x18, 16 },
259 		[SCFDR]		= { 0x1c, 16 },
260 		[SCTFDR]	= sci_reg_invalid,
261 		[SCRFDR]	= sci_reg_invalid,
262 		[SCSPTR]	= { 0x20, 16 },
263 		[SCLSR]		= { 0x24, 16 },
264 	},
265 
266 	/*
267 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
268 	 * register.
269 	 */
270 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
271 		[SCSMR]		= { 0x00, 16 },
272 		[SCBRR]		= { 0x04,  8 },
273 		[SCSCR]		= { 0x08, 16 },
274 		[SCxTDR]	= { 0x0c,  8 },
275 		[SCxSR]		= { 0x10, 16 },
276 		[SCxRDR]	= { 0x14,  8 },
277 		[SCFCR]		= { 0x18, 16 },
278 		[SCFDR]		= { 0x1c, 16 },
279 		[SCTFDR]	= sci_reg_invalid,
280 		[SCRFDR]	= sci_reg_invalid,
281 		[SCSPTR]	= sci_reg_invalid,
282 		[SCLSR]		= { 0x24, 16 },
283 	},
284 
285 	/*
286 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
287 	 * count registers.
288 	 */
289 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
290 		[SCSMR]		= { 0x00, 16 },
291 		[SCBRR]		= { 0x04,  8 },
292 		[SCSCR]		= { 0x08, 16 },
293 		[SCxTDR]	= { 0x0c,  8 },
294 		[SCxSR]		= { 0x10, 16 },
295 		[SCxRDR]	= { 0x14,  8 },
296 		[SCFCR]		= { 0x18, 16 },
297 		[SCFDR]		= { 0x1c, 16 },
298 		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
299 		[SCRFDR]	= { 0x20, 16 },
300 		[SCSPTR]	= { 0x24, 16 },
301 		[SCLSR]		= { 0x28, 16 },
302 	},
303 
304 	/*
305 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
306 	 * registers.
307 	 */
308 	[SCIx_SH7705_SCIF_REGTYPE] = {
309 		[SCSMR]		= { 0x00, 16 },
310 		[SCBRR]		= { 0x04,  8 },
311 		[SCSCR]		= { 0x08, 16 },
312 		[SCxTDR]	= { 0x20,  8 },
313 		[SCxSR]		= { 0x14, 16 },
314 		[SCxRDR]	= { 0x24,  8 },
315 		[SCFCR]		= { 0x18, 16 },
316 		[SCFDR]		= { 0x1c, 16 },
317 		[SCTFDR]	= sci_reg_invalid,
318 		[SCRFDR]	= sci_reg_invalid,
319 		[SCSPTR]	= sci_reg_invalid,
320 		[SCLSR]		= sci_reg_invalid,
321 	},
322 };
323 
324 #define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
325 
326 /*
327  * The "offset" here is rather misleading, in that it refers to an enum
328  * value relative to the port mapping rather than the fixed offset
329  * itself, which needs to be manually retrieved from the platform's
330  * register map for the given port.
331  */
sci_serial_in(struct uart_port * p,int offset)332 static unsigned int sci_serial_in(struct uart_port *p, int offset)
333 {
334 	struct plat_sci_reg *reg = sci_getreg(p, offset);
335 
336 	if (reg->size == 8)
337 		return ioread8(p->membase + (reg->offset << p->regshift));
338 	else if (reg->size == 16)
339 		return ioread16(p->membase + (reg->offset << p->regshift));
340 	else
341 		WARN(1, "Invalid register access\n");
342 
343 	return 0;
344 }
345 
sci_serial_out(struct uart_port * p,int offset,int value)346 static void sci_serial_out(struct uart_port *p, int offset, int value)
347 {
348 	struct plat_sci_reg *reg = sci_getreg(p, offset);
349 
350 	if (reg->size == 8)
351 		iowrite8(value, p->membase + (reg->offset << p->regshift));
352 	else if (reg->size == 16)
353 		iowrite16(value, p->membase + (reg->offset << p->regshift));
354 	else
355 		WARN(1, "Invalid register access\n");
356 }
357 
358 #define sci_in(up, offset)		(up->serial_in(up, offset))
359 #define sci_out(up, offset, value)	(up->serial_out(up, offset, value))
360 
sci_probe_regmap(struct plat_sci_port * cfg)361 static int sci_probe_regmap(struct plat_sci_port *cfg)
362 {
363 	switch (cfg->type) {
364 	case PORT_SCI:
365 		cfg->regtype = SCIx_SCI_REGTYPE;
366 		break;
367 	case PORT_IRDA:
368 		cfg->regtype = SCIx_IRDA_REGTYPE;
369 		break;
370 	case PORT_SCIFA:
371 		cfg->regtype = SCIx_SCIFA_REGTYPE;
372 		break;
373 	case PORT_SCIFB:
374 		cfg->regtype = SCIx_SCIFB_REGTYPE;
375 		break;
376 	case PORT_SCIF:
377 		/*
378 		 * The SH-4 is a bit of a misnomer here, although that's
379 		 * where this particular port layout originated. This
380 		 * configuration (or some slight variation thereof)
381 		 * remains the dominant model for all SCIFs.
382 		 */
383 		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
384 		break;
385 	default:
386 		printk(KERN_ERR "Can't probe register map for given port\n");
387 		return -EINVAL;
388 	}
389 
390 	return 0;
391 }
392 
sci_port_enable(struct sci_port * sci_port)393 static void sci_port_enable(struct sci_port *sci_port)
394 {
395 	if (!sci_port->port.dev)
396 		return;
397 
398 	pm_runtime_get_sync(sci_port->port.dev);
399 
400 	clk_enable(sci_port->iclk);
401 	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
402 	clk_enable(sci_port->fclk);
403 }
404 
sci_port_disable(struct sci_port * sci_port)405 static void sci_port_disable(struct sci_port *sci_port)
406 {
407 	if (!sci_port->port.dev)
408 		return;
409 
410 	clk_disable(sci_port->fclk);
411 	clk_disable(sci_port->iclk);
412 
413 	pm_runtime_put_sync(sci_port->port.dev);
414 }
415 
416 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
417 
418 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)419 static int sci_poll_get_char(struct uart_port *port)
420 {
421 	unsigned short status;
422 	int c;
423 
424 	do {
425 		status = sci_in(port, SCxSR);
426 		if (status & SCxSR_ERRORS(port)) {
427 			sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
428 			continue;
429 		}
430 		break;
431 	} while (1);
432 
433 	if (!(status & SCxSR_RDxF(port)))
434 		return NO_POLL_CHAR;
435 
436 	c = sci_in(port, SCxRDR);
437 
438 	/* Dummy read */
439 	sci_in(port, SCxSR);
440 	sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
441 
442 	return c;
443 }
444 #endif
445 
sci_poll_put_char(struct uart_port * port,unsigned char c)446 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
447 {
448 	unsigned short status;
449 
450 	do {
451 		status = sci_in(port, SCxSR);
452 	} while (!(status & SCxSR_TDxE(port)));
453 
454 	sci_out(port, SCxTDR, c);
455 	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
456 }
457 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
458 
sci_init_pins(struct uart_port * port,unsigned int cflag)459 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
460 {
461 	struct sci_port *s = to_sci_port(port);
462 	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
463 
464 	/*
465 	 * Use port-specific handler if provided.
466 	 */
467 	if (s->cfg->ops && s->cfg->ops->init_pins) {
468 		s->cfg->ops->init_pins(port, cflag);
469 		return;
470 	}
471 
472 	/*
473 	 * For the generic path SCSPTR is necessary. Bail out if that's
474 	 * unavailable, too.
475 	 */
476 	if (!reg->size)
477 		return;
478 
479 	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
480 	    ((!(cflag & CRTSCTS)))) {
481 		unsigned short status;
482 
483 		status = sci_in(port, SCSPTR);
484 		status &= ~SCSPTR_CTSIO;
485 		status |= SCSPTR_RTSIO;
486 		sci_out(port, SCSPTR, status); /* Set RTS = 1 */
487 	}
488 }
489 
sci_txfill(struct uart_port * port)490 static int sci_txfill(struct uart_port *port)
491 {
492 	struct plat_sci_reg *reg;
493 
494 	reg = sci_getreg(port, SCTFDR);
495 	if (reg->size)
496 		return sci_in(port, SCTFDR) & 0xff;
497 
498 	reg = sci_getreg(port, SCFDR);
499 	if (reg->size)
500 		return sci_in(port, SCFDR) >> 8;
501 
502 	return !(sci_in(port, SCxSR) & SCI_TDRE);
503 }
504 
sci_txroom(struct uart_port * port)505 static int sci_txroom(struct uart_port *port)
506 {
507 	return port->fifosize - sci_txfill(port);
508 }
509 
sci_rxfill(struct uart_port * port)510 static int sci_rxfill(struct uart_port *port)
511 {
512 	struct plat_sci_reg *reg;
513 
514 	reg = sci_getreg(port, SCRFDR);
515 	if (reg->size)
516 		return sci_in(port, SCRFDR) & 0xff;
517 
518 	reg = sci_getreg(port, SCFDR);
519 	if (reg->size)
520 		return sci_in(port, SCFDR) & ((port->fifosize << 1) - 1);
521 
522 	return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
523 }
524 
525 /*
526  * SCI helper for checking the state of the muxed port/RXD pins.
