1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  *      - the initialization/deinitialization process is very dirty and should
26  *        be rewritten. It may even be buggy.
27  *
28  * TODO:
29  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  *      - make the LCD a part of a virtual screen of Vx*Vy
31  *	- make the inputs list smp-safe
32  *      - change the keyboard to a double mapping : signals -> key_id -> values
33  *        so that applications can change values without knowing signals
34  *
35  */
36 
37 #include <linux/module.h>
38 
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/miscdevice.h>
46 #include <linux/slab.h>
47 #include <linux/ioport.h>
48 #include <linux/fcntl.h>
49 #include <linux/init.h>
50 #include <linux/delay.h>
51 #include <linux/kernel.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/list.h>
55 #include <linux/notifier.h>
56 #include <linux/reboot.h>
57 #include <generated/utsrelease.h>
58 
59 #include <linux/io.h>
60 #include <linux/uaccess.h>
61 #include <asm/system.h>
62 
63 #define LCD_MINOR		156
64 #define KEYPAD_MINOR		185
65 
66 #define PANEL_VERSION		"0.9.5"
67 
68 #define LCD_MAXBYTES		256	/* max burst write */
69 
70 #define KEYPAD_BUFFER		64
71 
72 /* poll the keyboard this every second */
73 #define INPUT_POLL_TIME		(HZ/50)
74 /* a key starts to repeat after this times INPUT_POLL_TIME */
75 #define KEYPAD_REP_START	(10)
76 /* a key repeats this times INPUT_POLL_TIME */
77 #define KEYPAD_REP_DELAY	(2)
78 
79 /* keep the light on this times INPUT_POLL_TIME for each flash */
80 #define FLASH_LIGHT_TEMPO	(200)
81 
82 /* converts an r_str() input to an active high, bits string : 000BAOSE */
83 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
84 
85 #define PNL_PBUSY		0x80	/* inverted input, active low */
86 #define PNL_PACK		0x40	/* direct input, active low */
87 #define PNL_POUTPA		0x20	/* direct input, active high */
88 #define PNL_PSELECD		0x10	/* direct input, active high */
89 #define PNL_PERRORP		0x08	/* direct input, active low */
90 
91 #define PNL_PBIDIR		0x20	/* bi-directional ports */
92 /* high to read data in or-ed with data out */
93 #define PNL_PINTEN		0x10
94 #define PNL_PSELECP		0x08	/* inverted output, active low */
95 #define PNL_PINITP		0x04	/* direct output, active low */
96 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
97 #define PNL_PSTROBE		0x01	/* inverted output */
98 
99 #define PNL_PD0			0x01
100 #define PNL_PD1			0x02
101 #define PNL_PD2			0x04
102 #define PNL_PD3			0x08
103 #define PNL_PD4			0x10
104 #define PNL_PD5			0x20
105 #define PNL_PD6			0x40
106 #define PNL_PD7			0x80
107 
108 #define PIN_NONE		0
109 #define PIN_STROBE		1
110 #define PIN_D0			2
111 #define PIN_D1			3
112 #define PIN_D2			4
113 #define PIN_D3			5
114 #define PIN_D4			6
115 #define PIN_D5			7
116 #define PIN_D6			8
117 #define PIN_D7			9
118 #define PIN_AUTOLF		14
119 #define PIN_INITP		16
120 #define PIN_SELECP		17
121 #define PIN_NOT_SET		127
122 
123 #define LCD_FLAG_S		0x0001
124 #define LCD_FLAG_ID		0x0002
125 #define LCD_FLAG_B		0x0004	/* blink on */
126 #define LCD_FLAG_C		0x0008	/* cursor on */
127 #define LCD_FLAG_D		0x0010	/* display on */
128 #define LCD_FLAG_F		0x0020	/* large font mode */
129 #define LCD_FLAG_N		0x0040	/* 2-rows mode */
130 #define LCD_FLAG_L		0x0080	/* backlight enabled */
131 
132 #define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
133 #define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
134 
135 /* macros to simplify use of the parallel port */
136 #define r_ctr(x)        (parport_read_control((x)->port))
137 #define r_dtr(x)        (parport_read_data((x)->port))
138 #define r_str(x)        (parport_read_status((x)->port))
139 #define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
140 #define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)
141 
142 /* this defines which bits are to be used and which ones to be ignored */
143 /* logical or of the output bits involved in the scan matrix */
144 static __u8 scan_mask_o;
145 /* logical or of the input bits involved in the scan matrix */
146 static __u8 scan_mask_i;
147 
148 typedef __u64 pmask_t;
149 
150 enum input_type {
151 	INPUT_TYPE_STD,
152 	INPUT_TYPE_KBD,
153 };
154 
155 enum input_state {
156 	INPUT_ST_LOW,
157 	INPUT_ST_RISING,
158 	INPUT_ST_HIGH,
159 	INPUT_ST_FALLING,
160 };
161 
162 struct logical_input {
163 	struct list_head list;
164 	pmask_t mask;
165 	pmask_t value;
166 	enum input_type type;
167 	enum input_state state;
168 	__u8 rise_time, fall_time;
169 	__u8 rise_timer, fall_timer, high_timer;
170 
171 	union {
172 		struct {	/* valid when type == INPUT_TYPE_STD */
173 			void (*press_fct) (int);
174 			void (*release_fct) (int);
175 			int press_data;
176 			int release_data;
177 		} std;
178 		struct {	/* valid when type == INPUT_TYPE_KBD */
179 			/* strings can be non null-terminated */
180 			char press_str[sizeof(void *) + sizeof(int)];
181 			char repeat_str[sizeof(void *) + sizeof(int)];
182 			char release_str[sizeof(void *) + sizeof(int)];
183 		} kbd;
184 	} u;
185 };
186 
187 LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
188 
189 /* physical contacts history
190  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
191  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
192  * corresponds to the ground.
193  * Within each group, bits are stored in the same order as read on the port :
194  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
195  * So, each __u64 (or pmask_t) is represented like this :
196  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
197  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
198  */
199 
200 /* what has just been read from the I/O ports */
201 static pmask_t phys_read;
202 /* previous phys_read */
203 static pmask_t phys_read_prev;
204 /* stabilized phys_read (phys_read|phys_read_prev) */
205 static pmask_t phys_curr;
206 /* previous phys_curr */
207 static pmask_t phys_prev;
208 /* 0 means that at least one logical signal needs be computed */
209 static char inputs_stable;
210 
211 /* these variables are specific to the keypad */
212 static char keypad_buffer[KEYPAD_BUFFER];
213 static int keypad_buflen;
214 static int keypad_start;
215 static char keypressed;
216 static wait_queue_head_t keypad_read_wait;
217 
218 /* lcd-specific variables */
219 
220 /* contains the LCD config state */
221 static unsigned long int lcd_flags;
222 /* contains the LCD X offset */
223 static unsigned long int lcd_addr_x;
224 /* contains the LCD Y offset */
225 static unsigned long int lcd_addr_y;
226 /* current escape sequence, 0 terminated */
227 static char lcd_escape[LCD_ESCAPE_LEN + 1];
228 /* not in escape state. >=0 = escape cmd len */
229 static int lcd_escape_len = -1;
230 
231 /*
232  * Bit masks to convert LCD signals to parallel port outputs.
233  * _d_ are values for data port, _c_ are for control port.
