1 /*
2  * Cryptographic API.
3  *
4  * AES Cipher Algorithm.
5  *
6  * Based on Brian Gladman's code.
7  *
8  * Linux developers:
9  *  Alexander Kjeldaas <astor@fast.no>
10  *  Herbert Valerio Riedel <hvr@hvrlab.org>
11  *  Kyle McMartin <kyle@debian.org>
12  *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * ---------------------------------------------------------------------------
20  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
21  * All rights reserved.
22  *
23  * LICENSE TERMS
24  *
25  * The free distribution and use of this software in both source and binary
26  * form is allowed (with or without changes) provided that:
27  *
28  *   1. distributions of this source code include the above copyright
29  *      notice, this list of conditions and the following disclaimer;
30  *
31  *   2. distributions in binary form include the above copyright
32  *      notice, this list of conditions and the following disclaimer
33  *      in the documentation and/or other associated materials;
34  *
35  *   3. the copyright holder's name is not used to endorse products
36  *      built using this software without specific written permission.
37  *
38  * ALTERNATIVELY, provided that this notice is retained in full, this product
39  * may be distributed under the terms of the GNU General Public License (GPL),
40  * in which case the provisions of the GPL apply INSTEAD OF those given above.
41  *
42  * DISCLAIMER
43  *
44  * This software is provided 'as is' with no explicit or implied warranties
45  * in respect of its properties, including, but not limited to, correctness
46  * and/or fitness for purpose.
47  * ---------------------------------------------------------------------------
48  */
49 
50 /* Some changes from the Gladman version:
51     s/RIJNDAEL(e_key)/E_KEY/g
52     s/RIJNDAEL(d_key)/D_KEY/g
53 */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 //#include <linux/crypto.h>
60 #include "rtl_crypto.h"
61 #include <asm/byteorder.h>
62 
63 #define AES_MIN_KEY_SIZE	16
64 #define AES_MAX_KEY_SIZE	32
65 
66 #define AES_BLOCK_SIZE		16
67 
68 static inline
generic_rotr32(const u32 x,const unsigned bits)69 u32 generic_rotr32 (const u32 x, const unsigned bits)
70 {
71 	const unsigned n = bits % 32;
72 	return (x >> n) | (x << (32 - n));
73 }
74 
75 static inline
generic_rotl32(const u32 x,const unsigned bits)76 u32 generic_rotl32 (const u32 x, const unsigned bits)
77 {
78 	const unsigned n = bits % 32;
79 	return (x << n) | (x >> (32 - n));
80 }
81 
82 #define rotl generic_rotl32
83 #define rotr generic_rotr32
84 
85 /*
86  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
87  */
88 inline static u8
byte(const u32 x,const unsigned n)89 byte(const u32 x, const unsigned n)
90 {
91 	return x >> (n << 3);
92 }
93 
94 #define u32_in(x) le32_to_cpu(*(const u32 *)(x))
95 #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
96 
97 struct aes_ctx {
98 	int key_length;
99 	u32 E[60];
100 	u32 D[60];
101 };
102 
103 #define E_KEY ctx->E
104 #define D_KEY ctx->D
105 
106 static u8 pow_tab[256] __initdata;
107 static u8 log_tab[256] __initdata;
108 static u8 sbx_tab[256] __initdata;
109 static u8 isb_tab[256] __initdata;
110 static u32 rco_tab[10];
111 static u32 ft_tab[4][256];
112 static u32 it_tab[4][256];
113 
114 static u32 fl_tab[4][256];
115 static u32 il_tab[4][256];
116 
117 static inline u8 __init
f_mult(u8 a,u8 b)118 f_mult (u8 a, u8 b)
119 {
120 	u8 aa = log_tab[a], cc = aa + log_tab[b];
121 
122 	return pow_tab[cc + (cc < aa ? 1 : 0)];
123 }
124 
125 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
126 
127 #define f_rn(bo, bi, n, k)					\
128     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
129 	     ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
130 	     ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
131 	     ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
132 
133 #define i_rn(bo, bi, n, k)					\
134     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
135 	     it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
136 	     it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
137 	     it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
138 
139 #define ls_box(x)				\
140     ( fl_tab[0][byte(x, 0)] ^			\
141       fl_tab[1][byte(x, 1)] ^			\
142       fl_tab[2][byte(x, 2)] ^			\
143       fl_tab[3][byte(x, 3)] )
144 
145 #define f_rl(bo, bi, n, k)					\
146     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
147 	     fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
148 	     fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
149 	     fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
150 