527  */
sci_rxd_in(struct uart_port * port)528 static inline int sci_rxd_in(struct uart_port *port)
529 {
530 	struct sci_port *s = to_sci_port(port);
531 
532 	if (s->cfg->port_reg <= 0)
533 		return 1;
534 
535 	return !!__raw_readb(s->cfg->port_reg);
536 }
537 
538 /* ********************************************************************** *
539  *                   the interrupt related routines                       *
540  * ********************************************************************** */
541 
sci_transmit_chars(struct uart_port * port)542 static void sci_transmit_chars(struct uart_port *port)
543 {
544 	struct circ_buf *xmit = &port->state->xmit;
545 	unsigned int stopped = uart_tx_stopped(port);
546 	unsigned short status;
547 	unsigned short ctrl;
548 	int count;
549 
550 	status = sci_in(port, SCxSR);
551 	if (!(status & SCxSR_TDxE(port))) {
552 		ctrl = sci_in(port, SCSCR);
553 		if (uart_circ_empty(xmit))
554 			ctrl &= ~SCSCR_TIE;
555 		else
556 			ctrl |= SCSCR_TIE;
557 		sci_out(port, SCSCR, ctrl);
558 		return;
559 	}
560 
561 	count = sci_txroom(port);
562 
563 	do {
564 		unsigned char c;
565 
566 		if (port->x_char) {
567 			c = port->x_char;
568 			port->x_char = 0;
569 		} else if (!uart_circ_empty(xmit) && !stopped) {
570 			c = xmit->buf[xmit->tail];
571 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
572 		} else {
573 			break;
574 		}
575 
576 		sci_out(port, SCxTDR, c);
577 
578 		port->icount.tx++;
579 	} while (--count > 0);
580 
581 	sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
582 
583 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
584 		uart_write_wakeup(port);
585 	if (uart_circ_empty(xmit)) {
586 		sci_stop_tx(port);
587 	} else {
588 		ctrl = sci_in(port, SCSCR);
589 
590 		if (port->type != PORT_SCI) {
591 			sci_in(port, SCxSR); /* Dummy read */
592 			sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
593 		}
594 
595 		ctrl |= SCSCR_TIE;
596 		sci_out(port, SCSCR, ctrl);
597 	}
598 }
599 
600 /* On SH3, SCIF may read end-of-break as a space->mark char */
601 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
602 
sci_receive_chars(struct uart_port * port)603 static void sci_receive_chars(struct uart_port *port)
604 {
605 	struct sci_port *sci_port = to_sci_port(port);
606 	struct tty_struct *tty = port->state->port.tty;
607 	int i, count, copied = 0;
608 	unsigned short status;
609 	unsigned char flag;
610 
611 	status = sci_in(port, SCxSR);
612 	if (!(status & SCxSR_RDxF(port)))
613 		return;
614 
615 	while (1) {
616 		/* Don't copy more bytes than there is room for in the buffer */
617 		count = tty_buffer_request_room(tty, sci_rxfill(port));
618 
619 		/* If for any reason we can't copy more data, we're done! */
620 		if (count == 0)
621 			break;
622 
623 		if (port->type == PORT_SCI) {
624 			char c = sci_in(port, SCxRDR);
625 			if (uart_handle_sysrq_char(port, c) ||
626 			    sci_port->break_flag)
627 				count = 0;
628 			else
629 				tty_insert_flip_char(tty, c, TTY_NORMAL);
630 		} else {
631 			for (i = 0; i < count; i++) {
632 				char c = sci_in(port, SCxRDR);
633 
634 				status = sci_in(port, SCxSR);
635 #if defined(CONFIG_CPU_SH3)
636 				/* Skip "chars" during break */
637 				if (sci_port->break_flag) {
638 					if ((c == 0) &&
639 					    (status & SCxSR_FER(port))) {
640 						count--; i--;
641 						continue;
642 					}
643 
644 					/* Nonzero => end-of-break */
645 					dev_dbg(port->dev, "debounce<%02x>\n", c);
646 					sci_port->break_flag = 0;
647 
648 					if (STEPFN(c)) {
649 						count--; i--;
650 						continue;
651 					}
652 				}
653 #endif /* CONFIG_CPU_SH3 */
654 				if (uart_handle_sysrq_char(port, c)) {
655 					count--; i--;
656 					continue;
657 				}
658 
659 				/* Store data and status */
660 				if (status & SCxSR_FER(port)) {
661 					flag = TTY_FRAME;
662 					port->icount.frame++;
663 					dev_notice(port->dev, "frame error\n");
664 				} else if (status & SCxSR_PER(port)) {
665 					flag = TTY_PARITY;
666 					port->icount.parity++;
667 					dev_notice(port->dev, "parity error\n");
668 				} else
669 					flag = TTY_NORMAL;
670 
671 				tty_insert_flip_char(tty, c, flag);
672 			}
673 		}
674 
675 		sci_in(port, SCxSR); /* dummy read */
676 		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
677 
678 		copied += count;
679 		port->icount.rx += count;
680 	}
681 
682 	if (copied) {
683 		/* Tell the rest of the system the news. New characters! */
684 		tty_flip_buffer_push(tty);
685 	} else {
686 		sci_in(port, SCxSR); /* dummy read */
687 		sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
688 	}
689 }
690 
691 #define SCI_BREAK_JIFFIES (HZ/20)
692 
693 /*
694  * The sci generates interrupts during the break,
695  * 1 per millisecond or so during the break period, for 9600 baud.
696  * So dont bother disabling interrupts.
697  * But dont want more than 1 break event.
698  * Use a kernel timer to periodically poll the rx line until
699  * the break is finished.
700  */
sci_schedule_break_timer(struct sci_port * port)701 static inline void sci_schedule_break_timer(struct sci_port *port)
702 {
703 	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
704 }
705 
706 /* Ensure that two consecutive samples find the break over. */
sci_break_timer(unsigned long data)707 static void sci_break_timer(unsigned long data)
708 {
709 	struct sci_port *port = (struct sci_port *)data;
710 
711 	sci_port_enable(port);
712 
713 	if (sci_rxd_in(&port->port) == 0) {
714 		port->break_flag = 1;
715 		sci_schedule_break_timer(port);
716 	} else if (port->break_flag == 1) {
717 		/* break is over. */
718 		port->break_flag = 2;
719 		sci_schedule_break_timer(port);
720 	} else
721 		port->break_flag = 0;
722 
723 	sci_port_disable(port);
724 }
725 
sci_handle_errors(struct uart_port * port)726 static int sci_handle_errors(struct uart_port *port)
727 {
728 	int copied = 0;
729 	unsigned short status = sci_in(port, SCxSR);
730 	struct tty_struct *tty = port->state->port.tty;
731 	struct sci_port *s = to_sci_port(port);
732 
733 	/*
734 	 * Handle overruns, if supported.
735 	 */
736 	if (s->cfg->overrun_bit != SCIx_NOT_SUPPORTED) {
737 		if (status & (1 << s->cfg->overrun_bit)) {
738 			port->icount.overrun++;
739 
740 			/* overrun error */
741 			if (tty_insert_flip_char(tty, 0, TTY_OVERRUN))
742 				copied++;
743 
744 			dev_notice(port->dev, "overrun error");
745 		}
746 	}
747 
748 	if (status & SCxSR_FER(port)) {
749 		if (sci_rxd_in(port) == 0) {
750 			/* Notify of BREAK */
751 			struct sci_port *sci_port = to_sci_port(port);
752 
753 			if (!sci_port->break_flag) {
754 				port->icount.brk++;
755 
756 				sci_port->break_flag = 1;
757 				sci_schedule_break_timer(sci_port);
758 
759 				/* Do sysrq handling. */
760 				if (uart_handle_break(port))
761 					return 0;
762 
763 				dev_dbg(port->dev, "BREAK detected\n");
764 
765 				if (tty_insert_flip_char(tty, 0, TTY_BREAK))
766 					copied++;
767 			}
768 
769 		} else {
770 			/* frame error */
771 			port->icount.frame++;
772 
773 			if (tty_insert_flip_char(tty, 0, TTY_FRAME))
774 				copied++;
775 
776 			dev_notice(port->dev, "frame error\n");
777 		}
778 	}
779 
780 	if (status & SCxSR_PER(port)) {
781 		/* parity error */
782 		port->icount.parity++;
783 
784 		if (tty_insert_flip_char(tty, 0, TTY_PARITY))
785 			copied++;
786 
787 		dev_notice(port->dev, "parity error");
788 	}
789 
790 	if (copied)
791 		tty_flip_buffer_push(tty);
792 
793 	return copied;
794 }
795 
sci_handle_fifo_overrun(struct uart_port * port)796 static int sci_handle_fifo_overrun(struct uart_port *port)
797 {
798 	struct tty_struct *tty = port->state->port.tty;
799 	struct sci_port *s = to_sci_port(port);
800 	struct plat_sci_reg *reg;
801 	int copied = 0;
802 
803 	reg = sci_getreg(port, SCLSR);
804 	if (!reg->size)
805 		return 0;
806 
807 	if ((sci_in(port, SCLSR) & (1 << s->cfg->overrun_bit))) {
808 		sci_out(port, SCLSR, 0);
809 
810 		port->icount.overrun++;
811 
812 		tty_insert_flip_char(tty, 0, TTY_OVERRUN);
813 		tty_flip_buffer_push(tty);
814 
815 		dev_notice(port->dev, "overrun error\n");
816 		copied++;
817 	}
818 
819 	return copied;
820 }
821 
sci_handle_breaks(struct uart_port * port)822 static int sci_handle_breaks(struct uart_port *port)
823 {
824 	int copied = 0;
825 	unsigned short status = sci_in(port, SCxSR);
826 	struct tty_struct *tty = port->state->port.tty;
827 	struct sci_port *s = to_sci_port(port);
828 
829 	if (uart_handle_break(port))
830 		return 0;
831 
832 	if (!s->break_flag && status & SCxSR_BRK(port)) {
833 #if defined(CONFIG_CPU_SH3)
834 		/* Debounce break */
835 		s->break_flag = 1;
836 #endif
837 
838 		port->icount.brk++;
839 
840 		/* Notify of BREAK */
841 		if (tty_insert_flip_char(tty, 0, TTY_BREAK))
842 			copied++;
843 
844 		dev_dbg(port->dev, "BREAK detected\n");
845 	}
846 
847 	if (copied)
848 		tty_flip_buffer_push(tty);
849 
850 	copied += sci_handle_fifo_overrun(port);
851 
852 	return copied;
853 }
854 
sci_rx_interrupt(int irq,void * ptr)855 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
856 {
857 #ifdef CONFIG_SERIAL_SH_SCI_DMA
858 	struct uart_port *port = ptr;
859 	struct sci_port *s = to_sci_port(port);
860 
861 	if (s->chan_rx) {
862 		u16 scr = sci_in(port, SCSCR);
863 		u16 ssr = sci_in(port, SCxSR);
864 
865 		/* Disable future Rx interrupts */
866 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
867 			disable_irq_nosync(irq);
868 			scr |= 0x4000;
869 		} else {
870 			scr &= ~SCSCR_RIE;
871 		}
872 		sci_out(port, SCSCR, scr);
873 		/* Clear current interrupt */
874 		sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
875 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
876 			jiffies, s->rx_timeout);
877 		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
878 
879 		return IRQ_HANDLED;
880 	}
881 #endif
882 
883 	/* I think sci_receive_chars has to be called irrespective
884 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
885 	 * to be disabled?