234  * [0] = signal OFF, [1] = signal ON, [2] = mask
235  */
236 #define BIT_CLR		0
237 #define BIT_SET		1
238 #define BIT_MSK		2
239 #define BIT_STATES	3
240 /*
241  * one entry for each bit on the LCD
242  */
243 #define LCD_BIT_E	0
244 #define LCD_BIT_RS	1
245 #define LCD_BIT_RW	2
246 #define LCD_BIT_BL	3
247 #define LCD_BIT_CL	4
248 #define LCD_BIT_DA	5
249 #define LCD_BITS	6
250 
251 /*
252  * each bit can be either connected to a DATA or CTRL port
253  */
254 #define LCD_PORT_C	0
255 #define LCD_PORT_D	1
256 #define LCD_PORTS	2
257 
258 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
259 
260 /*
261  * LCD protocols
262  */
263 #define LCD_PROTO_PARALLEL      0
264 #define LCD_PROTO_SERIAL        1
265 #define LCD_PROTO_TI_DA8XX_LCD	2
266 
267 /*
268  * LCD character sets
269  */
270 #define LCD_CHARSET_NORMAL      0
271 #define LCD_CHARSET_KS0074      1
272 
273 /*
274  * LCD types
275  */
276 #define LCD_TYPE_NONE		0
277 #define LCD_TYPE_OLD		1
278 #define LCD_TYPE_KS0074		2
279 #define LCD_TYPE_HANTRONIX	3
280 #define LCD_TYPE_NEXCOM		4
281 #define LCD_TYPE_CUSTOM		5
282 
283 /*
284  * keypad types
285  */
286 #define KEYPAD_TYPE_NONE	0
287 #define KEYPAD_TYPE_OLD		1
288 #define KEYPAD_TYPE_NEW		2
289 #define KEYPAD_TYPE_NEXCOM	3
290 
291 /*
292  * panel profiles
293  */
294 #define PANEL_PROFILE_CUSTOM	0
295 #define PANEL_PROFILE_OLD	1
296 #define PANEL_PROFILE_NEW	2
297 #define PANEL_PROFILE_HANTRONIX	3
298 #define PANEL_PROFILE_NEXCOM	4
299 #define PANEL_PROFILE_LARGE	5
300 
301 /*
302  * Construct custom config from the kernel's configuration
303  */
304 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
305 #define DEFAULT_PARPORT         0
306 #define DEFAULT_LCD             LCD_TYPE_OLD
307 #define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
308 #define DEFAULT_LCD_WIDTH       40
309 #define DEFAULT_LCD_BWIDTH      40
310 #define DEFAULT_LCD_HWIDTH      64
311 #define DEFAULT_LCD_HEIGHT      2
312 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
313 
314 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
315 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
316 #define DEFAULT_LCD_PIN_RW      PIN_INITP
317 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
318 #define DEFAULT_LCD_PIN_SDA     PIN_D0
319 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
320 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
321 
322 #ifdef CONFIG_PANEL_PROFILE
323 #undef DEFAULT_PROFILE
324 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
325 #endif
326 
327 #ifdef CONFIG_PANEL_PARPORT
328 #undef DEFAULT_PARPORT
329 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
330 #endif
331 
332 #if DEFAULT_PROFILE == 0	/* custom */
333 #ifdef CONFIG_PANEL_KEYPAD
334 #undef DEFAULT_KEYPAD
335 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
336 #endif
337 
338 #ifdef CONFIG_PANEL_LCD
339 #undef DEFAULT_LCD
340 #define DEFAULT_LCD CONFIG_PANEL_LCD
341 #endif
342 
343 #ifdef CONFIG_PANEL_LCD_WIDTH
344 #undef DEFAULT_LCD_WIDTH
345 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
346 #endif
347 
348 #ifdef CONFIG_PANEL_LCD_BWIDTH
349 #undef DEFAULT_LCD_BWIDTH
350 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
351 #endif
352 
353 #ifdef CONFIG_PANEL_LCD_HWIDTH
354 #undef DEFAULT_LCD_HWIDTH
355 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
356 #endif
357 
358 #ifdef CONFIG_PANEL_LCD_HEIGHT
359 #undef DEFAULT_LCD_HEIGHT
360 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
361 #endif
362 
363 #ifdef CONFIG_PANEL_LCD_PROTO
364 #undef DEFAULT_LCD_PROTO
365 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
366 #endif
367 
368 #ifdef CONFIG_PANEL_LCD_PIN_E
369 #undef DEFAULT_LCD_PIN_E
370 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
371 #endif
372 
373 #ifdef CONFIG_PANEL_LCD_PIN_RS
374 #undef DEFAULT_LCD_PIN_RS
375 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
376 #endif
377 
378 #ifdef CONFIG_PANEL_LCD_PIN_RW
379 #undef DEFAULT_LCD_PIN_RW
380 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
381 #endif
382 
383 #ifdef CONFIG_PANEL_LCD_PIN_SCL
384 #undef DEFAULT_LCD_PIN_SCL
385 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
386 #endif
387 
388 #ifdef CONFIG_PANEL_LCD_PIN_SDA
389 #undef DEFAULT_LCD_PIN_SDA
390 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
391 #endif
392 
393 #ifdef CONFIG_PANEL_LCD_PIN_BL
394 #undef DEFAULT_LCD_PIN_BL
395 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
396 #endif
397 
398 #ifdef CONFIG_PANEL_LCD_CHARSET
399 #undef DEFAULT_LCD_CHARSET
400 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
401 #endif
402 
403 #endif /* DEFAULT_PROFILE == 0 */
404 
405 /* global variables */
406 static int keypad_open_cnt;	/* #times opened */
407 static int lcd_open_cnt;	/* #times opened */
408 static struct pardevice *pprt;
409 
410 static int lcd_initialized;
411 static int keypad_initialized;
412 
413 static int light_tempo;
414 
415 static char lcd_must_clear;
416 static char lcd_left_shift;
417 static char init_in_progress;
418 
419 static void (*lcd_write_cmd) (int);
420 static void (*lcd_write_data) (int);
421 static void (*lcd_clear_fast) (void);
422 
423 static DEFINE_SPINLOCK(pprt_lock);
424 static struct timer_list scan_timer;
425 
426 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
427 
428 static int parport = -1;
429 module_param(parport, int, 0000);
430 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
431 
432 static int lcd_height = -1;
433 module_param(lcd_height, int, 0000);
434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
435 
436 static int lcd_width = -1;
437 module_param(lcd_width, int, 0000);
438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
439 
440 static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
441 module_param(lcd_bwidth, int, 0000);
442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
443 
444 static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
445 module_param(lcd_hwidth, int, 0000);
446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
447 
448 static int lcd_enabled = -1;
449 module_param(lcd_enabled, int, 0000);
450 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
451 
452 static int keypad_enabled = -1;
453 module_param(keypad_enabled, int, 0000);
454 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
455 
456 static int lcd_type = -1;
457 module_param(lcd_type, int, 0000);
458 MODULE_PARM_DESC(lcd_type,
459 		 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
460 		 "3=hantronix //, 4=nexcom //, 5=compiled-in");
461 
462 static int lcd_proto = -1;
463 module_param(lcd_proto, int, 0000);
464 MODULE_PARM_DESC(lcd_proto,
465 		"LCD communication: 0=parallel (//), 1=serial,"
466 		"2=TI LCD Interface");
467 
468 static int lcd_charset = -1;
469 module_param(lcd_charset, int, 0000);
470 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
471 
472 static int keypad_type = -1;
473 module_param(keypad_type, int, 0000);
474 MODULE_PARM_DESC(keypad_type,
475 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
476 		 "3=nexcom 4 keys");
477 
478 static int profile = DEFAULT_PROFILE;
479 module_param(profile, int, 0000);
480 MODULE_PARM_DESC(profile,
481 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
482 		 "4=16x2 nexcom; default=40x2, old kp");
483 
484 /*
485  * These are the parallel port pins the LCD control signals are connected to.
486  * Set this to 0 if the signal is not used. Set it to its opposite value
487  * (negative) if the signal is negated. -MAXINT is used to indicate that the
488  * pin has not been explicitly specified.
489  *
490  * WARNING! no check will be performed about collisions with keypad !
