1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28 
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46 
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51 
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56 
57 static int sub_api_initialized;
58 
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68 
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 		struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82 
init_se_kmem_caches(void)83 int init_se_kmem_caches(void)
84 {
85 	se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 			sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 			0, NULL);
88 	if (!se_tmr_req_cache) {
89 		pr_err("kmem_cache_create() for struct se_tmr_req"
90 				" failed\n");
91 		goto out;
92 	}
93 	se_sess_cache = kmem_cache_create("se_sess_cache",
94 			sizeof(struct se_session), __alignof__(struct se_session),
95 			0, NULL);
96 	if (!se_sess_cache) {
97 		pr_err("kmem_cache_create() for struct se_session"
98 				" failed\n");
99 		goto out_free_tmr_req_cache;
100 	}
101 	se_ua_cache = kmem_cache_create("se_ua_cache",
102 			sizeof(struct se_ua), __alignof__(struct se_ua),
103 			0, NULL);
104 	if (!se_ua_cache) {
105 		pr_err("kmem_cache_create() for struct se_ua failed\n");
106 		goto out_free_sess_cache;
107 	}
108 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 			sizeof(struct t10_pr_registration),
110 			__alignof__(struct t10_pr_registration), 0, NULL);
111 	if (!t10_pr_reg_cache) {
112 		pr_err("kmem_cache_create() for struct t10_pr_registration"
113 				" failed\n");
114 		goto out_free_ua_cache;
115 	}
116 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 			0, NULL);
119 	if (!t10_alua_lu_gp_cache) {
120 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 				" failed\n");
122 		goto out_free_pr_reg_cache;
123 	}
124 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 			sizeof(struct t10_alua_lu_gp_member),
126 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 	if (!t10_alua_lu_gp_mem_cache) {
128 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 				"cache failed\n");
130 		goto out_free_lu_gp_cache;
131 	}
132 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 			sizeof(struct t10_alua_tg_pt_gp),
134 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 	if (!t10_alua_tg_pt_gp_cache) {
136 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 				"cache failed\n");
138 		goto out_free_lu_gp_mem_cache;
139 	}
140 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 			"t10_alua_tg_pt_gp_mem_cache",
142 			sizeof(struct t10_alua_tg_pt_gp_member),
143 			__alignof__(struct t10_alua_tg_pt_gp_member),
144 			0, NULL);
145 	if (!t10_alua_tg_pt_gp_mem_cache) {
146 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 				"mem_t failed\n");
148 		goto out_free_tg_pt_gp_cache;
149 	}
150 
151 	target_completion_wq = alloc_workqueue("target_completion",
152 					       WQ_MEM_RECLAIM, 0);
153 	if (!target_completion_wq)
154 		goto out_free_tg_pt_gp_mem_cache;
155 
156 	return 0;
157 
158 out_free_tg_pt_gp_mem_cache:
159 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 	kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 	kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 	kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 	kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 	kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 	return -ENOMEM;
176 }
177 
release_se_kmem_caches(void)178 void release_se_kmem_caches(void)
179 {
180 	destroy_workqueue(target_completion_wq);
181 	kmem_cache_destroy(se_tmr_req_cache);
182 	kmem_cache_destroy(se_sess_cache);
183 	kmem_cache_destroy(se_ua_cache);
184 	kmem_cache_destroy(t10_pr_reg_cache);
185 	kmem_cache_destroy(t10_alua_lu_gp_cache);
186 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190 
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194 
195 /*
196  * Allocate a new row index for the entry type specified
197  */
scsi_get_new_index(scsi_index_t type)198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200 	u32 new_index;
201 
202 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203 
204 	spin_lock(&scsi_mib_index_lock);
205 	new_index = ++scsi_mib_index[type];
206 	spin_unlock(&scsi_mib_index_lock);
207 
208 	return new_index;
209 }
210 
transport_init_queue_obj(struct se_queue_obj * qobj)211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213 	atomic_set(&qobj->queue_cnt, 0);
214 	INIT_LIST_HEAD(&qobj->qobj_list);
215 	init_waitqueue_head(&qobj->thread_wq);
216 	spin_lock_init(&qobj->cmd_queue_lock);
217 }
218 
transport_subsystem_check_init(void)219 void transport_subsystem_check_init(void)
220 {
221 	int ret;
222 
223 	if (sub_api_initialized)
224 		return;
225 
226 	ret = request_module("target_core_iblock");
227 	if (ret != 0)
228 		pr_err("Unable to load target_core_iblock\n");
229 
230 	ret = request_module("target_core_file");
231 	if (ret != 0)
232 		pr_err("Unable to load target_core_file\n");
233 
234 	ret = request_module("target_core_pscsi");
235 	if (ret != 0)
236 		pr_err("Unable to load target_core_pscsi\n");
237 
238 	ret = request_module("target_core_stgt");
239 	if (ret != 0)
240 		pr_err("Unable to load target_core_stgt\n");
241 
242 	sub_api_initialized = 1;
243 	return;
244 }
245 
transport_init_session(void)246 struct se_session *transport_init_session(void)
247 {
248 	struct se_session *se_sess;
249 
250 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 	if (!se_sess) {
252 		pr_err("Unable to allocate struct se_session from"
253 				" se_sess_cache\n");
254 		return ERR_PTR(-ENOMEM);
255 	}
256 	INIT_LIST_HEAD(&se_sess->sess_list);
257 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 	spin_lock_init(&se_sess->sess_cmd_lock);
261 
262 	return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265 
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)269 void __transport_register_session(
270 	struct se_portal_group *se_tpg,
271 	struct se_node_acl *se_nacl,
272 	struct se_session *se_sess,
273 	void *fabric_sess_ptr)
274 {
275 	unsigned char buf[PR_REG_ISID_LEN];
276 
277 	se_sess->se_tpg = se_tpg;
278 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
279 	/*
280 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281 	 *
282 	 * Only set for struct se_session's that will actually be moving I/O.
283 	 * eg: *NOT* discovery sessions.
284 	 */
285 	if (se_nacl) {
286 		/*
287 		 * If the fabric module supports an ISID based TransportID,
288 		 * save this value in binary from the fabric I_T Nexus now.
289 		 */
290 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 			memset(&buf[0], 0, PR_REG_ISID_LEN);
292 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 					&buf[0], PR_REG_ISID_LEN);
294 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295 		}
296 		spin_lock_irq(&se_nacl->nacl_sess_lock);
297 		/*
298 		 * The se_nacl->nacl_sess pointer will be set to the
299 		 * last active I_T Nexus for each struct se_node_acl.
300 		 */
301 		se_nacl->nacl_sess = se_sess;
302 
303 		list_add_tail(&se_sess->sess_acl_list,
304 			      &se_nacl->acl_sess_list);
305 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
306 	}
307 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308 
309 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)314 void transport_register_session(
315 	struct se_portal_group *se_tpg,
316 	struct se_node_acl *se_nacl,
317 	struct se_session *se_sess,
318 	void *fabric_sess_ptr)
319 {
320 	spin_lock_bh(&se_tpg->session_lock);
321 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 	spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325 
transport_deregister_session_configfs(struct se_session * se_sess)326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328 	struct se_node_acl *se_nacl;
329 	unsigned long flags;
330 	/*
331 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332 	 */
333 	se_nacl = se_sess->se_node_acl;
334 	if (se_nacl) {
335 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 		list_del(&se_sess->sess_acl_list);
337 		/*
338 		 * If the session list is empty, then clear the pointer.
339 		 * Otherwise, set the struct se_session pointer from the tail
340 		 * element of the per struct se_node_acl active session list.
341 		 */
342 		if (list_empty(&se_nacl->acl_sess_list))
343 			se_nacl->nacl_sess = NULL;
344 		else {
345 			se_nacl->nacl_sess = container_of(
346 					se_nacl->acl_sess_list.prev,
347 					struct se_session, sess_acl_list);
348 		}
349 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350 	}
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353 
transport_free_session(struct se_session * se_sess)354 void transport_free_session(struct se_session *se_sess)
355 {
356 	kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359 
transport_deregister_session(struct se_session * se_sess)360 void transport_deregister_session(struct se_session *se_sess)
361 {
362 	struct se_portal_group *se_tpg = se_sess->se_tpg;
363 	struct se_node_acl *se_nacl;
364 	unsigned long flags;
365 
366 	if (!se_tpg) {
367 		transport_free_session(se_sess);
368 		return;
369 	}
370 
371 	spin_lock_irqsave(&se_tpg->session_lock, flags);
372 	list_del(&se_sess->sess_list);
373 	se_sess->se_tpg = NULL;
374 	se_sess->fabric_sess_ptr = NULL;
375 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376 
377 	/*
378 	 * Determine if we need to do extra work for this initiator node's
379 	 * struct se_node_acl if it had been previously dynamically generated.
380 	 */
381 	se_nacl = se_sess->se_node_acl;
382 	if (se_nacl) {
383 		spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 		if (se_nacl->dynamic_node_acl) {
385 			if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 					se_tpg)) {
387 				list_del(&se_nacl->acl_list);
388 				se_tpg->num_node_acls--;
389 				spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390 
391 				core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 				core_free_device_list_for_node(se_nacl, se_tpg);
393 				se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 						se_nacl);
395 				spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396 			}
397 		}
398 		spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399 	}
400 
401 	transport_free_session(se_sess);
402 
403 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 		se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407 
408 /*
409  * Called with cmd->t_state_lock held.
410  */
transport_all_task_dev_remove_state(struct se_cmd * cmd)411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413 	struct se_device *dev = cmd->se_dev;
414 	struct se_task *task;
415 	unsigned long flags;
416 
417 	if (!dev)
418 		return;
419 
420 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 		if (task->task_flags & TF_ACTIVE)
422 			continue;
423 
424 		spin_lock_irqsave(&dev->execute_task_lock, flags);
425 		if (task->t_state_active) {
426 			pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 				cmd->se_tfo->get_task_tag(cmd), dev, task);
428 
429 			list_del(&task->t_state_list);
430 			atomic_dec(&cmd->t_task_cdbs_ex_left);
431 			task->t_state_active = false;
432 		}
433 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434 	}
435 
436 }
437 
438 /*	transport_cmd_check_stop():
439  *
440  *	'transport_off = 1' determines if t_transport_active should be cleared.
441  *	'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *	A non-zero u8 t_state sets cmd->t_state.
444  *	Returns 1 when command is stopped, else 0.
445  */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)446 static int transport_cmd_check_stop(
447 	struct se_cmd *cmd,
448 	int transport_off,
449 	u8 t_state)
450 {
451 	unsigned long flags;
452 
453 	spin_lock_irqsave(&cmd->t_state_lock, flags);
454 	/*
455 	 * Determine if IOCTL context caller in requesting the stopping of this
456 	 * command for LUN shutdown purposes.
457 	 */
458 	if (atomic_read(&cmd->transport_lun_stop)) {
459 		pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 			" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 			cmd->se_tfo->get_task_tag(cmd));
462 
463 		atomic_set(&cmd->t_transport_active, 0);
464 		if (transport_off == 2)
465 			transport_all_task_dev_remove_state(cmd);
466 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467 
468 		complete(&cmd->transport_lun_stop_comp);
469 		return 1;
470 	}
471 	/*
472 	 * Determine if frontend context caller is requesting the stopping of
473 	 * this command for frontend exceptions.
474 	 */
475 	if (atomic_read(&cmd->t_transport_stop)) {
476 		pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 			" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 			cmd->se_tfo->get_task_tag(cmd));
479 
480 		if (transport_off == 2)
481 			transport_all_task_dev_remove_state(cmd);
482 
483 		/*
484 		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 		 * to FE.
486 		 */
487 		if (transport_off == 2)
488 			cmd->se_lun = NULL;
489 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490 
491 		complete(&cmd->t_transport_stop_comp);
492 		return 1;
493 	}
494 	if (transport_off) {
495 		atomic_set(&cmd->t_transport_active, 0);
496 		if (transport_off == 2) {
497 			transport_all_task_dev_remove_state(cmd);
498 			/*
499 			 * Clear struct se_cmd->se_lun before the transport_off == 2
500 			 * handoff to fabric module.
501 			 */
502 			cmd->se_lun = NULL;
503 			/*
504 			 * Some fabric modules like tcm_loop can release
505 			 * their internally allocated I/O reference now and
506 			 * struct se_cmd now.
507 			 *
508 			 * Fabric modules are expected to return '1' here if the
509 			 * se_cmd being passed is released at this point,
510 			 * or zero if not being released.
511 			 */
512 			if (cmd->se_tfo->check_stop_free != NULL) {
513 				spin_unlock_irqrestore(
514 					&cmd->t_state_lock, flags);
515 
516 				return cmd->se_tfo->check_stop_free(cmd);
517 			}
518 		}
519 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 
521 		return 0;
522 	} else if (t_state)
523 		cmd->t_state = t_state;
524 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 
526 	return 0;
527 }
528 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531 	return transport_cmd_check_stop(cmd, 2, 0);
532 }
533 
transport_lun_remove_cmd(struct se_cmd * cmd)534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536 	struct se_lun *lun = cmd->se_lun;
537 	unsigned long flags;
538 
539 	if (!lun)
540 		return;
541 
542 	spin_lock_irqsave(&cmd->t_state_lock, flags);
543 	if (!atomic_read(&cmd->transport_dev_active)) {
544 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 		goto check_lun;
546 	}
547 	atomic_set(&cmd->transport_dev_active, 0);
548 	transport_all_task_dev_remove_state(cmd);
549 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550 
551 
552 check_lun:
553 	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 	if (atomic_read(&cmd->transport_lun_active)) {
555 		list_del(&cmd->se_lun_node);
556 		atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 		pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 			cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561 	}
562 	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567 	if (!cmd->se_tmr_req)
568 		transport_lun_remove_cmd(cmd);
569 
570 	if (transport_cmd_check_stop_to_fabric(cmd))
571 		return;
572 	if (remove) {
573 		transport_remove_cmd_from_queue(cmd);
574 		transport_put_cmd(cmd);
575 	}
576 }
577 
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state,bool at_head)578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 		bool at_head)
580 {
581 	struct se_device *dev = cmd->se_dev;
582 	struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 	unsigned long flags;
584 
585 	if (t_state) {
586 		spin_lock_irqsave(&cmd->t_state_lock, flags);
587 		cmd->t_state = t_state;
588 		atomic_set(&cmd->t_transport_active, 1);
589 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590 	}
591 
592 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593 
594 	/* If the cmd is already on the list, remove it before we add it */
595 	if (!list_empty(&cmd->se_queue_node))
596 		list_del(&cmd->se_queue_node);
597 	else
598 		atomic_inc(&qobj->queue_cnt);
599 
600 	if (at_head)
601 		list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 	else
603 		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 	atomic_set(&cmd->t_transport_queue_active, 1);
605 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606 
607 	wake_up_interruptible(&qobj->thread_wq);
608 }
609 
610 static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj * qobj)611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613 	struct se_cmd *cmd;
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 	if (list_empty(&qobj->qobj_list)) {
618 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 		return NULL;
620 	}
621 	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622 
623 	atomic_set(&cmd->t_transport_queue_active, 0);
624 
625 	list_del_init(&cmd->se_queue_node);
626 	atomic_dec(&qobj->queue_cnt);
627 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628 
629 	return cmd;
630 }
631 
transport_remove_cmd_from_queue(struct se_cmd * cmd)632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634 	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 	if (!atomic_read(&cmd->t_transport_queue_active)) {
639 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 		return;
641 	}
642 	atomic_set(&cmd->t_transport_queue_active, 0);
643 	atomic_dec(&qobj->queue_cnt);
644 	list_del_init(&cmd->se_queue_node);
645 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646 
647 	if (atomic_read(&cmd->t_transport_queue_active)) {
648 		pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 			cmd->se_tfo->get_task_tag(cmd),
650 			atomic_read(&cmd->t_transport_queue_active));
651 	}
652 }
653 
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
transport_complete_sync_cache(struct se_cmd * cmd,int good)658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660 	struct se_task *task = list_entry(cmd->t_task_list.next,
661 				struct se_task, t_list);
662 
663 	if (good) {
664 		cmd->scsi_status = SAM_STAT_GOOD;
665 		task->task_scsi_status = GOOD;
666 	} else {
667 		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 		task->task_se_cmd->scsi_sense_reason =
669 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670 
671 	}
672 
673 	transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676 
target_complete_failure_work(struct work_struct * work)677 static void target_complete_failure_work(struct work_struct *work)
678 {
679 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680 
681 	transport_generic_request_failure(cmd);
682 }
683 
684 /*	transport_complete_task():
685  *
686  *	Called from interrupt and non interrupt context depending
687  *	on the transport plugin.
688  */
transport_complete_task(struct se_task * task,int success)689 void transport_complete_task(struct se_task *task, int success)
690 {
691 	struct se_cmd *cmd = task->task_se_cmd;
692 	struct se_device *dev = cmd->se_dev;
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&cmd->t_state_lock, flags);
696 	task->task_flags &= ~TF_ACTIVE;
697 
698 	/*
699 	 * See if any sense data exists, if so set the TASK_SENSE flag.
700 	 * Also check for any other post completion work that needs to be
701 	 * done by the plugins.
702 	 */
703 	if (dev && dev->transport->transport_complete) {
704 		if (dev->transport->transport_complete(task) != 0) {
705 			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706 			task->task_flags |= TF_HAS_SENSE;
707 			success = 1;
708 		}
709 	}
710 
711 	/*
712 	 * See if we are waiting for outstanding struct se_task
713 	 * to complete for an exception condition
714 	 */
715 	if (task->task_flags & TF_REQUEST_STOP) {
716 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 		complete(&task->task_stop_comp);
718 		return;
719 	}
720 
721 	if (!success)
722 		cmd->t_tasks_failed = 1;
723 
724 	/*
725 	 * Decrement the outstanding t_task_cdbs_left count.  The last
726 	 * struct se_task from struct se_cmd will complete itself into the
727 	 * device queue depending upon int success.
728 	 */
729 	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731 		return;
732 	}
733 
734 	if (cmd->t_tasks_failed) {
735 		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736 		INIT_WORK(&cmd->work, target_complete_failure_work);
737 	} else {
738 		atomic_set(&cmd->t_transport_complete, 1);
739 		INIT_WORK(&cmd->work, target_complete_ok_work);
740 	}
741 
742 	cmd->t_state = TRANSPORT_COMPLETE;
743 	atomic_set(&cmd->t_transport_active, 1);
744 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745 
746 	queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749 
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754 
755  * Called with se_dev_t->execute_task_lock called.