886 	 */
887 	sci_receive_chars(ptr);
888 
889 	return IRQ_HANDLED;
890 }
891 
sci_tx_interrupt(int irq,void * ptr)892 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
893 {
894 	struct uart_port *port = ptr;
895 	unsigned long flags;
896 
897 	spin_lock_irqsave(&port->lock, flags);
898 	sci_transmit_chars(port);
899 	spin_unlock_irqrestore(&port->lock, flags);
900 
901 	return IRQ_HANDLED;
902 }
903 
sci_er_interrupt(int irq,void * ptr)904 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
905 {
906 	struct uart_port *port = ptr;
907 
908 	/* Handle errors */
909 	if (port->type == PORT_SCI) {
910 		if (sci_handle_errors(port)) {
911 			/* discard character in rx buffer */
912 			sci_in(port, SCxSR);
913 			sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
914 		}
915 	} else {
916 		sci_handle_fifo_overrun(port);
917 		sci_rx_interrupt(irq, ptr);
918 	}
919 
920 	sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
921 
922 	/* Kick the transmission */
923 	sci_tx_interrupt(irq, ptr);
924 
925 	return IRQ_HANDLED;
926 }
927 
sci_br_interrupt(int irq,void * ptr)928 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
929 {
930 	struct uart_port *port = ptr;
931 
932 	/* Handle BREAKs */
933 	sci_handle_breaks(port);
934 	sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
935 
936 	return IRQ_HANDLED;
937 }
938 
port_rx_irq_mask(struct uart_port * port)939 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
940 {
941 	/*
942 	 * Not all ports (such as SCIFA) will support REIE. Rather than
943 	 * special-casing the port type, we check the port initialization
944 	 * IRQ enable mask to see whether the IRQ is desired at all. If
945 	 * it's unset, it's logically inferred that there's no point in
946 	 * testing for it.
947 	 */
948 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
949 }
950 
sci_mpxed_interrupt(int irq,void * ptr)951 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
952 {
953 	unsigned short ssr_status, scr_status, err_enabled;
954 	struct uart_port *port = ptr;
955 	struct sci_port *s = to_sci_port(port);
956 	irqreturn_t ret = IRQ_NONE;
957 
958 	ssr_status = sci_in(port, SCxSR);
959 	scr_status = sci_in(port, SCSCR);
960 	err_enabled = scr_status & port_rx_irq_mask(port);
961 
962 	/* Tx Interrupt */
963 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
964 	    !s->chan_tx)
965 		ret = sci_tx_interrupt(irq, ptr);
966 
967 	/*
968 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
969 	 * DR flags
970 	 */
971 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
972 	    (scr_status & SCSCR_RIE))
973 		ret = sci_rx_interrupt(irq, ptr);
974 
975 	/* Error Interrupt */
976 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
977 		ret = sci_er_interrupt(irq, ptr);
978 
979 	/* Break Interrupt */
980 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
981 		ret = sci_br_interrupt(irq, ptr);
982 
983 	return ret;
984 }
985 
986 /*
987  * Here we define a transition notifier so that we can update all of our
988  * ports' baud rate when the peripheral clock changes.
989  */
sci_notifier(struct notifier_block * self,unsigned long phase,void * p)990 static int sci_notifier(struct notifier_block *self,
991 			unsigned long phase, void *p)
992 {
993 	struct sci_port *sci_port;
994 	unsigned long flags;
995 
996 	sci_port = container_of(self, struct sci_port, freq_transition);
997 
998 	if ((phase == CPUFREQ_POSTCHANGE) ||
999 	    (phase == CPUFREQ_RESUMECHANGE)) {
1000 		struct uart_port *port = &sci_port->port;
1001 
1002 		spin_lock_irqsave(&port->lock, flags);
1003 		port->uartclk = clk_get_rate(sci_port->iclk);
1004 		spin_unlock_irqrestore(&port->lock, flags);
1005 	}
1006 
1007 	return NOTIFY_OK;
1008 }
1009 
1010 static struct sci_irq_desc {
1011 	const char	*desc;
1012 	irq_handler_t	handler;
1013 } sci_irq_desc[] = {
1014 	/*
1015 	 * Split out handlers, the default case.
1016 	 */
1017 	[SCIx_ERI_IRQ] = {
1018 		.desc = "rx err",
1019 		.handler = sci_er_interrupt,
1020 	},
1021 
1022 	[SCIx_RXI_IRQ] = {
1023 		.desc = "rx full",
1024 		.handler = sci_rx_interrupt,
1025 	},
1026 
1027 	[SCIx_TXI_IRQ] = {
1028 		.desc = "tx empty",
1029 		.handler = sci_tx_interrupt,
1030 	},
1031 
1032 	[SCIx_BRI_IRQ] = {
1033 		.desc = "break",
1034 		.handler = sci_br_interrupt,
1035 	},
1036 
1037 	/*
1038 	 * Special muxed handler.
1039 	 */
1040 	[SCIx_MUX_IRQ] = {
1041 		.desc = "mux",
1042 		.handler = sci_mpxed_interrupt,
1043 	},
1044 };
1045 
sci_request_irq(struct sci_port * port)1046 static int sci_request_irq(struct sci_port *port)
1047 {
1048 	struct uart_port *up = &port->port;
1049 	int i, j, ret = 0;
1050 
1051 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1052 		struct sci_irq_desc *desc;
1053 		unsigned int irq;
1054 
1055 		if (SCIx_IRQ_IS_MUXED(port)) {
1056 			i = SCIx_MUX_IRQ;
1057 			irq = up->irq;
1058 		} else
1059 			irq = port->cfg->irqs[i];
1060 
1061 		desc = sci_irq_desc + i;
1062 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1063 					    dev_name(up->dev), desc->desc);
1064 		if (!port->irqstr[j]) {
1065 			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1066 				desc->desc);
1067 			goto out_nomem;
1068 		}
1069 
1070 		ret = request_irq(irq, desc->handler, up->irqflags,
1071 				  port->irqstr[j], port);
1072 		if (unlikely(ret)) {
1073 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1074 			goto out_noirq;
1075 		}
1076 	}
1077 
1078 	return 0;
1079 
1080 out_noirq:
1081 	while (--i >= 0)
1082 		free_irq(port->cfg->irqs[i], port);
1083 
1084 out_nomem:
1085 	while (--j >= 0)
1086 		kfree(port->irqstr[j]);
1087 
1088 	return ret;
1089 }
1090 
sci_free_irq(struct sci_port * port)1091 static void sci_free_irq(struct sci_port *port)
1092 {
1093 	int i;
1094 
1095 	/*
1096 	 * Intentionally in reverse order so we iterate over the muxed
1097 	 * IRQ first.
