1 /*
2  * zcache.c
3  *
4  * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5  * Copyright (c) 2010,2011, Nitin Gupta
6  *
7  * Zcache provides an in-kernel "host implementation" for transcendent memory
8  * and, thus indirectly, for cleancache and frontswap.  Zcache includes two
9  * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
10  * 1) "compression buddies" ("zbud") is used for ephemeral pages
11  * 2) xvmalloc is used for persistent pages.
12  * Xvmalloc (based on the TLSF allocator) has very low fragmentation
13  * so maximizes space efficiency, while zbud allows pairs (and potentially,
14  * in the future, more than a pair of) compressed pages to be closely linked
15  * so that reclaiming can be done via the kernel's physical-page-oriented
16  * "shrinker" interface.
17  *
18  * [1] For a definition of page-accessible memory (aka PAM), see:
19  *   http://marc.info/?l=linux-mm&m=127811271605009
20  */
21 
22 #include <linux/module.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/list.h>
26 #include <linux/lzo.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/math64.h>
32 #include "tmem.h"
33 
34 #include "../zram/xvmalloc.h" /* if built in drivers/staging */
35 
36 #if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
37 #error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
38 #endif
39 #ifdef CONFIG_CLEANCACHE
40 #include <linux/cleancache.h>
41 #endif
42 #ifdef CONFIG_FRONTSWAP
43 #include <linux/frontswap.h>
44 #endif
45 
46 #if 0
47 /* this is more aggressive but may cause other problems? */
48 #define ZCACHE_GFP_MASK	(GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
49 #else
50 #define ZCACHE_GFP_MASK \
51 	(__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
52 #endif
53 
54 #define MAX_POOLS_PER_CLIENT 16
55 
56 #define MAX_CLIENTS 16
57 #define LOCAL_CLIENT ((uint16_t)-1)
58 
59 MODULE_LICENSE("GPL");
60 
61 struct zcache_client {
62 	struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
63 	struct xv_pool *xvpool;
64 	bool allocated;
65 	atomic_t refcount;
66 };
67 
68 static struct zcache_client zcache_host;
69 static struct zcache_client zcache_clients[MAX_CLIENTS];
70 
get_client_id_from_client(struct zcache_client * cli)71 static inline uint16_t get_client_id_from_client(struct zcache_client *cli)
72 {
73 	BUG_ON(cli == NULL);
74 	if (cli == &zcache_host)
75 		return LOCAL_CLIENT;
76 	return cli - &zcache_clients[0];
77 }
78 
is_local_client(struct zcache_client * cli)79 static inline bool is_local_client(struct zcache_client *cli)
80 {
81 	return cli == &zcache_host;
82 }
83 
84 /**********
85  * Compression buddies ("zbud") provides for packing two (or, possibly
86  * in the future, more) compressed ephemeral pages into a single "raw"
87  * (physical) page and tracking them with data structures so that
88  * the raw pages can be easily reclaimed.
89  *
90  * A zbud page ("zbpg") is an aligned page containing a list_head,
91  * a lock, and two "zbud headers".  The remainder of the physical
92  * page is divided up into aligned 64-byte "chunks" which contain
93  * the compressed data for zero, one, or two zbuds.  Each zbpg
94  * resides on: (1) an "unused list" if it has no zbuds; (2) a
95  * "buddied" list if it is fully populated  with two zbuds; or
96  * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
97  * the one unbuddied zbud uses.  The data inside a zbpg cannot be
98  * read or written unless the zbpg's lock is held.
99  */
100 
101 #define ZBH_SENTINEL  0x43214321
102 #define ZBPG_SENTINEL  0xdeadbeef
103 
104 #define ZBUD_MAX_BUDS 2
105 
106 struct zbud_hdr {
107 	uint16_t client_id;
108 	uint16_t pool_id;
109 	struct tmem_oid oid;
110 	uint32_t index;
111 	uint16_t size; /* compressed size in bytes, zero means unused */
112 	DECL_SENTINEL
113 };
114 
115 struct zbud_page {
116 	struct list_head bud_list;
117 	spinlock_t lock;
118 	struct zbud_hdr buddy[ZBUD_MAX_BUDS];
119 	DECL_SENTINEL
120 	/* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
121 };
122 
123 #define CHUNK_SHIFT	6
124 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
125 #define CHUNK_MASK	(~(CHUNK_SIZE-1))
126 #define NCHUNKS		(((PAGE_SIZE - sizeof(struct zbud_page)) & \
127 				CHUNK_MASK) >> CHUNK_SHIFT)
128 #define MAX_CHUNK	(NCHUNKS-1)
129 
130 static struct {
131 	struct list_head list;
132 	unsigned count;
133 } zbud_unbuddied[NCHUNKS];
134 /* list N contains pages with N chunks USED and NCHUNKS-N unused */
135 /* element 0 is never used but optimizing that isn't worth it */
136 static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
137 
138 struct list_head zbud_buddied_list;
139 static unsigned long zcache_zbud_buddied_count;
140 
141 /* protects the buddied list and all unbuddied lists */
142 static DEFINE_SPINLOCK(zbud_budlists_spinlock);
143 
144 static LIST_HEAD(zbpg_unused_list);
145 static unsigned long zcache_zbpg_unused_list_count;
146 
147 /* protects the unused page list */
148 static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
149 
150 static atomic_t zcache_zbud_curr_raw_pages;
151 static atomic_t zcache_zbud_curr_zpages;
152 static unsigned long zcache_zbud_curr_zbytes;
153 static unsigned long zcache_zbud_cumul_zpages;
154 static unsigned long zcache_zbud_cumul_zbytes;
155 static unsigned long zcache_compress_poor;
156 static unsigned long zcache_mean_compress_poor;
157 
158 /* forward references */
159 static void *zcache_get_free_page(void);
160 static void zcache_free_page(void *p);
161 
162 /*
163  * zbud helper functions
164  */
165 
zbud_max_buddy_size(void)166 static inline unsigned zbud_max_buddy_size(void)
167 {
168 	return MAX_CHUNK << CHUNK_SHIFT;
169 }
170 
zbud_size_to_chunks(unsigned size)171 static inline unsigned zbud_size_to_chunks(unsigned size)
172 {
173 	BUG_ON(size == 0 || size > zbud_max_buddy_size());
174 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
175 }
176 
zbud_budnum(struct zbud_hdr * zh)177 static inline int zbud_budnum(struct zbud_hdr *zh)
178 {
179 	unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
180 	struct zbud_page *zbpg = NULL;
181 	unsigned budnum = -1U;
182 	int i;
183 
184 	for (i = 0; i < ZBUD_MAX_BUDS; i++)
185 		if (offset == offsetof(typeof(*zbpg), buddy[i])) {
186 			budnum = i;
187 			break;
188 		}
189 	BUG_ON(budnum == -1U);
190 	return budnum;
191 }
192 
zbud_data(struct zbud_hdr * zh,unsigned size)193 static char *zbud_data(struct zbud_hdr *zh, unsigned size)
194 {
195 	struct zbud_page *zbpg;
196 	char *p;
197 	unsigned budnum;
198 
199 	ASSERT_SENTINEL(zh, ZBH);
200 	budnum = zbud_budnum(zh);
201 	BUG_ON(size == 0 || size > zbud_max_buddy_size());
202 	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
203 	ASSERT_SPINLOCK(&zbpg->lock);
204 	p = (char *)zbpg;
205 	if (budnum == 0)
206 		p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
207 							CHUNK_MASK);
208 	else if (budnum == 1)
209 		p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
210 	return p;
211 }
212 
213 /*
214  * zbud raw page management
215  */
216 
zbud_alloc_raw_page(void)217 static struct zbud_page *zbud_alloc_raw_page(void)
218 {
219 	struct zbud_page *zbpg = NULL;
220 	struct zbud_hdr *zh0, *zh1;
221 	bool recycled = 0;
222 
223 	/* if any pages on the zbpg list, use one */
224 	spin_lock(&zbpg_unused_list_spinlock);
225 	if (!list_empty(&zbpg_unused_list)) {
226 		zbpg = list_first_entry(&zbpg_unused_list,
227 				struct zbud_page, bud_list);
228 		list_del_init(&zbpg->bud_list);
229 		zcache_zbpg_unused_list_count--;
230 		recycled = 1;
231 	}
232 	spin_unlock(&zbpg_unused_list_spinlock);
233 	if (zbpg == NULL)
234 		/* none on zbpg list, try to get a kernel page */
235 		zbpg = zcache_get_free_page();
236 	if (likely(zbpg != NULL)) {
237 		INIT_LIST_HEAD(&zbpg->bud_list);
238 		zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
239 		spin_lock_init(&zbpg->lock);
240 		if (recycled) {
241 			ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
242 			SET_SENTINEL(zbpg, ZBPG);
243 			BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
244 			BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
245 		} else {
246 			atomic_inc(&zcache_zbud_curr_raw_pages);
247 			INIT_LIST_HEAD(&zbpg->bud_list);
248 			SET_SENTINEL(zbpg, ZBPG);