756  */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)757 static inline int transport_add_task_check_sam_attr(
758 	struct se_task *task,
759 	struct se_task *task_prev,
760 	struct se_device *dev)
761 {
762 	/*
763 	 * No SAM Task attribute emulation enabled, add to tail of
764 	 * execution queue
765 	 */
766 	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767 		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768 		return 0;
769 	}
770 	/*
771 	 * HEAD_OF_QUEUE attribute for received CDB, which means
772 	 * the first task that is associated with a struct se_cmd goes to
773 	 * head of the struct se_device->execute_task_list, and task_prev
774 	 * after that for each subsequent task
775 	 */
776 	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777 		list_add(&task->t_execute_list,
778 				(task_prev != NULL) ?
779 				&task_prev->t_execute_list :
780 				&dev->execute_task_list);
781 
782 		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783 				" in execution queue\n",
784 				task->task_se_cmd->t_task_cdb[0]);
785 		return 1;
786 	}
787 	/*
788 	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789 	 * transitioned from Dermant -> Active state, and are added to the end
790 	 * of the struct se_device->execute_task_list
791 	 */
792 	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 	return 0;
794 }
795 
796 /*	__transport_add_task_to_execute_queue():
797  *
798  *	Called with se_dev_t->execute_task_lock called.
799  */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)800 static void __transport_add_task_to_execute_queue(
801 	struct se_task *task,
802 	struct se_task *task_prev,
803 	struct se_device *dev)
804 {
805 	int head_of_queue;
806 
807 	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808 	atomic_inc(&dev->execute_tasks);
809 
810 	if (task->t_state_active)
811 		return;
812 	/*
813 	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
814 	 * state list as well.  Running with SAM Task Attribute emulation
815 	 * will always return head_of_queue == 0 here
816 	 */
817 	if (head_of_queue)
818 		list_add(&task->t_state_list, (task_prev) ?
819 				&task_prev->t_state_list :
820 				&dev->state_task_list);
821 	else
822 		list_add_tail(&task->t_state_list, &dev->state_task_list);
823 
824 	task->t_state_active = true;
825 
826 	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827 		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828 		task, dev);
829 }
830 
transport_add_tasks_to_state_queue(struct se_cmd * cmd)831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833 	struct se_device *dev = cmd->se_dev;
834 	struct se_task *task;
835 	unsigned long flags;
836 
837 	spin_lock_irqsave(&cmd->t_state_lock, flags);
838 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
839 		spin_lock(&dev->execute_task_lock);
840 		if (!task->t_state_active) {
841 			list_add_tail(&task->t_state_list,
842 				      &dev->state_task_list);
843 			task->t_state_active = true;
844 
845 			pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846 				task->task_se_cmd->se_tfo->get_task_tag(
847 				task->task_se_cmd), task, dev);
848 		}
849 		spin_unlock(&dev->execute_task_lock);
850 	}
851 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853 
__transport_add_tasks_from_cmd(struct se_cmd * cmd)854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856 	struct se_device *dev = cmd->se_dev;
857 	struct se_task *task, *task_prev = NULL;
858 
859 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
860 		if (!list_empty(&task->t_execute_list))
861 			continue;
862 		/*
863 		 * __transport_add_task_to_execute_queue() handles the
864 		 * SAM Task Attribute emulation if enabled
865 		 */
866 		__transport_add_task_to_execute_queue(task, task_prev, dev);
867 		task_prev = task;
868 	}
869 }
870 
transport_add_tasks_from_cmd(struct se_cmd * cmd)871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873 	unsigned long flags;
874 	struct se_device *dev = cmd->se_dev;
875 
876 	spin_lock_irqsave(&dev->execute_task_lock, flags);
877 	__transport_add_tasks_from_cmd(cmd);
878 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880 
__transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882 		struct se_device *dev)
883 {
884 	list_del_init(&task->t_execute_list);
885 	atomic_dec(&dev->execute_tasks);
886 }
887 
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)888 static void transport_remove_task_from_execute_queue(
889 	struct se_task *task,
890 	struct se_device *dev)
891 {
892 	unsigned long flags;
893 
894 	if (WARN_ON(list_empty(&task->t_execute_list)))
895 		return;
896 
897 	spin_lock_irqsave(&dev->execute_task_lock, flags);
898 	__transport_remove_task_from_execute_queue(task, dev);
899 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901 
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905 
target_qf_do_work(struct work_struct * work)906 static void target_qf_do_work(struct work_struct *work)
907 {
908 	struct se_device *dev = container_of(work, struct se_device,
909 					qf_work_queue);
910 	LIST_HEAD(qf_cmd_list);
911 	struct se_cmd *cmd, *cmd_tmp;
912 
913 	spin_lock_irq(&dev->qf_cmd_lock);
914 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915 	spin_unlock_irq(&dev->qf_cmd_lock);
916 
917 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918 		list_del(&cmd->se_qf_node);
919 		atomic_dec(&dev->dev_qf_count);
920 		smp_mb__after_atomic_dec();
921 
922 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926 			: "UNKNOWN");
927 
928 		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929 	}
930 }
931 
transport_dump_cmd_direction(struct se_cmd * cmd)932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934 	switch (cmd->data_direction) {
935 	case DMA_NONE:
936 		return "NONE";
937 	case DMA_FROM_DEVICE:
938 		return "READ";
939 	case DMA_TO_DEVICE:
940 		return "WRITE";
941 	case DMA_BIDIRECTIONAL:
942 		return "BIDI";
943 	default:
944 		break;
945 	}
946 
947 	return "UNKNOWN";
948 }
949 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)950 void transport_dump_dev_state(
951 	struct se_device *dev,
952 	char *b,
953 	int *bl)
954 {
955 	*bl += sprintf(b + *bl, "Status: ");
956 	switch (dev->dev_status) {
957 	case TRANSPORT_DEVICE_ACTIVATED:
958 		*bl += sprintf(b + *bl, "ACTIVATED");
959 		break;
960 	case TRANSPORT_DEVICE_DEACTIVATED:
961 		*bl += sprintf(b + *bl, "DEACTIVATED");
962 		break;
963 	case TRANSPORT_DEVICE_SHUTDOWN:
964 		*bl += sprintf(b + *bl, "SHUTDOWN");
965 		break;
966 	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967 	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968 		*bl += sprintf(b + *bl, "OFFLINE");
969 		break;
970 	default:
971 		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972 		break;
973 	}
974 
975 	*bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976 		atomic_read(&dev->execute_tasks), dev->queue_depth);
977 	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978 		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979 	*bl += sprintf(b + *bl, "        ");
980 }
981 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)982 void transport_dump_vpd_proto_id(
983 	struct t10_vpd *vpd,
984 	unsigned char *p_buf,
985 	int p_buf_len)
986 {
987 	unsigned char buf[VPD_TMP_BUF_SIZE];
988 	int len;
989 
990 	memset(buf, 0, VPD_TMP_BUF_SIZE);
991 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992 
993 	switch (vpd->protocol_identifier) {
994 	case 0x00:
995 		sprintf(buf+len, "Fibre Channel\n");
996 		break;
997 	case 0x10:
998 		sprintf(buf+len, "Parallel SCSI\n");
999 		break;
1000 	case 0x20:
1001 		sprintf(buf+len, "SSA\n");
1002 		break;
1003 	case 0x30:
1004 		sprintf(buf+len, "IEEE 1394\n");
1005 		break;
1006 	case 0x40:
1007 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008 				" Protocol\n");
1009 		break;
1010 	case 0x50:
1011 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012 		break;
1013 	case 0x60:
1014 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015 		break;
1016 	case 0x70:
1017 		sprintf(buf+len, "Automation/Drive Interface Transport"
1018 				" Protocol\n");
1019 		break;
1020 	case 0x80:
1021 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022 		break;
1023 	default:
1024 		sprintf(buf+len, "Unknown 0x%02x\n",
1025 				vpd->protocol_identifier);
1026 		break;
1027 	}
1028 
1029 	if (p_buf)
1030 		strncpy(p_buf, buf, p_buf_len);
1031 	else
1032 		pr_debug("%s", buf);
1033 }
1034 
1035 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038 	/*
1039 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1040 	 *
1041 	 * from spc3r23.pdf section 7.5.1
1042 	 */
1043 	 if (page_83[1] & 0x80) {
1044 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1045 		vpd->protocol_identifier_set = 1;
1046 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1047 	}
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1051 int transport_dump_vpd_assoc(
1052 	struct t10_vpd *vpd,
1053 	unsigned char *p_buf,
1054 	int p_buf_len)
1055 {
1056 	unsigned char buf[VPD_TMP_BUF_SIZE];
1057 	int ret = 0;
1058 	int len;
1059 
1060 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1061 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1062 
1063 	switch (vpd->association) {
1064 	case 0x00:
1065 		sprintf(buf+len, "addressed logical unit\n");
1066 		break;
1067 	case 0x10:
1068 		sprintf(buf+len, "target port\n");
1069 		break;
1070 	case 0x20:
1071 		sprintf(buf+len, "SCSI target device\n");
1072 		break;
1073 	default:
1074 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075 		ret = -EINVAL;
1076 		break;
1077 	}
1078 
1079 	if (p_buf)
1080 		strncpy(p_buf, buf, p_buf_len);
1081 	else
1082 		pr_debug("%s", buf);
1083 
1084 	return ret;
1085 }
1086 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089 	/*
1090 	 * The VPD identification association..
1091 	 *
1092 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1093 	 */
1094 	vpd->association = (page_83[1] & 0x30);
1095 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1099 int transport_dump_vpd_ident_type(
1100 	struct t10_vpd *vpd,
1101 	unsigned char *p_buf,
1102 	int p_buf_len)
1103 {
1104 	unsigned char buf[VPD_TMP_BUF_SIZE];
1105 	int ret = 0;
1106 	int len;
1107 
1108 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1109 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1110 
1111 	switch (vpd->device_identifier_type) {
1112 	case 0x00:
1113 		sprintf(buf+len, "Vendor specific\n");
1114 		break;
1115 	case 0x01:
1116 		sprintf(buf+len, "T10 Vendor ID based\n");
1117 		break;
1118 	case 0x02:
1119 		sprintf(buf+len, "EUI-64 based\n");
1120 		break;
1121 	case 0x03:
1122 		sprintf(buf+len, "NAA\n");
1123 		break;
1124 	case 0x04:
1125 		sprintf(buf+len, "Relative target port identifier\n");
1126 		break;
1127 	case 0x08:
1128 		sprintf(buf+len, "SCSI name string\n");
1129 		break;
1130 	default:
1131 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1132 				vpd->device_identifier_type);
1133 		ret = -EINVAL;
1134 		break;
1135 	}
1136 
1137 	if (p_buf) {
1138 		if (p_buf_len < strlen(buf)+1)
1139 			return -EINVAL;
1140 		strncpy(p_buf, buf, p_buf_len);
1141 	} else {
1142 		pr_debug("%s", buf);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150 	/*
1151 	 * The VPD identifier type..
1152 	 *
1153 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1154 	 */
1155 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1156 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1160 int transport_dump_vpd_ident(
1161 	struct t10_vpd *vpd,
1162 	unsigned char *p_buf,
1163 	int p_buf_len)
1164 {
1165 	unsigned char buf[VPD_TMP_BUF_SIZE];
1166 	int ret = 0;
1167 
1168 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1169 
1170 	switch (vpd->device_identifier_code_set) {
1171 	case 0x01: /* Binary */
1172 		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173 			&vpd->device_identifier[0]);
1174 		break;
1175 	case 0x02: /* ASCII */
1176 		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177 			&vpd->device_identifier[0]);
1178 		break;
1179 	case 0x03: /* UTF-8 */
1180 		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181 			&vpd->device_identifier[0]);
1182 		break;
1183 	default:
1184 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185 			" 0x%02x", vpd->device_identifier_code_set);
1186 		ret = -EINVAL;
1187 		break;
1188 	}
1189 
1190 	if (p_buf)
1191 		strncpy(p_buf, buf, p_buf_len);
1192 	else
1193 		pr_debug("%s", buf);
1194 
1195 	return ret;
1196 }
1197 
1198 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201 	static const char hex_str[] = "0123456789abcdef";
1202 	int j = 0, i = 4; /* offset to start of the identifer */
1203 
1204 	/*
1205 	 * The VPD Code Set (encoding)
1206 	 *
1207 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1208 	 */
1209 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210 	switch (vpd->device_identifier_code_set) {
1211 	case 0x01: /* Binary */
1212 		vpd->device_identifier[j++] =
1213 				hex_str[vpd->device_identifier_type];
1214 		while (i < (4 + page_83[3])) {
1215 			vpd->device_identifier[j++] =
1216 				hex_str[(page_83[i] & 0xf0) >> 4];
1217 			vpd->device_identifier[j++] =
1218 				hex_str[page_83[i] & 0x0f];
1219 			i++;
1220 		}
1221 		break;
1222 	case 0x02: /* ASCII */
1223 	case 0x03: /* UTF-8 */
1224 		while (i < (4 + page_83[3]))
1225 			vpd->device_identifier[j++] = page_83[i++];
1226 		break;
1227 	default:
1228 		break;
1229 	}
1230 
1231 	return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234 
core_setup_task_attr_emulation(struct se_device * dev)1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237 	/*
1238 	 * If this device is from Target_Core_Mod/pSCSI, disable the
1239 	 * SAM Task Attribute emulation.
1240 	 *
1241 	 * This is currently not available in upsream Linux/SCSI Target
1242 	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243 	 */
1244 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245 		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246 		return;
1247 	}
1248 
1249 	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250 	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251 		" device\n", dev->transport->name,
1252 		dev->transport->get_device_rev(dev));
1253 }
1254 
scsi_dump_inquiry(struct se_device * dev)1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257 	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258 	char buf[17];
1259 	int i, device_type;
1260 	/*
1261 	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262 	 */
1263 	for (i = 0; i < 8; i++)
1264 		if (wwn->vendor[i] >= 0x20)
1265 			buf[i] = wwn->vendor[i];
1266 		else
1267 			buf[i] = ' ';
1268 	buf[i] = '\0';
1269 	pr_debug("  Vendor: %s\n", buf);
1270 
1271 	for (i = 0; i < 16; i++)
1272 		if (wwn->model[i] >= 0x20)
1273 			buf[i] = wwn->model[i];
1274 		else
1275 			buf[i] = ' ';
1276 	buf[i] = '\0';
1277 	pr_debug("  Model: %s\n", buf);
1278 
1279 	for (i = 0; i < 4; i++)
1280 		if (wwn->revision[i] >= 0x20)
1281 			buf[i] = wwn->revision[i];
1282 		else
1283 			buf[i] = ' ';
1284 	buf[i] = '\0';
1285 	pr_debug("  Revision: %s\n", buf);
1286 
1287 	device_type = dev->transport->get_device_type(dev);
1288 	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1289 	pr_debug("                 ANSI SCSI revision: %02x\n",
1290 				dev->transport->get_device_rev(dev));
1291 }
1292 
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1293 struct se_device *transport_add_device_to_core_hba(
1294 	struct se_hba *hba,
1295 	struct se_subsystem_api *transport,
1296 	struct se_subsystem_dev *se_dev,
1297 	u32 device_flags,
1298 	void *transport_dev,
1299 	struct se_dev_limits *dev_limits,
1300 	const char *inquiry_prod,
1301 	const char *inquiry_rev)
1302 {
1303 	int force_pt;
1304 	struct se_device  *dev;
1305 
1306 	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1307 	if (!dev) {
1308 		pr_err("Unable to allocate memory for se_dev_t\n");
1309 		return NULL;
1310 	}
1311 
1312 	transport_init_queue_obj(&dev->dev_queue_obj);
1313 	dev->dev_flags		= device_flags;
1314 	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1315 	dev->dev_ptr		= transport_dev;
1316 	dev->se_hba		= hba;
1317 	dev->se_sub_dev		= se_dev;
1318 	dev->transport		= transport;
1319 	INIT_LIST_HEAD(&dev->dev_list);
1320 	INIT_LIST_HEAD(&dev->dev_sep_list);
1321 	INIT_LIST_HEAD(&dev->dev_tmr_list);
1322 	INIT_LIST_HEAD(&dev->execute_task_list);
1323 	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1324 	INIT_LIST_HEAD(&dev->state_task_list);
1325 	INIT_LIST_HEAD(&dev->qf_cmd_list);
1326 	spin_lock_init(&dev->execute_task_lock);
1327 	spin_lock_init(&dev->delayed_cmd_lock);
1328 	spin_lock_init(&dev->dev_reservation_lock);
1329 	spin_lock_init(&dev->dev_status_lock);
1330 	spin_lock_init(&dev->se_port_lock);
1331 	spin_lock_init(&dev->se_tmr_lock);
1332 	spin_lock_init(&dev->qf_cmd_lock);
1333 	atomic_set(&dev->dev_ordered_id, 0);
1334 
1335 	se_dev_set_default_attribs(dev, dev_limits);
1336 
1337 	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1338 	dev->creation_time = get_jiffies_64();
1339 	spin_lock_init(&dev->stats_lock);
1340 
1341 	spin_lock(&hba->device_lock);
1342 	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1343 	hba->dev_count++;
1344 	spin_unlock(&hba->device_lock);
1345 	/*
1346 	 * Setup the SAM Task Attribute emulation for struct se_device
1347 	 */
1348 	core_setup_task_attr_emulation(dev);
1349 	/*
1350 	 * Force PR and ALUA passthrough emulation with internal object use.
1351 	 */
1352 	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1353 	/*
1354 	 * Setup the Reservations infrastructure for struct se_device
1355 	 */
1356 	core_setup_reservations(dev, force_pt);
1357 	/*
1358 	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1359 	 */
1360 	if (core_setup_alua(dev, force_pt) < 0)
1361 		goto out;
1362 
1363 	/*
1364 	 * Startup the struct se_device processing thread
1365 	 */
1366 	dev->process_thread = kthread_run(transport_processing_thread, dev,
1367 					  "LIO_%s", dev->transport->name);
1368 	if (IS_ERR(dev->process_thread)) {
1369 		pr_err("Unable to create kthread: LIO_%s\n",
1370 			dev->transport->name);
1371 		goto out;
1372 	}
1373 	/*
1374 	 * Setup work_queue for QUEUE_FULL
1375 	 */
1376 	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1377 	/*
1378 	 * Preload the initial INQUIRY const values if we are doing
1379 	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1380 	 * passthrough because this is being provided by the backend LLD.