1098 	 */
1099 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1100 		free_irq(port->cfg->irqs[i], port);
1101 		kfree(port->irqstr[i]);
1102 
1103 		if (SCIx_IRQ_IS_MUXED(port)) {
1104 			/* If there's only one IRQ, we're done. */
1105 			return;
1106 		}
1107 	}
1108 }
1109 
1110 static const char *sci_gpio_names[SCIx_NR_FNS] = {
1111 	"sck", "rxd", "txd", "cts", "rts",
1112 };
1113 
sci_gpio_str(unsigned int index)1114 static const char *sci_gpio_str(unsigned int index)
1115 {
1116 	return sci_gpio_names[index];
1117 }
1118 
sci_init_gpios(struct sci_port * port)1119 static void __devinit sci_init_gpios(struct sci_port *port)
1120 {
1121 	struct uart_port *up = &port->port;
1122 	int i;
1123 
1124 	if (!port->cfg)
1125 		return;
1126 
1127 	for (i = 0; i < SCIx_NR_FNS; i++) {
1128 		const char *desc;
1129 		int ret;
1130 
1131 		if (!port->cfg->gpios[i])
1132 			continue;
1133 
1134 		desc = sci_gpio_str(i);
1135 
1136 		port->gpiostr[i] = kasprintf(GFP_KERNEL, "%s:%s",
1137 					     dev_name(up->dev), desc);
1138 
1139 		/*
1140 		 * If we've failed the allocation, we can still continue
1141 		 * on with a NULL string.
1142 		 */
1143 		if (!port->gpiostr[i])
1144 			dev_notice(up->dev, "%s string allocation failure\n",
1145 				   desc);
1146 
1147 		ret = gpio_request(port->cfg->gpios[i], port->gpiostr[i]);
1148 		if (unlikely(ret != 0)) {
1149 			dev_notice(up->dev, "failed %s gpio request\n", desc);
1150 
1151 			/*
1152 			 * If we can't get the GPIO for whatever reason,
1153 			 * no point in keeping the verbose string around.
1154 			 */
1155 			kfree(port->gpiostr[i]);
1156 		}
1157 	}
1158 }
1159 
sci_free_gpios(struct sci_port * port)1160 static void sci_free_gpios(struct sci_port *port)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i < SCIx_NR_FNS; i++)
1165 		if (port->cfg->gpios[i]) {
1166 			gpio_free(port->cfg->gpios[i]);
1167 			kfree(port->gpiostr[i]);
1168 		}
1169 }
1170 
sci_tx_empty(struct uart_port * port)1171 static unsigned int sci_tx_empty(struct uart_port *port)
1172 {
1173 	unsigned short status = sci_in(port, SCxSR);
1174 	unsigned short in_tx_fifo = sci_txfill(port);
1175 
1176 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1177 }
1178 
1179 /*
1180  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1181  * CTS/RTS is supported in hardware by at least one port and controlled
1182  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1183  * handled via the ->init_pins() op, which is a bit of a one-way street,
1184  * lacking any ability to defer pin control -- this will later be
1185  * converted over to the GPIO framework).
1186  *
1187  * Other modes (such as loopback) are supported generically on certain
1188  * port types, but not others. For these it's sufficient to test for the
1189  * existence of the support register and simply ignore the port type.
1190  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)1191 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1192 {
1193 	if (mctrl & TIOCM_LOOP) {
1194 		struct plat_sci_reg *reg;
1195 
1196 		/*
1197 		 * Standard loopback mode for SCFCR ports.
1198 		 */
1199 		reg = sci_getreg(port, SCFCR);
1200 		if (reg->size)
1201 			sci_out(port, SCFCR, sci_in(port, SCFCR) | 1);
1202 	}
1203 }
1204 
sci_get_mctrl(struct uart_port * port)1205 static unsigned int sci_get_mctrl(struct uart_port *port)
1206 {
1207 	/*
1208 	 * CTS/RTS is handled in hardware when supported, while nothing
1209 	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1210 	 */
1211 	return TIOCM_DSR | TIOCM_CAR;
1212 }
1213 
1214 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1215 static void sci_dma_tx_complete(void *arg)
1216 {
1217 	struct sci_port *s = arg;
1218 	struct uart_port *port = &s->port;
1219 	struct circ_buf *xmit = &port->state->xmit;
1220 	unsigned long flags;
1221 
1222 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1223 
1224 	spin_lock_irqsave(&port->lock, flags);
1225 
1226 	xmit->tail += sg_dma_len(&s->sg_tx);
1227 	xmit->tail &= UART_XMIT_SIZE - 1;
1228 
1229 	port->icount.tx += sg_dma_len(&s->sg_tx);
1230 
1231 	async_tx_ack(s->desc_tx);
1232 	s->cookie_tx = -EINVAL;
1233 	s->desc_tx = NULL;
1234 
1235 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1236 		uart_write_wakeup(port);
1237 
1238 	if (!uart_circ_empty(xmit)) {
1239 		schedule_work(&s->work_tx);
1240 	} else if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1241 		u16 ctrl = sci_in(port, SCSCR);
1242 		sci_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1243 	}
1244 
1245 	spin_unlock_irqrestore(&port->lock, flags);
1246 }
1247 
1248 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,struct tty_struct * tty,size_t count)1249 static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty,
1250 			   size_t count)
1251 {
1252 	struct uart_port *port = &s->port;
1253 	int i, active, room;
1254 
1255 	room = tty_buffer_request_room(tty, count);
1256 
1257 	if (s->active_rx == s->cookie_rx[0]) {
1258 		active = 0;
1259 	} else if (s->active_rx == s->cookie_rx[1]) {
1260 		active = 1;
1261 	} else {
1262 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1263 		return 0;
1264 	}
1265 
1266 	if (room < count)
1267 		dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
1268 			 count - room);
1269 	if (!room)
1270 		return room;
1271 
1272 	for (i = 0; i < room; i++)
1273 		tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1274 				     TTY_NORMAL);
1275 
1276 	port->icount.rx += room;
1277 
1278 	return room;
1279 }
1280 
sci_dma_rx_complete(void * arg)1281 static void sci_dma_rx_complete(void *arg)
1282 {
1283 	struct sci_port *s = arg;
1284 	struct uart_port *port = &s->port;
1285 	struct tty_struct *tty = port->state->port.tty;
1286 	unsigned long flags;
1287 	int count;
1288 
1289 	dev_dbg(port->dev, "%s(%d) active #%d\n", __func__, port->line, s->active_rx);
1290 
1291 	spin_lock_irqsave(&port->lock, flags);
1292 
1293 	count = sci_dma_rx_push(s, tty, s->buf_len_rx);
1294 
1295 	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1296 
1297 	spin_unlock_irqrestore(&port->lock, flags);
1298 
1299 	if (count)
1300 		tty_flip_buffer_push(tty);
1301 
1302 	schedule_work(&s->work_rx);
1303 }
1304 
sci_rx_dma_release(struct sci_port * s,bool enable_pio)1305 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1306 {
1307 	struct dma_chan *chan = s->chan_rx;
1308 	struct uart_port *port = &s->port;
1309 
1310 	s->chan_rx = NULL;
1311 	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1312 	dma_release_channel(chan);
1313 	if (sg_dma_address(&s->sg_rx[0]))
1314 		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1315 				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1316 	if (enable_pio)
1317 		sci_start_rx(port);
1318 }
1319 
sci_tx_dma_release(struct sci_port * s,bool enable_pio)1320 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1321 {
1322 	struct dma_chan *chan = s->chan_tx;
1323 	struct uart_port *port = &s->port;
1324 
1325 	s->chan_tx = NULL;
1326 	s->cookie_tx = -EINVAL;
1327 	dma_release_channel(chan);
1328 	if (enable_pio)
1329 		sci_start_tx(port);
1330 }
1331 
sci_submit_rx(struct sci_port * s)1332 static void sci_submit_rx(struct sci_port *s)
1333 {
1334 	struct dma_chan *chan = s->chan_rx;
1335 	int i;
1336 
1337 	for (i = 0; i < 2; i++) {
1338 		struct scatterlist *sg = &s->sg_rx[i];
1339 		struct dma_async_tx_descriptor *desc;
1340 
1341 		desc = chan->device->device_prep_slave_sg(chan,
1342 			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1343 
1344 		if (desc) {
1345 			s->desc_rx[i] = desc;
1346 			desc->callback = sci_dma_rx_complete;
1347 			desc->callback_param = s;
1348 			s->cookie_rx[i] = desc->tx_submit(desc);
1349 		}
1350 
1351 		if (!desc || s->cookie_rx[i] < 0) {
1352 			if (i) {
1353 				async_tx_ack(s->desc_rx[0]);
1354 				s->cookie_rx[0] = -EINVAL;
1355 			}
1356 			if (desc) {
1357 				async_tx_ack(desc);
1358 				s->cookie_rx[i] = -EINVAL;
1359 			}
1360 			dev_warn(s->port.dev,
1361 				 "failed to re-start DMA, using PIO\n");
1362 			sci_rx_dma_release(s, true);
1363 			return;
1364 		}
1365 		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n", __func__,
1366 			s->cookie_rx[i], i);
1367 	}
1368 
1369 	s->active_rx = s->cookie_rx[0];
1370 
1371 	dma_async_issue_pending(chan);
1372 }
1373 
work_fn_rx(struct work_struct * work)1374 static void work_fn_rx(struct work_struct *work)
1375 {
1376 	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1377 	struct uart_port *port = &s->port;
1378 	struct dma_async_tx_descriptor *desc;
1379 	int new;
1380 
1381 	if (s->active_rx == s->cookie_rx[0]) {
1382 		new = 0;
1383 	} else if (s->active_rx == s->cookie_rx[1]) {
1384 		new = 1;
1385 	} else {
1386 		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1387 		return;
1388 	}
1389 	desc = s->desc_rx[new];
1390 
1391 	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1392 	    DMA_SUCCESS) {
1393 		/* Handle incomplete DMA receive */
1394 		struct tty_struct *tty = port->state->port.tty;
1395 		struct dma_chan *chan = s->chan_rx;
1396 		struct sh_desc *sh_desc = container_of(desc, struct sh_desc,
1397 						       async_tx);
1398 		unsigned long flags;
1399 		int count;
1400 
1401 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1402 		dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
1403 			sh_desc->partial, sh_desc->cookie);
1404 
1405 		spin_lock_irqsave(&port->lock, flags);
1406 		count = sci_dma_rx_push(s, tty, sh_desc->partial);
1407 		spin_unlock_irqrestore(&port->lock, flags);
1408 
1409 		if (count)
1410 			tty_flip_buffer_push(tty);
1411 
1412 		sci_submit_rx(s);
1413 
1414 		return;
1415 	}
1416 
1417 	s->cookie_rx[new] = desc->tx_submit(desc);
1418 	if (s->cookie_rx[new] < 0) {
1419 		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1420 		sci_rx_dma_release(s, true);
1421 		return;
1422 	}
1423 
1424 	s->active_rx = s->cookie_rx[!new];
1425 
1426 	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n", __func__,
1427 		s->cookie_rx[new], new, s->active_rx);
1428 }
1429 
work_fn_tx(struct work_struct * work)1430 static void work_fn_tx(struct work_struct *work)
1431 {
1432 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1433 	struct dma_async_tx_descriptor *desc;
1434 	struct dma_chan *chan = s->chan_tx;
1435 	struct uart_port *port = &s->port;
1436 	struct circ_buf *xmit = &port->state->xmit;
1437 	struct scatterlist *sg = &s->sg_tx;
1438 
1439 	/*
1440 	 * DMA is idle now.