249 			zh0->size = 0; zh1->size = 0;
250 			tmem_oid_set_invalid(&zh0->oid);
251 			tmem_oid_set_invalid(&zh1->oid);
252 		}
253 	}
254 	return zbpg;
255 }
256 
zbud_free_raw_page(struct zbud_page * zbpg)257 static void zbud_free_raw_page(struct zbud_page *zbpg)
258 {
259 	struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
260 
261 	ASSERT_SENTINEL(zbpg, ZBPG);
262 	BUG_ON(!list_empty(&zbpg->bud_list));
263 	ASSERT_SPINLOCK(&zbpg->lock);
264 	BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
265 	BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
266 	INVERT_SENTINEL(zbpg, ZBPG);
267 	spin_unlock(&zbpg->lock);
268 	spin_lock(&zbpg_unused_list_spinlock);
269 	list_add(&zbpg->bud_list, &zbpg_unused_list);
270 	zcache_zbpg_unused_list_count++;
271 	spin_unlock(&zbpg_unused_list_spinlock);
272 }
273 
274 /*
275  * core zbud handling routines
276  */
277 
zbud_free(struct zbud_hdr * zh)278 static unsigned zbud_free(struct zbud_hdr *zh)
279 {
280 	unsigned size;
281 
282 	ASSERT_SENTINEL(zh, ZBH);
283 	BUG_ON(!tmem_oid_valid(&zh->oid));
284 	size = zh->size;
285 	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
286 	zh->size = 0;
287 	tmem_oid_set_invalid(&zh->oid);
288 	INVERT_SENTINEL(zh, ZBH);
289 	zcache_zbud_curr_zbytes -= size;
290 	atomic_dec(&zcache_zbud_curr_zpages);
291 	return size;
292 }
293 
zbud_free_and_delist(struct zbud_hdr * zh)294 static void zbud_free_and_delist(struct zbud_hdr *zh)
295 {
296 	unsigned chunks;
297 	struct zbud_hdr *zh_other;
298 	unsigned budnum = zbud_budnum(zh), size;
299 	struct zbud_page *zbpg =
300 		container_of(zh, struct zbud_page, buddy[budnum]);
301 
302 	spin_lock(&zbpg->lock);
303 	if (list_empty(&zbpg->bud_list)) {
304 		/* ignore zombie page... see zbud_evict_pages() */
305 		spin_unlock(&zbpg->lock);
306 		return;
307 	}
308 	size = zbud_free(zh);
309 	ASSERT_SPINLOCK(&zbpg->lock);
310 	zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
311 	if (zh_other->size == 0) { /* was unbuddied: unlist and free */
312 		chunks = zbud_size_to_chunks(size) ;
313 		spin_lock(&zbud_budlists_spinlock);
314 		BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
315 		list_del_init(&zbpg->bud_list);
316 		zbud_unbuddied[chunks].count--;
317 		spin_unlock(&zbud_budlists_spinlock);
318 		zbud_free_raw_page(zbpg);
319 	} else { /* was buddied: move remaining buddy to unbuddied list */
320 		chunks = zbud_size_to_chunks(zh_other->size) ;
321 		spin_lock(&zbud_budlists_spinlock);
322 		list_del_init(&zbpg->bud_list);
323 		zcache_zbud_buddied_count--;
324 		list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
325 		zbud_unbuddied[chunks].count++;
326 		spin_unlock(&zbud_budlists_spinlock);
327 		spin_unlock(&zbpg->lock);
328 	}
329 }
330 
zbud_create(uint16_t client_id,uint16_t pool_id,struct tmem_oid * oid,uint32_t index,struct page * page,void * cdata,unsigned size)331 static struct zbud_hdr *zbud_create(uint16_t client_id, uint16_t pool_id,
332 					struct tmem_oid *oid,
333 					uint32_t index, struct page *page,
334 					void *cdata, unsigned size)
335 {
336 	struct zbud_hdr *zh0, *zh1, *zh = NULL;
337 	struct zbud_page *zbpg = NULL, *ztmp;
338 	unsigned nchunks;
339 	char *to;
340 	int i, found_good_buddy = 0;
341 
342 	nchunks = zbud_size_to_chunks(size) ;
343 	for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
344 		spin_lock(&zbud_budlists_spinlock);
345 		if (!list_empty(&zbud_unbuddied[i].list)) {
346 			list_for_each_entry_safe(zbpg, ztmp,
347 				    &zbud_unbuddied[i].list, bud_list) {
348 				if (spin_trylock(&zbpg->lock)) {
349 					found_good_buddy = i;
350 					goto found_unbuddied;
351 				}
352 			}
353 		}
354 		spin_unlock(&zbud_budlists_spinlock);
355 	}
356 	/* didn't find a good buddy, try allocating a new page */
357 	zbpg = zbud_alloc_raw_page();
358 	if (unlikely(zbpg == NULL))
359 		goto out;
360 	/* ok, have a page, now compress the data before taking locks */
361 	spin_lock(&zbud_budlists_spinlock);
362 	spin_lock(&zbpg->lock);
363 	list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
364 	zbud_unbuddied[nchunks].count++;
365 	zh = &zbpg->buddy[0];
366 	goto init_zh;
367 
368 found_unbuddied:
369 	ASSERT_SPINLOCK(&zbpg->lock);
370 	zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
371 	BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
372 	if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
373 		ASSERT_SENTINEL(zh0, ZBH);
374 		zh = zh1;
375 	} else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
376 		ASSERT_SENTINEL(zh1, ZBH);
377 		zh = zh0;
378 	} else
379 		BUG();
380 	list_del_init(&zbpg->bud_list);
381 	zbud_unbuddied[found_good_buddy].count--;
382 	list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
383 	zcache_zbud_buddied_count++;
384 
385 init_zh:
386 	SET_SENTINEL(zh, ZBH);
387 	zh->size = size;
388 	zh->index = index;
389 	zh->oid = *oid;
390 	zh->pool_id = pool_id;
391 	zh->client_id = client_id;
392 	to = zbud_data(zh, size);
393 	memcpy(to, cdata, size);
394 	spin_unlock(&zbpg->lock);
395 	spin_unlock(&zbud_budlists_spinlock);
396 
397 	zbud_cumul_chunk_counts[nchunks]++;
398 	atomic_inc(&zcache_zbud_curr_zpages);
399 	zcache_zbud_cumul_zpages++;
400 	zcache_zbud_curr_zbytes += size;
401 	zcache_zbud_cumul_zbytes += size;
402 out:
403 	return zh;
404 }
405 
zbud_decompress(struct page * page,struct zbud_hdr * zh)406 static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
407 {
408 	struct zbud_page *zbpg;
409 	unsigned budnum = zbud_budnum(zh);
410 	size_t out_len = PAGE_SIZE;
411 	char *to_va, *from_va;
412 	unsigned size;
413 	int ret = 0;
414 
415 	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
416 	spin_lock(&zbpg->lock);
417 	if (list_empty(&zbpg->bud_list)) {
418 		/* ignore zombie page... see zbud_evict_pages() */
419 		ret = -EINVAL;
420 		goto out;
421 	}
422 	ASSERT_SENTINEL(zh, ZBH);
423 	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
424 	to_va = kmap_atomic(page, KM_USER0);
425 	size = zh->size;
426 	from_va = zbud_data(zh, size);
427 	ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
428 	BUG_ON(ret != LZO_E_OK);
429 	BUG_ON(out_len != PAGE_SIZE);
430 	kunmap_atomic(to_va, KM_USER0);
431 out:
432 	spin_unlock(&zbpg->lock);
433 	return ret;
434 }
435 
436 /*
437  * The following routines handle shrinking of ephemeral pages by evicting
438  * pages "least valuable" first.
439  */
440 
441 static unsigned long zcache_evicted_raw_pages;
442 static unsigned long zcache_evicted_buddied_pages;
443 static unsigned long zcache_evicted_unbuddied_pages;
444 
445 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id,
446 						uint16_t poolid);
447 static void zcache_put_pool(struct tmem_pool *pool);
448 
449 /*
450  * Flush and free all zbuds in a zbpg, then free the pageframe
451  */
zbud_evict_zbpg(struct zbud_page * zbpg)452 static void zbud_evict_zbpg(struct zbud_page *zbpg)
453 {
454 	struct zbud_hdr *zh;
455 	int i, j;
456 	uint32_t pool_id[ZBUD_MAX_BUDS], client_id[ZBUD_MAX_BUDS];
457 	uint32_t index[ZBUD_MAX_BUDS];
458 	struct tmem_oid oid[ZBUD_MAX_BUDS];
459 	struct tmem_pool *pool;
460 
461 	ASSERT_SPINLOCK(&zbpg->lock);
462 	BUG_ON(!list_empty(&zbpg->bud_list));
463 	for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
464 		zh = &zbpg->buddy[i];
465 		if (zh->size) {
466 			client_id[j] = zh->client_id;
467 			pool_id[j] = zh->pool_id;
468 			oid[j] = zh->oid;
469 			index[j] = zh->index;
470 			j++;
471 			zbud_free(zh);
472 		}
473 	}
474 	spin_unlock(&zbpg->lock);
475 	for (i = 0; i < j; i++) {
476 		pool = zcache_get_pool_by_id(client_id[i], pool_id[i]);
477 		if (pool != NULL) {
478 			tmem_flush_page(pool, &oid[i], index[i]);
479 			zcache_put_pool(pool);
480 		}
481 	}
482 	ASSERT_SENTINEL(zbpg, ZBPG);
483 	spin_lock(&zbpg->lock);
484 	zbud_free_raw_page(zbpg);
485 }
486 
487 /*
488  * Free nr pages.  This code is funky because we want to hold the locks
489  * protecting various lists for as short a time as possible, and in some
490  * circumstances the list may change asynchronously when the list lock is
491  * not held.  In some cases we also trylock not only to avoid waiting on a
492  * page in use by another cpu, but also to avoid potential deadlock due to
493  * lock inversion.