1381 	 * This is required so that transport_get_inquiry() copies these
1382 	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1383 	 * setup.
1384 	 */
1385 	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1386 		if (!inquiry_prod || !inquiry_rev) {
1387 			pr_err("All non TCM/pSCSI plugins require"
1388 				" INQUIRY consts\n");
1389 			goto out;
1390 		}
1391 
1392 		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1393 		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1394 		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1395 	}
1396 	scsi_dump_inquiry(dev);
1397 
1398 	return dev;
1399 out:
1400 	kthread_stop(dev->process_thread);
1401 
1402 	spin_lock(&hba->device_lock);
1403 	list_del(&dev->dev_list);
1404 	hba->dev_count--;
1405 	spin_unlock(&hba->device_lock);
1406 
1407 	se_release_vpd_for_dev(dev);
1408 
1409 	kfree(dev);
1410 
1411 	return NULL;
1412 }
1413 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1414 
1415 /*	transport_generic_prepare_cdb():
1416  *
1417  *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1418  *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1419  *	The point of this is since we are mapping iSCSI LUNs to
1420  *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1421  *	devices and HBAs for a loop.
1422  */
transport_generic_prepare_cdb(unsigned char * cdb)1423 static inline void transport_generic_prepare_cdb(
1424 	unsigned char *cdb)
1425 {
1426 	switch (cdb[0]) {
1427 	case READ_10: /* SBC - RDProtect */
1428 	case READ_12: /* SBC - RDProtect */
1429 	case READ_16: /* SBC - RDProtect */
1430 	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1431 	case VERIFY: /* SBC - VRProtect */
1432 	case VERIFY_16: /* SBC - VRProtect */
1433 	case WRITE_VERIFY: /* SBC - VRProtect */
1434 	case WRITE_VERIFY_12: /* SBC - VRProtect */
1435 		break;
1436 	default:
1437 		cdb[1] &= 0x1f; /* clear logical unit number */
1438 		break;
1439 	}
1440 }
1441 
1442 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1443 transport_generic_get_task(struct se_cmd *cmd,
1444 		enum dma_data_direction data_direction)
1445 {
1446 	struct se_task *task;
1447 	struct se_device *dev = cmd->se_dev;
1448 
1449 	task = dev->transport->alloc_task(cmd->t_task_cdb);
1450 	if (!task) {
1451 		pr_err("Unable to allocate struct se_task\n");
1452 		return NULL;
1453 	}
1454 
1455 	INIT_LIST_HEAD(&task->t_list);
1456 	INIT_LIST_HEAD(&task->t_execute_list);
1457 	INIT_LIST_HEAD(&task->t_state_list);
1458 	init_completion(&task->task_stop_comp);
1459 	task->task_se_cmd = cmd;
1460 	task->task_data_direction = data_direction;
1461 
1462 	return task;
1463 }
1464 
1465 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1466 
1467 /*
1468  * Used by fabric modules containing a local struct se_cmd within their
1469  * fabric dependent per I/O descriptor.
1470  */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1471 void transport_init_se_cmd(
1472 	struct se_cmd *cmd,
1473 	struct target_core_fabric_ops *tfo,
1474 	struct se_session *se_sess,
1475 	u32 data_length,
1476 	int data_direction,
1477 	int task_attr,
1478 	unsigned char *sense_buffer)
1479 {
1480 	INIT_LIST_HEAD(&cmd->se_lun_node);
1481 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1482 	INIT_LIST_HEAD(&cmd->se_qf_node);
1483 	INIT_LIST_HEAD(&cmd->se_queue_node);
1484 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1485 	INIT_LIST_HEAD(&cmd->t_task_list);
1486 	init_completion(&cmd->transport_lun_fe_stop_comp);
1487 	init_completion(&cmd->transport_lun_stop_comp);
1488 	init_completion(&cmd->t_transport_stop_comp);
1489 	init_completion(&cmd->cmd_wait_comp);
1490 	spin_lock_init(&cmd->t_state_lock);
1491 	atomic_set(&cmd->transport_dev_active, 1);
1492 
1493 	cmd->se_tfo = tfo;
1494 	cmd->se_sess = se_sess;
1495 	cmd->data_length = data_length;
1496 	cmd->data_direction = data_direction;
1497 	cmd->sam_task_attr = task_attr;
1498 	cmd->sense_buffer = sense_buffer;
1499 }
1500 EXPORT_SYMBOL(transport_init_se_cmd);
1501 
transport_check_alloc_task_attr(struct se_cmd * cmd)1502 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1503 {
1504 	/*
1505 	 * Check if SAM Task Attribute emulation is enabled for this
1506 	 * struct se_device storage object
1507 	 */
1508 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1509 		return 0;
1510 
1511 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1512 		pr_debug("SAM Task Attribute ACA"
1513 			" emulation is not supported\n");
1514 		return -EINVAL;
1515 	}
1516 	/*
1517 	 * Used to determine when ORDERED commands should go from
1518 	 * Dormant to Active status.
1519 	 */
1520 	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1521 	smp_mb__after_atomic_inc();
1522 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1523 			cmd->se_ordered_id, cmd->sam_task_attr,
1524 			cmd->se_dev->transport->name);
1525 	return 0;
1526 }
1527 
1528 /*	transport_generic_allocate_tasks():
1529  *
1530  *	Called from fabric RX Thread.
1531  */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1532 int transport_generic_allocate_tasks(
1533 	struct se_cmd *cmd,
1534 	unsigned char *cdb)
1535 {
1536 	int ret;
1537 
1538 	transport_generic_prepare_cdb(cdb);
1539 	/*
1540 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1541 	 * for VARIABLE_LENGTH_CMD
1542 	 */
1543 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1544 		pr_err("Received SCSI CDB with command_size: %d that"
1545 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1546 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1547 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1548 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1549 		return -EINVAL;
1550 	}
1551 	/*
1552 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1553 	 * allocate the additional extended CDB buffer now..  Otherwise
1554 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1555 	 */
1556 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1557 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1558 						GFP_KERNEL);
1559 		if (!cmd->t_task_cdb) {
1560 			pr_err("Unable to allocate cmd->t_task_cdb"
1561 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1562 				scsi_command_size(cdb),
1563 				(unsigned long)sizeof(cmd->__t_task_cdb));
1564 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1565 			cmd->scsi_sense_reason =
1566 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1567 			return -ENOMEM;
1568 		}
1569 	} else
1570 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1571 	/*
1572 	 * Copy the original CDB into cmd->
1573 	 */
1574 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1575 	/*
1576 	 * Setup the received CDB based on SCSI defined opcodes and
1577 	 * perform unit attention, persistent reservations and ALUA
1578 	 * checks for virtual device backends.  The cmd->t_task_cdb
1579 	 * pointer is expected to be setup before we reach this point.
1580 	 */
1581 	ret = transport_generic_cmd_sequencer(cmd, cdb);
1582 	if (ret < 0)
1583 		return ret;
1584 	/*
1585 	 * Check for SAM Task Attribute Emulation
1586 	 */
1587 	if (transport_check_alloc_task_attr(cmd) < 0) {
1588 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1590 		return -EINVAL;
1591 	}
1592 	spin_lock(&cmd->se_lun->lun_sep_lock);
1593 	if (cmd->se_lun->lun_sep)
1594 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1595 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1599 
1600 /*
1601  * Used by fabric module frontends to queue tasks directly.
1602  * Many only be used from process context only
1603  */
transport_handle_cdb_direct(struct se_cmd * cmd)1604 int transport_handle_cdb_direct(
1605 	struct se_cmd *cmd)
1606 {
1607 	int ret;
1608 
1609 	if (!cmd->se_lun) {
1610 		dump_stack();
1611 		pr_err("cmd->se_lun is NULL\n");
1612 		return -EINVAL;
1613 	}
1614 	if (in_interrupt()) {
1615 		dump_stack();
1616 		pr_err("transport_generic_handle_cdb cannot be called"
1617 				" from interrupt context\n");
1618 		return -EINVAL;
1619 	}
1620 	/*
1621 	 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1622 	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1623 	 * in existing usage to ensure that outstanding descriptors are handled
1624 	 * correctly during shutdown via transport_wait_for_tasks()
1625 	 *
1626 	 * Also, we don't take cmd->t_state_lock here as we only expect
1627 	 * this to be called for initial descriptor submission.
1628 	 */
1629 	cmd->t_state = TRANSPORT_NEW_CMD;
1630 	atomic_set(&cmd->t_transport_active, 1);
1631 	/*
1632 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1633 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1634 	 * and call transport_generic_request_failure() if necessary..
1635 	 */
1636 	ret = transport_generic_new_cmd(cmd);
1637 	if (ret < 0)
1638 		transport_generic_request_failure(cmd);
1639 
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(transport_handle_cdb_direct);
1643 
1644 /**
1645  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1646  *
1647  * @se_cmd: command descriptor to submit
1648  * @se_sess: associated se_sess for endpoint
1649  * @cdb: pointer to SCSI CDB
1650  * @sense: pointer to SCSI sense buffer
1651  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1652  * @data_length: fabric expected data transfer length
1653  * @task_addr: SAM task attribute
1654  * @data_dir: DMA data direction
1655  * @flags: flags for command submission from target_sc_flags_tables
1656  *
1657  * This may only be called from process context, and also currently
1658  * assumes internal allocation of fabric payload buffer by target-core.
1659  **/
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1660 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1661 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1662 		u32 data_length, int task_attr, int data_dir, int flags)
1663 {
1664 	struct se_portal_group *se_tpg;
1665 	int rc;
1666 
1667 	se_tpg = se_sess->se_tpg;
1668 	BUG_ON(!se_tpg);
1669 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1670 	BUG_ON(in_interrupt());
1671 	/*
1672 	 * Initialize se_cmd for target operation.  From this point
1673 	 * exceptions are handled by sending exception status via
1674 	 * target_core_fabric_ops->queue_status() callback
1675 	 */
1676 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1677 				data_length, data_dir, task_attr, sense);
1678 	/*
1679 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1680 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1681 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1682 	 * kref_put() to happen during fabric packet acknowledgement.
1683 	 */
1684 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1685 	/*
1686 	 * Signal bidirectional data payloads to target-core
1687 	 */
1688 	if (flags & TARGET_SCF_BIDI_OP)
1689 		se_cmd->se_cmd_flags |= SCF_BIDI;
1690 	/*
1691 	 * Locate se_lun pointer and attach it to struct se_cmd
1692 	 */
1693 	if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1694 		transport_send_check_condition_and_sense(se_cmd,
1695 				se_cmd->scsi_sense_reason, 0);
1696 		target_put_sess_cmd(se_sess, se_cmd);
1697 		return;
1698 	}
1699 	/*
1700 	 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1701 	 * allocate the necessary tasks to complete the received CDB+data
1702 	 */
1703 	rc = transport_generic_allocate_tasks(se_cmd, cdb);
1704 	if (rc != 0) {
1705 		transport_generic_request_failure(se_cmd);
1706 		return;
1707 	}
1708 	/*
1709 	 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1710 	 * for immediate execution of READs, otherwise wait for
1711 	 * transport_generic_handle_data() to be called for WRITEs
1712 	 * when fabric has filled the incoming buffer.
1713 	 */
1714 	transport_handle_cdb_direct(se_cmd);
1715 	return;
1716 }
1717 EXPORT_SYMBOL(target_submit_cmd);
1718 
1719 /*
1720  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1721  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1722  * complete setup in TCM process context w/ TFO->new_cmd_map().
1723  */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1724 int transport_generic_handle_cdb_map(
1725 	struct se_cmd *cmd)
1726 {
1727 	if (!cmd->se_lun) {
1728 		dump_stack();
1729 		pr_err("cmd->se_lun is NULL\n");
1730 		return -EINVAL;
1731 	}
1732 
1733 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1737 
1738 /*	transport_generic_handle_data():
1739  *
1740  *
1741  */
transport_generic_handle_data(struct se_cmd * cmd)1742 int transport_generic_handle_data(
1743 	struct se_cmd *cmd)
1744 {
1745 	/*
1746 	 * For the software fabric case, then we assume the nexus is being
1747 	 * failed/shutdown when signals are pending from the kthread context
1748 	 * caller, so we return a failure.  For the HW target mode case running
1749 	 * in interrupt code, the signal_pending() check is skipped.
1750 	 */
1751 	if (!in_interrupt() && signal_pending(current))
1752 		return -EPERM;
1753 	/*
1754 	 * If the received CDB has aleady been ABORTED by the generic
1755 	 * target engine, we now call transport_check_aborted_status()
1756 	 * to queue any delated TASK_ABORTED status for the received CDB to the
1757 	 * fabric module as we are expecting no further incoming DATA OUT
1758 	 * sequences at this point.
1759 	 */
1760 	if (transport_check_aborted_status(cmd, 1) != 0)
1761 		return 0;
1762 
1763 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1764 	return 0;
1765 }
1766 EXPORT_SYMBOL(transport_generic_handle_data);
1767 
1768 /*	transport_generic_handle_tmr():
1769  *
1770  *
1771  */
transport_generic_handle_tmr(struct se_cmd * cmd)1772 int transport_generic_handle_tmr(
1773 	struct se_cmd *cmd)
1774 {
1775 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL(transport_generic_handle_tmr);
1779 
1780 /*
1781  * If the task is active, request it to be stopped and sleep until it
1782  * has completed.
1783  */
target_stop_task(struct se_task * task,unsigned long * flags)1784 bool target_stop_task(struct se_task *task, unsigned long *flags)
1785 {
1786 	struct se_cmd *cmd = task->task_se_cmd;
1787 	bool was_active = false;
1788 
1789 	if (task->task_flags & TF_ACTIVE) {
1790 		task->task_flags |= TF_REQUEST_STOP;
1791 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1792 
1793 		pr_debug("Task %p waiting to complete\n", task);
1794 		wait_for_completion(&task->task_stop_comp);
1795 		pr_debug("Task %p stopped successfully\n", task);
1796 
1797 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1798 		atomic_dec(&cmd->t_task_cdbs_left);
1799 		task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1800 		was_active = true;
1801 	}
1802 
1803 	return was_active;
1804 }
1805 
transport_stop_tasks_for_cmd(struct se_cmd * cmd)1806 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1807 {
1808 	struct se_task *task, *task_tmp;
1809 	unsigned long flags;
1810 	int ret = 0;
1811 
1812 	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1813 		cmd->se_tfo->get_task_tag(cmd));
1814 
1815 	/*
1816 	 * No tasks remain in the execution queue
1817 	 */
1818 	spin_lock_irqsave(&cmd->t_state_lock, flags);
1819 	list_for_each_entry_safe(task, task_tmp,
1820 				&cmd->t_task_list, t_list) {
1821 		pr_debug("Processing task %p\n", task);
1822 		/*
1823 		 * If the struct se_task has not been sent and is not active,
1824 		 * remove the struct se_task from the execution queue.
1825 		 */
1826 		if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1827 			spin_unlock_irqrestore(&cmd->t_state_lock,
1828 					flags);
1829 			transport_remove_task_from_execute_queue(task,
1830 					cmd->se_dev);
1831 
1832 			pr_debug("Task %p removed from execute queue\n", task);
1833 			spin_lock_irqsave(&cmd->t_state_lock, flags);
1834 			continue;
1835 		}
1836 
1837 		if (!target_stop_task(task, &flags)) {
1838 			pr_debug("Task %p - did nothing\n", task);
1839 			ret++;
1840 		}
1841 	}
1842 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1843 
1844 	return ret;
1845 }
1846 
1847 /*
1848  * Handle SAM-esque emulation for generic transport request failures.
1849  */
transport_generic_request_failure(struct se_cmd * cmd)1850 static void transport_generic_request_failure(struct se_cmd *cmd)
1851 {
1852 	int ret = 0;
1853 
1854 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1855 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1856 		cmd->t_task_cdb[0]);
1857 	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1858 		cmd->se_tfo->get_cmd_state(cmd),
1859 		cmd->t_state, cmd->scsi_sense_reason);
1860 	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1861 		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1862 		" t_transport_active: %d t_transport_stop: %d"
1863 		" t_transport_sent: %d\n", cmd->t_task_list_num,
1864 		atomic_read(&cmd->t_task_cdbs_left),
1865 		atomic_read(&cmd->t_task_cdbs_sent),
1866 		atomic_read(&cmd->t_task_cdbs_ex_left),
1867 		atomic_read(&cmd->t_transport_active),
1868 		atomic_read(&cmd->t_transport_stop),
1869 		atomic_read(&cmd->t_transport_sent));
1870 
1871 	/*
1872 	 * For SAM Task Attribute emulation for failed struct se_cmd
1873 	 */
1874 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1875 		transport_complete_task_attr(cmd);
1876 
1877 	switch (cmd->scsi_sense_reason) {
1878 	case TCM_NON_EXISTENT_LUN:
1879 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1880 	case TCM_INVALID_CDB_FIELD:
1881 	case TCM_INVALID_PARAMETER_LIST:
1882 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1883 	case TCM_UNKNOWN_MODE_PAGE:
1884 	case TCM_WRITE_PROTECTED:
1885 	case TCM_CHECK_CONDITION_ABORT_CMD:
1886 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1887 	case TCM_CHECK_CONDITION_NOT_READY:
1888 		break;
1889 	case TCM_RESERVATION_CONFLICT:
1890 		/*
1891 		 * No SENSE Data payload for this case, set SCSI Status
1892 		 * and queue the response to $FABRIC_MOD.
1893 		 *
1894 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1895 		 */
1896 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1897 		/*
1898 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1899 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1900 		 * CONFLICT STATUS.
1901 		 *
1902 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1903 		 */
1904 		if (cmd->se_sess &&
1905 		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1906 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1907 				cmd->orig_fe_lun, 0x2C,
1908 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1909 
1910 		ret = cmd->se_tfo->queue_status(cmd);
1911 		if (ret == -EAGAIN || ret == -ENOMEM)
1912 			goto queue_full;
1913 		goto check_stop;
1914 	default:
1915 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1916 			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1917 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1918 		break;
1919 	}
1920 	/*
1921 	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1922 	 * make the call to transport_send_check_condition_and_sense()
1923 	 * directly.  Otherwise expect the fabric to make the call to
1924 	 * transport_send_check_condition_and_sense() after handling
1925 	 * possible unsoliticied write data payloads.