491  */
492 
493 static int lcd_e_pin  = PIN_NOT_SET;
494 module_param(lcd_e_pin, int, 0000);
495 MODULE_PARM_DESC(lcd_e_pin,
496 		 "# of the // port pin connected to LCD 'E' signal, "
497 		 "with polarity (-17..17)");
498 
499 static int lcd_rs_pin = PIN_NOT_SET;
500 module_param(lcd_rs_pin, int, 0000);
501 MODULE_PARM_DESC(lcd_rs_pin,
502 		 "# of the // port pin connected to LCD 'RS' signal, "
503 		 "with polarity (-17..17)");
504 
505 static int lcd_rw_pin = PIN_NOT_SET;
506 module_param(lcd_rw_pin, int, 0000);
507 MODULE_PARM_DESC(lcd_rw_pin,
508 		 "# of the // port pin connected to LCD 'RW' signal, "
509 		 "with polarity (-17..17)");
510 
511 static int lcd_bl_pin = PIN_NOT_SET;
512 module_param(lcd_bl_pin, int, 0000);
513 MODULE_PARM_DESC(lcd_bl_pin,
514 		 "# of the // port pin connected to LCD backlight, "
515 		 "with polarity (-17..17)");
516 
517 static int lcd_da_pin = PIN_NOT_SET;
518 module_param(lcd_da_pin, int, 0000);
519 MODULE_PARM_DESC(lcd_da_pin,
520 		 "# of the // port pin connected to serial LCD 'SDA' "
521 		 "signal, with polarity (-17..17)");
522 
523 static int lcd_cl_pin = PIN_NOT_SET;
524 module_param(lcd_cl_pin, int, 0000);
525 MODULE_PARM_DESC(lcd_cl_pin,
526 		 "# of the // port pin connected to serial LCD 'SCL' "
527 		 "signal, with polarity (-17..17)");
528 
529 static unsigned char *lcd_char_conv;
530 
531 /* for some LCD drivers (ks0074) we need a charset conversion table. */
532 static unsigned char lcd_char_conv_ks0074[256] = {
533 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
534 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
535 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
536 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
537 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
538 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
539 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
540 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
541 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
542 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
543 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
544 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
545 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
546 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
547 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
548 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
549 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
550 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
551 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
552 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
553 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
554 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
555 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
556 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
557 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
558 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
559 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
560 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
561 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
562 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
563 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
564 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
565 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
566 };
567 
568 char old_keypad_profile[][4][9] = {
569 	{"S0", "Left\n", "Left\n", ""},
570 	{"S1", "Down\n", "Down\n", ""},
571 	{"S2", "Up\n", "Up\n", ""},
572 	{"S3", "Right\n", "Right\n", ""},
573 	{"S4", "Esc\n", "Esc\n", ""},
574 	{"S5", "Ret\n", "Ret\n", ""},
575 	{"", "", "", ""}
576 };
577 
578 /* signals, press, repeat, release */
579 char new_keypad_profile[][4][9] = {
580 	{"S0", "Left\n", "Left\n", ""},
581 	{"S1", "Down\n", "Down\n", ""},
582 	{"S2", "Up\n", "Up\n", ""},
583 	{"S3", "Right\n", "Right\n", ""},
584 	{"S4s5", "", "Esc\n", "Esc\n"},
585 	{"s4S5", "", "Ret\n", "Ret\n"},
586 	{"S4S5", "Help\n", "", ""},
587 	/* add new signals above this line */
588 	{"", "", "", ""}
589 };
590 
591 /* signals, press, repeat, release */
592 char nexcom_keypad_profile[][4][9] = {
593 	{"a-p-e-", "Down\n", "Down\n", ""},
594 	{"a-p-E-", "Ret\n", "Ret\n", ""},
595 	{"a-P-E-", "Esc\n", "Esc\n", ""},
596 	{"a-P-e-", "Up\n", "Up\n", ""},
597 	/* add new signals above this line */
598 	{"", "", "", ""}
599 };
600 
601 static char (*keypad_profile)[4][9] = old_keypad_profile;
602 
603 /* FIXME: this should be converted to a bit array containing signals states */
604 static struct {
605 	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
606 	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
607 	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
608 	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
609 	unsigned char cl; /* serial LCD clock (latch on rising edge) */
610 	unsigned char da; /* serial LCD data */
611 } bits;
612 
613 static void init_scan_timer(void);
614 
615 /* sets data port bits according to current signals values */
set_data_bits(void)616 static int set_data_bits(void)
617 {
618 	int val, bit;
619 
620 	val = r_dtr(pprt);
621 	for (bit = 0; bit < LCD_BITS; bit++)
622 		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
623 
624 	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
625 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
626 	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
627 	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
628 	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
629 	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
630 
631 	w_dtr(pprt, val);
632 	return val;
633 }
634 
635 /* sets ctrl port bits according to current signals values */
set_ctrl_bits(void)636 static int set_ctrl_bits(void)
637 {
638 	int val, bit;
639 
640 	val = r_ctr(pprt);
641 	for (bit = 0; bit < LCD_BITS; bit++)
642 		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
643 
644 	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
645 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
646 	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
647 	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
648 	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
649 	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
650 
651 	w_ctr(pprt, val);
652 	return val;
653 }
654 
655 /* sets ctrl & data port bits according to current signals values */
panel_set_bits(void)656 static void panel_set_bits(void)
657 {
658 	set_data_bits();
659 	set_ctrl_bits();
660 }
661 
662 /*
663  * Converts a parallel port pin (from -25 to 25) to data and control ports
664  * masks, and data and control port bits. The signal will be considered
665  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
666  *
667  * Result will be used this way :
668  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
669  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
670  */
pin_to_bits(int pin,unsigned char * d_val,unsigned char * c_val)671 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
672 {
673 	int d_bit, c_bit, inv;
674 
675 	d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
676 	d_val[2] = c_val[2] = 0xFF;
677 
678 	if (pin == 0)
679 		return;
680 
681 	inv = (pin < 0);
682 	if (inv)
683 		pin = -pin;
684 
685 	d_bit = c_bit = 0;
686 
687 	switch (pin) {
688 	case PIN_STROBE:	/* strobe, inverted */
689 		c_bit = PNL_PSTROBE;
690 		inv = !inv;
691 		break;
692 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
693 		d_bit = 1 << (pin - 2);
694 		break;
695 	case PIN_AUTOLF:	/* autofeed, inverted */
696 		c_bit = PNL_PAUTOLF;
697 		inv = !inv;
698 		break;
699 	case PIN_INITP:		/* init, direct */
700 		c_bit = PNL_PINITP;
701 		break;
702 	case PIN_SELECP:	/* select_in, inverted */
703 		c_bit = PNL_PSELECP;
704 		inv = !inv;
705 		break;
706 	default:		/* unknown pin, ignore */
707 		break;
708 	}
709 
710 	if (c_bit) {
711 		c_val[2] &= ~c_bit;
712 		c_val[!inv] = c_bit;
713 	} else if (d_bit) {
714 		d_val[2] &= ~d_bit;
715 		d_val[!inv] = d_bit;
716 	}
717 }
718 
719 /* sleeps that many milliseconds with a reschedule */
long_sleep(int ms)720 static void long_sleep(int ms)
721 {
722 
723 	if (in_interrupt())
724 		mdelay(ms);
725 	else {
726 		current->state = TASK_INTERRUPTIBLE;
727 		schedule_timeout((ms * HZ + 999) / 1000);
728 	}
729 }
730 
731 /* send a serial byte to the LCD panel. The caller is responsible for locking
732    if needed. */
lcd_send_serial(int byte)733 static void lcd_send_serial(int byte)
734 {
735 	int bit;
736 
737 	/* the data bit is set on D0, and the clock on STROBE.