494  */
zbud_evict_pages(int nr)495 static void zbud_evict_pages(int nr)
496 {
497 	struct zbud_page *zbpg;
498 	int i;
499 
500 	/* first try freeing any pages on unused list */
501 retry_unused_list:
502 	spin_lock_bh(&zbpg_unused_list_spinlock);
503 	if (!list_empty(&zbpg_unused_list)) {
504 		/* can't walk list here, since it may change when unlocked */
505 		zbpg = list_first_entry(&zbpg_unused_list,
506 				struct zbud_page, bud_list);
507 		list_del_init(&zbpg->bud_list);
508 		zcache_zbpg_unused_list_count--;
509 		atomic_dec(&zcache_zbud_curr_raw_pages);
510 		spin_unlock_bh(&zbpg_unused_list_spinlock);
511 		zcache_free_page(zbpg);
512 		zcache_evicted_raw_pages++;
513 		if (--nr <= 0)
514 			goto out;
515 		goto retry_unused_list;
516 	}
517 	spin_unlock_bh(&zbpg_unused_list_spinlock);
518 
519 	/* now try freeing unbuddied pages, starting with least space avail */
520 	for (i = 0; i < MAX_CHUNK; i++) {
521 retry_unbud_list_i:
522 		spin_lock_bh(&zbud_budlists_spinlock);
523 		if (list_empty(&zbud_unbuddied[i].list)) {
524 			spin_unlock_bh(&zbud_budlists_spinlock);
525 			continue;
526 		}
527 		list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
528 			if (unlikely(!spin_trylock(&zbpg->lock)))
529 				continue;
530 			list_del_init(&zbpg->bud_list);
531 			zbud_unbuddied[i].count--;
532 			spin_unlock(&zbud_budlists_spinlock);
533 			zcache_evicted_unbuddied_pages++;
534 			/* want budlists unlocked when doing zbpg eviction */
535 			zbud_evict_zbpg(zbpg);
536 			local_bh_enable();
537 			if (--nr <= 0)
538 				goto out;
539 			goto retry_unbud_list_i;
540 		}
541 		spin_unlock_bh(&zbud_budlists_spinlock);
542 	}
543 
544 	/* as a last resort, free buddied pages */
545 retry_bud_list:
546 	spin_lock_bh(&zbud_budlists_spinlock);
547 	if (list_empty(&zbud_buddied_list)) {
548 		spin_unlock_bh(&zbud_budlists_spinlock);
549 		goto out;
550 	}
551 	list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
552 		if (unlikely(!spin_trylock(&zbpg->lock)))
553 			continue;
554 		list_del_init(&zbpg->bud_list);
555 		zcache_zbud_buddied_count--;
556 		spin_unlock(&zbud_budlists_spinlock);
557 		zcache_evicted_buddied_pages++;
558 		/* want budlists unlocked when doing zbpg eviction */
559 		zbud_evict_zbpg(zbpg);
560 		local_bh_enable();
561 		if (--nr <= 0)
562 			goto out;
563 		goto retry_bud_list;
564 	}
565 	spin_unlock_bh(&zbud_budlists_spinlock);
566 out:
567 	return;
568 }
569 
zbud_init(void)570 static void zbud_init(void)
571 {
572 	int i;
573 
574 	INIT_LIST_HEAD(&zbud_buddied_list);
575 	zcache_zbud_buddied_count = 0;
576 	for (i = 0; i < NCHUNKS; i++) {
577 		INIT_LIST_HEAD(&zbud_unbuddied[i].list);
578 		zbud_unbuddied[i].count = 0;
579 	}
580 }
581 
582 #ifdef CONFIG_SYSFS
583 /*
584  * These sysfs routines show a nice distribution of how many zbpg's are
585  * currently (and have ever been placed) in each unbuddied list.  It's fun
586  * to watch but can probably go away before final merge.
587  */
zbud_show_unbuddied_list_counts(char * buf)588 static int zbud_show_unbuddied_list_counts(char *buf)
589 {
590 	int i;
591 	char *p = buf;
592 
593 	for (i = 0; i < NCHUNKS; i++)
594 		p += sprintf(p, "%u ", zbud_unbuddied[i].count);
595 	return p - buf;
596 }
597 
zbud_show_cumul_chunk_counts(char * buf)598 static int zbud_show_cumul_chunk_counts(char *buf)
599 {
600 	unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
601 	unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
602 	unsigned long total_chunks_lte_42 = 0;
603 	char *p = buf;
604 
605 	for (i = 0; i < NCHUNKS; i++) {
606 		p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
607 		chunks += zbud_cumul_chunk_counts[i];
608 		total_chunks += zbud_cumul_chunk_counts[i];
609 		sum_total_chunks += i * zbud_cumul_chunk_counts[i];
610 		if (i == 21)
611 			total_chunks_lte_21 = total_chunks;
612 		if (i == 32)
613 			total_chunks_lte_32 = total_chunks;
614 		if (i == 42)
615 			total_chunks_lte_42 = total_chunks;
616 	}
617 	p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
618 		total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
619 		chunks == 0 ? 0 : sum_total_chunks / chunks);
620 	return p - buf;
621 }
622 #endif
623 
624 /**********
625  * This "zv" PAM implementation combines the TLSF-based xvMalloc
626  * with lzo1x compression to maximize the amount of data that can
627  * be packed into a physical page.
628  *
629  * Zv represents a PAM page with the index and object (plus a "size" value
630  * necessary for decompression) immediately preceding the compressed data.
631  */
632 
633 #define ZVH_SENTINEL  0x43214321
634 
635 struct zv_hdr {
636 	uint32_t pool_id;
637 	struct tmem_oid oid;
638 	uint32_t index;
639 	DECL_SENTINEL
640 };
641 
642 /* rudimentary policy limits */
643 /* total number of persistent pages may not exceed this percentage */
644 static unsigned int zv_page_count_policy_percent = 75;
645 /*
646  * byte count defining poor compression; pages with greater zsize will be
647  * rejected
648  */
649 static unsigned int zv_max_zsize = (PAGE_SIZE / 8) * 7;
650 /*
651  * byte count defining poor *mean* compression; pages with greater zsize
652  * will be rejected until sufficient better-compressed pages are accepted
653  * driving the mean below this threshold
654  */
655 static unsigned int zv_max_mean_zsize = (PAGE_SIZE / 8) * 5;
656 
657 static atomic_t zv_curr_dist_counts[NCHUNKS];
658 static atomic_t zv_cumul_dist_counts[NCHUNKS];
659 
zv_create(struct xv_pool * xvpool,uint32_t pool_id,struct tmem_oid * oid,uint32_t index,void * cdata,unsigned clen)660 static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
661 				struct tmem_oid *oid, uint32_t index,
662 				void *cdata, unsigned clen)
663 {
664 	struct page *page;
665 	struct zv_hdr *zv = NULL;
666 	uint32_t offset;
667 	int alloc_size = clen + sizeof(struct zv_hdr);
668 	int chunks = (alloc_size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
669 	int ret;
670 
671 	BUG_ON(!irqs_disabled());
672 	BUG_ON(chunks >= NCHUNKS);
673 	ret = xv_malloc(xvpool, alloc_size,
674 			&page, &offset, ZCACHE_GFP_MASK);
675 	if (unlikely(ret))
676 		goto out;
677 	atomic_inc(&zv_curr_dist_counts[chunks]);
678 	atomic_inc(&zv_cumul_dist_counts[chunks]);
679 	zv = kmap_atomic(page, KM_USER0) + offset;
680 	zv->index = index;
681 	zv->oid = *oid;
682 	zv->pool_id = pool_id;
683 	SET_SENTINEL(zv, ZVH);
684 	memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
685 	kunmap_atomic(zv, KM_USER0);
686 out:
687 	return zv;
688 }
689 
zv_free(struct xv_pool * xvpool,struct zv_hdr * zv)690 static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
691 {
692 	unsigned long flags;
693 	struct page *page;
694 	uint32_t offset;
695 	uint16_t size = xv_get_object_size(zv);
696 	int chunks = (size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
697 
698 	ASSERT_SENTINEL(zv, ZVH);
699 	BUG_ON(chunks >= NCHUNKS);
700 	atomic_dec(&zv_curr_dist_counts[chunks]);
701 	size -= sizeof(*zv);
702 	BUG_ON(size == 0);
703 	INVERT_SENTINEL(zv, ZVH);
704 	page = virt_to_page(zv);
705 	offset = (unsigned long)zv & ~PAGE_MASK;
706 	local_irq_save(flags);
707 	xv_free(xvpool, page, offset);
708 	local_irq_restore(flags);
709 }
710 
zv_decompress(struct page * page,struct zv_hdr * zv)711 static void zv_decompress(struct page *page, struct zv_hdr *zv)
712 {
713 	size_t clen = PAGE_SIZE;
714 	char *to_va;
715 	unsigned size;
716 	int ret;
717 
718 	ASSERT_SENTINEL(zv, ZVH);
719 	size = xv_get_object_size(zv) - sizeof(*zv);
720 	BUG_ON(size == 0);
721 	to_va = kmap_atomic(page, KM_USER0);
722 	ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
723 					size, to_va, &clen);
724 	kunmap_atomic(to_va, KM_USER0);
725 	BUG_ON(ret != LZO_E_OK);
726 	BUG_ON(clen != PAGE_SIZE);
727 }
728 
729 #ifdef CONFIG_SYSFS
730 /*
731  * show a distribution of compression stats for zv pages.
732  */
733 
zv_curr_dist_counts_show(char * buf)734 static int zv_curr_dist_counts_show(char *buf)
735 {
736 	unsigned long i, n, chunks = 0, sum_total_chunks = 0;
737 	char *p = buf;
738 
739 	for (i = 0; i < NCHUNKS; i++) {
740 		n = atomic_read(&zv_curr_dist_counts[i]);
741 		p += sprintf(p, "%lu ", n);
742 		chunks += n;
743 		sum_total_chunks += i * n;
744 	}
745 	p += sprintf(p, "mean:%lu\n",
746 		chunks == 0 ? 0 : sum_total_chunks / chunks);
747 	return p - buf;
748 }
749 
zv_cumul_dist_counts_show(char * buf)750 static int zv_cumul_dist_counts_show(char *buf)
751 {
752 	unsigned long i, n, chunks = 0, sum_total_chunks = 0;
753 	char *p = buf;
754 
755 	for (i = 0; i < NCHUNKS; i++) {
756 		n = atomic_read(&zv_cumul_dist_counts[i]);
757 		p += sprintf(p, "%lu ", n);
758 		chunks += n;
759 		sum_total_chunks += i * n;
760 	}
761 	p += sprintf(p, "mean:%lu\n",
762 		chunks == 0 ? 0 : sum_total_chunks / chunks);
763 	return p - buf;
764 }
765 
766 /*
767  * setting zv_max_zsize via sysfs causes all persistent (e.g. swap)
768  * pages that don't compress to less than this value (including metadata
769  * overhead) to be rejected.  We don't allow the value to get too close
770  * to PAGE_SIZE.