1926 	 */
1927 	ret = transport_send_check_condition_and_sense(cmd,
1928 			cmd->scsi_sense_reason, 0);
1929 	if (ret == -EAGAIN || ret == -ENOMEM)
1930 		goto queue_full;
1931 
1932 check_stop:
1933 	transport_lun_remove_cmd(cmd);
1934 	if (!transport_cmd_check_stop_to_fabric(cmd))
1935 		;
1936 	return;
1937 
1938 queue_full:
1939 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1940 	transport_handle_queue_full(cmd, cmd->se_dev);
1941 }
1942 
transport_lba_21(unsigned char * cdb)1943 static inline u32 transport_lba_21(unsigned char *cdb)
1944 {
1945 	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1946 }
1947 
transport_lba_32(unsigned char * cdb)1948 static inline u32 transport_lba_32(unsigned char *cdb)
1949 {
1950 	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1951 }
1952 
transport_lba_64(unsigned char * cdb)1953 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1954 {
1955 	unsigned int __v1, __v2;
1956 
1957 	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1958 	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1959 
1960 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1961 }
1962 
1963 /*
1964  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1965  */
transport_lba_64_ext(unsigned char * cdb)1966 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1967 {
1968 	unsigned int __v1, __v2;
1969 
1970 	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1971 	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1972 
1973 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1974 }
1975 
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)1976 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1977 {
1978 	unsigned long flags;
1979 
1980 	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1981 	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1982 	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1983 }
1984 
1985 /*
1986  * Called from Fabric Module context from transport_execute_tasks()
1987  *
1988  * The return of this function determins if the tasks from struct se_cmd
1989  * get added to the execution queue in transport_execute_tasks(),
1990  * or are added to the delayed or ordered lists here.
1991  */
transport_execute_task_attr(struct se_cmd * cmd)1992 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1993 {
1994 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1995 		return 1;
1996 	/*
1997 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1998 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1999 	 */
2000 	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2001 		pr_debug("Added HEAD_OF_QUEUE for CDB:"
2002 			" 0x%02x, se_ordered_id: %u\n",
2003 			cmd->t_task_cdb[0],
2004 			cmd->se_ordered_id);
2005 		return 1;
2006 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2007 		atomic_inc(&cmd->se_dev->dev_ordered_sync);
2008 		smp_mb__after_atomic_inc();
2009 
2010 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2011 				" list, se_ordered_id: %u\n",
2012 				cmd->t_task_cdb[0],
2013 				cmd->se_ordered_id);
2014 		/*
2015 		 * Add ORDERED command to tail of execution queue if
2016 		 * no other older commands exist that need to be
2017 		 * completed first.
2018 		 */
2019 		if (!atomic_read(&cmd->se_dev->simple_cmds))
2020 			return 1;
2021 	} else {
2022 		/*
2023 		 * For SIMPLE and UNTAGGED Task Attribute commands
2024 		 */
2025 		atomic_inc(&cmd->se_dev->simple_cmds);
2026 		smp_mb__after_atomic_inc();
2027 	}
2028 	/*
2029 	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2030 	 * add the dormant task(s) built for the passed struct se_cmd to the
2031 	 * execution queue and become in Active state for this struct se_device.
2032 	 */
2033 	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2034 		/*
2035 		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2036 		 * will be drained upon completion of HEAD_OF_QUEUE task.
2037 		 */
2038 		spin_lock(&cmd->se_dev->delayed_cmd_lock);
2039 		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2040 		list_add_tail(&cmd->se_delayed_node,
2041 				&cmd->se_dev->delayed_cmd_list);
2042 		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2043 
2044 		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2045 			" delayed CMD list, se_ordered_id: %u\n",
2046 			cmd->t_task_cdb[0], cmd->sam_task_attr,
2047 			cmd->se_ordered_id);
2048 		/*
2049 		 * Return zero to let transport_execute_tasks() know
2050 		 * not to add the delayed tasks to the execution list.
2051 		 */
2052 		return 0;
2053 	}
2054 	/*
2055 	 * Otherwise, no ORDERED task attributes exist..
2056 	 */
2057 	return 1;
2058 }
2059 
2060 /*
2061  * Called from fabric module context in transport_generic_new_cmd() and
2062  * transport_generic_process_write()
2063  */
transport_execute_tasks(struct se_cmd * cmd)2064 static int transport_execute_tasks(struct se_cmd *cmd)
2065 {
2066 	int add_tasks;
2067 	struct se_device *se_dev = cmd->se_dev;
2068 	/*
2069 	 * Call transport_cmd_check_stop() to see if a fabric exception
2070 	 * has occurred that prevents execution.
2071 	 */
2072 	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2073 		/*
2074 		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2075 		 * attribute for the tasks of the received struct se_cmd CDB
2076 		 */
2077 		add_tasks = transport_execute_task_attr(cmd);
2078 		if (!add_tasks)
2079 			goto execute_tasks;
2080 		/*
2081 		 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2082 		 * adds associated se_tasks while holding dev->execute_task_lock
2083 		 * before I/O dispath to avoid a double spinlock access.
2084 		 */
2085 		__transport_execute_tasks(se_dev, cmd);
2086 		return 0;
2087 	}
2088 
2089 execute_tasks:
2090 	__transport_execute_tasks(se_dev, NULL);
2091 	return 0;
2092 }
2093 
2094 /*
2095  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2096  * from struct se_device->execute_task_list and
2097  *
2098  * Called from transport_processing_thread()
2099  */
__transport_execute_tasks(struct se_device * dev,struct se_cmd * new_cmd)2100 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2101 {
2102 	int error;
2103 	struct se_cmd *cmd = NULL;
2104 	struct se_task *task = NULL;
2105 	unsigned long flags;
2106 
2107 check_depth:
2108 	spin_lock_irq(&dev->execute_task_lock);
2109 	if (new_cmd != NULL)
2110 		__transport_add_tasks_from_cmd(new_cmd);
2111 
2112 	if (list_empty(&dev->execute_task_list)) {
2113 		spin_unlock_irq(&dev->execute_task_lock);
2114 		return 0;
2115 	}
2116 	task = list_first_entry(&dev->execute_task_list,
2117 				struct se_task, t_execute_list);
2118 	__transport_remove_task_from_execute_queue(task, dev);
2119 	spin_unlock_irq(&dev->execute_task_lock);
2120 
2121 	cmd = task->task_se_cmd;
2122 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2123 	task->task_flags |= (TF_ACTIVE | TF_SENT);
2124 	atomic_inc(&cmd->t_task_cdbs_sent);
2125 
2126 	if (atomic_read(&cmd->t_task_cdbs_sent) ==
2127 	    cmd->t_task_list_num)
2128 		atomic_set(&cmd->t_transport_sent, 1);
2129 
2130 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2131 
2132 	if (cmd->execute_task)
2133 		error = cmd->execute_task(task);
2134 	else
2135 		error = dev->transport->do_task(task);
2136 	if (error != 0) {
2137 		spin_lock_irqsave(&cmd->t_state_lock, flags);
2138 		task->task_flags &= ~TF_ACTIVE;
2139 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2140 		atomic_set(&cmd->t_transport_sent, 0);
2141 		transport_stop_tasks_for_cmd(cmd);
2142 		transport_generic_request_failure(cmd);
2143 	}
2144 
2145 	new_cmd = NULL;
2146 	goto check_depth;
2147 
2148 	return 0;
2149 }
2150 
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2151 static inline u32 transport_get_sectors_6(
2152 	unsigned char *cdb,
2153 	struct se_cmd *cmd,
2154 	int *ret)
2155 {
2156 	struct se_device *dev = cmd->se_dev;
2157 
2158 	/*
2159 	 * Assume TYPE_DISK for non struct se_device objects.
2160 	 * Use 8-bit sector value.
2161 	 */
2162 	if (!dev)
2163 		goto type_disk;
2164 
2165 	/*
2166 	 * Use 24-bit allocation length for TYPE_TAPE.
2167 	 */
2168 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2169 		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2170 
2171 	/*
2172 	 * Everything else assume TYPE_DISK Sector CDB location.
2173 	 * Use 8-bit sector value.  SBC-3 says:
2174 	 *
2175 	 *   A TRANSFER LENGTH field set to zero specifies that 256
2176 	 *   logical blocks shall be written.  Any other value
2177 	 *   specifies the number of logical blocks that shall be
2178 	 *   written.
2179 	 */
2180 type_disk:
2181 	return cdb[4] ? : 256;
2182 }
2183 
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2184 static inline u32 transport_get_sectors_10(
2185 	unsigned char *cdb,
2186 	struct se_cmd *cmd,
2187 	int *ret)
2188 {
2189 	struct se_device *dev = cmd->se_dev;
2190 
2191 	/*
2192 	 * Assume TYPE_DISK for non struct se_device objects.
2193 	 * Use 16-bit sector value.
2194 	 */
2195 	if (!dev)
2196 		goto type_disk;
2197 
2198 	/*
2199 	 * XXX_10 is not defined in SSC, throw an exception
2200 	 */
2201 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2202 		*ret = -EINVAL;
2203 		return 0;
2204 	}
2205 
2206 	/*
2207 	 * Everything else assume TYPE_DISK Sector CDB location.
2208 	 * Use 16-bit sector value.
2209 	 */
2210 type_disk:
2211 	return (u32)(cdb[7] << 8) + cdb[8];
2212 }
2213 
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2214 static inline u32 transport_get_sectors_12(
2215 	unsigned char *cdb,
2216 	struct se_cmd *cmd,
2217 	int *ret)
2218 {
2219 	struct se_device *dev = cmd->se_dev;
2220 
2221 	/*
2222 	 * Assume TYPE_DISK for non struct se_device objects.
2223 	 * Use 32-bit sector value.
2224 	 */
2225 	if (!dev)
2226 		goto type_disk;
2227 
2228 	/*
2229 	 * XXX_12 is not defined in SSC, throw an exception
2230 	 */
2231 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2232 		*ret = -EINVAL;
2233 		return 0;
2234 	}
2235 
2236 	/*
2237 	 * Everything else assume TYPE_DISK Sector CDB location.
2238 	 * Use 32-bit sector value.
2239 	 */
2240 type_disk:
2241 	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2242 }
2243 
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2244 static inline u32 transport_get_sectors_16(
2245 	unsigned char *cdb,
2246 	struct se_cmd *cmd,
2247 	int *ret)
2248 {
2249 	struct se_device *dev = cmd->se_dev;
2250 
2251 	/*
2252 	 * Assume TYPE_DISK for non struct se_device objects.
2253 	 * Use 32-bit sector value.
2254 	 */
2255 	if (!dev)
2256 		goto type_disk;
2257 
2258 	/*
2259 	 * Use 24-bit allocation length for TYPE_TAPE.
2260 	 */
2261 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2262 		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2263 
2264 type_disk:
2265 	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2266 		    (cdb[12] << 8) + cdb[13];
2267 }
2268 
2269 /*
2270  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2271  */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2272 static inline u32 transport_get_sectors_32(
2273 	unsigned char *cdb,
2274 	struct se_cmd *cmd,
2275 	int *ret)
2276 {
2277 	/*
2278 	 * Assume TYPE_DISK for non struct se_device objects.
2279 	 * Use 32-bit sector value.
2280 	 */
2281 	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2282 		    (cdb[30] << 8) + cdb[31];
2283 
2284 }
2285 
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2286 static inline u32 transport_get_size(
2287 	u32 sectors,
2288 	unsigned char *cdb,
2289 	struct se_cmd *cmd)
2290 {
2291 	struct se_device *dev = cmd->se_dev;
2292 
2293 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2294 		if (cdb[1] & 1) { /* sectors */
2295 			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2296 		} else /* bytes */
2297 			return sectors;
2298 	}
2299 #if 0
2300 	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2301 			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2302 			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2303 			dev->transport->name);
2304 #endif
2305 	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2306 }
2307 
transport_xor_callback(struct se_cmd * cmd)2308 static void transport_xor_callback(struct se_cmd *cmd)
2309 {
2310 	unsigned char *buf, *addr;
2311 	struct scatterlist *sg;
2312 	unsigned int offset;
2313 	int i;
2314 	int count;
2315 	/*
2316 	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2317 	 *
2318 	 * 1) read the specified logical block(s);
2319 	 * 2) transfer logical blocks from the data-out buffer;
2320 	 * 3) XOR the logical blocks transferred from the data-out buffer with
2321 	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2322 	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2323 	 *    blocks transferred from the data-out buffer; and
2324 	 * 5) transfer the resulting XOR data to the data-in buffer.
2325 	 */
2326 	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2327 	if (!buf) {
2328 		pr_err("Unable to allocate xor_callback buf\n");
2329 		return;
2330 	}
2331 	/*
2332 	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2333 	 * into the locally allocated *buf
2334 	 */
2335 	sg_copy_to_buffer(cmd->t_data_sg,
2336 			  cmd->t_data_nents,
2337 			  buf,
2338 			  cmd->data_length);
2339 
2340 	/*
2341 	 * Now perform the XOR against the BIDI read memory located at
2342 	 * cmd->t_mem_bidi_list
2343 	 */
2344 
2345 	offset = 0;
2346 	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2347 		addr = kmap_atomic(sg_page(sg), KM_USER0);
2348 		if (!addr)
2349 			goto out;
2350 
2351 		for (i = 0; i < sg->length; i++)
2352 			*(addr + sg->offset + i) ^= *(buf + offset + i);
2353 
2354 		offset += sg->length;
2355 		kunmap_atomic(addr, KM_USER0);
2356 	}
2357 
2358 out:
2359 	kfree(buf);
2360 }
2361 
2362 /*
2363  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2364  */
transport_get_sense_data(struct se_cmd * cmd)2365 static int transport_get_sense_data(struct se_cmd *cmd)
2366 {
2367 	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2368 	struct se_device *dev = cmd->se_dev;
2369 	struct se_task *task = NULL, *task_tmp;
2370 	unsigned long flags;
2371 	u32 offset = 0;
2372 
2373 	WARN_ON(!cmd->se_lun);
2374 
2375 	if (!dev)
2376 		return 0;
2377 
2378 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2379 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2380 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2381 		return 0;
2382 	}
2383 
2384 	list_for_each_entry_safe(task, task_tmp,
2385 				&cmd->t_task_list, t_list) {
2386 		if (!(task->task_flags & TF_HAS_SENSE))
2387 			continue;
2388 
2389 		if (!dev->transport->get_sense_buffer) {
2390 			pr_err("dev->transport->get_sense_buffer"
2391 					" is NULL\n");
2392 			continue;
2393 		}
2394 
2395 		sense_buffer = dev->transport->get_sense_buffer(task);
2396 		if (!sense_buffer) {
2397 			pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2398 				" sense buffer for task with sense\n",
2399 				cmd->se_tfo->get_task_tag(cmd), task);
2400 			continue;
2401 		}
2402 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2403 
2404 		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2405 				TRANSPORT_SENSE_BUFFER);
2406 
2407 		memcpy(&buffer[offset], sense_buffer,
2408 				TRANSPORT_SENSE_BUFFER);
2409 		cmd->scsi_status = task->task_scsi_status;
2410 		/* Automatically padded */
2411 		cmd->scsi_sense_length =
2412 				(TRANSPORT_SENSE_BUFFER + offset);
2413 
2414 		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2415 				" and sense\n",
2416 			dev->se_hba->hba_id, dev->transport->name,
2417 				cmd->scsi_status);
2418 		return 0;
2419 	}
2420 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2421 
2422 	return -1;
2423 }
2424 
transport_dev_end_lba(struct se_device * dev)2425 static inline long long transport_dev_end_lba(struct se_device *dev)
2426 {
2427 	return dev->transport->get_blocks(dev) + 1;
2428 }
2429 
transport_cmd_get_valid_sectors(struct se_cmd * cmd)2430 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2431 {
2432 	struct se_device *dev = cmd->se_dev;
2433 	u32 sectors;
2434 
2435 	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2436 		return 0;
2437 
2438 	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2439 
2440 	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2441 		pr_err("LBA: %llu Sectors: %u exceeds"
2442 			" transport_dev_end_lba(): %llu\n",
2443 			cmd->t_task_lba, sectors,
2444 			transport_dev_end_lba(dev));
2445 		return -EINVAL;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
target_check_write_same_discard(unsigned char * flags,struct se_device * dev)2451 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2452 {
2453 	/*
2454 	 * Determine if the received WRITE_SAME is used to for direct
2455 	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2456 	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2457 	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2458 	 */
2459 	int passthrough = (dev->transport->transport_type ==
2460 				TRANSPORT_PLUGIN_PHBA_PDEV);
2461 
2462 	if (!passthrough) {
2463 		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2464 			pr_err("WRITE_SAME PBDATA and LBDATA"
2465 				" bits not supported for Block Discard"
2466 				" Emulation\n");
2467 			return -ENOSYS;
2468 		}
2469 		/*
2470 		 * Currently for the emulated case we only accept
2471 		 * tpws with the UNMAP=1 bit set.
2472 		 */
2473 		if (!(flags[0] & 0x08)) {
2474 			pr_err("WRITE_SAME w/o UNMAP bit not"
2475 				" supported for Block Discard Emulation\n");
2476 			return -ENOSYS;
2477 		}
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 /*	transport_generic_cmd_sequencer():
2484  *
2485  *	Generic Command Sequencer that should work for most DAS transport
2486  *	drivers.
2487  *
2488  *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2489  *	RX Thread.
2490  *
2491  *	FIXME: Need to support other SCSI OPCODES where as well.
2492  */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)2493 static int transport_generic_cmd_sequencer(
2494 	struct se_cmd *cmd,
2495 	unsigned char *cdb)
2496 {
2497 	struct se_device *dev = cmd->se_dev;
2498 	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2499 	int ret = 0, sector_ret = 0, passthrough;
2500 	u32 sectors = 0, size = 0, pr_reg_type = 0;
2501 	u16 service_action;
2502 	u8 alua_ascq = 0;
2503 	/*
2504 	 * Check for an existing UNIT ATTENTION condition
2505 	 */
2506 	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2507 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2508 		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2509 		return -EINVAL;
2510 	}
2511 	/*
2512 	 * Check status of Asymmetric Logical Unit Assignment port
2513 	 */
2514 	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2515 	if (ret != 0) {
2516 		/*
2517 		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2518 		 * The ALUA additional sense code qualifier (ASCQ) is determined
2519 		 * by the ALUA primary or secondary access state..