738 	 * LCD reads D0 on STROBE's rising edge. */
739 	for (bit = 0; bit < 8; bit++) {
740 		bits.cl = BIT_CLR;	/* CLK low */
741 		panel_set_bits();
742 		bits.da = byte & 1;
743 		panel_set_bits();
744 		udelay(2);  /* maintain the data during 2 us before CLK up */
745 		bits.cl = BIT_SET;	/* CLK high */
746 		panel_set_bits();
747 		udelay(1);  /* maintain the strobe during 1 us */
748 		byte >>= 1;
749 	}
750 }
751 
752 /* turn the backlight on or off */
lcd_backlight(int on)753 static void lcd_backlight(int on)
754 {
755 	if (lcd_bl_pin == PIN_NONE)
756 		return;
757 
758 	/* The backlight is activated by seting the AUTOFEED line to +5V  */
759 	spin_lock(&pprt_lock);
760 	bits.bl = on;
761 	panel_set_bits();
762 	spin_unlock(&pprt_lock);
763 }
764 
765 /* send a command to the LCD panel in serial mode */
lcd_write_cmd_s(int cmd)766 static void lcd_write_cmd_s(int cmd)
767 {
768 	spin_lock(&pprt_lock);
769 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
770 	lcd_send_serial(cmd & 0x0F);
771 	lcd_send_serial((cmd >> 4) & 0x0F);
772 	udelay(40);		/* the shortest command takes at least 40 us */
773 	spin_unlock(&pprt_lock);
774 }
775 
776 /* send data to the LCD panel in serial mode */
lcd_write_data_s(int data)777 static void lcd_write_data_s(int data)
778 {
779 	spin_lock(&pprt_lock);
780 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
781 	lcd_send_serial(data & 0x0F);
782 	lcd_send_serial((data >> 4) & 0x0F);
783 	udelay(40);		/* the shortest data takes at least 40 us */
784 	spin_unlock(&pprt_lock);
785 }
786 
787 /* send a command to the LCD panel in 8 bits parallel mode */
lcd_write_cmd_p8(int cmd)788 static void lcd_write_cmd_p8(int cmd)
789 {
790 	spin_lock(&pprt_lock);
791 	/* present the data to the data port */
792 	w_dtr(pprt, cmd);
793 	udelay(20);	/* maintain the data during 20 us before the strobe */
794 
795 	bits.e = BIT_SET;
796 	bits.rs = BIT_CLR;
797 	bits.rw = BIT_CLR;
798 	set_ctrl_bits();
799 
800 	udelay(40);	/* maintain the strobe during 40 us */
801 
802 	bits.e = BIT_CLR;
803 	set_ctrl_bits();
804 
805 	udelay(120);	/* the shortest command takes at least 120 us */
806 	spin_unlock(&pprt_lock);
807 }
808 
809 /* send data to the LCD panel in 8 bits parallel mode */
lcd_write_data_p8(int data)810 static void lcd_write_data_p8(int data)
811 {
812 	spin_lock(&pprt_lock);
813 	/* present the data to the data port */
814 	w_dtr(pprt, data);
815 	udelay(20);	/* maintain the data during 20 us before the strobe */
816 
817 	bits.e = BIT_SET;
818 	bits.rs = BIT_SET;
819 	bits.rw = BIT_CLR;
820 	set_ctrl_bits();
821 
822 	udelay(40);	/* maintain the strobe during 40 us */
823 
824 	bits.e = BIT_CLR;
825 	set_ctrl_bits();
826 
827 	udelay(45);	/* the shortest data takes at least 45 us */
828 	spin_unlock(&pprt_lock);
829 }
830 
831 /* send a command to the TI LCD panel */
lcd_write_cmd_tilcd(int cmd)832 static void lcd_write_cmd_tilcd(int cmd)
833 {
834 	spin_lock(&pprt_lock);
835 	/* present the data to the control port */
836 	w_ctr(pprt, cmd);
837 	udelay(60);
838 	spin_unlock(&pprt_lock);
839 }
840 
841 /* send data to the TI LCD panel */
lcd_write_data_tilcd(int data)842 static void lcd_write_data_tilcd(int data)
843 {
844 	spin_lock(&pprt_lock);
845 	/* present the data to the data port */
846 	w_dtr(pprt, data);
847 	udelay(60);
848 	spin_unlock(&pprt_lock);
849 }
850 
lcd_gotoxy(void)851 static void lcd_gotoxy(void)
852 {
853 	lcd_write_cmd(0x80	/* set DDRAM address */
854 		      | (lcd_addr_y ? lcd_hwidth : 0)
855 		      /* we force the cursor to stay at the end of the
856 			 line if it wants to go farther */
857 		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
858 			 (lcd_hwidth - 1) : lcd_bwidth - 1));
859 }
860 
lcd_print(char c)861 static void lcd_print(char c)
862 {
863 	if (lcd_addr_x < lcd_bwidth) {
864 		if (lcd_char_conv != NULL)
865 			c = lcd_char_conv[(unsigned char)c];
866 		lcd_write_data(c);
867 		lcd_addr_x++;
868 	}
869 	/* prevents the cursor from wrapping onto the next line */
870 	if (lcd_addr_x == lcd_bwidth)
871 		lcd_gotoxy();
872 }
873 
874 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_s(void)875 static void lcd_clear_fast_s(void)
876 {
877 	int pos;
878 	lcd_addr_x = lcd_addr_y = 0;
879 	lcd_gotoxy();
880 
881 	spin_lock(&pprt_lock);
882 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
883 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
884 		lcd_send_serial(' ' & 0x0F);
885 		lcd_send_serial((' ' >> 4) & 0x0F);
886 		udelay(40);	/* the shortest data takes at least 40 us */
887 	}
888 	spin_unlock(&pprt_lock);
889 
890 	lcd_addr_x = lcd_addr_y = 0;
891 	lcd_gotoxy();
892 }
893 
894 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_p8(void)895 static void lcd_clear_fast_p8(void)
896 {
897 	int pos;
898 	lcd_addr_x = lcd_addr_y = 0;
899 	lcd_gotoxy();
900 
901 	spin_lock(&pprt_lock);
902 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
903 		/* present the data to the data port */
904 		w_dtr(pprt, ' ');
905 
906 		/* maintain the data during 20 us before the strobe */
907 		udelay(20);
908 
909 		bits.e = BIT_SET;
910 		bits.rs = BIT_SET;
911 		bits.rw = BIT_CLR;
912 		set_ctrl_bits();
913 
914 		/* maintain the strobe during 40 us */
915 		udelay(40);
916 
917 		bits.e = BIT_CLR;
918 		set_ctrl_bits();
919 
920 		/* the shortest data takes at least 45 us */
921 		udelay(45);
922 	}
923 	spin_unlock(&pprt_lock);
924 
925 	lcd_addr_x = lcd_addr_y = 0;
926 	lcd_gotoxy();
927 }
928 
929 /* fills the display with spaces and resets X/Y */
lcd_clear_fast_tilcd(void)930 static void lcd_clear_fast_tilcd(void)
931 {
932 	int pos;
933 	lcd_addr_x = lcd_addr_y = 0;
934 	lcd_gotoxy();
935 
936 	spin_lock(&pprt_lock);
937 	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
938 		/* present the data to the data port */
939 		w_dtr(pprt, ' ');
940 		udelay(60);
941 	}
942 
943 	spin_unlock(&pprt_lock);
944 
945 	lcd_addr_x = lcd_addr_y = 0;
946 	lcd_gotoxy();
947 }
948 
949 /* clears the display and resets X/Y */
lcd_clear_display(void)950 static void lcd_clear_display(void)
951 {
952 	lcd_write_cmd(0x01);	/* clear display */
953 	lcd_addr_x = lcd_addr_y = 0;
954 	/* we must wait a few milliseconds (15) */
955 	long_sleep(15);
956 }
957 
lcd_init_display(void)958 static void lcd_init_display(void)
959 {
960 
961 	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
962 	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
963 
964 	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
965 
966 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
967 	long_sleep(10);
968 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
969 	long_sleep(10);
970 	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
971 	long_sleep(10);
972 
973 	lcd_write_cmd(0x30	/* set font height and lines number */
974 		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
975 		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
976 	    );
977 	long_sleep(10);
978 
979 	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
980 	long_sleep(10);
981 
982 	lcd_write_cmd(0x08	/* set display mode */
983 		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
984 		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
985 		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
986 	    );
987 
988 	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
989 
990 	long_sleep(10);
991 
992 	/* entry mode set : increment, cursor shifting */
993 	lcd_write_cmd(0x06);
994 
995 	lcd_clear_display();
996 }
997 
998 /*
999  * These are the file operation function for user access to /dev/lcd
1000  * This function can also be called from inside the kernel, by
1001  * setting file and ppos to NULL.