771  */
zv_max_zsize_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)772 static ssize_t zv_max_zsize_show(struct kobject *kobj,
773 				    struct kobj_attribute *attr,
774 				    char *buf)
775 {
776 	return sprintf(buf, "%u\n", zv_max_zsize);
777 }
778 
zv_max_zsize_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)779 static ssize_t zv_max_zsize_store(struct kobject *kobj,
780 				    struct kobj_attribute *attr,
781 				    const char *buf, size_t count)
782 {
783 	unsigned long val;
784 	int err;
785 
786 	if (!capable(CAP_SYS_ADMIN))
787 		return -EPERM;
788 
789 	err = kstrtoul(buf, 10, &val);
790 	if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
791 		return -EINVAL;
792 	zv_max_zsize = val;
793 	return count;
794 }
795 
796 /*
797  * setting zv_max_mean_zsize via sysfs causes all persistent (e.g. swap)
798  * pages that don't compress to less than this value (including metadata
799  * overhead) to be rejected UNLESS the mean compression is also smaller
800  * than this value.  In other words, we are load-balancing-by-zsize the
801  * accepted pages.  Again, we don't allow the value to get too close
802  * to PAGE_SIZE.
803  */
zv_max_mean_zsize_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)804 static ssize_t zv_max_mean_zsize_show(struct kobject *kobj,
805 				    struct kobj_attribute *attr,
806 				    char *buf)
807 {
808 	return sprintf(buf, "%u\n", zv_max_mean_zsize);
809 }
810 
zv_max_mean_zsize_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)811 static ssize_t zv_max_mean_zsize_store(struct kobject *kobj,
812 				    struct kobj_attribute *attr,
813 				    const char *buf, size_t count)
814 {
815 	unsigned long val;
816 	int err;
817 
818 	if (!capable(CAP_SYS_ADMIN))
819 		return -EPERM;
820 
821 	err = kstrtoul(buf, 10, &val);
822 	if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
823 		return -EINVAL;
824 	zv_max_mean_zsize = val;
825 	return count;
826 }
827 
828 /*
829  * setting zv_page_count_policy_percent via sysfs sets an upper bound of
830  * persistent (e.g. swap) pages that will be retained according to:
831  *     (zv_page_count_policy_percent * totalram_pages) / 100)
832  * when that limit is reached, further puts will be rejected (until
833  * some pages have been flushed).  Note that, due to compression,
834  * this number may exceed 100; it defaults to 75 and we set an
835  * arbitary limit of 150.  A poor choice will almost certainly result
836  * in OOM's, so this value should only be changed prudently.
837  */
zv_page_count_policy_percent_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)838 static ssize_t zv_page_count_policy_percent_show(struct kobject *kobj,
839 						 struct kobj_attribute *attr,
840 						 char *buf)
841 {
842 	return sprintf(buf, "%u\n", zv_page_count_policy_percent);
843 }
844 
zv_page_count_policy_percent_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)845 static ssize_t zv_page_count_policy_percent_store(struct kobject *kobj,
846 						  struct kobj_attribute *attr,
847 						  const char *buf, size_t count)
848 {
849 	unsigned long val;
850 	int err;
851 
852 	if (!capable(CAP_SYS_ADMIN))
853 		return -EPERM;
854 
855 	err = kstrtoul(buf, 10, &val);
856 	if (err || (val == 0) || (val > 150))
857 		return -EINVAL;
858 	zv_page_count_policy_percent = val;
859 	return count;
860 }
861 
862 static struct kobj_attribute zcache_zv_max_zsize_attr = {
863 		.attr = { .name = "zv_max_zsize", .mode = 0644 },
864 		.show = zv_max_zsize_show,
865 		.store = zv_max_zsize_store,
866 };
867 
868 static struct kobj_attribute zcache_zv_max_mean_zsize_attr = {
869 		.attr = { .name = "zv_max_mean_zsize", .mode = 0644 },
870 		.show = zv_max_mean_zsize_show,
871 		.store = zv_max_mean_zsize_store,
872 };
873 
874 static struct kobj_attribute zcache_zv_page_count_policy_percent_attr = {
875 		.attr = { .name = "zv_page_count_policy_percent",
876 			  .mode = 0644 },
877 		.show = zv_page_count_policy_percent_show,
878 		.store = zv_page_count_policy_percent_store,
879 };
880 #endif
881 
882 /*
883  * zcache core code starts here
884  */
885 
886 /* useful stats not collected by cleancache or frontswap */
887 static unsigned long zcache_flush_total;
888 static unsigned long zcache_flush_found;
889 static unsigned long zcache_flobj_total;
890 static unsigned long zcache_flobj_found;
891 static unsigned long zcache_failed_eph_puts;
892 static unsigned long zcache_failed_pers_puts;
893 
894 /*
895  * Tmem operations assume the poolid implies the invoking client.
896  * Zcache only has one client (the kernel itself): LOCAL_CLIENT.
897  * RAMster has each client numbered by cluster node, and a KVM version
898  * of zcache would have one client per guest and each client might
899  * have a poolid==N.
900  */
zcache_get_pool_by_id(uint16_t cli_id,uint16_t poolid)901 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id, uint16_t poolid)
902 {
903 	struct tmem_pool *pool = NULL;
904 	struct zcache_client *cli = NULL;
905 
906 	if (cli_id == LOCAL_CLIENT)
907 		cli = &zcache_host;
908 	else {
909 		if (cli_id >= MAX_CLIENTS)
910 			goto out;
911 		cli = &zcache_clients[cli_id];
912 		if (cli == NULL)
913 			goto out;
914 		atomic_inc(&cli->refcount);
915 	}
916 	if (poolid < MAX_POOLS_PER_CLIENT) {
917 		pool = cli->tmem_pools[poolid];
918 		if (pool != NULL)
919 			atomic_inc(&pool->refcount);
920 	}
921 out:
922 	return pool;
923 }
924 
zcache_put_pool(struct tmem_pool * pool)925 static void zcache_put_pool(struct tmem_pool *pool)
926 {
927 	struct zcache_client *cli = NULL;
928 
929 	if (pool == NULL)
930 		BUG();
931 	cli = pool->client;
932 	atomic_dec(&pool->refcount);
933 	atomic_dec(&cli->refcount);
934 }
935 
zcache_new_client(uint16_t cli_id)936 int zcache_new_client(uint16_t cli_id)
937 {
938 	struct zcache_client *cli = NULL;
939 	int ret = -1;
940 
941 	if (cli_id == LOCAL_CLIENT)
942 		cli = &zcache_host;
943 	else if ((unsigned int)cli_id < MAX_CLIENTS)
944 		cli = &zcache_clients[cli_id];
945 	if (cli == NULL)
946 		goto out;
947 	if (cli->allocated)
948 		goto out;
949 	cli->allocated = 1;
950 #ifdef CONFIG_FRONTSWAP
951 	cli->xvpool = xv_create_pool();
952 	if (cli->xvpool == NULL)
953 		goto out;
954 #endif
955 	ret = 0;
956 out:
957 	return ret;
958 }
959 
960 /* counters for debugging */
961 static unsigned long zcache_failed_get_free_pages;
962 static unsigned long zcache_failed_alloc;
963 static unsigned long zcache_put_to_flush;
964 
965 /*
966  * for now, used named slabs so can easily track usage; later can
967  * either just use kmalloc, or perhaps add a slab-like allocator
968  * to more carefully manage total memory utilization
969  */
970 static struct kmem_cache *zcache_objnode_cache;
971 static struct kmem_cache *zcache_obj_cache;
972 static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
973 static unsigned long zcache_curr_obj_count_max;
974 static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
975 static unsigned long zcache_curr_objnode_count_max;
976 
977 /*
978  * to avoid memory allocation recursion (e.g. due to direct reclaim), we
979  * preload all necessary data structures so the hostops callbacks never
980  * actually do a malloc
981  */
982 struct zcache_preload {
983 	void *page;
984 	struct tmem_obj *obj;
985 	int nr;
986 	struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
987 };
988 static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
989 
zcache_do_preload(struct tmem_pool * pool)990 static int zcache_do_preload(struct tmem_pool *pool)
991 {
992 	struct zcache_preload *kp;
993 	struct tmem_objnode *objnode;
994 	struct tmem_obj *obj;
995 	void *page;
996 	int ret = -ENOMEM;
997 
998 	if (unlikely(zcache_objnode_cache == NULL))
999 		goto out;
1000 	if (unlikely(zcache_obj_cache == NULL))
1001 		goto out;
1002 	preempt_disable();
1003 	kp = &__get_cpu_var(zcache_preloads);
1004 	while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