151 #define i_rl(bo, bi, n, k)					\
152     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
153 	     il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
154 	     il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
155 	     il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
156 
157 static void __init
gen_tabs(void)158 gen_tabs (void)
159 {
160 	u32 i, t;
161 	u8 p, q;
162 
163 	/* log and power tables for GF(2**8) finite field with
164 	   0x011b as modular polynomial - the simplest primitive
165 	   root is 0x03, used here to generate the tables */
166 
167 	for (i = 0, p = 1; i < 256; ++i) {
168 		pow_tab[i] = (u8) p;
169 		log_tab[p] = (u8) i;
170 
171 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
172 	}
173 
174 	log_tab[1] = 0;
175 
176 	for (i = 0, p = 1; i < 10; ++i) {
177 		rco_tab[i] = p;
178 
179 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
180 	}
181 
182 	for (i = 0; i < 256; ++i) {
183 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
184 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
185 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
186 		sbx_tab[i] = p;
187 		isb_tab[p] = (u8) i;
188 	}
189 
190 	for (i = 0; i < 256; ++i) {
191 		p = sbx_tab[i];
192 
193 		t = p;
194 		fl_tab[0][i] = t;
195 		fl_tab[1][i] = rotl (t, 8);
196 		fl_tab[2][i] = rotl (t, 16);
197 		fl_tab[3][i] = rotl (t, 24);
198 
199 		t = ((u32) ff_mult (2, p)) |
200 		    ((u32) p << 8) |
201 		    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
202 
203 		ft_tab[0][i] = t;
204 		ft_tab[1][i] = rotl (t, 8);
205 		ft_tab[2][i] = rotl (t, 16);
206 		ft_tab[3][i] = rotl (t, 24);
207 
208 		p = isb_tab[i];
209 
210 		t = p;
211 		il_tab[0][i] = t;
212 		il_tab[1][i] = rotl (t, 8);
213 		il_tab[2][i] = rotl (t, 16);
214 		il_tab[3][i] = rotl (t, 24);
215 
216 		t = ((u32) ff_mult (14, p)) |
217 		    ((u32) ff_mult (9, p) << 8) |
218 		    ((u32) ff_mult (13, p) << 16) |
219 		    ((u32) ff_mult (11, p) << 24);
220 
221 		it_tab[0][i] = t;
222 		it_tab[1][i] = rotl (t, 8);
223 		it_tab[2][i] = rotl (t, 16);
224 		it_tab[3][i] = rotl (t, 24);
225 	}
226 }
227 
228 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
229 
230 #define imix_col(y,x)       \
231     u   = star_x(x);        \
232     v   = star_x(u);        \
233     w   = star_x(v);        \
234     t   = w ^ (x);          \
235    (y)  = u ^ v ^ w;        \
236    (y) ^= rotr(u ^ t,  8) ^ \
237 	  rotr(v ^ t, 16) ^ \
238 	  rotr(t,24)
239 
240 /* initialise the key schedule from the user supplied key */
241 
242 #define loop4(i)                                    \
243 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
244     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
245     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
246     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
247     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
248 }
249 
250 #define loop6(i)                                    \
251 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
252     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
253     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
254     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
255     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
256     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
257     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
258 }
259 
260 #define loop8(i)                                    \
261 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
262     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
263     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
264     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
265     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
266     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
267     E_KEY[8 * i + 12] = t;                \
268     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
269     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
270     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
271 }
272 
273 static int
aes_set_key(void * ctx_arg,const u8 * in_key,unsigned int key_len,u32 * flags)274 aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
275 {
276 	struct aes_ctx *ctx = ctx_arg;
277 	u32 i, t, u, v, w;
278 
279 	if (key_len != 16 && key_len != 24 && key_len != 32) {
280 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
281 		return -EINVAL;
282 	}
283 
284 	ctx->key_length = key_len;
285 
286 	E_KEY[0] = u32_in (in_key);
287 	E_KEY[1] = u32_in (in_key + 4);
288 	E_KEY[2] = u32_in (in_key + 8);
289 	E_KEY[3] = u32_in (in_key + 12);
290 