1441 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1442 	 * offsets and lengths. Since it is a circular buffer, we have to
1443 	 * transmit till the end, and then the rest. Take the port lock to get a
1444 	 * consistent xmit buffer state.
1445 	 */
1446 	spin_lock_irq(&port->lock);
1447 	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1448 	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1449 		sg->offset;
1450 	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1451 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1452 	spin_unlock_irq(&port->lock);
1453 
1454 	BUG_ON(!sg_dma_len(sg));
1455 
1456 	desc = chan->device->device_prep_slave_sg(chan,
1457 			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1458 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1459 	if (!desc) {
1460 		/* switch to PIO */
1461 		sci_tx_dma_release(s, true);
1462 		return;
1463 	}
1464 
1465 	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1466 
1467 	spin_lock_irq(&port->lock);
1468 	s->desc_tx = desc;
1469 	desc->callback = sci_dma_tx_complete;
1470 	desc->callback_param = s;
1471 	spin_unlock_irq(&port->lock);
1472 	s->cookie_tx = desc->tx_submit(desc);
1473 	if (s->cookie_tx < 0) {
1474 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1475 		/* switch to PIO */
1476 		sci_tx_dma_release(s, true);
1477 		return;
1478 	}
1479 
1480 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__,
1481 		xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1482 
1483 	dma_async_issue_pending(chan);
1484 }
1485 #endif
1486 
sci_start_tx(struct uart_port * port)1487 static void sci_start_tx(struct uart_port *port)
1488 {
1489 	struct sci_port *s = to_sci_port(port);
1490 	unsigned short ctrl;
1491 
1492 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1493 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1494 		u16 new, scr = sci_in(port, SCSCR);
1495 		if (s->chan_tx)
1496 			new = scr | 0x8000;
1497 		else
1498 			new = scr & ~0x8000;
1499 		if (new != scr)
1500 			sci_out(port, SCSCR, new);
1501 	}
1502 
1503 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1504 	    s->cookie_tx < 0)
1505 		schedule_work(&s->work_tx);
1506 #endif
1507 
1508 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1509 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1510 		ctrl = sci_in(port, SCSCR);
1511 		sci_out(port, SCSCR, ctrl | SCSCR_TIE);
1512 	}
1513 }
1514 
sci_stop_tx(struct uart_port * port)1515 static void sci_stop_tx(struct uart_port *port)
1516 {
1517 	unsigned short ctrl;
1518 
1519 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1520 	ctrl = sci_in(port, SCSCR);
1521 
1522 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1523 		ctrl &= ~0x8000;
1524 
1525 	ctrl &= ~SCSCR_TIE;
1526 
1527 	sci_out(port, SCSCR, ctrl);
1528 }
1529 
sci_start_rx(struct uart_port * port)1530 static void sci_start_rx(struct uart_port *port)
1531 {
1532 	unsigned short ctrl;
1533 
1534 	ctrl = sci_in(port, SCSCR) | port_rx_irq_mask(port);
1535 
1536 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1537 		ctrl &= ~0x4000;
1538 
1539 	sci_out(port, SCSCR, ctrl);
1540 }
1541 
sci_stop_rx(struct uart_port * port)1542 static void sci_stop_rx(struct uart_port *port)
1543 {
1544 	unsigned short ctrl;
1545 
1546 	ctrl = sci_in(port, SCSCR);
1547 
1548 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1549 		ctrl &= ~0x4000;
1550 
1551 	ctrl &= ~port_rx_irq_mask(port);
1552 
1553 	sci_out(port, SCSCR, ctrl);
1554 }
1555 
sci_enable_ms(struct uart_port * port)1556 static void sci_enable_ms(struct uart_port *port)
1557 {
1558 	/*
1559 	 * Not supported by hardware, always a nop.
1560 	 */
1561 }
1562 
sci_break_ctl(struct uart_port * port,int break_state)1563 static void sci_break_ctl(struct uart_port *port, int break_state)
1564 {
1565 	/*
1566 	 * Not supported by hardware. Most parts couple break and rx
1567 	 * interrupts together, with break detection always enabled.
1568 	 */
1569 }
1570 
1571 #ifdef CONFIG_SERIAL_SH_SCI_DMA
filter(struct dma_chan * chan,void * slave)1572 static bool filter(struct dma_chan *chan, void *slave)
1573 {
1574 	struct sh_dmae_slave *param = slave;
1575 
1576 	dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__,
1577 		param->slave_id);
1578 
1579 	chan->private = param;
1580 	return true;
1581 }
1582 
rx_timer_fn(unsigned long arg)1583 static void rx_timer_fn(unsigned long arg)
1584 {
1585 	struct sci_port *s = (struct sci_port *)arg;
1586 	struct uart_port *port = &s->port;
1587 	u16 scr = sci_in(port, SCSCR);
1588 
1589 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1590 		scr &= ~0x4000;
1591 		enable_irq(s->cfg->irqs[1]);
1592 	}
1593 	sci_out(port, SCSCR, scr | SCSCR_RIE);
1594 	dev_dbg(port->dev, "DMA Rx timed out\n");
1595 	schedule_work(&s->work_rx);
1596 }
1597 
sci_request_dma(struct uart_port * port)1598 static void sci_request_dma(struct uart_port *port)
1599 {
1600 	struct sci_port *s = to_sci_port(port);
1601 	struct sh_dmae_slave *param;
1602 	struct dma_chan *chan;
1603 	dma_cap_mask_t mask;
1604 	int nent;
1605 
1606 	dev_dbg(port->dev, "%s: port %d\n", __func__,
1607 		port->line);
1608 
1609 	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1610 		return;
1611 
1612 	dma_cap_zero(mask);
1613 	dma_cap_set(DMA_SLAVE, mask);
1614 
1615 	param = &s->param_tx;
1616 
1617 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1618 	param->slave_id = s->cfg->dma_slave_tx;
1619 
1620 	s->cookie_tx = -EINVAL;
1621 	chan = dma_request_channel(mask, filter, param);
1622 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1623 	if (chan) {
1624 		s->chan_tx = chan;
1625 		sg_init_table(&s->sg_tx, 1);
1626 		/* UART circular tx buffer is an aligned page. */
1627 		BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK);
1628 		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1629 			    UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK);
1630 		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1631 		if (!nent)
1632 			sci_tx_dma_release(s, false);
1633 		else
1634 			dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__,
1635 				sg_dma_len(&s->sg_tx),
1636 				port->state->xmit.buf, sg_dma_address(&s->sg_tx));
1637 
1638 		s->sg_len_tx = nent;
1639 
1640 		INIT_WORK(&s->work_tx, work_fn_tx);
1641 	}
1642 
1643 	param = &s->param_rx;
1644 
1645 	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1646 	param->slave_id = s->cfg->dma_slave_rx;
1647 
1648 	chan = dma_request_channel(mask, filter, param);
1649 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1650 	if (chan) {
1651 		dma_addr_t dma[2];
1652 		void *buf[2];
1653 		int i;
1654 
1655 		s->chan_rx = chan;
1656 
1657 		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1658 		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1659 					    &dma[0], GFP_KERNEL);
1660 
1661 		if (!buf[0]) {
1662 			dev_warn(port->dev,
1663 				 "failed to allocate dma buffer, using PIO\n");
1664 			sci_rx_dma_release(s, true);
1665 			return;
1666 		}
1667 
1668 		buf[1] = buf[0] + s->buf_len_rx;
1669 		dma[1] = dma[0] + s->buf_len_rx;
1670 
1671 		for (i = 0; i < 2; i++) {
1672 			struct scatterlist *sg = &s->sg_rx[i];
1673 
1674 			sg_init_table(sg, 1);
1675 			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1676 				    (int)buf[i] & ~PAGE_MASK);
1677 			sg_dma_address(sg) = dma[i];
1678 		}
1679 
1680 		INIT_WORK(&s->work_rx, work_fn_rx);