1005 		preempt_enable_no_resched();
1006 		objnode = kmem_cache_alloc(zcache_objnode_cache,
1007 				ZCACHE_GFP_MASK);
1008 		if (unlikely(objnode == NULL)) {
1009 			zcache_failed_alloc++;
1010 			goto out;
1011 		}
1012 		preempt_disable();
1013 		kp = &__get_cpu_var(zcache_preloads);
1014 		if (kp->nr < ARRAY_SIZE(kp->objnodes))
1015 			kp->objnodes[kp->nr++] = objnode;
1016 		else
1017 			kmem_cache_free(zcache_objnode_cache, objnode);
1018 	}
1019 	preempt_enable_no_resched();
1020 	obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
1021 	if (unlikely(obj == NULL)) {
1022 		zcache_failed_alloc++;
1023 		goto out;
1024 	}
1025 	page = (void *)__get_free_page(ZCACHE_GFP_MASK);
1026 	if (unlikely(page == NULL)) {
1027 		zcache_failed_get_free_pages++;
1028 		kmem_cache_free(zcache_obj_cache, obj);
1029 		goto out;
1030 	}
1031 	preempt_disable();
1032 	kp = &__get_cpu_var(zcache_preloads);
1033 	if (kp->obj == NULL)
1034 		kp->obj = obj;
1035 	else
1036 		kmem_cache_free(zcache_obj_cache, obj);
1037 	if (kp->page == NULL)
1038 		kp->page = page;
1039 	else
1040 		free_page((unsigned long)page);
1041 	ret = 0;
1042 out:
1043 	return ret;
1044 }
1045 
zcache_get_free_page(void)1046 static void *zcache_get_free_page(void)
1047 {
1048 	struct zcache_preload *kp;
1049 	void *page;
1050 
1051 	kp = &__get_cpu_var(zcache_preloads);
1052 	page = kp->page;
1053 	BUG_ON(page == NULL);
1054 	kp->page = NULL;
1055 	return page;
1056 }
1057 
zcache_free_page(void * p)1058 static void zcache_free_page(void *p)
1059 {
1060 	free_page((unsigned long)p);
1061 }
1062 
1063 /*
1064  * zcache implementation for tmem host ops
1065  */
1066 
zcache_objnode_alloc(struct tmem_pool * pool)1067 static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
1068 {
1069 	struct tmem_objnode *objnode = NULL;
1070 	unsigned long count;
1071 	struct zcache_preload *kp;
1072 
1073 	kp = &__get_cpu_var(zcache_preloads);
1074 	if (kp->nr <= 0)
1075 		goto out;
1076 	objnode = kp->objnodes[kp->nr - 1];
1077 	BUG_ON(objnode == NULL);
1078 	kp->objnodes[kp->nr - 1] = NULL;
1079 	kp->nr--;
1080 	count = atomic_inc_return(&zcache_curr_objnode_count);
1081 	if (count > zcache_curr_objnode_count_max)
1082 		zcache_curr_objnode_count_max = count;
1083 out:
1084 	return objnode;
1085 }
1086 
zcache_objnode_free(struct tmem_objnode * objnode,struct tmem_pool * pool)1087 static void zcache_objnode_free(struct tmem_objnode *objnode,
1088 					struct tmem_pool *pool)
1089 {
1090 	atomic_dec(&zcache_curr_objnode_count);
1091 	BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
1092 	kmem_cache_free(zcache_objnode_cache, objnode);
1093 }
1094 
zcache_obj_alloc(struct tmem_pool * pool)1095 static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
1096 {
1097 	struct tmem_obj *obj = NULL;
1098 	unsigned long count;
1099 	struct zcache_preload *kp;
1100 
1101 	kp = &__get_cpu_var(zcache_preloads);
1102 	obj = kp->obj;
1103 	BUG_ON(obj == NULL);
1104 	kp->obj = NULL;
1105 	count = atomic_inc_return(&zcache_curr_obj_count);
1106 	if (count > zcache_curr_obj_count_max)
1107 		zcache_curr_obj_count_max = count;
1108 	return obj;
1109 }
1110 
zcache_obj_free(struct tmem_obj * obj,struct tmem_pool * pool)1111 static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
1112 {
1113 	atomic_dec(&zcache_curr_obj_count);
1114 	BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
1115 	kmem_cache_free(zcache_obj_cache, obj);
1116 }
1117 
1118 static struct tmem_hostops zcache_hostops = {
1119 	.obj_alloc = zcache_obj_alloc,
1120 	.obj_free = zcache_obj_free,
1121 	.objnode_alloc = zcache_objnode_alloc,
1122 	.objnode_free = zcache_objnode_free,
1123 };
1124 
1125 /*
1126  * zcache implementations for PAM page descriptor ops
1127  */
1128 
1129 static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
1130 static unsigned long zcache_curr_eph_pampd_count_max;
1131 static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
1132 static unsigned long zcache_curr_pers_pampd_count_max;
1133 
1134 /* forward reference */
1135 static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
1136 
zcache_pampd_create(char * data,size_t size,bool raw,int eph,struct tmem_pool * pool,struct tmem_oid * oid,uint32_t index)1137 static void *zcache_pampd_create(char *data, size_t size, bool raw, int eph,
1138 				struct tmem_pool *pool, struct tmem_oid *oid,
1139 				 uint32_t index)
1140 {
1141 	void *pampd = NULL, *cdata;
1142 	size_t clen;
1143 	int ret;
1144 	unsigned long count;
1145 	struct page *page = (struct page *)(data);
1146 	struct zcache_client *cli = pool->client;
1147 	uint16_t client_id = get_client_id_from_client(cli);
1148 	unsigned long zv_mean_zsize;
1149 	unsigned long curr_pers_pampd_count;
1150 	u64 total_zsize;
1151 
1152 	if (eph) {
1153 		ret = zcache_compress(page, &cdata, &clen);
1154 		if (ret == 0)
1155 			goto out;
1156 		if (clen == 0 || clen > zbud_max_buddy_size()) {
1157 			zcache_compress_poor++;
1158 			goto out;
1159 		}
1160 		pampd = (void *)zbud_create(client_id, pool->pool_id, oid,
1161 						index, page, cdata, clen);
1162 		if (pampd != NULL) {
1163 			count = atomic_inc_return(&zcache_curr_eph_pampd_count);
1164 			if (count > zcache_curr_eph_pampd_count_max)
1165 				zcache_curr_eph_pampd_count_max = count;
1166 		}
1167 	} else {
1168 		curr_pers_pampd_count =
1169 			atomic_read(&zcache_curr_pers_pampd_count);
1170 		if (curr_pers_pampd_count >
1171 		    (zv_page_count_policy_percent * totalram_pages) / 100)
1172 			goto out;
1173 		ret = zcache_compress(page, &cdata, &clen);
1174 		if (ret == 0)
1175 			goto out;
1176 		/* reject if compression is too poor */
1177 		if (clen > zv_max_zsize) {
1178 			zcache_compress_poor++;
1179 			goto out;
1180 		}
1181 		/* reject if mean compression is too poor */
1182 		if ((clen > zv_max_mean_zsize) && (curr_pers_pampd_count > 0)) {
1183 			total_zsize = xv_get_total_size_bytes(cli->xvpool);
1184 			zv_mean_zsize = div_u64(total_zsize,
1185 						curr_pers_pampd_count);
1186 			if (zv_mean_zsize > zv_max_mean_zsize) {
1187 				zcache_mean_compress_poor++;
1188 				goto out;
1189 			}
1190 		}
1191 		pampd = (void *)zv_create(cli->xvpool, pool->pool_id,
1192 						oid, index, cdata, clen);
1193 		if (pampd == NULL)
1194 			goto out;
1195 		count = atomic_inc_return(&zcache_curr_pers_pampd_count);
1196 		if (count > zcache_curr_pers_pampd_count_max)
1197 			zcache_curr_pers_pampd_count_max = count;
1198 	}
1199 out:
1200 	return pampd;
1201 }
1202 
1203 /*
1204  * fill the pageframe corresponding to the struct page with the data
1205  * from the passed pampd
1206  */
zcache_pampd_get_data(char * data,size_t * bufsize,bool raw,void * pampd,struct tmem_pool * pool,struct tmem_oid * oid,uint32_t index)1207 static int zcache_pampd_get_data(char *data, size_t *bufsize, bool raw,
1208 					void *pampd, struct tmem_pool *pool,
1209 					struct tmem_oid *oid, uint32_t index)
1210 {
1211 	int ret = 0;
1212 
1213 	BUG_ON(is_ephemeral(pool));
1214 	zv_decompress((struct page *)(data), pampd);
1215 	return ret;
1216 }
1217 
1218 /*
1219  * fill the pageframe corresponding to the struct page with the data
1220  * from the passed pampd
1221  */
zcache_pampd_get_data_and_free(char * data,size_t * bufsize,bool raw,void * pampd,struct tmem_pool * pool,struct tmem_oid * oid,uint32_t index)1222 static int zcache_pampd_get_data_and_free(char *data, size_t *bufsize, bool raw,
1223 					void *pampd, struct tmem_pool *pool,
1224 					struct tmem_oid *oid, uint32_t index)
1225 {
1226 	int ret = 0;
1227 
1228 	BUG_ON(!is_ephemeral(pool));
1229 	zbud_decompress((struct page *)(data), pampd);
1230 	zbud_free_and_delist((struct zbud_hdr *)pampd);
1231 	atomic_dec(&zcache_curr_eph_pampd_count);
1232 	return ret;
1233 }
1234 
1235 /*
1236  * free the pampd and remove it from any zcache lists
1237  * pampd must no longer be pointed to from any tmem data structures!