1002  *
1003  */
1004 
handle_lcd_special_code(void)1005 static inline int handle_lcd_special_code(void)
1006 {
1007 	/* LCD special codes */
1008 
1009 	int processed = 0;
1010 
1011 	char *esc = lcd_escape + 2;
1012 	int oldflags = lcd_flags;
1013 
1014 	/* check for display mode flags */
1015 	switch (*esc) {
1016 	case 'D':	/* Display ON */
1017 		lcd_flags |= LCD_FLAG_D;
1018 		processed = 1;
1019 		break;
1020 	case 'd':	/* Display OFF */
1021 		lcd_flags &= ~LCD_FLAG_D;
1022 		processed = 1;
1023 		break;
1024 	case 'C':	/* Cursor ON */
1025 		lcd_flags |= LCD_FLAG_C;
1026 		processed = 1;
1027 		break;
1028 	case 'c':	/* Cursor OFF */
1029 		lcd_flags &= ~LCD_FLAG_C;
1030 		processed = 1;
1031 		break;
1032 	case 'B':	/* Blink ON */
1033 		lcd_flags |= LCD_FLAG_B;
1034 		processed = 1;
1035 		break;
1036 	case 'b':	/* Blink OFF */
1037 		lcd_flags &= ~LCD_FLAG_B;
1038 		processed = 1;
1039 		break;
1040 	case '+':	/* Back light ON */
1041 		lcd_flags |= LCD_FLAG_L;
1042 		processed = 1;
1043 		break;
1044 	case '-':	/* Back light OFF */
1045 		lcd_flags &= ~LCD_FLAG_L;
1046 		processed = 1;
1047 		break;
1048 	case '*':
1049 		/* flash back light using the keypad timer */
1050 		if (scan_timer.function != NULL) {
1051 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1052 				lcd_backlight(1);
1053 			light_tempo = FLASH_LIGHT_TEMPO;
1054 		}
1055 		processed = 1;
1056 		break;
1057 	case 'f':	/* Small Font */
1058 		lcd_flags &= ~LCD_FLAG_F;
1059 		processed = 1;
1060 		break;
1061 	case 'F':	/* Large Font */
1062 		lcd_flags |= LCD_FLAG_F;
1063 		processed = 1;
1064 		break;
1065 	case 'n':	/* One Line */
1066 		lcd_flags &= ~LCD_FLAG_N;
1067 		processed = 1;
1068 		break;
1069 	case 'N':	/* Two Lines */
1070 		lcd_flags |= LCD_FLAG_N;
1071 		break;
1072 	case 'l':	/* Shift Cursor Left */
1073 		if (lcd_addr_x > 0) {
1074 			/* back one char if not at end of line */
1075 			if (lcd_addr_x < lcd_bwidth)
1076 				lcd_write_cmd(0x10);
1077 			lcd_addr_x--;
1078 		}
1079 		processed = 1;
1080 		break;
1081 	case 'r':	/* shift cursor right */
1082 		if (lcd_addr_x < lcd_width) {
1083 			/* allow the cursor to pass the end of the line */
1084 			if (lcd_addr_x <
1085 			    (lcd_bwidth - 1))
1086 				lcd_write_cmd(0x14);
1087 			lcd_addr_x++;
1088 		}
1089 		processed = 1;
1090 		break;
1091 	case 'L':	/* shift display left */
1092 		lcd_left_shift++;
1093 		lcd_write_cmd(0x18);
1094 		processed = 1;
1095 		break;
1096 	case 'R':	/* shift display right */
1097 		lcd_left_shift--;
1098 		lcd_write_cmd(0x1C);
1099 		processed = 1;
1100 		break;
1101 	case 'k': {	/* kill end of line */
1102 		int x;
1103 		for (x = lcd_addr_x; x < lcd_bwidth; x++)
1104 			lcd_write_data(' ');
1105 
1106 		/* restore cursor position */
1107 		lcd_gotoxy();
1108 		processed = 1;
1109 		break;
1110 	}
1111 	case 'I':	/* reinitialize display */
1112 		lcd_init_display();
1113 		lcd_left_shift = 0;
1114 		processed = 1;
1115 		break;
1116 	case 'G': {
1117 		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1118 		 * and '7', representing the numerical ASCII code of the
1119 		 * redefined character, and <xx...xx> a sequence of 16
1120 		 * hex digits representing 8 bytes for each character.
1121 		 * Most LCDs will only use 5 lower bits of the 7 first
1122 		 * bytes.
1123 		 */
1124 
1125 		unsigned char cgbytes[8];
1126 		unsigned char cgaddr;
1127 		int cgoffset;
1128 		int shift;
1129 		char value;
1130 		int addr;
1131 
1132 		if (strchr(esc, ';') == NULL)
1133 			break;
1134 
1135 		esc++;
1136 
1137 		cgaddr = *(esc++) - '0';
1138 		if (cgaddr > 7) {
1139 			processed = 1;
1140 			break;
1141 		}
1142 
1143 		cgoffset = 0;
1144 		shift = 0;
1145 		value = 0;
1146 		while (*esc && cgoffset < 8) {
1147 			shift ^= 4;
1148 			if (*esc >= '0' && *esc <= '9')
1149 				value |= (*esc - '0') << shift;
1150 			else if (*esc >= 'A' && *esc <= 'Z')
1151 				value |= (*esc - 'A' + 10) << shift;
1152 			else if (*esc >= 'a' && *esc <= 'z')
1153 				value |= (*esc - 'a' + 10) << shift;
1154 			else {
1155 				esc++;
1156 				continue;
1157 			}
1158 
1159 			if (shift == 0) {
1160 				cgbytes[cgoffset++] = value;
1161 				value = 0;
1162 			}
1163 
1164 			esc++;
1165 		}
1166 
1167 		lcd_write_cmd(0x40 | (cgaddr * 8));
1168 		for (addr = 0; addr < cgoffset; addr++)
1169 			lcd_write_data(cgbytes[addr]);
1170 
1171 		/* ensures that we stop writing to CGRAM */
1172 		lcd_gotoxy();
1173 		processed = 1;
1174 		break;
1175 	}
1176 	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1177 	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1178 		if (strchr(esc, ';') == NULL)
1179 			break;
1180 
1181 		while (*esc) {
1182 			if (*esc == 'x') {
1183 				esc++;
1184 				if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1185 					break;
1186 			} else if (*esc == 'y') {
1187 				esc++;
1188 				if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1189 					break;
1190 			} else
1191 				break;
1192 		}
1193 
1194 		lcd_gotoxy();
1195 		processed = 1;
1196 		break;
1197 	}
1198 
1199 	/* Check wether one flag was changed */
1200 	if (oldflags != lcd_flags) {
1201 		/* check whether one of B,C,D flags were changed */
1202 		if ((oldflags ^ lcd_flags) &
1203 		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1204 			/* set display mode */
1205 			lcd_write_cmd(0x08
1206 				      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1207 				      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1208 				      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1209 		/* check whether one of F,N flags was changed */
1210 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1211 			lcd_write_cmd(0x30
1212 				      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1213 				      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1214 		/* check wether L flag was changed */
1215 		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1216 			if (lcd_flags & (LCD_FLAG_L))
1217 				lcd_backlight(1);
1218 			else if (light_tempo == 0)
1219 				/* switch off the light only when the tempo
1220 				   lighting is gone */
1221 				lcd_backlight(0);
1222 		}
1223 	}
1224 
1225 	return processed;
1226 }
1227 
lcd_write(struct file * file,const char * buf,size_t count,loff_t * ppos)1228 static ssize_t lcd_write(struct file *file,
1229 			 const char *buf, size_t count, loff_t *ppos)
1230 {
1231 	const char *tmp = buf;
1232 	char c;
1233 
1234 	for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1235 		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1236 			/* let's be a little nice with other processes
1237 			   that need some CPU */
1238 			schedule();
1239 
1240 		if (ppos == NULL && file == NULL)
1241 			/* let's not use get_user() from the kernel ! */
1242 			c = *tmp;
1243 		else if (get_user(c, tmp))
1244 			return -EFAULT;
1245 
1246 		/* first, we'll test if we're in escape mode */
1247 		if ((c != '\n') && lcd_escape_len >= 0) {
1248 			/* yes, let's add this char to the buffer */
1249 			lcd_escape[lcd_escape_len++] = c;
1250 			lcd_escape[lcd_escape_len] = 0;