2520 		 */
2521 		if (ret > 0) {
2522 #if 0
2523 			pr_debug("[%s]: ALUA TG Port not available,"
2524 				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2525 				cmd->se_tfo->get_fabric_name(), alua_ascq);
2526 #endif
2527 			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2528 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2529 			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2530 			return -EINVAL;
2531 		}
2532 		goto out_invalid_cdb_field;
2533 	}
2534 	/*
2535 	 * Check status for SPC-3 Persistent Reservations
2536 	 */
2537 	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2538 		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2539 					cmd, cdb, pr_reg_type) != 0) {
2540 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2541 			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2542 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2543 			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2544 			return -EBUSY;
2545 		}
2546 		/*
2547 		 * This means the CDB is allowed for the SCSI Initiator port
2548 		 * when said port is *NOT* holding the legacy SPC-2 or
2549 		 * SPC-3 Persistent Reservation.
2550 		 */
2551 	}
2552 
2553 	/*
2554 	 * If we operate in passthrough mode we skip most CDB emulation and
2555 	 * instead hand the commands down to the physical SCSI device.
2556 	 */
2557 	passthrough =
2558 		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2559 
2560 	switch (cdb[0]) {
2561 	case READ_6:
2562 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2563 		if (sector_ret)
2564 			goto out_unsupported_cdb;
2565 		size = transport_get_size(sectors, cdb, cmd);
2566 		cmd->t_task_lba = transport_lba_21(cdb);
2567 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2568 		break;
2569 	case READ_10:
2570 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2571 		if (sector_ret)
2572 			goto out_unsupported_cdb;
2573 		size = transport_get_size(sectors, cdb, cmd);
2574 		cmd->t_task_lba = transport_lba_32(cdb);
2575 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2576 		break;
2577 	case READ_12:
2578 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2579 		if (sector_ret)
2580 			goto out_unsupported_cdb;
2581 		size = transport_get_size(sectors, cdb, cmd);
2582 		cmd->t_task_lba = transport_lba_32(cdb);
2583 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2584 		break;
2585 	case READ_16:
2586 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2587 		if (sector_ret)
2588 			goto out_unsupported_cdb;
2589 		size = transport_get_size(sectors, cdb, cmd);
2590 		cmd->t_task_lba = transport_lba_64(cdb);
2591 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2592 		break;
2593 	case WRITE_6:
2594 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2595 		if (sector_ret)
2596 			goto out_unsupported_cdb;
2597 		size = transport_get_size(sectors, cdb, cmd);
2598 		cmd->t_task_lba = transport_lba_21(cdb);
2599 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2600 		break;
2601 	case WRITE_10:
2602 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2603 		if (sector_ret)
2604 			goto out_unsupported_cdb;
2605 		size = transport_get_size(sectors, cdb, cmd);
2606 		cmd->t_task_lba = transport_lba_32(cdb);
2607 		if (cdb[1] & 0x8)
2608 			cmd->se_cmd_flags |= SCF_FUA;
2609 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2610 		break;
2611 	case WRITE_12:
2612 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2613 		if (sector_ret)
2614 			goto out_unsupported_cdb;
2615 		size = transport_get_size(sectors, cdb, cmd);
2616 		cmd->t_task_lba = transport_lba_32(cdb);
2617 		if (cdb[1] & 0x8)
2618 			cmd->se_cmd_flags |= SCF_FUA;
2619 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2620 		break;
2621 	case WRITE_16:
2622 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2623 		if (sector_ret)
2624 			goto out_unsupported_cdb;
2625 		size = transport_get_size(sectors, cdb, cmd);
2626 		cmd->t_task_lba = transport_lba_64(cdb);
2627 		if (cdb[1] & 0x8)
2628 			cmd->se_cmd_flags |= SCF_FUA;
2629 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2630 		break;
2631 	case XDWRITEREAD_10:
2632 		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2633 		    !(cmd->se_cmd_flags & SCF_BIDI))
2634 			goto out_invalid_cdb_field;
2635 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2636 		if (sector_ret)
2637 			goto out_unsupported_cdb;
2638 		size = transport_get_size(sectors, cdb, cmd);
2639 		cmd->t_task_lba = transport_lba_32(cdb);
2640 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2641 
2642 		/*
2643 		 * Do now allow BIDI commands for passthrough mode.
2644 		 */
2645 		if (passthrough)
2646 			goto out_unsupported_cdb;
2647 
2648 		/*
2649 		 * Setup BIDI XOR callback to be run after I/O completion.
2650 		 */
2651 		cmd->transport_complete_callback = &transport_xor_callback;
2652 		if (cdb[1] & 0x8)
2653 			cmd->se_cmd_flags |= SCF_FUA;
2654 		break;
2655 	case VARIABLE_LENGTH_CMD:
2656 		service_action = get_unaligned_be16(&cdb[8]);
2657 		switch (service_action) {
2658 		case XDWRITEREAD_32:
2659 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2660 			if (sector_ret)
2661 				goto out_unsupported_cdb;
2662 			size = transport_get_size(sectors, cdb, cmd);
2663 			/*
2664 			 * Use WRITE_32 and READ_32 opcodes for the emulated
2665 			 * XDWRITE_READ_32 logic.
2666 			 */
2667 			cmd->t_task_lba = transport_lba_64_ext(cdb);
2668 			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2669 
2670 			/*
2671 			 * Do now allow BIDI commands for passthrough mode.
2672 			 */
2673 			if (passthrough)
2674 				goto out_unsupported_cdb;
2675 
2676 			/*
2677 			 * Setup BIDI XOR callback to be run during after I/O
2678 			 * completion.
2679 			 */
2680 			cmd->transport_complete_callback = &transport_xor_callback;
2681 			if (cdb[1] & 0x8)
2682 				cmd->se_cmd_flags |= SCF_FUA;
2683 			break;
2684 		case WRITE_SAME_32:
2685 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2686 			if (sector_ret)
2687 				goto out_unsupported_cdb;
2688 
2689 			if (sectors)
2690 				size = transport_get_size(1, cdb, cmd);
2691 			else {
2692 				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2693 				       " supported\n");
2694 				goto out_invalid_cdb_field;
2695 			}
2696 
2697 			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2698 			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2699 
2700 			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2701 				goto out_unsupported_cdb;
2702 			if (!passthrough)
2703 				cmd->execute_task = target_emulate_write_same;
2704 			break;
2705 		default:
2706 			pr_err("VARIABLE_LENGTH_CMD service action"
2707 				" 0x%04x not supported\n", service_action);
2708 			goto out_unsupported_cdb;
2709 		}
2710 		break;
2711 	case MAINTENANCE_IN:
2712 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2713 			/* MAINTENANCE_IN from SCC-2 */
2714 			/*
2715 			 * Check for emulated MI_REPORT_TARGET_PGS.
2716 			 */
2717 			if (cdb[1] == MI_REPORT_TARGET_PGS &&
2718 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2719 				cmd->execute_task =
2720 					target_emulate_report_target_port_groups;
2721 			}
2722 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2723 			       (cdb[8] << 8) | cdb[9];
2724 		} else {
2725 			/* GPCMD_SEND_KEY from multi media commands */
2726 			size = (cdb[8] << 8) + cdb[9];
2727 		}
2728 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729 		break;
2730 	case MODE_SELECT:
2731 		size = cdb[4];
2732 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733 		break;
2734 	case MODE_SELECT_10:
2735 		size = (cdb[7] << 8) + cdb[8];
2736 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737 		break;
2738 	case MODE_SENSE:
2739 		size = cdb[4];
2740 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2741 		if (!passthrough)
2742 			cmd->execute_task = target_emulate_modesense;
2743 		break;
2744 	case MODE_SENSE_10:
2745 		size = (cdb[7] << 8) + cdb[8];
2746 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2747 		if (!passthrough)
2748 			cmd->execute_task = target_emulate_modesense;
2749 		break;
2750 	case GPCMD_READ_BUFFER_CAPACITY:
2751 	case GPCMD_SEND_OPC:
2752 	case LOG_SELECT:
2753 	case LOG_SENSE:
2754 		size = (cdb[7] << 8) + cdb[8];
2755 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756 		break;
2757 	case READ_BLOCK_LIMITS:
2758 		size = READ_BLOCK_LEN;
2759 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760 		break;
2761 	case GPCMD_GET_CONFIGURATION:
2762 	case GPCMD_READ_FORMAT_CAPACITIES:
2763 	case GPCMD_READ_DISC_INFO:
2764 	case GPCMD_READ_TRACK_RZONE_INFO:
2765 		size = (cdb[7] << 8) + cdb[8];
2766 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2767 		break;
2768 	case PERSISTENT_RESERVE_IN:
2769 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2770 			cmd->execute_task = target_scsi3_emulate_pr_in;
2771 		size = (cdb[7] << 8) + cdb[8];
2772 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2773 		break;
2774 	case PERSISTENT_RESERVE_OUT:
2775 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2776 			cmd->execute_task = target_scsi3_emulate_pr_out;
2777 		size = (cdb[7] << 8) + cdb[8];
2778 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779 		break;
2780 	case GPCMD_MECHANISM_STATUS:
2781 	case GPCMD_READ_DVD_STRUCTURE:
2782 		size = (cdb[8] << 8) + cdb[9];
2783 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784 		break;
2785 	case READ_POSITION:
2786 		size = READ_POSITION_LEN;
2787 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788 		break;
2789 	case MAINTENANCE_OUT:
2790 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2791 			/* MAINTENANCE_OUT from SCC-2
2792 			 *
2793 			 * Check for emulated MO_SET_TARGET_PGS.
2794 			 */
2795 			if (cdb[1] == MO_SET_TARGET_PGS &&
2796 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2797 				cmd->execute_task =
2798 					target_emulate_set_target_port_groups;
2799 			}
2800 
2801 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2802 			       (cdb[8] << 8) | cdb[9];
2803 		} else  {
2804 			/* GPCMD_REPORT_KEY from multi media commands */
2805 			size = (cdb[8] << 8) + cdb[9];
2806 		}
2807 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808 		break;
2809 	case INQUIRY:
2810 		size = (cdb[3] << 8) + cdb[4];
2811 		/*
2812 		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2813 		 * See spc4r17 section 5.3
2814 		 */
2815 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2816 			cmd->sam_task_attr = MSG_HEAD_TAG;
2817 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2818 		if (!passthrough)
2819 			cmd->execute_task = target_emulate_inquiry;
2820 		break;
2821 	case READ_BUFFER:
2822 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2823 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 		break;
2825 	case READ_CAPACITY:
2826 		size = READ_CAP_LEN;
2827 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2828 		if (!passthrough)
2829 			cmd->execute_task = target_emulate_readcapacity;
2830 		break;
2831 	case READ_MEDIA_SERIAL_NUMBER:
2832 	case SECURITY_PROTOCOL_IN:
2833 	case SECURITY_PROTOCOL_OUT:
2834 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2835 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 		break;
2837 	case SERVICE_ACTION_IN:
2838 		switch (cmd->t_task_cdb[1] & 0x1f) {
2839 		case SAI_READ_CAPACITY_16:
2840 			if (!passthrough)
2841 				cmd->execute_task =
2842 					target_emulate_readcapacity_16;
2843 			break;
2844 		default:
2845 			if (passthrough)
2846 				break;
2847 
2848 			pr_err("Unsupported SA: 0x%02x\n",
2849 				cmd->t_task_cdb[1] & 0x1f);
2850 			goto out_unsupported_cdb;
2851 		}
2852 		/*FALLTHROUGH*/
2853 	case ACCESS_CONTROL_IN:
2854 	case ACCESS_CONTROL_OUT:
2855 	case EXTENDED_COPY:
2856 	case READ_ATTRIBUTE:
2857 	case RECEIVE_COPY_RESULTS:
2858 	case WRITE_ATTRIBUTE:
2859 		size = (cdb[10] << 24) | (cdb[11] << 16) |
2860 		       (cdb[12] << 8) | cdb[13];
2861 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2862 		break;
2863 	case RECEIVE_DIAGNOSTIC:
2864 	case SEND_DIAGNOSTIC:
2865 		size = (cdb[3] << 8) | cdb[4];
2866 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867 		break;
2868 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2869 #if 0
2870 	case GPCMD_READ_CD:
2871 		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2872 		size = (2336 * sectors);
2873 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2874 		break;
2875 #endif
2876 	case READ_TOC:
2877 		size = cdb[8];
2878 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 		break;
2880 	case REQUEST_SENSE:
2881 		size = cdb[4];
2882 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883 		if (!passthrough)
2884 			cmd->execute_task = target_emulate_request_sense;
2885 		break;
2886 	case READ_ELEMENT_STATUS:
2887 		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2888 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889 		break;
2890 	case WRITE_BUFFER:
2891 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2892 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2893 		break;
2894 	case RESERVE:
2895 	case RESERVE_10:
2896 		/*
2897 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2898 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2899 		 */
2900 		if (cdb[0] == RESERVE_10)
2901 			size = (cdb[7] << 8) | cdb[8];
2902 		else
2903 			size = cmd->data_length;
2904 
2905 		/*
2906 		 * Setup the legacy emulated handler for SPC-2 and
2907 		 * >= SPC-3 compatible reservation handling (CRH=1)
2908 		 * Otherwise, we assume the underlying SCSI logic is
2909 		 * is running in SPC_PASSTHROUGH, and wants reservations
2910 		 * emulation disabled.
2911 		 */
2912 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2913 			cmd->execute_task = target_scsi2_reservation_reserve;
2914 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2915 		break;
2916 	case RELEASE:
2917 	case RELEASE_10:
2918 		/*
2919 		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2920 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2921 		*/
2922 		if (cdb[0] == RELEASE_10)
2923 			size = (cdb[7] << 8) | cdb[8];
2924 		else
2925 			size = cmd->data_length;
2926 
2927 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2928 			cmd->execute_task = target_scsi2_reservation_release;
2929 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2930 		break;
2931 	case SYNCHRONIZE_CACHE:
2932 	case 0x91: /* SYNCHRONIZE_CACHE_16: */
2933 		/*
2934 		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2935 		 */
2936 		if (cdb[0] == SYNCHRONIZE_CACHE) {
2937 			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2938 			cmd->t_task_lba = transport_lba_32(cdb);
2939 		} else {
2940 			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2941 			cmd->t_task_lba = transport_lba_64(cdb);
2942 		}
2943 		if (sector_ret)
2944 			goto out_unsupported_cdb;
2945 
2946 		size = transport_get_size(sectors, cdb, cmd);
2947 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2948 
2949 		if (passthrough)
2950 			break;
2951 
2952 		/*
2953 		 * Check to ensure that LBA + Range does not exceed past end of
2954 		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2955 		 */
2956 		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2957 			if (transport_cmd_get_valid_sectors(cmd) < 0)
2958 				goto out_invalid_cdb_field;
2959 		}
2960 		cmd->execute_task = target_emulate_synchronize_cache;
2961 		break;
2962 	case UNMAP:
2963 		size = get_unaligned_be16(&cdb[7]);
2964 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2965 		if (!passthrough)
2966 			cmd->execute_task = target_emulate_unmap;
2967 		break;
2968 	case WRITE_SAME_16:
2969 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2970 		if (sector_ret)
2971 			goto out_unsupported_cdb;
2972 
2973 		if (sectors)
2974 			size = transport_get_size(1, cdb, cmd);
2975 		else {
2976 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2977 			goto out_invalid_cdb_field;
2978 		}
2979 
2980 		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2981 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2982 
2983 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
2984 			goto out_unsupported_cdb;
2985 		if (!passthrough)
2986 			cmd->execute_task = target_emulate_write_same;
2987 		break;
2988 	case WRITE_SAME:
2989 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2990 		if (sector_ret)
2991 			goto out_unsupported_cdb;
2992 
2993 		if (sectors)
2994 			size = transport_get_size(1, cdb, cmd);
2995 		else {
2996 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2997 			goto out_invalid_cdb_field;
2998 		}
2999 
3000 		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3001 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3002 		/*
3003 		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3004 		 * of byte 1 bit 3 UNMAP instead of original reserved field
3005 		 */
3006 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3007 			goto out_unsupported_cdb;
3008 		if (!passthrough)
3009 			cmd->execute_task = target_emulate_write_same;
3010 		break;
3011 	case ALLOW_MEDIUM_REMOVAL:
3012 	case ERASE:
3013 	case REZERO_UNIT:
3014 	case SEEK_10:
3015 	case SPACE:
3016 	case START_STOP:
3017 	case TEST_UNIT_READY:
3018 	case VERIFY:
3019 	case WRITE_FILEMARKS:
3020 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3021 		if (!passthrough)
3022 			cmd->execute_task = target_emulate_noop;
3023 		break;
3024 	case GPCMD_CLOSE_TRACK:
3025 	case INITIALIZE_ELEMENT_STATUS:
3026 	case GPCMD_LOAD_UNLOAD:
3027 	case GPCMD_SET_SPEED:
3028 	case MOVE_MEDIUM:
3029 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3030 		break;
3031 	case REPORT_LUNS:
3032 		cmd->execute_task = target_report_luns;
3033 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3034 		/*
3035 		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3036 		 * See spc4r17 section 5.3
3037 		 */
3038 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3039 			cmd->sam_task_attr = MSG_HEAD_TAG;
3040 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3041 		break;
3042 	default:
3043 		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3044 			" 0x%02x, sending CHECK_CONDITION.\n",
3045 			cmd->se_tfo->get_fabric_name(), cdb[0]);
3046 		goto out_unsupported_cdb;
3047 	}
3048 
3049 	if (size != cmd->data_length) {
3050 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3051 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3052 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3053 				cmd->data_length, size, cdb[0]);
3054 
3055 		cmd->cmd_spdtl = size;
3056 
3057 		if (cmd->data_direction == DMA_TO_DEVICE) {
3058 			pr_err("Rejecting underflow/overflow"
3059 					" WRITE data\n");
3060 			goto out_invalid_cdb_field;
3061 		}
3062 		/*
3063 		 * Reject READ_* or WRITE_* with overflow/underflow for
3064 		 * type SCF_SCSI_DATA_SG_IO_CDB.
3065 		 */
3066 		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3067 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3068 				" CDB on non 512-byte sector setup subsystem"
3069 				" plugin: %s\n", dev->transport->name);
3070 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3071 			goto out_invalid_cdb_field;
3072 		}
3073 
3074 		if (size > cmd->data_length) {
3075 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3076 			cmd->residual_count = (size - cmd->data_length);
3077 		} else {
3078 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3079 			cmd->residual_count = (cmd->data_length - size);
3080 		}
3081 		cmd->data_length = size;
3082 	}
3083 
3084 	/* reject any command that we don't have a handler for */
3085 	if (!(passthrough || cmd->execute_task ||
3086 	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3087 		goto out_unsupported_cdb;
3088 
3089 	transport_set_supported_SAM_opcode(cmd);
3090 	return ret;
3091 
3092 out_unsupported_cdb:
3093 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3094 	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3095 	return -EINVAL;
3096 out_invalid_cdb_field:
3097 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3098 	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3099 	return -EINVAL;
3100 }
3101 
3102 /*
3103  * Called from I/O completion to determine which dormant/delayed
3104  * and ordered cmds need to have their tasks added to the execution queue.