1681 		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1682 
1683 		sci_submit_rx(s);
1684 	}
1685 }
1686 
sci_free_dma(struct uart_port * port)1687 static void sci_free_dma(struct uart_port *port)
1688 {
1689 	struct sci_port *s = to_sci_port(port);
1690 
1691 	if (s->chan_tx)
1692 		sci_tx_dma_release(s, false);
1693 	if (s->chan_rx)
1694 		sci_rx_dma_release(s, false);
1695 }
1696 #else
sci_request_dma(struct uart_port * port)1697 static inline void sci_request_dma(struct uart_port *port)
1698 {
1699 }
1700 
sci_free_dma(struct uart_port * port)1701 static inline void sci_free_dma(struct uart_port *port)
1702 {
1703 }
1704 #endif
1705 
sci_startup(struct uart_port * port)1706 static int sci_startup(struct uart_port *port)
1707 {
1708 	struct sci_port *s = to_sci_port(port);
1709 	int ret;
1710 
1711 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1712 
1713 	pm_runtime_put_noidle(port->dev);
1714 
1715 	sci_port_enable(s);
1716 
1717 	ret = sci_request_irq(s);
1718 	if (unlikely(ret < 0))
1719 		return ret;
1720 
1721 	sci_request_dma(port);
1722 
1723 	sci_start_tx(port);
1724 	sci_start_rx(port);
1725 
1726 	return 0;
1727 }
1728 
sci_shutdown(struct uart_port * port)1729 static void sci_shutdown(struct uart_port *port)
1730 {
1731 	struct sci_port *s = to_sci_port(port);
1732 
1733 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1734 
1735 	sci_stop_rx(port);
1736 	sci_stop_tx(port);
1737 
1738 	sci_free_dma(port);
1739 	sci_free_irq(s);
1740 
1741 	sci_port_disable(s);
1742 
1743 	pm_runtime_get_noresume(port->dev);
1744 }
1745 
sci_scbrr_calc(unsigned int algo_id,unsigned int bps,unsigned long freq)1746 static unsigned int sci_scbrr_calc(unsigned int algo_id, unsigned int bps,
1747 				   unsigned long freq)
1748 {
1749 	switch (algo_id) {
1750 	case SCBRR_ALGO_1:
1751 		return ((freq + 16 * bps) / (16 * bps) - 1);
1752 	case SCBRR_ALGO_2:
1753 		return ((freq + 16 * bps) / (32 * bps) - 1);
1754 	case SCBRR_ALGO_3:
1755 		return (((freq * 2) + 16 * bps) / (16 * bps) - 1);
1756 	case SCBRR_ALGO_4:
1757 		return (((freq * 2) + 16 * bps) / (32 * bps) - 1);
1758 	case SCBRR_ALGO_5:
1759 		return (((freq * 1000 / 32) / bps) - 1);
1760 	}
1761 
1762 	/* Warn, but use a safe default */
1763 	WARN_ON(1);
1764 
1765 	return ((freq + 16 * bps) / (32 * bps) - 1);
1766 }
1767 
sci_reset(struct uart_port * port)1768 static void sci_reset(struct uart_port *port)
1769 {
1770 	struct plat_sci_reg *reg;
1771 	unsigned int status;
1772 
1773 	do {
1774 		status = sci_in(port, SCxSR);
1775 	} while (!(status & SCxSR_TEND(port)));
1776 
1777 	sci_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1778 
1779 	reg = sci_getreg(port, SCFCR);
1780 	if (reg->size)
1781 		sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1782 }
1783 
sci_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)1784 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1785 			    struct ktermios *old)
1786 {
1787 	struct sci_port *s = to_sci_port(port);
1788 	struct plat_sci_reg *reg;
1789 	unsigned int baud, smr_val, max_baud;
1790 	int t = -1;
1791 
1792 	/*
1793 	 * earlyprintk comes here early on with port->uartclk set to zero.
1794 	 * the clock framework is not up and running at this point so here
1795 	 * we assume that 115200 is the maximum baud rate. please note that
1796 	 * the baud rate is not programmed during earlyprintk - it is assumed
1797 	 * that the previous boot loader has enabled required clocks and
1798 	 * setup the baud rate generator hardware for us already.
1799 	 */
1800 	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1801 
1802 	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1803 	if (likely(baud && port->uartclk))
1804 		t = sci_scbrr_calc(s->cfg->scbrr_algo_id, baud, port->uartclk);
1805 
1806 	sci_port_enable(s);
1807 
1808 	sci_reset(port);
1809 
1810 	smr_val = sci_in(port, SCSMR) & 3;
1811 
1812 	if ((termios->c_cflag & CSIZE) == CS7)
1813 		smr_val |= 0x40;
1814 	if (termios->c_cflag & PARENB)
1815 		smr_val |= 0x20;
1816 	if (termios->c_cflag & PARODD)
1817 		smr_val |= 0x30;
1818 	if (termios->c_cflag & CSTOPB)
1819 		smr_val |= 0x08;
1820 
1821 	uart_update_timeout(port, termios->c_cflag, baud);
1822 
1823 	sci_out(port, SCSMR, smr_val);
1824 
1825 	dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t,
1826 		s->cfg->scscr);
1827 
1828 	if (t > 0) {
1829 		if (t >= 256) {
1830 			sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
1831 			t >>= 2;
1832 		} else
1833 			sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
1834 
1835 		sci_out(port, SCBRR, t);
1836 		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1837 	}
1838 
1839 	sci_init_pins(port, termios->c_cflag);
1840 
1841 	reg = sci_getreg(port, SCFCR);
1842 	if (reg->size) {
1843 		unsigned short ctrl = sci_in(port, SCFCR);
1844 
1845 		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1846 			if (termios->c_cflag & CRTSCTS)
1847 				ctrl |= SCFCR_MCE;
1848 			else
1849 				ctrl &= ~SCFCR_MCE;
1850 		}
1851 
1852 		/*
1853 		 * As we've done a sci_reset() above, ensure we don't
1854 		 * interfere with the FIFOs while toggling MCE. As the
1855 		 * reset values could still be set, simply mask them out.
1856 		 */
1857 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1858 
1859 		sci_out(port, SCFCR, ctrl);
1860 	}
1861 
1862 	sci_out(port, SCSCR, s->cfg->scscr);
1863 
1864 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1865 	/*
1866 	 * Calculate delay for 1.5 DMA buffers: see
1867 	 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1868 	 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1869 	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1870 	 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1871 	 * sizes), but it has been found out experimentally, that this is not
1872 	 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1873 	 * as a minimum seem to work perfectly.
1874 	 */
1875 	if (s->chan_rx) {
1876 		s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1877 			port->fifosize / 2;
1878 		dev_dbg(port->dev,
1879 			"DMA Rx t-out %ums, tty t-out %u jiffies\n",
1880 			s->rx_timeout * 1000 / HZ, port->timeout);
1881 		if (s->rx_timeout < msecs_to_jiffies(20))
1882 			s->rx_timeout = msecs_to_jiffies(20);
1883 	}
1884 #endif
1885 
1886 	if ((termios->c_cflag & CREAD) != 0)
1887 		sci_start_rx(port);
1888 
1889 	sci_port_disable(s);
1890 }
1891 
sci_type(struct uart_port * port)1892 static const char *sci_type(struct uart_port *port)
1893 {
1894 	switch (port->type) {
1895 	case PORT_IRDA:
1896 		return "irda";
1897 	case PORT_SCI:
1898 		return "sci";
1899 	case PORT_SCIF:
1900 		return "scif";
1901 	case PORT_SCIFA:
1902 		return "scifa";
1903 	case PORT_SCIFB:
1904 		return "scifb";
1905 	}
1906 
1907 	return NULL;
1908 }
1909 
sci_port_size(struct uart_port * port)1910 static inline unsigned long sci_port_size(struct uart_port *port)
1911 {
1912 	/*
1913 	 * Pick an arbitrary size that encapsulates all of the base
1914 	 * registers by default. This can be optimized later, or derived
1915 	 * from platform resource data at such a time that ports begin to
1916 	 * behave more erratically.
1917 	 */
1918 	return 64;
1919 }
1920 
sci_remap_port(struct uart_port * port)1921 static int sci_remap_port(struct uart_port *port)
1922 {
1923 	unsigned long size = sci_port_size(port);
1924 
1925 	/*
1926 	 * Nothing to do if there's already an established membase.