1251 		} else {
1252 			/* aborts any previous escape sequence */
1253 			lcd_escape_len = -1;
1254 
1255 			switch (c) {
1256 			case LCD_ESCAPE_CHAR:
1257 				/* start of an escape sequence */
1258 				lcd_escape_len = 0;
1259 				lcd_escape[lcd_escape_len] = 0;
1260 				break;
1261 			case '\b':
1262 				/* go back one char and clear it */
1263 				if (lcd_addr_x > 0) {
1264 					/* check if we're not at the
1265 					   end of the line */
1266 					if (lcd_addr_x < lcd_bwidth)
1267 						/* back one char */
1268 						lcd_write_cmd(0x10);
1269 					lcd_addr_x--;
1270 				}
1271 				/* replace with a space */
1272 				lcd_write_data(' ');
1273 				/* back one char again */
1274 				lcd_write_cmd(0x10);
1275 				break;
1276 			case '\014':
1277 				/* quickly clear the display */
1278 				lcd_clear_fast();
1279 				break;
1280 			case '\n':
1281 				/* flush the remainder of the current line and
1282 				   go to the beginning of the next line */
1283 				for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1284 					lcd_write_data(' ');
1285 				lcd_addr_x = 0;
1286 				lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1287 				lcd_gotoxy();
1288 				break;
1289 			case '\r':
1290 				/* go to the beginning of the same line */
1291 				lcd_addr_x = 0;
1292 				lcd_gotoxy();
1293 				break;
1294 			case '\t':
1295 				/* print a space instead of the tab */
1296 				lcd_print(' ');
1297 				break;
1298 			default:
1299 				/* simply print this char */
1300 				lcd_print(c);
1301 				break;
1302 			}
1303 		}
1304 
1305 		/* now we'll see if we're in an escape mode and if the current
1306 		   escape sequence can be understood. */
1307 		if (lcd_escape_len >= 2) {
1308 			int processed = 0;
1309 
1310 			if (!strcmp(lcd_escape, "[2J")) {
1311 				/* clear the display */
1312 				lcd_clear_fast();
1313 				processed = 1;
1314 			} else if (!strcmp(lcd_escape, "[H")) {
1315 				/* cursor to home */
1316 				lcd_addr_x = lcd_addr_y = 0;
1317 				lcd_gotoxy();
1318 				processed = 1;
1319 			}
1320 			/* codes starting with ^[[L */
1321 			else if ((lcd_escape_len >= 3) &&
1322 				 (lcd_escape[0] == '[') &&
1323 				 (lcd_escape[1] == 'L')) {
1324 				processed = handle_lcd_special_code();
1325 			}
1326 
1327 			/* LCD special escape codes */
1328 			/* flush the escape sequence if it's been processed
1329 			   or if it is getting too long. */
1330 			if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1331 				lcd_escape_len = -1;
1332 		} /* escape codes */
1333 	}
1334 
1335 	return tmp - buf;
1336 }
1337 
lcd_open(struct inode * inode,struct file * file)1338 static int lcd_open(struct inode *inode, struct file *file)
1339 {
1340 	if (lcd_open_cnt)
1341 		return -EBUSY;	/* open only once at a time */
1342 
1343 	if (file->f_mode & FMODE_READ)	/* device is write-only */
1344 		return -EPERM;
1345 
1346 	if (lcd_must_clear) {
1347 		lcd_clear_display();
1348 		lcd_must_clear = 0;
1349 	}
1350 	lcd_open_cnt++;
1351 	return nonseekable_open(inode, file);
1352 }
1353 
lcd_release(struct inode * inode,struct file * file)1354 static int lcd_release(struct inode *inode, struct file *file)
1355 {
1356 	lcd_open_cnt--;
1357 	return 0;
1358 }
1359 
1360 static const struct file_operations lcd_fops = {
1361 	.write   = lcd_write,
1362 	.open    = lcd_open,
1363 	.release = lcd_release,
1364 	.llseek  = no_llseek,
1365 };
1366 
1367 static struct miscdevice lcd_dev = {
1368 	LCD_MINOR,
1369 	"lcd",
1370 	&lcd_fops
1371 };
1372 
1373 /* public function usable from the kernel for any purpose */
panel_lcd_print(char * s)1374 void panel_lcd_print(char *s)
1375 {
1376 	if (lcd_enabled && lcd_initialized)
1377 		lcd_write(NULL, s, strlen(s), NULL);
1378 }
1379 
1380 /* initialize the LCD driver */
lcd_init(void)1381 void lcd_init(void)
1382 {
1383 	switch (lcd_type) {
1384 	case LCD_TYPE_OLD:
1385 		/* parallel mode, 8 bits */
1386 		if (lcd_proto < 0)
1387 			lcd_proto = LCD_PROTO_PARALLEL;
1388 		if (lcd_charset < 0)
1389 			lcd_charset = LCD_CHARSET_NORMAL;
1390 		if (lcd_e_pin == PIN_NOT_SET)
1391 			lcd_e_pin = PIN_STROBE;
1392 		if (lcd_rs_pin == PIN_NOT_SET)
1393 			lcd_rs_pin = PIN_AUTOLF;
1394 
1395 		if (lcd_width < 0)
1396 			lcd_width = 40;
1397 		if (lcd_bwidth < 0)
1398 			lcd_bwidth = 40;
1399 		if (lcd_hwidth < 0)
1400 			lcd_hwidth = 64;
1401 		if (lcd_height < 0)
1402 			lcd_height = 2;
1403 		break;
1404 	case LCD_TYPE_KS0074:
1405 		/* serial mode, ks0074 */
1406 		if (lcd_proto < 0)
1407 			lcd_proto = LCD_PROTO_SERIAL;
1408 		if (lcd_charset < 0)
1409 			lcd_charset = LCD_CHARSET_KS0074;
1410 		if (lcd_bl_pin == PIN_NOT_SET)
1411 			lcd_bl_pin = PIN_AUTOLF;
1412 		if (lcd_cl_pin == PIN_NOT_SET)
1413 			lcd_cl_pin = PIN_STROBE;
1414 		if (lcd_da_pin == PIN_NOT_SET)
1415 			lcd_da_pin = PIN_D0;
1416 
1417 		if (lcd_width < 0)
1418 			lcd_width = 16;
1419 		if (lcd_bwidth < 0)
1420 			lcd_bwidth = 40;
1421 		if (lcd_hwidth < 0)
1422 			lcd_hwidth = 16;
1423 		if (lcd_height < 0)
1424 			lcd_height = 2;
1425 		break;
1426 	case LCD_TYPE_NEXCOM:
1427 		/* parallel mode, 8 bits, generic */
1428 		if (lcd_proto < 0)
1429 			lcd_proto = LCD_PROTO_PARALLEL;
1430 		if (lcd_charset < 0)
1431 			lcd_charset = LCD_CHARSET_NORMAL;
1432 		if (lcd_e_pin == PIN_NOT_SET)
1433 			lcd_e_pin = PIN_AUTOLF;
1434 		if (lcd_rs_pin == PIN_NOT_SET)
1435 			lcd_rs_pin = PIN_SELECP;
1436 		if (lcd_rw_pin == PIN_NOT_SET)
1437 			lcd_rw_pin = PIN_INITP;
1438 
1439 		if (lcd_width < 0)
1440 			lcd_width = 16;
1441 		if (lcd_bwidth < 0)
1442 			lcd_bwidth = 40;
1443 		if (lcd_hwidth < 0)
1444 			lcd_hwidth = 64;
1445 		if (lcd_height < 0)
1446 			lcd_height = 2;
1447 		break;
1448 	case LCD_TYPE_CUSTOM:
1449 		/* customer-defined */
1450 		if (lcd_proto < 0)
1451 			lcd_proto = DEFAULT_LCD_PROTO;
1452 		if (lcd_charset < 0)
1453 			lcd_charset = DEFAULT_LCD_CHARSET;
1454 		/* default geometry will be set later */
1455 		break;
1456 	case LCD_TYPE_HANTRONIX:
1457 		/* parallel mode, 8 bits, hantronix-like */
1458 	default:
1459 		if (lcd_proto < 0)
1460 			lcd_proto = LCD_PROTO_PARALLEL;
1461 		if (lcd_charset < 0)
1462 			lcd_charset = LCD_CHARSET_NORMAL;
1463 		if (lcd_e_pin == PIN_NOT_SET)
1464 			lcd_e_pin = PIN_STROBE;
1465 		if (lcd_rs_pin == PIN_NOT_SET)
1466 			lcd_rs_pin = PIN_SELECP;
1467 
1468 		if (lcd_width < 0)
1469 			lcd_width = 16;
1470 		if (lcd_bwidth < 0)
1471 			lcd_bwidth = 40;
1472 		if (lcd_hwidth < 0)
1473 			lcd_hwidth = 64;
1474 		if (lcd_height < 0)
1475 			lcd_height = 2;
1476 		break;
1477 	}
1478 
1479 	/* this is used to catch wrong and default values */
1480 	if (lcd_width <= 0)
1481 		lcd_width = DEFAULT_LCD_WIDTH;
1482 	if (lcd_bwidth <= 0)
1483 		lcd_bwidth = DEFAULT_LCD_BWIDTH;
1484 	if (lcd_hwidth <= 0)
1485 		lcd_hwidth = DEFAULT_LCD_HWIDTH;
1486 	if (lcd_height <= 0)
1487 		lcd_height = DEFAULT_LCD_HEIGHT;
1488 
1489 	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1490 		lcd_write_cmd = lcd_write_cmd_s;
1491 		lcd_write_data = lcd_write_data_s;
1492 		lcd_clear_fast = lcd_clear_fast_s;
1493 
1494 		if (lcd_cl_pin == PIN_NOT_SET)