3105  */
transport_complete_task_attr(struct se_cmd * cmd)3106 static void transport_complete_task_attr(struct se_cmd *cmd)
3107 {
3108 	struct se_device *dev = cmd->se_dev;
3109 	struct se_cmd *cmd_p, *cmd_tmp;
3110 	int new_active_tasks = 0;
3111 
3112 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3113 		atomic_dec(&dev->simple_cmds);
3114 		smp_mb__after_atomic_dec();
3115 		dev->dev_cur_ordered_id++;
3116 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3117 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3118 			cmd->se_ordered_id);
3119 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3120 		dev->dev_cur_ordered_id++;
3121 		pr_debug("Incremented dev_cur_ordered_id: %u for"
3122 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3123 			cmd->se_ordered_id);
3124 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3125 		atomic_dec(&dev->dev_ordered_sync);
3126 		smp_mb__after_atomic_dec();
3127 
3128 		dev->dev_cur_ordered_id++;
3129 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3130 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3131 	}
3132 	/*
3133 	 * Process all commands up to the last received
3134 	 * ORDERED task attribute which requires another blocking
3135 	 * boundary
3136 	 */
3137 	spin_lock(&dev->delayed_cmd_lock);
3138 	list_for_each_entry_safe(cmd_p, cmd_tmp,
3139 			&dev->delayed_cmd_list, se_delayed_node) {
3140 
3141 		list_del(&cmd_p->se_delayed_node);
3142 		spin_unlock(&dev->delayed_cmd_lock);
3143 
3144 		pr_debug("Calling add_tasks() for"
3145 			" cmd_p: 0x%02x Task Attr: 0x%02x"
3146 			" Dormant -> Active, se_ordered_id: %u\n",
3147 			cmd_p->t_task_cdb[0],
3148 			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3149 
3150 		transport_add_tasks_from_cmd(cmd_p);
3151 		new_active_tasks++;
3152 
3153 		spin_lock(&dev->delayed_cmd_lock);
3154 		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3155 			break;
3156 	}
3157 	spin_unlock(&dev->delayed_cmd_lock);
3158 	/*
3159 	 * If new tasks have become active, wake up the transport thread
3160 	 * to do the processing of the Active tasks.
3161 	 */
3162 	if (new_active_tasks != 0)
3163 		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3164 }
3165 
transport_complete_qf(struct se_cmd * cmd)3166 static void transport_complete_qf(struct se_cmd *cmd)
3167 {
3168 	int ret = 0;
3169 
3170 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3171 		transport_complete_task_attr(cmd);
3172 
3173 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3174 		ret = cmd->se_tfo->queue_status(cmd);
3175 		if (ret)
3176 			goto out;
3177 	}
3178 
3179 	switch (cmd->data_direction) {
3180 	case DMA_FROM_DEVICE:
3181 		ret = cmd->se_tfo->queue_data_in(cmd);
3182 		break;
3183 	case DMA_TO_DEVICE:
3184 		if (cmd->t_bidi_data_sg) {
3185 			ret = cmd->se_tfo->queue_data_in(cmd);
3186 			if (ret < 0)
3187 				break;
3188 		}
3189 		/* Fall through for DMA_TO_DEVICE */
3190 	case DMA_NONE:
3191 		ret = cmd->se_tfo->queue_status(cmd);
3192 		break;
3193 	default:
3194 		break;
3195 	}
3196 
3197 out:
3198 	if (ret < 0) {
3199 		transport_handle_queue_full(cmd, cmd->se_dev);
3200 		return;
3201 	}
3202 	transport_lun_remove_cmd(cmd);
3203 	transport_cmd_check_stop_to_fabric(cmd);
3204 }
3205 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)3206 static void transport_handle_queue_full(
3207 	struct se_cmd *cmd,
3208 	struct se_device *dev)
3209 {
3210 	spin_lock_irq(&dev->qf_cmd_lock);
3211 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3212 	atomic_inc(&dev->dev_qf_count);
3213 	smp_mb__after_atomic_inc();
3214 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3215 
3216 	schedule_work(&cmd->se_dev->qf_work_queue);
3217 }
3218 
target_complete_ok_work(struct work_struct * work)3219 static void target_complete_ok_work(struct work_struct *work)
3220 {
3221 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3222 	int reason = 0, ret;
3223 
3224 	/*
3225 	 * Check if we need to move delayed/dormant tasks from cmds on the
3226 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3227 	 * Attribute.
3228 	 */
3229 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3230 		transport_complete_task_attr(cmd);
3231 	/*
3232 	 * Check to schedule QUEUE_FULL work, or execute an existing
3233 	 * cmd->transport_qf_callback()
3234 	 */
3235 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3236 		schedule_work(&cmd->se_dev->qf_work_queue);
3237 
3238 	/*
3239 	 * Check if we need to retrieve a sense buffer from
3240 	 * the struct se_cmd in question.
3241 	 */
3242 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3243 		if (transport_get_sense_data(cmd) < 0)
3244 			reason = TCM_NON_EXISTENT_LUN;
3245 
3246 		/*
3247 		 * Only set when an struct se_task->task_scsi_status returned
3248 		 * a non GOOD status.
3249 		 */
3250 		if (cmd->scsi_status) {
3251 			ret = transport_send_check_condition_and_sense(
3252 					cmd, reason, 1);
3253 			if (ret == -EAGAIN || ret == -ENOMEM)
3254 				goto queue_full;
3255 
3256 			transport_lun_remove_cmd(cmd);
3257 			transport_cmd_check_stop_to_fabric(cmd);
3258 			return;
3259 		}
3260 	}
3261 	/*
3262 	 * Check for a callback, used by amongst other things
3263 	 * XDWRITE_READ_10 emulation.
3264 	 */
3265 	if (cmd->transport_complete_callback)
3266 		cmd->transport_complete_callback(cmd);
3267 
3268 	switch (cmd->data_direction) {
3269 	case DMA_FROM_DEVICE:
3270 		spin_lock(&cmd->se_lun->lun_sep_lock);
3271 		if (cmd->se_lun->lun_sep) {
3272 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3273 					cmd->data_length;
3274 		}
3275 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3276 
3277 		ret = cmd->se_tfo->queue_data_in(cmd);
3278 		if (ret == -EAGAIN || ret == -ENOMEM)
3279 			goto queue_full;
3280 		break;
3281 	case DMA_TO_DEVICE:
3282 		spin_lock(&cmd->se_lun->lun_sep_lock);
3283 		if (cmd->se_lun->lun_sep) {
3284 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3285 				cmd->data_length;
3286 		}
3287 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3288 		/*
3289 		 * Check if we need to send READ payload for BIDI-COMMAND
3290 		 */
3291 		if (cmd->t_bidi_data_sg) {
3292 			spin_lock(&cmd->se_lun->lun_sep_lock);
3293 			if (cmd->se_lun->lun_sep) {
3294 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3295 					cmd->data_length;
3296 			}
3297 			spin_unlock(&cmd->se_lun->lun_sep_lock);
3298 			ret = cmd->se_tfo->queue_data_in(cmd);
3299 			if (ret == -EAGAIN || ret == -ENOMEM)
3300 				goto queue_full;
3301 			break;
3302 		}
3303 		/* Fall through for DMA_TO_DEVICE */
3304 	case DMA_NONE:
3305 		ret = cmd->se_tfo->queue_status(cmd);
3306 		if (ret == -EAGAIN || ret == -ENOMEM)
3307 			goto queue_full;
3308 		break;
3309 	default:
3310 		break;
3311 	}
3312 
3313 	transport_lun_remove_cmd(cmd);
3314 	transport_cmd_check_stop_to_fabric(cmd);
3315 	return;
3316 
3317 queue_full:
3318 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3319 		" data_direction: %d\n", cmd, cmd->data_direction);
3320 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3321 	transport_handle_queue_full(cmd, cmd->se_dev);
3322 }
3323 
transport_free_dev_tasks(struct se_cmd * cmd)3324 static void transport_free_dev_tasks(struct se_cmd *cmd)
3325 {
3326 	struct se_task *task, *task_tmp;
3327 	unsigned long flags;
3328 	LIST_HEAD(dispose_list);
3329 
3330 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3331 	list_for_each_entry_safe(task, task_tmp,
3332 				&cmd->t_task_list, t_list) {
3333 		if (!(task->task_flags & TF_ACTIVE))
3334 			list_move_tail(&task->t_list, &dispose_list);
3335 	}
3336 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3337 
3338 	while (!list_empty(&dispose_list)) {
3339 		task = list_first_entry(&dispose_list, struct se_task, t_list);
3340 
3341 		if (task->task_sg != cmd->t_data_sg &&
3342 		    task->task_sg != cmd->t_bidi_data_sg)
3343 			kfree(task->task_sg);
3344 
3345 		list_del(&task->t_list);
3346 
3347 		cmd->se_dev->transport->free_task(task);
3348 	}
3349 }
3350 
transport_free_sgl(struct scatterlist * sgl,int nents)3351 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3352 {
3353 	struct scatterlist *sg;
3354 	int count;
3355 
3356 	for_each_sg(sgl, sg, nents, count)
3357 		__free_page(sg_page(sg));
3358 
3359 	kfree(sgl);
3360 }
3361 
transport_free_pages(struct se_cmd * cmd)3362 static inline void transport_free_pages(struct se_cmd *cmd)
3363 {
3364 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3365 		return;
3366 
3367 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3368 	cmd->t_data_sg = NULL;
3369 	cmd->t_data_nents = 0;
3370 
3371 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3372 	cmd->t_bidi_data_sg = NULL;
3373 	cmd->t_bidi_data_nents = 0;
3374 }
3375 
3376 /**
3377  * transport_release_cmd - free a command
3378  * @cmd:       command to free
3379  *
3380  * This routine unconditionally frees a command, and reference counting
3381  * or list removal must be done in the caller.
3382  */
transport_release_cmd(struct se_cmd * cmd)3383 static void transport_release_cmd(struct se_cmd *cmd)
3384 {
3385 	BUG_ON(!cmd->se_tfo);
3386 
3387 	if (cmd->se_tmr_req)
3388 		core_tmr_release_req(cmd->se_tmr_req);
3389 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3390 		kfree(cmd->t_task_cdb);
3391 	/*
3392 	 * If this cmd has been setup with target_get_sess_cmd(), drop
3393 	 * the kref and call ->release_cmd() in kref callback.
3394 	 */
3395 	 if (cmd->check_release != 0) {
3396 		target_put_sess_cmd(cmd->se_sess, cmd);
3397 		return;
3398 	}
3399 	cmd->se_tfo->release_cmd(cmd);
3400 }
3401 
3402 /**
3403  * transport_put_cmd - release a reference to a command
3404  * @cmd:       command to release
3405  *
3406  * This routine releases our reference to the command and frees it if possible.
3407  */
transport_put_cmd(struct se_cmd * cmd)3408 static void transport_put_cmd(struct se_cmd *cmd)
3409 {
3410 	unsigned long flags;
3411 	int free_tasks = 0;
3412 
3413 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3414 	if (atomic_read(&cmd->t_fe_count)) {
3415 		if (!atomic_dec_and_test(&cmd->t_fe_count))
3416 			goto out_busy;
3417 	}
3418 
3419 	if (atomic_read(&cmd->t_se_count)) {
3420 		if (!atomic_dec_and_test(&cmd->t_se_count))
3421 			goto out_busy;
3422 	}
3423 
3424 	if (atomic_read(&cmd->transport_dev_active)) {
3425 		atomic_set(&cmd->transport_dev_active, 0);
3426 		transport_all_task_dev_remove_state(cmd);
3427 		free_tasks = 1;
3428 	}
3429 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3430 
3431 	if (free_tasks != 0)
3432 		transport_free_dev_tasks(cmd);
3433 
3434 	transport_free_pages(cmd);
3435 	transport_release_cmd(cmd);
3436 	return;
3437 out_busy:
3438 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3439 }
3440 
3441 /*
3442  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3443  * allocating in the core.
3444  * @cmd:  Associated se_cmd descriptor
3445  * @mem:  SGL style memory for TCM WRITE / READ
3446  * @sg_mem_num: Number of SGL elements
3447  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3448  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3449  *
3450  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3451  * of parameters.
3452  */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)3453 int transport_generic_map_mem_to_cmd(
3454 	struct se_cmd *cmd,
3455 	struct scatterlist *sgl,
3456 	u32 sgl_count,
3457 	struct scatterlist *sgl_bidi,
3458 	u32 sgl_bidi_count)
3459 {
3460 	if (!sgl || !sgl_count)
3461 		return 0;
3462 
3463 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3464 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3465 		/*
3466 		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3467 		 * scatterlists already have been set to follow what the fabric
3468 		 * passes for the original expected data transfer length.
3469 		 */
3470 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3471 			pr_warn("Rejecting SCSI DATA overflow for fabric using"
3472 				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3473 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3474 			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3475 			return -EINVAL;
3476 		}
3477 
3478 		cmd->t_data_sg = sgl;
3479 		cmd->t_data_nents = sgl_count;
3480 
3481 		if (sgl_bidi && sgl_bidi_count) {
3482 			cmd->t_bidi_data_sg = sgl_bidi;
3483 			cmd->t_bidi_data_nents = sgl_bidi_count;
3484 		}
3485 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3486 	}
3487 
3488 	return 0;
3489 }
3490 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3491 
transport_kmap_data_sg(struct se_cmd * cmd)3492 void *transport_kmap_data_sg(struct se_cmd *cmd)
3493 {
3494 	struct scatterlist *sg = cmd->t_data_sg;
3495 	struct page **pages;
3496 	int i;
3497 
3498 	BUG_ON(!sg);
3499 	/*
3500 	 * We need to take into account a possible offset here for fabrics like
3501 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3502 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3503 	 */
3504 	if (!cmd->t_data_nents)
3505 		return NULL;
3506 	else if (cmd->t_data_nents == 1)
3507 		return kmap(sg_page(sg)) + sg->offset;
3508 
3509 	/* >1 page. use vmap */
3510 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3511 	if (!pages)
3512 		return NULL;
3513 
3514 	/* convert sg[] to pages[] */
3515 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3516 		pages[i] = sg_page(sg);
3517 	}
3518 
3519 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3520 	kfree(pages);
3521 	if (!cmd->t_data_vmap)
3522 		return NULL;
3523 
3524 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3525 }
3526 EXPORT_SYMBOL(transport_kmap_data_sg);
3527 
transport_kunmap_data_sg(struct se_cmd * cmd)3528 void transport_kunmap_data_sg(struct se_cmd *cmd)
3529 {
3530 	if (!cmd->t_data_nents)
3531 		return;
3532 	else if (cmd->t_data_nents == 1)
3533 		kunmap(sg_page(cmd->t_data_sg));
3534 
3535 	vunmap(cmd->t_data_vmap);
3536 	cmd->t_data_vmap = NULL;
3537 }
3538 EXPORT_SYMBOL(transport_kunmap_data_sg);
3539 
3540 static int
transport_generic_get_mem(struct se_cmd * cmd)3541 transport_generic_get_mem(struct se_cmd *cmd)
3542 {
3543 	u32 length = cmd->data_length;
3544 	unsigned int nents;
3545 	struct page *page;
3546 	gfp_t zero_flag;
3547 	int i = 0;
3548 
3549 	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3550 	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3551 	if (!cmd->t_data_sg)
3552 		return -ENOMEM;
3553 
3554 	cmd->t_data_nents = nents;
3555 	sg_init_table(cmd->t_data_sg, nents);
3556 
3557 	zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3558 
3559 	while (length) {
3560 		u32 page_len = min_t(u32, length, PAGE_SIZE);
3561 		page = alloc_page(GFP_KERNEL | zero_flag);
3562 		if (!page)
3563 			goto out;
3564 
3565 		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3566 		length -= page_len;
3567 		i++;
3568 	}
3569 	return 0;
3570 
3571 out:
3572 	while (i >= 0) {
3573 		__free_page(sg_page(&cmd->t_data_sg[i]));
3574 		i--;
3575 	}
3576 	kfree(cmd->t_data_sg);
3577 	cmd->t_data_sg = NULL;
3578 	return -ENOMEM;
3579 }
3580 
3581 /* Reduce sectors if they are too long for the device */
transport_limit_task_sectors(struct se_device * dev,unsigned long long lba,sector_t sectors)3582 static inline sector_t transport_limit_task_sectors(
3583 	struct se_device *dev,
3584 	unsigned long long lba,
3585 	sector_t sectors)
3586 {
3587 	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3588 
3589 	if (dev->transport->get_device_type(dev) == TYPE_DISK)
3590 		if ((lba + sectors) > transport_dev_end_lba(dev))
3591 			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3592 
3593 	return sectors;
3594 }
3595 
3596 
3597 /*
3598  * This function can be used by HW target mode drivers to create a linked
3599  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3600  * This is intended to be called during the completion path by TCM Core
3601  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3602  */
transport_do_task_sg_chain(struct se_cmd * cmd)3603 void transport_do_task_sg_chain(struct se_cmd *cmd)
3604 {
3605 	struct scatterlist *sg_first = NULL;
3606 	struct scatterlist *sg_prev = NULL;
3607 	int sg_prev_nents = 0;
3608 	struct scatterlist *sg;
3609 	struct se_task *task;
3610 	u32 chained_nents = 0;
3611 	int i;
3612 
3613 	BUG_ON(!cmd->se_tfo->task_sg_chaining);
3614 
3615 	/*
3616 	 * Walk the struct se_task list and setup scatterlist chains
3617 	 * for each contiguously allocated struct se_task->task_sg[].
3618 	 */
3619 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
3620 		if (!task->task_sg)
3621 			continue;
3622 
3623 		if (!sg_first) {
3624 			sg_first = task->task_sg;
3625 			chained_nents = task->task_sg_nents;
3626 		} else {
3627 			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3628 			chained_nents += task->task_sg_nents;
3629 		}
3630 		/*
3631 		 * For the padded tasks, use the extra SGL vector allocated
3632 		 * in transport_allocate_data_tasks() for the sg_prev_nents
3633 		 * offset into sg_chain() above.