1238  */
zcache_pampd_free(void * pampd,struct tmem_pool * pool,struct tmem_oid * oid,uint32_t index)1239 static void zcache_pampd_free(void *pampd, struct tmem_pool *pool,
1240 				struct tmem_oid *oid, uint32_t index)
1241 {
1242 	struct zcache_client *cli = pool->client;
1243 
1244 	if (is_ephemeral(pool)) {
1245 		zbud_free_and_delist((struct zbud_hdr *)pampd);
1246 		atomic_dec(&zcache_curr_eph_pampd_count);
1247 		BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
1248 	} else {
1249 		zv_free(cli->xvpool, (struct zv_hdr *)pampd);
1250 		atomic_dec(&zcache_curr_pers_pampd_count);
1251 		BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
1252 	}
1253 }
1254 
zcache_pampd_free_obj(struct tmem_pool * pool,struct tmem_obj * obj)1255 static void zcache_pampd_free_obj(struct tmem_pool *pool, struct tmem_obj *obj)
1256 {
1257 }
1258 
zcache_pampd_new_obj(struct tmem_obj * obj)1259 static void zcache_pampd_new_obj(struct tmem_obj *obj)
1260 {
1261 }
1262 
zcache_pampd_replace_in_obj(void * pampd,struct tmem_obj * obj)1263 static int zcache_pampd_replace_in_obj(void *pampd, struct tmem_obj *obj)
1264 {
1265 	return -1;
1266 }
1267 
zcache_pampd_is_remote(void * pampd)1268 static bool zcache_pampd_is_remote(void *pampd)
1269 {
1270 	return 0;
1271 }
1272 
1273 static struct tmem_pamops zcache_pamops = {
1274 	.create = zcache_pampd_create,
1275 	.get_data = zcache_pampd_get_data,
1276 	.get_data_and_free = zcache_pampd_get_data_and_free,
1277 	.free = zcache_pampd_free,
1278 	.free_obj = zcache_pampd_free_obj,
1279 	.new_obj = zcache_pampd_new_obj,
1280 	.replace_in_obj = zcache_pampd_replace_in_obj,
1281 	.is_remote = zcache_pampd_is_remote,
1282 };
1283 
1284 /*
1285  * zcache compression/decompression and related per-cpu stuff
1286  */
1287 
1288 #define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1289 #define LZO_DSTMEM_PAGE_ORDER 1
1290 static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1291 static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1292 
zcache_compress(struct page * from,void ** out_va,size_t * out_len)1293 static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1294 {
1295 	int ret = 0;
1296 	unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1297 	unsigned char *wmem = __get_cpu_var(zcache_workmem);
1298 	char *from_va;
1299 
1300 	BUG_ON(!irqs_disabled());
1301 	if (unlikely(dmem == NULL || wmem == NULL))
1302 		goto out;  /* no buffer, so can't compress */
1303 	from_va = kmap_atomic(from, KM_USER0);
1304 	mb();
1305 	ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1306 	BUG_ON(ret != LZO_E_OK);
1307 	*out_va = dmem;
1308 	kunmap_atomic(from_va, KM_USER0);
1309 	ret = 1;
1310 out:
1311 	return ret;
1312 }
1313 
1314 
zcache_cpu_notifier(struct notifier_block * nb,unsigned long action,void * pcpu)1315 static int zcache_cpu_notifier(struct notifier_block *nb,
1316 				unsigned long action, void *pcpu)
1317 {
1318 	int cpu = (long)pcpu;
1319 	struct zcache_preload *kp;
1320 
1321 	switch (action) {
1322 	case CPU_UP_PREPARE:
1323 		per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1324 			GFP_KERNEL | __GFP_REPEAT,
1325 			LZO_DSTMEM_PAGE_ORDER),
1326 		per_cpu(zcache_workmem, cpu) =
1327 			kzalloc(LZO1X_MEM_COMPRESS,
1328 				GFP_KERNEL | __GFP_REPEAT);
1329 		break;
1330 	case CPU_DEAD:
1331 	case CPU_UP_CANCELED:
1332 		free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1333 				LZO_DSTMEM_PAGE_ORDER);
1334 		per_cpu(zcache_dstmem, cpu) = NULL;
1335 		kfree(per_cpu(zcache_workmem, cpu));
1336 		per_cpu(zcache_workmem, cpu) = NULL;
1337 		kp = &per_cpu(zcache_preloads, cpu);
1338 		while (kp->nr) {
1339 			kmem_cache_free(zcache_objnode_cache,
1340 					kp->objnodes[kp->nr - 1]);
1341 			kp->objnodes[kp->nr - 1] = NULL;
1342 			kp->nr--;
1343 		}
1344 		if (kp->obj) {
1345 			kmem_cache_free(zcache_obj_cache, kp->obj);
1346 			kp->obj = NULL;
1347 		}
1348 		if (kp->page) {
1349 			free_page((unsigned long)kp->page);
1350 			kp->page = NULL;
1351 		}
1352 		break;
1353 	default:
1354 		break;
1355 	}
1356 	return NOTIFY_OK;
1357 }
1358 
1359 static struct notifier_block zcache_cpu_notifier_block = {
1360 	.notifier_call = zcache_cpu_notifier
1361 };
1362 
1363 #ifdef CONFIG_SYSFS
1364 #define ZCACHE_SYSFS_RO(_name) \
1365 	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1366 				struct kobj_attribute *attr, char *buf) \
1367 	{ \
1368 		return sprintf(buf, "%lu\n", zcache_##_name); \
1369 	} \
1370 	static struct kobj_attribute zcache_##_name##_attr = { \
1371 		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1372 		.show = zcache_##_name##_show, \
1373 	}
1374 
1375 #define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1376 	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1377 				struct kobj_attribute *attr, char *buf) \
1378 	{ \
1379 	    return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1380 	} \
1381 	static struct kobj_attribute zcache_##_name##_attr = { \
1382 		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1383 		.show = zcache_##_name##_show, \
1384 	}
1385 
1386 #define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1387 	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1388 				struct kobj_attribute *attr, char *buf) \
1389 	{ \
1390 	    return _func(buf); \
1391 	} \
1392 	static struct kobj_attribute zcache_##_name##_attr = { \
1393 		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1394 		.show = zcache_##_name##_show, \
1395 	}
1396 
1397 ZCACHE_SYSFS_RO(curr_obj_count_max);
1398 ZCACHE_SYSFS_RO(curr_objnode_count_max);
1399 ZCACHE_SYSFS_RO(flush_total);
1400 ZCACHE_SYSFS_RO(flush_found);
1401 ZCACHE_SYSFS_RO(flobj_total);
1402 ZCACHE_SYSFS_RO(flobj_found);
1403 ZCACHE_SYSFS_RO(failed_eph_puts);
1404 ZCACHE_SYSFS_RO(failed_pers_puts);
1405 ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1406 ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1407 ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1408 ZCACHE_SYSFS_RO(zbud_buddied_count);
1409 ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1410 ZCACHE_SYSFS_RO(evicted_raw_pages);
1411 ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1412 ZCACHE_SYSFS_RO(evicted_buddied_pages);
1413 ZCACHE_SYSFS_RO(failed_get_free_pages);
1414 ZCACHE_SYSFS_RO(failed_alloc);
1415 ZCACHE_SYSFS_RO(put_to_flush);
1416 ZCACHE_SYSFS_RO(compress_poor);
1417 ZCACHE_SYSFS_RO(mean_compress_poor);
1418 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1419 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1420 ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1421 ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1422 ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1423 			zbud_show_unbuddied_list_counts);
1424 ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1425 			zbud_show_cumul_chunk_counts);
1426 ZCACHE_SYSFS_RO_CUSTOM(zv_curr_dist_counts,
1427 			zv_curr_dist_counts_show);
1428 ZCACHE_SYSFS_RO_CUSTOM(zv_cumul_dist_counts,
1429 			zv_cumul_dist_counts_show);
1430 
1431 static struct attribute *zcache_attrs[] = {
1432 	&zcache_curr_obj_count_attr.attr,
1433 	&zcache_curr_obj_count_max_attr.attr,
1434 	&zcache_curr_objnode_count_attr.attr,
1435 	&zcache_curr_objnode_count_max_attr.attr,
1436 	&zcache_flush_total_attr.attr,
1437 	&zcache_flobj_total_attr.attr,
1438 	&zcache_flush_found_attr.attr,
1439 	&zcache_flobj_found_attr.attr,
1440 	&zcache_failed_eph_puts_attr.attr,
1441 	&zcache_failed_pers_puts_attr.attr,
1442 	&zcache_compress_poor_attr.attr,
1443 	&zcache_mean_compress_poor_attr.attr,
1444 	&zcache_zbud_curr_raw_pages_attr.attr,
1445 	&zcache_zbud_curr_zpages_attr.attr,
1446 	&zcache_zbud_curr_zbytes_attr.attr,
1447 	&zcache_zbud_cumul_zpages_attr.attr,
1448 	&zcache_zbud_cumul_zbytes_attr.attr,
1449 	&zcache_zbud_buddied_count_attr.attr,
1450 	&zcache_zbpg_unused_list_count_attr.attr,
1451 	&zcache_evicted_raw_pages_attr.attr,
1452 	&zcache_evicted_unbuddied_pages_attr.attr,
1453 	&zcache_evicted_buddied_pages_attr.attr,
1454 	&zcache_failed_get_free_pages_attr.attr,
1455 	&zcache_failed_alloc_attr.attr,
1456 	&zcache_put_to_flush_attr.attr,
1457 	&zcache_zbud_unbuddied_list_counts_attr.attr,
1458 	&zcache_zbud_cumul_chunk_counts_attr.attr,
1459 	&zcache_zv_curr_dist_counts_attr.attr,
1460 	&zcache_zv_cumul_dist_counts_attr.attr,
1461 	&zcache_zv_max_zsize_attr.attr,
1462 	&zcache_zv_max_mean_zsize_attr.attr,
1463 	&zcache_zv_page_count_policy_percent_attr.attr,
1464 	NULL,
1465 };
1466 
1467 static struct attribute_group zcache_attr_group = {
1468 	.attrs = zcache_attrs,
1469 	.name = "zcache",
1470 };
1471 
1472 #endif /* CONFIG_SYSFS */
1473 /*
1474  * When zcache is disabled ("frozen"), pools can be created and destroyed,
1475  * but all puts (and thus all other operations that require memory allocation)
1476  * must fail.  If zcache is unfrozen, accepts puts, then frozen again,
1477  * data consistency requires all puts while frozen to be converted into
1478  * flushes.