1495 			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1496 		if (lcd_da_pin == PIN_NOT_SET)
1497 			lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1498 
1499 	} else if (lcd_proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1500 		lcd_write_cmd = lcd_write_cmd_p8;
1501 		lcd_write_data = lcd_write_data_p8;
1502 		lcd_clear_fast = lcd_clear_fast_p8;
1503 
1504 		if (lcd_e_pin == PIN_NOT_SET)
1505 			lcd_e_pin = DEFAULT_LCD_PIN_E;
1506 		if (lcd_rs_pin == PIN_NOT_SET)
1507 			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1508 		if (lcd_rw_pin == PIN_NOT_SET)
1509 			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1510 	} else {
1511 		lcd_write_cmd = lcd_write_cmd_tilcd;
1512 		lcd_write_data = lcd_write_data_tilcd;
1513 		lcd_clear_fast = lcd_clear_fast_tilcd;
1514 	}
1515 
1516 	if (lcd_bl_pin == PIN_NOT_SET)
1517 		lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1518 
1519 	if (lcd_e_pin == PIN_NOT_SET)
1520 		lcd_e_pin = PIN_NONE;
1521 	if (lcd_rs_pin == PIN_NOT_SET)
1522 		lcd_rs_pin = PIN_NONE;
1523 	if (lcd_rw_pin == PIN_NOT_SET)
1524 		lcd_rw_pin = PIN_NONE;
1525 	if (lcd_bl_pin == PIN_NOT_SET)
1526 		lcd_bl_pin = PIN_NONE;
1527 	if (lcd_cl_pin == PIN_NOT_SET)
1528 		lcd_cl_pin = PIN_NONE;
1529 	if (lcd_da_pin == PIN_NOT_SET)
1530 		lcd_da_pin = PIN_NONE;
1531 
1532 	if (lcd_charset < 0)
1533 		lcd_charset = DEFAULT_LCD_CHARSET;
1534 
1535 	if (lcd_charset == LCD_CHARSET_KS0074)
1536 		lcd_char_conv = lcd_char_conv_ks0074;
1537 	else
1538 		lcd_char_conv = NULL;
1539 
1540 	if (lcd_bl_pin != PIN_NONE)
1541 		init_scan_timer();
1542 
1543 	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1544 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1545 	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1546 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1547 	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1548 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1549 	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1550 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1551 	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1552 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1553 	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1554 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1555 
1556 	/* before this line, we must NOT send anything to the display.
1557 	 * Since lcd_init_display() needs to write data, we have to
1558 	 * enable mark the LCD initialized just before. */
1559 	lcd_initialized = 1;
1560 	lcd_init_display();
1561 
1562 	/* display a short message */
1563 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1564 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1565 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1566 #endif
1567 #else
1568 	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1569 			PANEL_VERSION);
1570 #endif
1571 	lcd_addr_x = lcd_addr_y = 0;
1572 	/* clear the display on the next device opening */
1573 	lcd_must_clear = 1;
1574 	lcd_gotoxy();
1575 }
1576 
1577 /*
1578  * These are the file operation function for user access to /dev/keypad
1579  */
1580 
keypad_read(struct file * file,char * buf,size_t count,loff_t * ppos)1581 static ssize_t keypad_read(struct file *file,
1582 			   char *buf, size_t count, loff_t *ppos)
1583 {
1584 
1585 	unsigned i = *ppos;
1586 	char *tmp = buf;
1587 
1588 	if (keypad_buflen == 0) {
1589 		if (file->f_flags & O_NONBLOCK)
1590 			return -EAGAIN;
1591 
1592 		interruptible_sleep_on(&keypad_read_wait);
1593 		if (signal_pending(current))
1594 			return -EINTR;
1595 	}
1596 
1597 	for (; count-- > 0 && (keypad_buflen > 0);
1598 	     ++i, ++tmp, --keypad_buflen) {
1599 		put_user(keypad_buffer[keypad_start], tmp);
1600 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1601 	}
1602 	*ppos = i;
1603 
1604 	return tmp - buf;
1605 }
1606 
keypad_open(struct inode * inode,struct file * file)1607 static int keypad_open(struct inode *inode, struct file *file)
1608 {
1609 
1610 	if (keypad_open_cnt)
1611 		return -EBUSY;	/* open only once at a time */
1612 
1613 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1614 		return -EPERM;
1615 
1616 	keypad_buflen = 0;	/* flush the buffer on opening */
1617 	keypad_open_cnt++;
1618 	return 0;
1619 }
1620 
keypad_release(struct inode * inode,struct file * file)1621 static int keypad_release(struct inode *inode, struct file *file)
1622 {
1623 	keypad_open_cnt--;
1624 	return 0;
1625 }
1626 
1627 static const struct file_operations keypad_fops = {
1628 	.read    = keypad_read,		/* read */
1629 	.open    = keypad_open,		/* open */
1630 	.release = keypad_release,	/* close */
1631 	.llseek  = default_llseek,
1632 };
1633 
1634 static struct miscdevice keypad_dev = {
1635 	KEYPAD_MINOR,
1636 	"keypad",
1637 	&keypad_fops
1638 };
1639 
keypad_send_key(char * string,int max_len)1640 static void keypad_send_key(char *string, int max_len)
1641 {
1642 	if (init_in_progress)
1643 		return;
1644 
1645 	/* send the key to the device only if a process is attached to it. */
1646 	if (keypad_open_cnt > 0) {
1647 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1648 			keypad_buffer[(keypad_start + keypad_buflen++) %
1649 				      KEYPAD_BUFFER] = *string++;
1650 		}
1651 		wake_up_interruptible(&keypad_read_wait);
1652 	}
1653 }
1654 
1655 /* this function scans all the bits involving at least one logical signal,
1656  * and puts the results in the bitfield "phys_read" (one bit per established
1657  * contact), and sets "phys_read_prev" to "phys_read".
1658  *
1659  * Note: to debounce input signals, we will only consider as switched a signal
1660  * which is stable across 2 measures. Signals which are different between two
1661  * reads will be kept as they previously were in their logical form (phys_prev).
1662  * A signal which has just switched will have a 1 in
1663  * (phys_read ^ phys_read_prev).
1664  */
phys_scan_contacts(void)1665 static void phys_scan_contacts(void)
1666 {
1667 	int bit, bitval;
1668 	char oldval;
1669 	char bitmask;
1670 	char gndmask;
1671 
1672 	phys_prev = phys_curr;
1673 	phys_read_prev = phys_read;
1674 	phys_read = 0;		/* flush all signals */
1675 
1676 	/* keep track of old value, with all outputs disabled */
1677 	oldval = r_dtr(pprt) | scan_mask_o;
1678 	/* activate all keyboard outputs (active low) */
1679 	w_dtr(pprt, oldval & ~scan_mask_o);
1680 
1681 	/* will have a 1 for each bit set to gnd */
1682 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1683 	/* disable all matrix signals */
1684 	w_dtr(pprt, oldval);
1685 
1686 	/* now that all outputs are cleared, the only active input bits are
1687 	 * directly connected to the ground
1688 	 */
1689 
1690 	/* 1 for each grounded input */
1691 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1692 
1693 	/* grounded inputs are signals 40-44 */
1694 	phys_read |= (pmask_t) gndmask << 40;
1695 
1696 	if (bitmask != gndmask) {
1697 		/* since clearing the outputs changed some inputs, we know
1698 		 * that some input signals are currently tied to some outputs.