3634 		 *
3635 		 * We do not need the padding for the last task (or a single
3636 		 * task), but in that case we will never use the sg_prev_nents
3637 		 * value below which would be incorrect.
3638 		 */
3639 		sg_prev_nents = (task->task_sg_nents + 1);
3640 		sg_prev = task->task_sg;
3641 	}
3642 	/*
3643 	 * Setup the starting pointer and total t_tasks_sg_linked_no including
3644 	 * padding SGs for linking and to mark the end.
3645 	 */
3646 	cmd->t_tasks_sg_chained = sg_first;
3647 	cmd->t_tasks_sg_chained_no = chained_nents;
3648 
3649 	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3650 		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3651 		cmd->t_tasks_sg_chained_no);
3652 
3653 	for_each_sg(cmd->t_tasks_sg_chained, sg,
3654 			cmd->t_tasks_sg_chained_no, i) {
3655 
3656 		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3657 			i, sg, sg_page(sg), sg->length, sg->offset);
3658 		if (sg_is_chain(sg))
3659 			pr_debug("SG: %p sg_is_chain=1\n", sg);
3660 		if (sg_is_last(sg))
3661 			pr_debug("SG: %p sg_is_last=1\n", sg);
3662 	}
3663 }
3664 EXPORT_SYMBOL(transport_do_task_sg_chain);
3665 
3666 /*
3667  * Break up cmd into chunks transport can handle
3668  */
3669 static int
transport_allocate_data_tasks(struct se_cmd * cmd,enum dma_data_direction data_direction,struct scatterlist * cmd_sg,unsigned int sgl_nents)3670 transport_allocate_data_tasks(struct se_cmd *cmd,
3671 	enum dma_data_direction data_direction,
3672 	struct scatterlist *cmd_sg, unsigned int sgl_nents)
3673 {
3674 	struct se_device *dev = cmd->se_dev;
3675 	int task_count, i;
3676 	unsigned long long lba;
3677 	sector_t sectors, dev_max_sectors;
3678 	u32 sector_size;
3679 
3680 	if (transport_cmd_get_valid_sectors(cmd) < 0)
3681 		return -EINVAL;
3682 
3683 	dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3684 	sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3685 
3686 	WARN_ON(cmd->data_length % sector_size);
3687 
3688 	lba = cmd->t_task_lba;
3689 	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3690 	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3691 
3692 	/*
3693 	 * If we need just a single task reuse the SG list in the command
3694 	 * and avoid a lot of work.
3695 	 */
3696 	if (task_count == 1) {
3697 		struct se_task *task;
3698 		unsigned long flags;
3699 
3700 		task = transport_generic_get_task(cmd, data_direction);
3701 		if (!task)
3702 			return -ENOMEM;
3703 
3704 		task->task_sg = cmd_sg;
3705 		task->task_sg_nents = sgl_nents;
3706 
3707 		task->task_lba = lba;
3708 		task->task_sectors = sectors;
3709 		task->task_size = task->task_sectors * sector_size;
3710 
3711 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3712 		list_add_tail(&task->t_list, &cmd->t_task_list);
3713 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3714 
3715 		return task_count;
3716 	}
3717 
3718 	for (i = 0; i < task_count; i++) {
3719 		struct se_task *task;
3720 		unsigned int task_size, task_sg_nents_padded;
3721 		struct scatterlist *sg;
3722 		unsigned long flags;
3723 		int count;
3724 
3725 		task = transport_generic_get_task(cmd, data_direction);
3726 		if (!task)
3727 			return -ENOMEM;
3728 
3729 		task->task_lba = lba;
3730 		task->task_sectors = min(sectors, dev_max_sectors);
3731 		task->task_size = task->task_sectors * sector_size;
3732 
3733 		/*
3734 		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3735 		 * in order to calculate the number per task SGL entries
3736 		 */
3737 		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3738 		/*
3739 		 * Check if the fabric module driver is requesting that all
3740 		 * struct se_task->task_sg[] be chained together..  If so,
3741 		 * then allocate an extra padding SG entry for linking and
3742 		 * marking the end of the chained SGL for every task except
3743 		 * the last one for (task_count > 1) operation, or skipping
3744 		 * the extra padding for the (task_count == 1) case.
3745 		 */
3746 		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3747 			task_sg_nents_padded = (task->task_sg_nents + 1);
3748 		} else
3749 			task_sg_nents_padded = task->task_sg_nents;
3750 
3751 		task->task_sg = kmalloc(sizeof(struct scatterlist) *
3752 					task_sg_nents_padded, GFP_KERNEL);
3753 		if (!task->task_sg) {
3754 			cmd->se_dev->transport->free_task(task);
3755 			return -ENOMEM;
3756 		}
3757 
3758 		sg_init_table(task->task_sg, task_sg_nents_padded);
3759 
3760 		task_size = task->task_size;
3761 
3762 		/* Build new sgl, only up to task_size */
3763 		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3764 			if (cmd_sg->length > task_size)
3765 				break;
3766 
3767 			*sg = *cmd_sg;
3768 			task_size -= cmd_sg->length;
3769 			cmd_sg = sg_next(cmd_sg);
3770 		}
3771 
3772 		lba += task->task_sectors;
3773 		sectors -= task->task_sectors;
3774 
3775 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3776 		list_add_tail(&task->t_list, &cmd->t_task_list);
3777 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3778 	}
3779 
3780 	return task_count;
3781 }
3782 
3783 static int
transport_allocate_control_task(struct se_cmd * cmd)3784 transport_allocate_control_task(struct se_cmd *cmd)
3785 {
3786 	struct se_task *task;
3787 	unsigned long flags;
3788 
3789 	/* Workaround for handling zero-length control CDBs */
3790 	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3791 	    !cmd->data_length)
3792 		return 0;
3793 
3794 	task = transport_generic_get_task(cmd, cmd->data_direction);
3795 	if (!task)
3796 		return -ENOMEM;
3797 
3798 	task->task_sg = cmd->t_data_sg;
3799 	task->task_size = cmd->data_length;
3800 	task->task_sg_nents = cmd->t_data_nents;
3801 
3802 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3803 	list_add_tail(&task->t_list, &cmd->t_task_list);
3804 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3805 
3806 	/* Success! Return number of tasks allocated */
3807 	return 1;
3808 }
3809 
3810 /*
3811  * Allocate any required ressources to execute the command, and either place
3812  * it on the execution queue if possible.  For writes we might not have the
3813  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3814  */
transport_generic_new_cmd(struct se_cmd * cmd)3815 int transport_generic_new_cmd(struct se_cmd *cmd)
3816 {
3817 	struct se_device *dev = cmd->se_dev;
3818 	int task_cdbs, task_cdbs_bidi = 0;
3819 	int set_counts = 1;
3820 	int ret = 0;
3821 
3822 	/*
3823 	 * Determine is the TCM fabric module has already allocated physical
3824 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3825 	 * beforehand.
3826 	 */
3827 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3828 	    cmd->data_length) {
3829 		ret = transport_generic_get_mem(cmd);
3830 		if (ret < 0)
3831 			goto out_fail;
3832 	}
3833 
3834 	/*
3835 	 * For BIDI command set up the read tasks first.
3836 	 */
3837 	if (cmd->t_bidi_data_sg &&
3838 	    dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3839 		BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3840 
3841 		task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3842 				DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3843 				cmd->t_bidi_data_nents);
3844 		if (task_cdbs_bidi <= 0)
3845 			goto out_fail;
3846 
3847 		atomic_inc(&cmd->t_fe_count);
3848 		atomic_inc(&cmd->t_se_count);
3849 		set_counts = 0;
3850 	}
3851 
3852 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3853 		task_cdbs = transport_allocate_data_tasks(cmd,
3854 					cmd->data_direction, cmd->t_data_sg,
3855 					cmd->t_data_nents);
3856 	} else {
3857 		task_cdbs = transport_allocate_control_task(cmd);
3858 	}
3859 
3860 	if (task_cdbs < 0)
3861 		goto out_fail;
3862 	else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3863 		cmd->t_state = TRANSPORT_COMPLETE;
3864 		atomic_set(&cmd->t_transport_active, 1);
3865 
3866 		if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3867 			u8 ua_asc = 0, ua_ascq = 0;
3868 
3869 			core_scsi3_ua_clear_for_request_sense(cmd,
3870 					&ua_asc, &ua_ascq);
3871 		}
3872 
3873 		INIT_WORK(&cmd->work, target_complete_ok_work);
3874 		queue_work(target_completion_wq, &cmd->work);
3875 		return 0;
3876 	}
3877 
3878 	if (set_counts) {
3879 		atomic_inc(&cmd->t_fe_count);
3880 		atomic_inc(&cmd->t_se_count);
3881 	}
3882 
3883 	cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3884 	atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3885 	atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3886 
3887 	/*
3888 	 * For WRITEs, let the fabric know its buffer is ready..
3889 	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3890 	 * will be added to the struct se_device execution queue after its WRITE
3891 	 * data has arrived. (ie: It gets handled by the transport processing
3892 	 * thread a second time)
3893 	 */
3894 	if (cmd->data_direction == DMA_TO_DEVICE) {
3895 		transport_add_tasks_to_state_queue(cmd);
3896 		return transport_generic_write_pending(cmd);
3897 	}
3898 	/*
3899 	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3900 	 * to the execution queue.
3901 	 */
3902 	transport_execute_tasks(cmd);
3903 	return 0;
3904 
3905 out_fail:
3906 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3907 	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3908 	return -EINVAL;
3909 }
3910 EXPORT_SYMBOL(transport_generic_new_cmd);
3911 
3912 /*	transport_generic_process_write():
3913  *
3914  *
3915  */
transport_generic_process_write(struct se_cmd * cmd)3916 void transport_generic_process_write(struct se_cmd *cmd)
3917 {
3918 	transport_execute_tasks(cmd);
3919 }
3920 EXPORT_SYMBOL(transport_generic_process_write);
3921 
transport_write_pending_qf(struct se_cmd * cmd)3922 static void transport_write_pending_qf(struct se_cmd *cmd)
3923 {
3924 	int ret;
3925 
3926 	ret = cmd->se_tfo->write_pending(cmd);
3927 	if (ret == -EAGAIN || ret == -ENOMEM) {
3928 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3929 			 cmd);
3930 		transport_handle_queue_full(cmd, cmd->se_dev);
3931 	}
3932 }
3933 
transport_generic_write_pending(struct se_cmd * cmd)3934 static int transport_generic_write_pending(struct se_cmd *cmd)
3935 {
3936 	unsigned long flags;
3937 	int ret;
3938 
3939 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3940 	cmd->t_state = TRANSPORT_WRITE_PENDING;
3941 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3942 
3943 	/*
3944 	 * Clear the se_cmd for WRITE_PENDING status in order to set
3945 	 * cmd->t_transport_active=0 so that transport_generic_handle_data
3946 	 * can be called from HW target mode interrupt code.  This is safe
3947 	 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3948 	 * because the se_cmd->se_lun pointer is not being cleared.
3949 	 */
3950 	transport_cmd_check_stop(cmd, 1, 0);
3951 
3952 	/*
3953 	 * Call the fabric write_pending function here to let the
3954 	 * frontend know that WRITE buffers are ready.
3955 	 */
3956 	ret = cmd->se_tfo->write_pending(cmd);
3957 	if (ret == -EAGAIN || ret == -ENOMEM)
3958 		goto queue_full;
3959 	else if (ret < 0)
3960 		return ret;
3961 
3962 	return 1;
3963 
3964 queue_full:
3965 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3966 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3967 	transport_handle_queue_full(cmd, cmd->se_dev);
3968 	return 0;
3969 }
3970 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)3971 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3972 {
3973 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3974 		if (wait_for_tasks && cmd->se_tmr_req)
3975 			 transport_wait_for_tasks(cmd);
3976 
3977 		transport_release_cmd(cmd);
3978 	} else {
3979 		if (wait_for_tasks)
3980 			transport_wait_for_tasks(cmd);
3981 
3982 		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3983 
3984 		if (cmd->se_lun)
3985 			transport_lun_remove_cmd(cmd);
3986 
3987 		transport_free_dev_tasks(cmd);
3988 
3989 		transport_put_cmd(cmd);
3990 	}
3991 }
3992 EXPORT_SYMBOL(transport_generic_free_cmd);
3993 
3994 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3995  * @se_sess:	session to reference
3996  * @se_cmd:	command descriptor to add
3997  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
3998  */
target_get_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd,bool ack_kref)3999 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4000 			bool ack_kref)
4001 {
4002 	unsigned long flags;
4003 
4004 	kref_init(&se_cmd->cmd_kref);
4005 	/*
4006 	 * Add a second kref if the fabric caller is expecting to handle
4007 	 * fabric acknowledgement that requires two target_put_sess_cmd()
4008 	 * invocations before se_cmd descriptor release.
4009 	 */
4010 	if (ack_kref == true)
4011 		kref_get(&se_cmd->cmd_kref);
4012 
4013 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4014 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4015 	se_cmd->check_release = 1;
4016 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4017 }
4018 EXPORT_SYMBOL(target_get_sess_cmd);
4019 
target_release_cmd_kref(struct kref * kref)4020 static void target_release_cmd_kref(struct kref *kref)
4021 {
4022 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4023 	struct se_session *se_sess = se_cmd->se_sess;
4024 	unsigned long flags;
4025 
4026 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4027 	if (list_empty(&se_cmd->se_cmd_list)) {
4028 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4029 		WARN_ON(1);
4030 		return;
4031 	}
4032 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4033 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4034 		complete(&se_cmd->cmd_wait_comp);
4035 		return;
4036 	}
4037 	list_del(&se_cmd->se_cmd_list);
4038 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4039 
4040 	se_cmd->se_tfo->release_cmd(se_cmd);
4041 }
4042 
4043 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4044  * @se_sess:	session to reference
4045  * @se_cmd:	command descriptor to drop
4046  */
target_put_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd)4047 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4048 {
4049 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4050 }
4051 EXPORT_SYMBOL(target_put_sess_cmd);
4052 
4053 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4054  * @se_sess:	session to split
4055  */
target_splice_sess_cmd_list(struct se_session * se_sess)4056 void target_splice_sess_cmd_list(struct se_session *se_sess)
4057 {
4058 	struct se_cmd *se_cmd;
4059 	unsigned long flags;
4060 
4061 	WARN_ON(!list_empty(&se_sess->sess_wait_list));
4062 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
4063 
4064 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4065 	se_sess->sess_tearing_down = 1;
4066 
4067 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4068 
4069 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4070 		se_cmd->cmd_wait_set = 1;
4071 
4072 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4073 }
4074 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4075 
4076 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4077  * @se_sess:    session to wait for active I/O
4078  * @wait_for_tasks:	Make extra transport_wait_for_tasks call
4079  */
target_wait_for_sess_cmds(struct se_session * se_sess,int wait_for_tasks)4080 void target_wait_for_sess_cmds(
4081 	struct se_session *se_sess,
4082 	int wait_for_tasks)
4083 {
4084 	struct se_cmd *se_cmd, *tmp_cmd;
4085 	bool rc = false;
4086 
4087 	list_for_each_entry_safe(se_cmd, tmp_cmd,
4088 				&se_sess->sess_wait_list, se_cmd_list) {
4089 		list_del(&se_cmd->se_cmd_list);
4090 
4091 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4092 			" %d\n", se_cmd, se_cmd->t_state,
4093 			se_cmd->se_tfo->get_cmd_state(se_cmd));
4094 
4095 		if (wait_for_tasks) {
4096 			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4097 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4098 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4099 
4100 			rc = transport_wait_for_tasks(se_cmd);
4101 
4102 			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4103 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4104 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4105 		}
4106 
4107 		if (!rc) {
4108 			wait_for_completion(&se_cmd->cmd_wait_comp);
4109 			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4110 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4111 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4112 		}
4113 
4114 		se_cmd->se_tfo->release_cmd(se_cmd);
4115 	}
4116 }
4117 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4118 
4119 /*	transport_lun_wait_for_tasks():
4120  *
4121  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
4122  *	an struct se_lun to be successfully shutdown.
4123  */
transport_lun_wait_for_tasks(struct se_cmd * cmd,struct se_lun * lun)4124 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4125 {
4126 	unsigned long flags;
4127 	int ret;
4128 	/*
4129 	 * If the frontend has already requested this struct se_cmd to
4130 	 * be stopped, we can safely ignore this struct se_cmd.
4131 	 */
4132 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4133 	if (atomic_read(&cmd->t_transport_stop)) {
4134 		atomic_set(&cmd->transport_lun_stop, 0);
4135 		pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4136 			" TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4137 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4138 		transport_cmd_check_stop(cmd, 1, 0);
4139 		return -EPERM;
4140 	}
4141 	atomic_set(&cmd->transport_lun_fe_stop, 1);
4142 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4143 
4144 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4145 
4146 	ret = transport_stop_tasks_for_cmd(cmd);
4147 
4148 	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4149 			" %d\n", cmd, cmd->t_task_list_num, ret);
4150 	if (!ret) {
4151 		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4152 				cmd->se_tfo->get_task_tag(cmd));
4153 		wait_for_completion(&cmd->transport_lun_stop_comp);
4154 		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4155 				cmd->se_tfo->get_task_tag(cmd));
4156 	}
4157 	transport_remove_cmd_from_queue(cmd);
4158 
4159 	return 0;
4160 }
4161 
__transport_clear_lun_from_sessions(struct se_lun * lun)4162 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4163 {
4164 	struct se_cmd *cmd = NULL;
4165 	unsigned long lun_flags, cmd_flags;
4166 	/*
4167 	 * Do exception processing and return CHECK_CONDITION status to the
4168 	 * Initiator Port.
4169 	 */
4170 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4171 	while (!list_empty(&lun->lun_cmd_list)) {
4172 		cmd = list_first_entry(&lun->lun_cmd_list,
4173 		       struct se_cmd, se_lun_node);
4174 		list_del(&cmd->se_lun_node);
4175 
4176 		atomic_set(&cmd->transport_lun_active, 0);
4177 		/*
4178 		 * This will notify iscsi_target_transport.c:
4179 		 * transport_cmd_check_stop() that a LUN shutdown is in
4180 		 * progress for the iscsi_cmd_t.
4181 		 */
4182 		spin_lock(&cmd->t_state_lock);
4183 		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4184 			"_lun_stop for  ITT: 0x%08x\n",
4185 			cmd->se_lun->unpacked_lun,
4186 			cmd->se_tfo->get_task_tag(cmd));
4187 		atomic_set(&cmd->transport_lun_stop, 1);
4188 		spin_unlock(&cmd->t_state_lock);
4189 
4190 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4191 
4192 		if (!cmd->se_lun) {
4193 			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4194 				cmd->se_tfo->get_task_tag(cmd),
4195 				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4196 			BUG();
4197 		}
4198 		/*
4199 		 * If the Storage engine still owns the iscsi_cmd_t, determine
4200 		 * and/or stop its context.