1479  */
1480 static bool zcache_freeze;
1481 
1482 /*
1483  * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1484  */
shrink_zcache_memory(struct shrinker * shrink,struct shrink_control * sc)1485 static int shrink_zcache_memory(struct shrinker *shrink,
1486 				struct shrink_control *sc)
1487 {
1488 	int ret = -1;
1489 	int nr = sc->nr_to_scan;
1490 	gfp_t gfp_mask = sc->gfp_mask;
1491 
1492 	if (nr >= 0) {
1493 		if (!(gfp_mask & __GFP_FS))
1494 			/* does this case really need to be skipped? */
1495 			goto out;
1496 		zbud_evict_pages(nr);
1497 	}
1498 	ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1499 out:
1500 	return ret;
1501 }
1502 
1503 static struct shrinker zcache_shrinker = {
1504 	.shrink = shrink_zcache_memory,
1505 	.seeks = DEFAULT_SEEKS,
1506 };
1507 
1508 /*
1509  * zcache shims between cleancache/frontswap ops and tmem
1510  */
1511 
zcache_put_page(int cli_id,int pool_id,struct tmem_oid * oidp,uint32_t index,struct page * page)1512 static int zcache_put_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1513 				uint32_t index, struct page *page)
1514 {
1515 	struct tmem_pool *pool;
1516 	int ret = -1;
1517 
1518 	BUG_ON(!irqs_disabled());
1519 	pool = zcache_get_pool_by_id(cli_id, pool_id);
1520 	if (unlikely(pool == NULL))
1521 		goto out;
1522 	if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1523 		/* preload does preempt_disable on success */
1524 		ret = tmem_put(pool, oidp, index, (char *)(page),
1525 				PAGE_SIZE, 0, is_ephemeral(pool));
1526 		if (ret < 0) {
1527 			if (is_ephemeral(pool))
1528 				zcache_failed_eph_puts++;
1529 			else
1530 				zcache_failed_pers_puts++;
1531 		}
1532 		zcache_put_pool(pool);
1533 		preempt_enable_no_resched();
1534 	} else {
1535 		zcache_put_to_flush++;
1536 		if (atomic_read(&pool->obj_count) > 0)
1537 			/* the put fails whether the flush succeeds or not */
1538 			(void)tmem_flush_page(pool, oidp, index);
1539 		zcache_put_pool(pool);
1540 	}
1541 out:
1542 	return ret;
1543 }
1544 
zcache_get_page(int cli_id,int pool_id,struct tmem_oid * oidp,uint32_t index,struct page * page)1545 static int zcache_get_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1546 				uint32_t index, struct page *page)
1547 {
1548 	struct tmem_pool *pool;
1549 	int ret = -1;
1550 	unsigned long flags;
1551 	size_t size = PAGE_SIZE;
1552 
1553 	local_irq_save(flags);
1554 	pool = zcache_get_pool_by_id(cli_id, pool_id);
1555 	if (likely(pool != NULL)) {
1556 		if (atomic_read(&pool->obj_count) > 0)
1557 			ret = tmem_get(pool, oidp, index, (char *)(page),
1558 					&size, 0, is_ephemeral(pool));
1559 		zcache_put_pool(pool);
1560 	}
1561 	local_irq_restore(flags);
1562 	return ret;
1563 }
1564 
zcache_flush_page(int cli_id,int pool_id,struct tmem_oid * oidp,uint32_t index)1565 static int zcache_flush_page(int cli_id, int pool_id,
1566 				struct tmem_oid *oidp, uint32_t index)
1567 {
1568 	struct tmem_pool *pool;
1569 	int ret = -1;
1570 	unsigned long flags;
1571 
1572 	local_irq_save(flags);
1573 	zcache_flush_total++;
1574 	pool = zcache_get_pool_by_id(cli_id, pool_id);
1575 	if (likely(pool != NULL)) {
1576 		if (atomic_read(&pool->obj_count) > 0)
1577 			ret = tmem_flush_page(pool, oidp, index);
1578 		zcache_put_pool(pool);
1579 	}
1580 	if (ret >= 0)
1581 		zcache_flush_found++;
1582 	local_irq_restore(flags);
1583 	return ret;
1584 }
1585 
zcache_flush_object(int cli_id,int pool_id,struct tmem_oid * oidp)1586 static int zcache_flush_object(int cli_id, int pool_id,
1587 				struct tmem_oid *oidp)
1588 {
1589 	struct tmem_pool *pool;
1590 	int ret = -1;
1591 	unsigned long flags;
1592 
1593 	local_irq_save(flags);
1594 	zcache_flobj_total++;
1595 	pool = zcache_get_pool_by_id(cli_id, pool_id);
1596 	if (likely(pool != NULL)) {
1597 		if (atomic_read(&pool->obj_count) > 0)
1598 			ret = tmem_flush_object(pool, oidp);
1599 		zcache_put_pool(pool);
1600 	}
1601 	if (ret >= 0)
1602 		zcache_flobj_found++;
1603 	local_irq_restore(flags);
1604 	return ret;
1605 }
1606 
zcache_destroy_pool(int cli_id,int pool_id)1607 static int zcache_destroy_pool(int cli_id, int pool_id)
1608 {
1609 	struct tmem_pool *pool = NULL;
1610 	struct zcache_client *cli = NULL;
1611 	int ret = -1;
1612 
1613 	if (pool_id < 0)
1614 		goto out;
1615 	if (cli_id == LOCAL_CLIENT)
1616 		cli = &zcache_host;
1617 	else if ((unsigned int)cli_id < MAX_CLIENTS)
1618 		cli = &zcache_clients[cli_id];
1619 	if (cli == NULL)
1620 		goto out;
1621 	atomic_inc(&cli->refcount);
1622 	pool = cli->tmem_pools[pool_id];
1623 	if (pool == NULL)
1624 		goto out;
1625 	cli->tmem_pools[pool_id] = NULL;
1626 	/* wait for pool activity on other cpus to quiesce */
1627 	while (atomic_read(&pool->refcount) != 0)
1628 		;
1629 	atomic_dec(&cli->refcount);
1630 	local_bh_disable();
1631 	ret = tmem_destroy_pool(pool);
1632 	local_bh_enable();
1633 	kfree(pool);
1634 	pr_info("zcache: destroyed pool id=%d, cli_id=%d\n",
1635 			pool_id, cli_id);
1636 out:
1637 	return ret;
1638 }
1639 
zcache_new_pool(uint16_t cli_id,uint32_t flags)1640 static int zcache_new_pool(uint16_t cli_id, uint32_t flags)
1641 {
1642 	int poolid = -1;
1643 	struct tmem_pool *pool;
1644 	struct zcache_client *cli = NULL;
1645 
1646 	if (cli_id == LOCAL_CLIENT)
1647 		cli = &zcache_host;
1648 	else if ((unsigned int)cli_id < MAX_CLIENTS)
1649 		cli = &zcache_clients[cli_id];
1650 	if (cli == NULL)
1651 		goto out;
1652 	atomic_inc(&cli->refcount);
1653 	pool = kmalloc(sizeof(struct tmem_pool), GFP_ATOMIC);
1654 	if (pool == NULL) {
1655 		pr_info("zcache: pool creation failed: out of memory\n");
1656 		goto out;
1657 	}
1658 
1659 	for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1660 		if (cli->tmem_pools[poolid] == NULL)
1661 			break;
1662 	if (poolid >= MAX_POOLS_PER_CLIENT) {
1663 		pr_info("zcache: pool creation failed: max exceeded\n");
1664 		kfree(pool);
1665 		poolid = -1;
1666 		goto out;
1667 	}
1668 	atomic_set(&pool->refcount, 0);
1669 	pool->client = cli;
1670 	pool->pool_id = poolid;
1671 	tmem_new_pool(pool, flags);
1672 	cli->tmem_pools[poolid] = pool;
1673 	pr_info("zcache: created %s tmem pool, id=%d, client=%d\n",
1674 		flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1675 		poolid, cli_id);
1676 out:
1677 	if (cli != NULL)
1678 		atomic_dec(&cli->refcount);
1679 	return poolid;
1680 }
1681 
1682 /**********
1683  * Two kernel functionalities currently can be layered on top of tmem.
1684  * These are "cleancache" which is used as a second-chance cache for clean
1685  * page cache pages; and "frontswap" which is used for swap pages
1686  * to avoid writes to disk.  A generic "shim" is provided here for each
1687  * to translate in-kernel semantics to zcache semantics.