291 	switch (key_len) {
292 	case 16:
293 		t = E_KEY[3];
294 		for (i = 0; i < 10; ++i)
295 			loop4 (i);
296 		break;
297 
298 	case 24:
299 		E_KEY[4] = u32_in (in_key + 16);
300 		t = E_KEY[5] = u32_in (in_key + 20);
301 		for (i = 0; i < 8; ++i)
302 			loop6 (i);
303 		break;
304 
305 	case 32:
306 		E_KEY[4] = u32_in (in_key + 16);
307 		E_KEY[5] = u32_in (in_key + 20);
308 		E_KEY[6] = u32_in (in_key + 24);
309 		t = E_KEY[7] = u32_in (in_key + 28);
310 		for (i = 0; i < 7; ++i)
311 			loop8 (i);
312 		break;
313 	}
314 
315 	D_KEY[0] = E_KEY[0];
316 	D_KEY[1] = E_KEY[1];
317 	D_KEY[2] = E_KEY[2];
318 	D_KEY[3] = E_KEY[3];
319 
320 	for (i = 4; i < key_len + 24; ++i) {
321 		imix_col (D_KEY[i], E_KEY[i]);
322 	}
323 
324 	return 0;
325 }
326 
327 /* encrypt a block of text */
328 
329 #define f_nround(bo, bi, k) \
330     f_rn(bo, bi, 0, k);     \
331     f_rn(bo, bi, 1, k);     \
332     f_rn(bo, bi, 2, k);     \
333     f_rn(bo, bi, 3, k);     \
334     k += 4
335 
336 #define f_lround(bo, bi, k) \
337     f_rl(bo, bi, 0, k);     \
338     f_rl(bo, bi, 1, k);     \
339     f_rl(bo, bi, 2, k);     \
340     f_rl(bo, bi, 3, k)
341 
aes_encrypt(void * ctx_arg,u8 * out,const u8 * in)342 static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
343 {
344 	const struct aes_ctx *ctx = ctx_arg;
345 	u32 b0[4], b1[4];
346 	const u32 *kp = E_KEY + 4;
347 
348 	b0[0] = u32_in (in) ^ E_KEY[0];
349 	b0[1] = u32_in (in + 4) ^ E_KEY[1];
350 	b0[2] = u32_in (in + 8) ^ E_KEY[2];
351 	b0[3] = u32_in (in + 12) ^ E_KEY[3];
352 
353 	if (ctx->key_length > 24) {
354 		f_nround (b1, b0, kp);
355 		f_nround (b0, b1, kp);
356 	}
357 
358 	if (ctx->key_length > 16) {
359 		f_nround (b1, b0, kp);
360 		f_nround (b0, b1, kp);
361 	}
362 
363 	f_nround (b1, b0, kp);
364 	f_nround (b0, b1, kp);
365 	f_nround (b1, b0, kp);
366 	f_nround (b0, b1, kp);
367 	f_nround (b1, b0, kp);
368 	f_nround (b0, b1, kp);
369 	f_nround (b1, b0, kp);
370 	f_nround (b0, b1, kp);
371 	f_nround (b1, b0, kp);
372 	f_lround (b0, b1, kp);
373 
374 	u32_out (out, b0[0]);
375 	u32_out (out + 4, b0[1]);
376 	u32_out (out + 8, b0[2]);
377 	u32_out (out + 12, b0[3]);
378 }
379 
380 /* decrypt a block of text */
381 
382 #define i_nround(bo, bi, k) \
383     i_rn(bo, bi, 0, k);     \
384     i_rn(bo, bi, 1, k);     \
385     i_rn(bo, bi, 2, k);     \
386     i_rn(bo, bi, 3, k);     \
387     k -= 4
388 
389 #define i_lround(bo, bi, k) \
390     i_rl(bo, bi, 0, k);     \
391     i_rl(bo, bi, 1, k);     \
392     i_rl(bo, bi, 2, k);     \
393     i_rl(bo, bi, 3, k)
394 
aes_decrypt(void * ctx_arg,u8 * out,const u8 * in)395 static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
396 {
397 	const struct aes_ctx *ctx = ctx_arg;
398 	u32 b0[4], b1[4];
399 	const int key_len = ctx->key_length;
400 	const u32 *kp = D_KEY + key_len + 20;
401 
402 	b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
403 	b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
404 	b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
405 	b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
406 
407 	if (key_len > 24) {
408 		i_nround (b1, b0, kp);
409 		i_nround (b0, b1, kp);
410 	}
411 
412 	if (key_len > 16) {
413 		i_nround (b1, b0, kp);
414 		i_nround (b0, b1, kp);
415 	}
416 
417 	i_nround (b1, b0, kp);
418 	i_nround (b0, b1, kp);
419 	i_nround (b1, b0, kp);
420 	i_nround (b0, b1, kp);
421 	i_nround (b1, b0, kp);
422 	i_nround (b0, b1, kp);
423 	i_nround (b1, b0, kp);
424 	i_nround (b0, b1, kp);
425 	i_nround (b1, b0, kp);
426 	i_lround (b0, b1, kp);
427 
428 	u32_out (out, b0[0]);
429 	u32_out (out + 4, b0[1]);
430 	u32_out (out + 8, b0[2]);
431 	u32_out (out + 12, b0[3]);
432 }
433 
434 
435 static struct crypto_alg aes_alg = {
436 	.cra_name		=	"aes",
437 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
438 	.cra_blocksize		=	AES_BLOCK_SIZE,
439 	.cra_ctxsize		=	sizeof(struct aes_ctx),
440 	.cra_module		=	THIS_MODULE,
441 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
442 	.cra_u			=	{
443 		.cipher = {
444 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
445 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
446 			.cia_setkey		= 	aes_set_key,
447 			.cia_encrypt		=	aes_encrypt,
448 			.cia_decrypt		=	aes_decrypt
449 		}
450 	}
451 };
452 
aes_init(void)453 static int __init aes_init(void)
454 {
455 	gen_tabs();
456 	return crypto_register_alg(&aes_alg);
457 }
458 
aes_fini(void)459 static void __exit aes_fini(void)
460 {
461 	crypto_unregister_alg(&aes_alg);
462 }
463 
464 module_init(aes_init);
465 module_exit(aes_fini);
466 
467 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
468 MODULE_LICENSE("Dual BSD/GPL");
469 
470