4201 		 */
4202 		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4203 			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4204 			cmd->se_tfo->get_task_tag(cmd));
4205 
4206 		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4207 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4208 			continue;
4209 		}
4210 
4211 		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4212 			"_wait_for_tasks(): SUCCESS\n",
4213 			cmd->se_lun->unpacked_lun,
4214 			cmd->se_tfo->get_task_tag(cmd));
4215 
4216 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4217 		if (!atomic_read(&cmd->transport_dev_active)) {
4218 			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4219 			goto check_cond;
4220 		}
4221 		atomic_set(&cmd->transport_dev_active, 0);
4222 		transport_all_task_dev_remove_state(cmd);
4223 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4224 
4225 		transport_free_dev_tasks(cmd);
4226 		/*
4227 		 * The Storage engine stopped this struct se_cmd before it was
4228 		 * send to the fabric frontend for delivery back to the
4229 		 * Initiator Node.  Return this SCSI CDB back with an
4230 		 * CHECK_CONDITION status.
4231 		 */
4232 check_cond:
4233 		transport_send_check_condition_and_sense(cmd,
4234 				TCM_NON_EXISTENT_LUN, 0);
4235 		/*
4236 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
4237 		 * be released, notify the waiting thread now that LU has
4238 		 * finished accessing it.
4239 		 */
4240 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4241 		if (atomic_read(&cmd->transport_lun_fe_stop)) {
4242 			pr_debug("SE_LUN[%d] - Detected FE stop for"
4243 				" struct se_cmd: %p ITT: 0x%08x\n",
4244 				lun->unpacked_lun,
4245 				cmd, cmd->se_tfo->get_task_tag(cmd));
4246 
4247 			spin_unlock_irqrestore(&cmd->t_state_lock,
4248 					cmd_flags);
4249 			transport_cmd_check_stop(cmd, 1, 0);
4250 			complete(&cmd->transport_lun_fe_stop_comp);
4251 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4252 			continue;
4253 		}
4254 		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4255 			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4256 
4257 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4258 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4259 	}
4260 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4261 }
4262 
transport_clear_lun_thread(void * p)4263 static int transport_clear_lun_thread(void *p)
4264 {
4265 	struct se_lun *lun = p;
4266 
4267 	__transport_clear_lun_from_sessions(lun);
4268 	complete(&lun->lun_shutdown_comp);
4269 
4270 	return 0;
4271 }
4272 
transport_clear_lun_from_sessions(struct se_lun * lun)4273 int transport_clear_lun_from_sessions(struct se_lun *lun)
4274 {
4275 	struct task_struct *kt;
4276 
4277 	kt = kthread_run(transport_clear_lun_thread, lun,
4278 			"tcm_cl_%u", lun->unpacked_lun);
4279 	if (IS_ERR(kt)) {
4280 		pr_err("Unable to start clear_lun thread\n");
4281 		return PTR_ERR(kt);
4282 	}
4283 	wait_for_completion(&lun->lun_shutdown_comp);
4284 
4285 	return 0;
4286 }
4287 
4288 /**
4289  * transport_wait_for_tasks - wait for completion to occur
4290  * @cmd:	command to wait
4291  *
4292  * Called from frontend fabric context to wait for storage engine
4293  * to pause and/or release frontend generated struct se_cmd.
4294  */
transport_wait_for_tasks(struct se_cmd * cmd)4295 bool transport_wait_for_tasks(struct se_cmd *cmd)
4296 {
4297 	unsigned long flags;
4298 
4299 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4300 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4301 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4302 		return false;
4303 	}
4304 	/*
4305 	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4306 	 * has been set in transport_set_supported_SAM_opcode().
4307 	 */
4308 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4309 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4310 		return false;
4311 	}
4312 	/*
4313 	 * If we are already stopped due to an external event (ie: LUN shutdown)
4314 	 * sleep until the connection can have the passed struct se_cmd back.
4315 	 * The cmd->transport_lun_stopped_sem will be upped by
4316 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4317 	 * has completed its operation on the struct se_cmd.
4318 	 */
4319 	if (atomic_read(&cmd->transport_lun_stop)) {
4320 
4321 		pr_debug("wait_for_tasks: Stopping"
4322 			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4323 			"_stop_comp); for ITT: 0x%08x\n",
4324 			cmd->se_tfo->get_task_tag(cmd));
4325 		/*
4326 		 * There is a special case for WRITES where a FE exception +
4327 		 * LUN shutdown means ConfigFS context is still sleeping on
4328 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4329 		 * We go ahead and up transport_lun_stop_comp just to be sure
4330 		 * here.
4331 		 */
4332 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4333 		complete(&cmd->transport_lun_stop_comp);
4334 		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4335 		spin_lock_irqsave(&cmd->t_state_lock, flags);
4336 
4337 		transport_all_task_dev_remove_state(cmd);
4338 		/*
4339 		 * At this point, the frontend who was the originator of this
4340 		 * struct se_cmd, now owns the structure and can be released through
4341 		 * normal means below.
4342 		 */
4343 		pr_debug("wait_for_tasks: Stopped"
4344 			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4345 			"stop_comp); for ITT: 0x%08x\n",
4346 			cmd->se_tfo->get_task_tag(cmd));
4347 
4348 		atomic_set(&cmd->transport_lun_stop, 0);
4349 	}
4350 	if (!atomic_read(&cmd->t_transport_active) ||
4351 	     atomic_read(&cmd->t_transport_aborted)) {
4352 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4353 		return false;
4354 	}
4355 
4356 	atomic_set(&cmd->t_transport_stop, 1);
4357 
4358 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4359 		" i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4360 		cmd, cmd->se_tfo->get_task_tag(cmd),
4361 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4362 
4363 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4364 
4365 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4366 
4367 	wait_for_completion(&cmd->t_transport_stop_comp);
4368 
4369 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4370 	atomic_set(&cmd->t_transport_active, 0);
4371 	atomic_set(&cmd->t_transport_stop, 0);
4372 
4373 	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4374 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4375 		cmd->se_tfo->get_task_tag(cmd));
4376 
4377 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4378 
4379 	return true;
4380 }
4381 EXPORT_SYMBOL(transport_wait_for_tasks);
4382 
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)4383 static int transport_get_sense_codes(
4384 	struct se_cmd *cmd,
4385 	u8 *asc,
4386 	u8 *ascq)
4387 {
4388 	*asc = cmd->scsi_asc;
4389 	*ascq = cmd->scsi_ascq;
4390 
4391 	return 0;
4392 }
4393 
transport_set_sense_codes(struct se_cmd * cmd,u8 asc,u8 ascq)4394 static int transport_set_sense_codes(
4395 	struct se_cmd *cmd,
4396 	u8 asc,
4397 	u8 ascq)
4398 {
4399 	cmd->scsi_asc = asc;
4400 	cmd->scsi_ascq = ascq;
4401 
4402 	return 0;
4403 }
4404 
transport_send_check_condition_and_sense(struct se_cmd * cmd,u8 reason,int from_transport)4405 int transport_send_check_condition_and_sense(
4406 	struct se_cmd *cmd,
4407 	u8 reason,
4408 	int from_transport)
4409 {
4410 	unsigned char *buffer = cmd->sense_buffer;
4411 	unsigned long flags;
4412 	int offset;
4413 	u8 asc = 0, ascq = 0;
4414 
4415 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4416 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4417 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4418 		return 0;
4419 	}
4420 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4421 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4422 
4423 	if (!reason && from_transport)
4424 		goto after_reason;
4425 
4426 	if (!from_transport)
4427 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4428 	/*
4429 	 * Data Segment and SenseLength of the fabric response PDU.
4430 	 *
4431 	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4432 	 * from include/scsi/scsi_cmnd.h
4433 	 */
4434 	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4435 				TRANSPORT_SENSE_BUFFER);
4436 	/*
4437 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4438 	 * SENSE KEY values from include/scsi/scsi.h
4439 	 */
4440 	switch (reason) {
4441 	case TCM_NON_EXISTENT_LUN:
4442 		/* CURRENT ERROR */
4443 		buffer[offset] = 0x70;
4444 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4445 		/* ILLEGAL REQUEST */
4446 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4447 		/* LOGICAL UNIT NOT SUPPORTED */
4448 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4449 		break;
4450 	case TCM_UNSUPPORTED_SCSI_OPCODE:
4451 	case TCM_SECTOR_COUNT_TOO_MANY:
4452 		/* CURRENT ERROR */
4453 		buffer[offset] = 0x70;
4454 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4455 		/* ILLEGAL REQUEST */
4456 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4457 		/* INVALID COMMAND OPERATION CODE */
4458 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4459 		break;
4460 	case TCM_UNKNOWN_MODE_PAGE:
4461 		/* CURRENT ERROR */
4462 		buffer[offset] = 0x70;
4463 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4464 		/* ILLEGAL REQUEST */
4465 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4466 		/* INVALID FIELD IN CDB */
4467 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4468 		break;
4469 	case TCM_CHECK_CONDITION_ABORT_CMD:
4470 		/* CURRENT ERROR */
4471 		buffer[offset] = 0x70;
4472 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4473 		/* ABORTED COMMAND */
4474 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4475 		/* BUS DEVICE RESET FUNCTION OCCURRED */
4476 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4477 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4478 		break;
4479 	case TCM_INCORRECT_AMOUNT_OF_DATA:
4480 		/* CURRENT ERROR */
4481 		buffer[offset] = 0x70;
4482 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4483 		/* ABORTED COMMAND */
4484 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4485 		/* WRITE ERROR */
4486 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4487 		/* NOT ENOUGH UNSOLICITED DATA */
4488 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4489 		break;
4490 	case TCM_INVALID_CDB_FIELD:
4491 		/* CURRENT ERROR */
4492 		buffer[offset] = 0x70;
4493 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4494 		/* ILLEGAL REQUEST */
4495 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4496 		/* INVALID FIELD IN CDB */
4497 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4498 		break;
4499 	case TCM_INVALID_PARAMETER_LIST:
4500 		/* CURRENT ERROR */
4501 		buffer[offset] = 0x70;
4502 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4503 		/* ILLEGAL REQUEST */
4504 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4505 		/* INVALID FIELD IN PARAMETER LIST */
4506 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4507 		break;
4508 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4509 		/* CURRENT ERROR */
4510 		buffer[offset] = 0x70;
4511 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4512 		/* ABORTED COMMAND */
4513 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4514 		/* WRITE ERROR */
4515 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4516 		/* UNEXPECTED_UNSOLICITED_DATA */
4517 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4518 		break;
4519 	case TCM_SERVICE_CRC_ERROR:
4520 		/* CURRENT ERROR */
4521 		buffer[offset] = 0x70;
4522 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4523 		/* ABORTED COMMAND */
4524 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4525 		/* PROTOCOL SERVICE CRC ERROR */
4526 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4527 		/* N/A */
4528 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4529 		break;
4530 	case TCM_SNACK_REJECTED:
4531 		/* CURRENT ERROR */
4532 		buffer[offset] = 0x70;
4533 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4534 		/* ABORTED COMMAND */
4535 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4536 		/* READ ERROR */
4537 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4538 		/* FAILED RETRANSMISSION REQUEST */
4539 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4540 		break;
4541 	case TCM_WRITE_PROTECTED:
4542 		/* CURRENT ERROR */
4543 		buffer[offset] = 0x70;
4544 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4545 		/* DATA PROTECT */
4546 		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4547 		/* WRITE PROTECTED */
4548 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4549 		break;
4550 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4551 		/* CURRENT ERROR */
4552 		buffer[offset] = 0x70;
4553 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4554 		/* UNIT ATTENTION */
4555 		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4556 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4557 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4558 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4559 		break;
4560 	case TCM_CHECK_CONDITION_NOT_READY:
4561 		/* CURRENT ERROR */
4562 		buffer[offset] = 0x70;
4563 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4564 		/* Not Ready */
4565 		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4566 		transport_get_sense_codes(cmd, &asc, &ascq);
4567 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4568 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4569 		break;
4570 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4571 	default:
4572 		/* CURRENT ERROR */
4573 		buffer[offset] = 0x70;
4574 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4575 		/* ILLEGAL REQUEST */
4576 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4577 		/* LOGICAL UNIT COMMUNICATION FAILURE */
4578 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4579 		break;
4580 	}
4581 	/*
4582 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4583 	 */
4584 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4585 	/*
4586 	 * Automatically padded, this value is encoded in the fabric's
4587 	 * data_length response PDU containing the SCSI defined sense data.
4588 	 */
4589 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4590 
4591 after_reason:
4592 	return cmd->se_tfo->queue_status(cmd);
4593 }
4594 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4595 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)4596 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4597 {
4598 	int ret = 0;
4599 
4600 	if (atomic_read(&cmd->t_transport_aborted) != 0) {
4601 		if (!send_status ||
4602 		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4603 			return 1;
4604 #if 0
4605 		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4606 			" status for CDB: 0x%02x ITT: 0x%08x\n",
4607 			cmd->t_task_cdb[0],
4608 			cmd->se_tfo->get_task_tag(cmd));
4609 #endif
4610 		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4611 		cmd->se_tfo->queue_status(cmd);
4612 		ret = 1;
4613 	}
4614 	return ret;
4615 }
4616 EXPORT_SYMBOL(transport_check_aborted_status);
4617 
transport_send_task_abort(struct se_cmd * cmd)4618 void transport_send_task_abort(struct se_cmd *cmd)
4619 {
4620 	unsigned long flags;
4621 
4622 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4623 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4624 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4625 		return;
4626 	}
4627 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4628 
4629 	/*
4630 	 * If there are still expected incoming fabric WRITEs, we wait
4631 	 * until until they have completed before sending a TASK_ABORTED
4632 	 * response.  This response with TASK_ABORTED status will be
4633 	 * queued back to fabric module by transport_check_aborted_status().
4634 	 */
4635 	if (cmd->data_direction == DMA_TO_DEVICE) {
4636 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4637 			atomic_inc(&cmd->t_transport_aborted);
4638 			smp_mb__after_atomic_inc();
4639 		}
4640 	}
4641 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4642 #if 0
4643 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4644 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4645 		cmd->se_tfo->get_task_tag(cmd));
4646 #endif
4647 	cmd->se_tfo->queue_status(cmd);
4648 }
4649 
transport_generic_do_tmr(struct se_cmd * cmd)4650 static int transport_generic_do_tmr(struct se_cmd *cmd)
4651 {
4652 	struct se_device *dev = cmd->se_dev;
4653 	struct se_tmr_req *tmr = cmd->se_tmr_req;
4654 	int ret;
4655 
4656 	switch (tmr->function) {
4657 	case TMR_ABORT_TASK:
4658 		tmr->response = TMR_FUNCTION_REJECTED;
4659 		break;
4660 	case TMR_ABORT_TASK_SET:
4661 	case TMR_CLEAR_ACA:
4662 	case TMR_CLEAR_TASK_SET:
4663 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4664 		break;
4665 	case TMR_LUN_RESET:
4666 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4667 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4668 					 TMR_FUNCTION_REJECTED;
4669 		break;
4670 	case TMR_TARGET_WARM_RESET:
4671 		tmr->response = TMR_FUNCTION_REJECTED;
4672 		break;
4673 	case TMR_TARGET_COLD_RESET:
4674 		tmr->response = TMR_FUNCTION_REJECTED;
4675 		break;
4676 	default:
4677 		pr_err("Uknown TMR function: 0x%02x.\n",
4678 				tmr->function);
4679 		tmr->response = TMR_FUNCTION_REJECTED;
4680 		break;
4681 	}
4682 
4683 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4684 	cmd->se_tfo->queue_tm_rsp(cmd);
4685 
4686 	transport_cmd_check_stop_to_fabric(cmd);
4687 	return 0;
4688 }
4689 
4690 /*	transport_processing_thread():
4691  *
4692  *
4693  */
transport_processing_thread(void * param)4694 static int transport_processing_thread(void *param)
4695 {
4696 	int ret;
4697 	struct se_cmd *cmd;
4698 	struct se_device *dev = param;
4699 
4700 	while (!kthread_should_stop()) {
4701 		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4702 				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4703 				kthread_should_stop());
4704 		if (ret < 0)
4705 			goto out;
4706 
4707 get_cmd:
4708 		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4709 		if (!cmd)
4710 			continue;
4711 
4712 		switch (cmd->t_state) {
4713 		case TRANSPORT_NEW_CMD:
4714 			BUG();
4715 			break;
4716 		case TRANSPORT_NEW_CMD_MAP:
4717 			if (!cmd->se_tfo->new_cmd_map) {
4718 				pr_err("cmd->se_tfo->new_cmd_map is"
4719 					" NULL for TRANSPORT_NEW_CMD_MAP\n");
4720 				BUG();
4721 			}
4722 			ret = cmd->se_tfo->new_cmd_map(cmd);
4723 			if (ret < 0) {
4724 				transport_generic_request_failure(cmd);
4725 				break;
4726 			}
4727 			ret = transport_generic_new_cmd(cmd);
4728 			if (ret < 0) {
4729 				transport_generic_request_failure(cmd);
4730 				break;
4731 			}
4732 			break;
4733 		case TRANSPORT_PROCESS_WRITE:
4734 			transport_generic_process_write(cmd);
4735 			break;
4736 		case TRANSPORT_PROCESS_TMR:
4737 			transport_generic_do_tmr(cmd);
4738 			break;
4739 		case TRANSPORT_COMPLETE_QF_WP:
4740 			transport_write_pending_qf(cmd);
4741 			break;
4742 		case TRANSPORT_COMPLETE_QF_OK:
4743 			transport_complete_qf(cmd);
4744 			break;
4745 		default:
4746 			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4747 				"i_state: %d on SE LUN: %u\n",
4748 				cmd->t_state,
4749 				cmd->se_tfo->get_task_tag(cmd),
4750 				cmd->se_tfo->get_cmd_state(cmd),
4751 				cmd->se_lun->unpacked_lun);
4752 			BUG();
4753 		}
4754 
4755 		goto get_cmd;
4756 	}
4757 
4758 out:
4759 	WARN_ON(!list_empty(&dev->state_task_list));
4760 	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4761 	dev->process_thread = NULL;
4762 	return 0;
4763 }
4764