1688  */
1689 
1690 #ifdef CONFIG_CLEANCACHE
zcache_cleancache_put_page(int pool_id,struct cleancache_filekey key,pgoff_t index,struct page * page)1691 static void zcache_cleancache_put_page(int pool_id,
1692 					struct cleancache_filekey key,
1693 					pgoff_t index, struct page *page)
1694 {
1695 	u32 ind = (u32) index;
1696 	struct tmem_oid oid = *(struct tmem_oid *)&key;
1697 
1698 	if (likely(ind == index))
1699 		(void)zcache_put_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1700 }
1701 
zcache_cleancache_get_page(int pool_id,struct cleancache_filekey key,pgoff_t index,struct page * page)1702 static int zcache_cleancache_get_page(int pool_id,
1703 					struct cleancache_filekey key,
1704 					pgoff_t index, struct page *page)
1705 {
1706 	u32 ind = (u32) index;
1707 	struct tmem_oid oid = *(struct tmem_oid *)&key;
1708 	int ret = -1;
1709 
1710 	if (likely(ind == index))
1711 		ret = zcache_get_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1712 	return ret;
1713 }
1714 
zcache_cleancache_flush_page(int pool_id,struct cleancache_filekey key,pgoff_t index)1715 static void zcache_cleancache_flush_page(int pool_id,
1716 					struct cleancache_filekey key,
1717 					pgoff_t index)
1718 {
1719 	u32 ind = (u32) index;
1720 	struct tmem_oid oid = *(struct tmem_oid *)&key;
1721 
1722 	if (likely(ind == index))
1723 		(void)zcache_flush_page(LOCAL_CLIENT, pool_id, &oid, ind);
1724 }
1725 
zcache_cleancache_flush_inode(int pool_id,struct cleancache_filekey key)1726 static void zcache_cleancache_flush_inode(int pool_id,
1727 					struct cleancache_filekey key)
1728 {
1729 	struct tmem_oid oid = *(struct tmem_oid *)&key;
1730 
1731 	(void)zcache_flush_object(LOCAL_CLIENT, pool_id, &oid);
1732 }
1733 
zcache_cleancache_flush_fs(int pool_id)1734 static void zcache_cleancache_flush_fs(int pool_id)
1735 {
1736 	if (pool_id >= 0)
1737 		(void)zcache_destroy_pool(LOCAL_CLIENT, pool_id);
1738 }
1739 
zcache_cleancache_init_fs(size_t pagesize)1740 static int zcache_cleancache_init_fs(size_t pagesize)
1741 {
1742 	BUG_ON(sizeof(struct cleancache_filekey) !=
1743 				sizeof(struct tmem_oid));
1744 	BUG_ON(pagesize != PAGE_SIZE);
1745 	return zcache_new_pool(LOCAL_CLIENT, 0);
1746 }
1747 
zcache_cleancache_init_shared_fs(char * uuid,size_t pagesize)1748 static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1749 {
1750 	/* shared pools are unsupported and map to private */
1751 	BUG_ON(sizeof(struct cleancache_filekey) !=
1752 				sizeof(struct tmem_oid));
1753 	BUG_ON(pagesize != PAGE_SIZE);
1754 	return zcache_new_pool(LOCAL_CLIENT, 0);
1755 }
1756 
1757 static struct cleancache_ops zcache_cleancache_ops = {
1758 	.put_page = zcache_cleancache_put_page,
1759 	.get_page = zcache_cleancache_get_page,
1760 	.flush_page = zcache_cleancache_flush_page,
1761 	.flush_inode = zcache_cleancache_flush_inode,
1762 	.flush_fs = zcache_cleancache_flush_fs,
1763 	.init_shared_fs = zcache_cleancache_init_shared_fs,
1764 	.init_fs = zcache_cleancache_init_fs
1765 };
1766 
zcache_cleancache_register_ops(void)1767 struct cleancache_ops zcache_cleancache_register_ops(void)
1768 {
1769 	struct cleancache_ops old_ops =
1770 		cleancache_register_ops(&zcache_cleancache_ops);
1771 
1772 	return old_ops;
1773 }
1774 #endif
1775 
1776 #ifdef CONFIG_FRONTSWAP
1777 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1778 static int zcache_frontswap_poolid = -1;
1779 
1780 /*
1781  * Swizzling increases objects per swaptype, increasing tmem concurrency
1782  * for heavy swaploads.  Later, larger nr_cpus -> larger SWIZ_BITS
1783  * Setting SWIZ_BITS to 27 basically reconstructs the swap entry from
1784  * frontswap_get_page(), but has side-effects. Hence using 8.
1785  */
1786 #define SWIZ_BITS		8
1787 #define SWIZ_MASK		((1 << SWIZ_BITS) - 1)
1788 #define _oswiz(_type, _ind)	((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1789 #define iswiz(_ind)		(_ind >> SWIZ_BITS)
1790 
oswiz(unsigned type,u32 ind)1791 static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1792 {
1793 	struct tmem_oid oid = { .oid = { 0 } };
1794 	oid.oid[0] = _oswiz(type, ind);
1795 	return oid;
1796 }
1797 
zcache_frontswap_put_page(unsigned type,pgoff_t offset,struct page * page)1798 static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1799 				   struct page *page)
1800 {
1801 	u64 ind64 = (u64)offset;
1802 	u32 ind = (u32)offset;
1803 	struct tmem_oid oid = oswiz(type, ind);
1804 	int ret = -1;
1805 	unsigned long flags;
1806 
1807 	BUG_ON(!PageLocked(page));
1808 	if (likely(ind64 == ind)) {
1809 		local_irq_save(flags);
1810 		ret = zcache_put_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1811 					&oid, iswiz(ind), page);
1812 		local_irq_restore(flags);
1813 	}
1814 	return ret;
1815 }
1816 
1817 /* returns 0 if the page was successfully gotten from frontswap, -1 if
1818  * was not present (should never happen!) */
zcache_frontswap_get_page(unsigned type,pgoff_t offset,struct page * page)1819 static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1820 				   struct page *page)
1821 {
1822 	u64 ind64 = (u64)offset;
1823 	u32 ind = (u32)offset;
1824 	struct tmem_oid oid = oswiz(type, ind);
1825 	int ret = -1;
1826 
1827 	BUG_ON(!PageLocked(page));
1828 	if (likely(ind64 == ind))
1829 		ret = zcache_get_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1830 					&oid, iswiz(ind), page);
1831 	return ret;
1832 }
1833 
1834 /* flush a single page from frontswap */
zcache_frontswap_flush_page(unsigned type,pgoff_t offset)1835 static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1836 {
1837 	u64 ind64 = (u64)offset;
1838 	u32 ind = (u32)offset;
1839 	struct tmem_oid oid = oswiz(type, ind);
1840 
1841 	if (likely(ind64 == ind))
1842 		(void)zcache_flush_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1843 					&oid, iswiz(ind));
1844 }
1845 
1846 /* flush all pages from the passed swaptype */
zcache_frontswap_flush_area(unsigned type)1847 static void zcache_frontswap_flush_area(unsigned type)
1848 {
1849 	struct tmem_oid oid;
1850 	int ind;
1851 
1852 	for (ind = SWIZ_MASK; ind >= 0; ind--) {
1853 		oid = oswiz(type, ind);
1854 		(void)zcache_flush_object(LOCAL_CLIENT,
1855 						zcache_frontswap_poolid, &oid);
1856 	}
1857 }
1858 
zcache_frontswap_init(unsigned ignored)1859 static void zcache_frontswap_init(unsigned ignored)
1860 {
1861 	/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1862 	if (zcache_frontswap_poolid < 0)
1863 		zcache_frontswap_poolid =
1864 			zcache_new_pool(LOCAL_CLIENT, TMEM_POOL_PERSIST);
1865 }
1866 
1867 static struct frontswap_ops zcache_frontswap_ops = {
1868 	.put_page = zcache_frontswap_put_page,
1869 	.get_page = zcache_frontswap_get_page,
1870 	.flush_page = zcache_frontswap_flush_page,
1871 	.flush_area = zcache_frontswap_flush_area,
1872 	.init = zcache_frontswap_init
1873 };
1874 
zcache_frontswap_register_ops(void)1875 struct frontswap_ops zcache_frontswap_register_ops(void)
1876 {
1877 	struct frontswap_ops old_ops =
1878 		frontswap_register_ops(&zcache_frontswap_ops);
1879 
1880 	return old_ops;
1881 }
1882 #endif
1883 
1884 /*
1885  * zcache initialization
1886  * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1887  * NOTHING HAPPENS!
1888  */
1889 
1890 static int zcache_enabled;
1891 
enable_zcache(char * s)1892 static int __init enable_zcache(char *s)
1893 {
1894 	zcache_enabled = 1;
1895 	return 1;
1896 }
1897 __setup("zcache", enable_zcache);
1898 
1899 /* allow independent dynamic disabling of cleancache and frontswap */
1900 
1901 static int use_cleancache = 1;
1902 
no_cleancache(char * s)1903 static int __init no_cleancache(char *s)
1904 {
1905 	use_cleancache = 0;
1906 	return 1;
1907 }
1908 
1909 __setup("nocleancache", no_cleancache);
1910 
1911 static int use_frontswap = 1;
1912 
no_frontswap(char * s)1913 static int __init no_frontswap(char *s)
1914 {
1915 	use_frontswap = 0;
1916 	return 1;
1917 }
1918 
1919 __setup("nofrontswap", no_frontswap);
1920 
zcache_init(void)1921 static int __init zcache_init(void)
1922 {
1923 	int ret = 0;
1924 
1925 #ifdef CONFIG_SYSFS
1926 	ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1927 	if (ret) {
1928 		pr_err("zcache: can't create sysfs\n");
1929 		goto out;
1930 	}
1931 #endif /* CONFIG_SYSFS */
1932 #if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1933 	if (zcache_enabled) {
1934 		unsigned int cpu;
1935 
1936 		tmem_register_hostops(&zcache_hostops);
1937 		tmem_register_pamops(&zcache_pamops);
1938 		ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1939 		if (ret) {
1940 			pr_err("zcache: can't register cpu notifier\n");
1941 			goto out;
1942 		}
1943 		for_each_online_cpu(cpu) {
1944 			void *pcpu = (void *)(long)cpu;
1945 			zcache_cpu_notifier(&zcache_cpu_notifier_block,
1946 				CPU_UP_PREPARE, pcpu);
1947 		}
1948 	}
1949 	zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1950 				sizeof(struct tmem_objnode), 0, 0, NULL);
1951 	zcache_obj_cache = kmem_cache_create("zcache_obj",
1952 				sizeof(struct tmem_obj), 0, 0, NULL);
1953 	ret = zcache_new_client(LOCAL_CLIENT);
1954 	if (ret) {
1955 		pr_err("zcache: can't create client\n");
1956 		goto out;
1957 	}
1958 #endif
1959 #ifdef CONFIG_CLEANCACHE
1960 	if (zcache_enabled && use_cleancache) {
1961 		struct cleancache_ops old_ops;
1962 
1963 		zbud_init();
1964 		register_shrinker(&zcache_shrinker);
1965 		old_ops = zcache_cleancache_register_ops();
1966 		pr_info("zcache: cleancache enabled using kernel "
1967 			"transcendent memory and compression buddies\n");
1968 		if (old_ops.init_fs != NULL)
1969 			pr_warning("zcache: cleancache_ops overridden");
1970 	}
1971 #endif
1972 #ifdef CONFIG_FRONTSWAP
1973 	if (zcache_enabled && use_frontswap) {
1974 		struct frontswap_ops old_ops;
1975 
1976 		old_ops = zcache_frontswap_register_ops();
1977 		pr_info("zcache: frontswap enabled using kernel "
1978 			"transcendent memory and xvmalloc\n");
1979 		if (old_ops.init != NULL)
1980 			pr_warning("zcache: frontswap_ops overridden");
1981 	}
1982 #endif
1983 out:
1984 	return ret;
1985 }
1986 
1987 module_init(zcache_init)
1988