1927 	 */
1928 	if (port->membase)
1929 		return 0;
1930 
1931 	if (port->flags & UPF_IOREMAP) {
1932 		port->membase = ioremap_nocache(port->mapbase, size);
1933 		if (unlikely(!port->membase)) {
1934 			dev_err(port->dev, "can't remap port#%d\n", port->line);
1935 			return -ENXIO;
1936 		}
1937 	} else {
1938 		/*
1939 		 * For the simple (and majority of) cases where we don't
1940 		 * need to do any remapping, just cast the cookie
1941 		 * directly.
1942 		 */
1943 		port->membase = (void __iomem *)port->mapbase;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
sci_release_port(struct uart_port * port)1949 static void sci_release_port(struct uart_port *port)
1950 {
1951 	if (port->flags & UPF_IOREMAP) {
1952 		iounmap(port->membase);
1953 		port->membase = NULL;
1954 	}
1955 
1956 	release_mem_region(port->mapbase, sci_port_size(port));
1957 }
1958 
sci_request_port(struct uart_port * port)1959 static int sci_request_port(struct uart_port *port)
1960 {
1961 	unsigned long size = sci_port_size(port);
1962 	struct resource *res;
1963 	int ret;
1964 
1965 	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
1966 	if (unlikely(res == NULL))
1967 		return -EBUSY;
1968 
1969 	ret = sci_remap_port(port);
1970 	if (unlikely(ret != 0)) {
1971 		release_resource(res);
1972 		return ret;
1973 	}
1974 
1975 	return 0;
1976 }
1977 
sci_config_port(struct uart_port * port,int flags)1978 static void sci_config_port(struct uart_port *port, int flags)
1979 {
1980 	if (flags & UART_CONFIG_TYPE) {
1981 		struct sci_port *sport = to_sci_port(port);
1982 
1983 		port->type = sport->cfg->type;
1984 		sci_request_port(port);
1985 	}
1986 }
1987 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)1988 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
1989 {
1990 	struct sci_port *s = to_sci_port(port);
1991 
1992 	if (ser->irq != s->cfg->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs)
1993 		return -EINVAL;
1994 	if (ser->baud_base < 2400)
1995 		/* No paper tape reader for Mitch.. */
1996 		return -EINVAL;
1997 
1998 	return 0;
1999 }
2000 
2001 static struct uart_ops sci_uart_ops = {
2002 	.tx_empty	= sci_tx_empty,
2003 	.set_mctrl	= sci_set_mctrl,
2004 	.get_mctrl	= sci_get_mctrl,
2005 	.start_tx	= sci_start_tx,
2006 	.stop_tx	= sci_stop_tx,
2007 	.stop_rx	= sci_stop_rx,
2008 	.enable_ms	= sci_enable_ms,
2009 	.break_ctl	= sci_break_ctl,
2010 	.startup	= sci_startup,
2011 	.shutdown	= sci_shutdown,
2012 	.set_termios	= sci_set_termios,
2013 	.type		= sci_type,
2014 	.release_port	= sci_release_port,
2015 	.request_port	= sci_request_port,
2016 	.config_port	= sci_config_port,
2017 	.verify_port	= sci_verify_port,
2018 #ifdef CONFIG_CONSOLE_POLL
2019 	.poll_get_char	= sci_poll_get_char,
2020 	.poll_put_char	= sci_poll_put_char,
2021 #endif
2022 };
2023 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,struct plat_sci_port * p)2024 static int __devinit sci_init_single(struct platform_device *dev,
2025 				     struct sci_port *sci_port,
2026 				     unsigned int index,
2027 				     struct plat_sci_port *p)
2028 {
2029 	struct uart_port *port = &sci_port->port;
2030 	int ret;
2031 
2032 	sci_port->cfg	= p;
2033 
2034 	port->ops	= &sci_uart_ops;
2035 	port->iotype	= UPIO_MEM;
2036 	port->line	= index;
2037 
2038 	switch (p->type) {
2039 	case PORT_SCIFB:
2040 		port->fifosize = 256;
2041 		break;
2042 	case PORT_SCIFA:
2043 		port->fifosize = 64;
2044 		break;
2045 	case PORT_SCIF:
2046 		port->fifosize = 16;
2047 		break;
2048 	default:
2049 		port->fifosize = 1;
2050 		break;
2051 	}
2052 
2053 	if (p->regtype == SCIx_PROBE_REGTYPE) {
2054 		ret = sci_probe_regmap(p);
2055 		if (unlikely(ret))
2056 			return ret;
2057 	}
2058 
2059 	if (dev) {
2060 		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2061 		if (IS_ERR(sci_port->iclk)) {
2062 			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2063 			if (IS_ERR(sci_port->iclk)) {
2064 				dev_err(&dev->dev, "can't get iclk\n");
2065 				return PTR_ERR(sci_port->iclk);
2066 			}
2067 		}
2068 
2069 		/*
2070 		 * The function clock is optional, ignore it if we can't
2071 		 * find it.
2072 		 */
2073 		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2074 		if (IS_ERR(sci_port->fclk))
2075 			sci_port->fclk = NULL;
2076 
2077 		port->dev = &dev->dev;
2078 
2079 		sci_init_gpios(sci_port);
2080 
2081 		pm_runtime_irq_safe(&dev->dev);
2082 		pm_runtime_get_noresume(&dev->dev);
2083 		pm_runtime_enable(&dev->dev);
2084 	}
2085 
2086 	sci_port->break_timer.data = (unsigned long)sci_port;
2087 	sci_port->break_timer.function = sci_break_timer;
2088 	init_timer(&sci_port->break_timer);
2089 
2090 	/*
2091 	 * Establish some sensible defaults for the error detection.
2092 	 */
2093 	if (!p->error_mask)
2094 		p->error_mask = (p->type == PORT_SCI) ?
2095 			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2096 
2097 	/*
2098 	 * Establish sensible defaults for the overrun detection, unless
2099 	 * the part has explicitly disabled support for it.
2100 	 */
2101 	if (p->overrun_bit != SCIx_NOT_SUPPORTED) {
2102 		if (p->type == PORT_SCI)
2103 			p->overrun_bit = 5;
2104 		else if (p->scbrr_algo_id == SCBRR_ALGO_4)
2105 			p->overrun_bit = 9;
2106 		else
2107 			p->overrun_bit = 0;
2108 
2109 		/*
2110 		 * Make the error mask inclusive of overrun detection, if
2111 		 * supported.
2112 		 */
2113 		p->error_mask |= (1 << p->overrun_bit);
2114 	}
2115 
2116 	port->mapbase		= p->mapbase;
2117 	port->type		= p->type;
2118 	port->flags		= p->flags;
2119 	port->regshift		= p->regshift;
2120 
2121 	/*
2122 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2123 	 * for the multi-IRQ ports, which is where we are primarily
2124 	 * concerned with the shutdown path synchronization.
2125 	 *
2126 	 * For the muxed case there's nothing more to do.
2127 	 */
2128 	port->irq		= p->irqs[SCIx_RXI_IRQ];
2129 	port->irqflags		= 0;
2130 
2131 	port->serial_in		= sci_serial_in;
2132 	port->serial_out	= sci_serial_out;
2133 
2134 	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2135 		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2136 			p->dma_slave_tx, p->dma_slave_rx);
2137 
2138 	return 0;
2139 }
2140 
2141 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
serial_console_putchar(struct uart_port * port,int ch)2142 static void serial_console_putchar(struct uart_port *port, int ch)
2143 {
2144 	sci_poll_put_char(port, ch);
2145 }
2146 
2147 /*
2148  *	Print a string to the serial port trying not to disturb
2149  *	any possible real use of the port...
2150  */
serial_console_write(struct console * co,const char * s,unsigned count)2151 static void serial_console_write(struct console *co, const char *s,
2152 				 unsigned count)
2153 {
2154 	struct sci_port *sci_port = &sci_ports[co->index];
2155 	struct uart_port *port = &sci_port->port;
2156 	unsigned short bits;
2157 
2158 	sci_port_enable(sci_port);
2159 
2160 	uart_console_write(port, s, count, serial_console_putchar);
2161 
2162 	/* wait until fifo is empty and last bit has been transmitted */
2163 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2164 	while ((sci_in(port, SCxSR) & bits) != bits)
2165 		cpu_relax();
2166 
2167 	sci_port_disable(sci_port);
2168 }
2169 
serial_console_setup(struct console * co,char * options)2170 static int __devinit serial_console_setup(struct console *co, char *options)
2171 {
2172 	struct sci_port *sci_port;
2173 	struct uart_port *port;
2174 	int baud = 115200;
2175 	int bits = 8;
2176 	int parity = 'n';
2177 	int flow = 'n';
2178 	int ret;
2179 
2180 	/*
2181 	 * Refuse to handle any bogus ports.
2182 	 */
2183 	if (co->index < 0 || co->index >= SCI_NPORTS)
2184 		return -ENODEV;
2185 
2186 	sci_port = &sci_ports[co->index];
2187 	port = &sci_port->port;
2188 
2189 	/*
2190 	 * Refuse to handle uninitialized ports.
2191 	 */
2192 	if (!port->ops)
2193 		return -ENODEV;
2194 
2195 	ret = sci_remap_port(port);
2196 	if (unlikely(ret != 0))
2197 		return ret;
2198 
2199 	sci_port_enable(sci_port);
2200 
2201 	if (options)
2202 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2203 
2204 	sci_port_disable(sci_port);
2205 
2206 	return uart_set_options(port, co, baud, parity, bits, flow);
2207 }
2208 
2209 static struct console serial_console = {
2210 	.name		= "ttySC",
2211 	.device		= uart_console_device,
2212 	.write		= serial_console_write,
2213 	.setup		= serial_console_setup,
2214 	.flags		= CON_PRINTBUFFER,
2215 	.index		= -1,
2216 	.data		= &sci_uart_driver,
2217 };
2218 
2219 static struct console early_serial_console = {
2220 	.name           = "early_ttySC",
2221 	.write          = serial_console_write,
2222 	.flags          = CON_PRINTBUFFER,
2223 	.index		= -1,
2224 };
2225 
2226 static char early_serial_buf[32];
2227 
sci_probe_earlyprintk(struct platform_device * pdev)2228 static int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2229 {
2230 	struct plat_sci_port *cfg = pdev->dev.platform_data;
2231 
2232 	if (early_serial_console.data)
2233 		return -EEXIST;
2234 
2235 	early_serial_console.index = pdev->id;
2236 
2237 	sci_init_single(NULL, &sci_ports[pdev->id], pdev->id, cfg);
2238 
2239 	serial_console_setup(&early_serial_console, early_serial_buf);
2240 
2241 	if (!strstr(early_serial_buf, "keep"))
2242 		early_serial_console.flags |= CON_BOOT;
2243 
2244 	register_console(&early_serial_console);
2245 	return 0;
2246 }
2247 
2248 #define uart_console(port)	((port)->cons->index == (port)->line)
2249 
sci_runtime_suspend(struct device * dev)2250 static int sci_runtime_suspend(struct device *dev)
2251 {
2252 	struct sci_port *sci_port = dev_get_drvdata(dev);
2253 	struct uart_port *port = &sci_port->port;
2254 
2255 	if (uart_console(port)) {
2256 		struct plat_sci_reg *reg;
2257 
2258 		sci_port->saved_smr = sci_in(port, SCSMR);
2259 		sci_port->saved_brr = sci_in(port, SCBRR);
2260 
2261 		reg = sci_getreg(port, SCFCR);
2262 		if (reg->size)
2263 			sci_port->saved_fcr = sci_in(port, SCFCR);
2264 		else
2265 			sci_port->saved_fcr = 0;
2266 	}
2267 	return 0;
2268 }
2269 
sci_runtime_resume(struct device * dev)2270 static int sci_runtime_resume(struct device *dev)
2271 {
2272 	struct sci_port *sci_port = dev_get_drvdata(dev);
2273 	struct uart_port *port = &sci_port->port;
2274 
2275 	if (uart_console(port)) {
2276 		sci_reset(port);
2277 		sci_out(port, SCSMR, sci_port->saved_smr);
2278 		sci_out(port, SCBRR, sci_port->saved_brr);
2279 
2280 		if (sci_port->saved_fcr)
2281 			sci_out(port, SCFCR, sci_port->saved_fcr);
2282 
2283 		sci_out(port, SCSCR, sci_port->cfg->scscr);
2284 	}
2285 	return 0;
2286 }
2287 
2288 #define SCI_CONSOLE	(&serial_console)
2289 
2290 #else
sci_probe_earlyprintk(struct platform_device * pdev)2291 static inline int __devinit sci_probe_earlyprintk(struct platform_device *pdev)
2292 {
2293 	return -EINVAL;
2294 }
2295 
2296 #define SCI_CONSOLE	NULL
2297 #define sci_runtime_suspend	NULL
2298 #define sci_runtime_resume	NULL
2299 
2300 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2301 
2302 static char banner[] __initdata =
2303 	KERN_INFO "SuperH SCI(F) driver initialized\n";
2304 
2305 static struct uart_driver sci_uart_driver = {
2306 	.owner		= THIS_MODULE,
2307 	.driver_name	= "sci",
2308 	.dev_name	= "ttySC",
2309 	.major		= SCI_MAJOR,
2310 	.minor		= SCI_MINOR_START,
2311 	.nr		= SCI_NPORTS,
2312 	.cons		= SCI_CONSOLE,
2313 };
2314 
sci_remove(struct platform_device * dev)2315 static int sci_remove(struct platform_device *dev)
2316 {
2317 	struct sci_port *port = platform_get_drvdata(dev);
2318 
2319 	cpufreq_unregister_notifier(&port->freq_transition,
2320 				    CPUFREQ_TRANSITION_NOTIFIER);
2321 
2322 	sci_free_gpios(port);
2323 
2324 	uart_remove_one_port(&sci_uart_driver, &port->port);
2325 
2326 	clk_put(port->iclk);
2327 	clk_put(port->fclk);
2328 
2329 	pm_runtime_disable(&dev->dev);
2330 	return 0;
2331 }
2332 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)2333 static int __devinit sci_probe_single(struct platform_device *dev,
2334 				      unsigned int index,
2335 				      struct plat_sci_port *p,
2336 				      struct sci_port *sciport)
2337 {
2338 	int ret;
2339 
2340 	/* Sanity check */
2341 	if (unlikely(index >= SCI_NPORTS)) {
2342 		dev_notice(&dev->dev, "Attempting to register port "
2343 			   "%d when only %d are available.\n",
2344 			   index+1, SCI_NPORTS);
2345 		dev_notice(&dev->dev, "Consider bumping "
2346 			   "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2347 		return 0;
2348 	}
2349 
2350 	ret = sci_init_single(dev, sciport, index, p);
2351 	if (ret)
2352 		return ret;
2353 
2354 	return uart_add_one_port(&sci_uart_driver, &sciport->port);
2355 }
2356 
sci_probe(struct platform_device * dev)2357 static int __devinit sci_probe(struct platform_device *dev)
2358 {
2359 	struct plat_sci_port *p = dev->dev.platform_data;
2360 	struct sci_port *sp = &sci_ports[dev->id];
2361 	int ret;
2362 
2363 	/*
2364 	 * If we've come here via earlyprintk initialization, head off to
2365 	 * the special early probe. We don't have sufficient device state
2366 	 * to make it beyond this yet.
2367 	 */
2368 	if (is_early_platform_device(dev))
2369 		return sci_probe_earlyprintk(dev);
2370 
2371 	platform_set_drvdata(dev, sp);
2372 
2373 	ret = sci_probe_single(dev, dev->id, p, sp);
2374 	if (ret)
2375 		goto err_unreg;
2376 
2377 	sp->freq_transition.notifier_call = sci_notifier;
2378 
2379 	ret = cpufreq_register_notifier(&sp->freq_transition,
2380 					CPUFREQ_TRANSITION_NOTIFIER);
2381 	if (unlikely(ret < 0))
2382 		goto err_unreg;
2383 
2384 #ifdef CONFIG_SH_STANDARD_BIOS
2385 	sh_bios_gdb_detach();
2386 #endif
2387 
2388 	return 0;
2389 
2390 err_unreg:
2391 	sci_remove(dev);
2392 	return ret;
2393 }
2394 
sci_suspend(struct device * dev)2395 static int sci_suspend(struct device *dev)
2396 {
2397 	struct sci_port *sport = dev_get_drvdata(dev);
2398 
2399 	if (sport)
2400 		uart_suspend_port(&sci_uart_driver, &sport->port);
2401 
2402 	return 0;
2403 }
2404 
sci_resume(struct device * dev)2405 static int sci_resume(struct device *dev)
2406 {
2407 	struct sci_port *sport = dev_get_drvdata(dev);
2408 
2409 	if (sport)
2410 		uart_resume_port(&sci_uart_driver, &sport->port);
2411 
2412 	return 0;
2413 }
2414 
2415 static const struct dev_pm_ops sci_dev_pm_ops = {
2416 	.runtime_suspend = sci_runtime_suspend,
2417 	.runtime_resume = sci_runtime_resume,
2418 	.suspend	= sci_suspend,
2419 	.resume		= sci_resume,
2420 };
2421 
2422 static struct platform_driver sci_driver = {
2423 	.probe		= sci_probe,
2424 	.remove		= sci_remove,
2425 	.driver		= {
2426 		.name	= "sh-sci",
2427 		.owner	= THIS_MODULE,
2428 		.pm	= &sci_dev_pm_ops,
2429 	},
2430 };
2431 
sci_init(void)2432 static int __init sci_init(void)
2433 {
2434 	int ret;
2435 
2436 	printk(banner);
2437 
2438 	ret = uart_register_driver(&sci_uart_driver);
2439 	if (likely(ret == 0)) {
2440 		ret = platform_driver_register(&sci_driver);
2441 		if (unlikely(ret))
2442 			uart_unregister_driver(&sci_uart_driver);
2443 	}
2444 
2445 	return ret;
2446 }
2447 
sci_exit(void)2448 static void __exit sci_exit(void)
2449 {
2450 	platform_driver_unregister(&sci_driver);
2451 	uart_unregister_driver(&sci_uart_driver);
2452 }
2453 
2454 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2455 early_platform_init_buffer("earlyprintk", &sci_driver,
2456 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2457 #endif
2458 module_init(sci_init);
2459 module_exit(sci_exit);
2460 
2461 MODULE_LICENSE("GPL");
2462 MODULE_ALIAS("platform:sh-sci");
2463 MODULE_AUTHOR("Paul Mundt");
2464 MODULE_DESCRIPTION("SuperH SCI(F) serial driver");
2465