1699 		 * So we'll scan them.
1700 		 */
1701 		for (bit = 0; bit < 8; bit++) {
1702 			bitval = 1 << bit;
1703 
1704 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1705 				continue;
1706 
1707 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1708 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1709 			phys_read |= (pmask_t) bitmask << (5 * bit);
1710 		}
1711 		w_dtr(pprt, oldval);	/* disable all outputs */
1712 	}
1713 	/* this is easy: use old bits when they are flapping,
1714 	 * use new ones when stable */
1715 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1716 		    (phys_read & ~(phys_read ^ phys_read_prev));
1717 }
1718 
input_state_high(struct logical_input * input)1719 static inline int input_state_high(struct logical_input *input)
1720 {
1721 #if 0
1722 	/* FIXME:
1723 	 * this is an invalid test. It tries to catch
1724 	 * transitions from single-key to multiple-key, but
1725 	 * doesn't take into account the contacts polarity.
1726 	 * The only solution to the problem is to parse keys
1727 	 * from the most complex to the simplest combinations,
1728 	 * and mark them as 'caught' once a combination
1729 	 * matches, then unmatch it for all other ones.
1730 	 */
1731 
1732 	/* try to catch dangerous transitions cases :
1733 	 * someone adds a bit, so this signal was a false
1734 	 * positive resulting from a transition. We should
1735 	 * invalidate the signal immediately and not call the
1736 	 * release function.
1737 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1738 	 */
1739 	if (((phys_prev & input->mask) == input->value)
1740 	    && ((phys_curr & input->mask) > input->value)) {
1741 		input->state = INPUT_ST_LOW; /* invalidate */
1742 		return 1;
1743 	}
1744 #endif
1745 
1746 	if ((phys_curr & input->mask) == input->value) {
1747 		if ((input->type == INPUT_TYPE_STD) &&
1748 		    (input->high_timer == 0)) {
1749 			input->high_timer++;
1750 			if (input->u.std.press_fct != NULL)
1751 				input->u.std.press_fct(input->u.std.press_data);
1752 		} else if (input->type == INPUT_TYPE_KBD) {
1753 			/* will turn on the light */
1754 			keypressed = 1;
1755 
1756 			if (input->high_timer == 0) {
1757 				char *press_str = input->u.kbd.press_str;
1758 				if (press_str[0])
1759 					keypad_send_key(press_str,
1760 							sizeof(press_str));
1761 			}
1762 
1763 			if (input->u.kbd.repeat_str[0]) {
1764 				char *repeat_str = input->u.kbd.repeat_str;
1765 				if (input->high_timer >= KEYPAD_REP_START) {
1766 					input->high_timer -= KEYPAD_REP_DELAY;
1767 					keypad_send_key(repeat_str,
1768 							sizeof(repeat_str));
1769 				}
1770 				/* we will need to come back here soon */
1771 				inputs_stable = 0;
1772 			}
1773 
1774 			if (input->high_timer < 255)
1775 				input->high_timer++;
1776 		}
1777 		return 1;
1778 	} else {
1779 		/* else signal falling down. Let's fall through. */
1780 		input->state = INPUT_ST_FALLING;
1781 		input->fall_timer = 0;
1782 	}
1783 	return 0;
1784 }
1785 
input_state_falling(struct logical_input * input)1786 static inline void input_state_falling(struct logical_input *input)
1787 {
1788 #if 0
1789 	/* FIXME !!! same comment as in input_state_high */
1790 	if (((phys_prev & input->mask) == input->value)
1791 	    && ((phys_curr & input->mask) > input->value)) {
1792 		input->state = INPUT_ST_LOW;	/* invalidate */
1793 		return;
1794 	}
1795 #endif
1796 
1797 	if ((phys_curr & input->mask) == input->value) {
1798 		if (input->type == INPUT_TYPE_KBD) {
1799 			/* will turn on the light */
1800 			keypressed = 1;
1801 
1802 			if (input->u.kbd.repeat_str[0]) {
1803 				char *repeat_str = input->u.kbd.repeat_str;
1804 				if (input->high_timer >= KEYPAD_REP_START)
1805 					input->high_timer -= KEYPAD_REP_DELAY;
1806 					keypad_send_key(repeat_str,
1807 							sizeof(repeat_str));
1808 				/* we will need to come back here soon */
1809 				inputs_stable = 0;
1810 			}
1811 
1812 			if (input->high_timer < 255)
1813 				input->high_timer++;
1814 		}
1815 		input->state = INPUT_ST_HIGH;
1816 	} else if (input->fall_timer >= input->fall_time) {
1817 		/* call release event */
1818 		if (input->type == INPUT_TYPE_STD) {
1819 			void (*release_fct)(int) = input->u.std.release_fct;
1820 			if (release_fct != NULL)
1821 				release_fct(input->u.std.release_data);
1822 		} else if (input->type == INPUT_TYPE_KBD) {
1823 			char *release_str = input->u.kbd.release_str;
1824 			if (release_str[0])
1825 				keypad_send_key(release_str,
1826 						sizeof(release_str));
1827 		}
1828 
1829 		input->state = INPUT_ST_LOW;
1830 	} else {
1831 		input->fall_timer++;
1832 		inputs_stable = 0;
1833 	}
1834 }
1835 
panel_process_inputs(void)1836 static void panel_process_inputs(void)
1837 {
1838 	struct list_head *item;
1839 	struct logical_input *input;
1840 
1841 #if 0
1842 	printk(KERN_DEBUG
1843 	       "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1844 	       phys_prev, phys_curr);
1845 #endif
1846 
1847 	keypressed = 0;
1848 	inputs_stable = 1;
1849 	list_for_each(item, &logical_inputs) {
1850 		input = list_entry(item, struct logical_input, list);
1851 
1852 		switch (input->state) {
1853 		case INPUT_ST_LOW:
1854 			if ((phys_curr & input->mask) != input->value)
1855 				break;
1856 			/* if all needed ones were already set previously,
1857 			 * this means that this logical signal has been
1858 			 * activated by the releasing of another combined
1859 			 * signal, so we don't want to match.
1860 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1861 			 *     don't match A.
1862 			 */
1863 			if ((phys_prev & input->mask) == input->value)
1864 				break;
1865 			input->rise_timer = 0;
1866 			input->state = INPUT_ST_RISING;
1867 			/* no break here, fall through */
1868 		case INPUT_ST_RISING:
1869 			if ((phys_curr & input->mask) != input->value) {
1870 				input->state = INPUT_ST_LOW;
1871 				break;
1872 			}
1873 			if (input->rise_timer < input->rise_time) {
1874 				inputs_stable = 0;
1875 				input->rise_timer++;
1876 				break;
1877 			}
1878 			input->high_timer = 0;
1879 			input->state = INPUT_ST_HIGH;
1880 			/* no break here, fall through */
1881 		case INPUT_ST_HIGH:
1882 			if (input_state_high(input))
1883 				break;
1884 			/* no break here, fall through */
1885 		case INPUT_ST_FALLING:
1886 			input_state_falling(input);
1887 		}
1888 	}
1889 }
1890 
panel_scan_timer(void)1891 static void panel_scan_timer(void)
1892 {
1893 	if (keypad_enabled && keypad_initialized) {
1894 		if (spin_trylock(&pprt_lock)) {
1895 			phys_scan_contacts();
1896 
1897 			/* no need for the parport anymore */
1898 			spin_unlock(&pprt_lock);
1899 		}
1900 
1901 		if (!inputs_stable || phys_curr != phys_prev)
1902 			panel_process_inputs();
1903 	}
1904 
1905 	if (lcd_enabled && lcd_initialized) {
1906 		if (keypressed) {
1907 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1908 				lcd_backlight(1);
1909 			light_tempo = FLASH_LIGHT_TEMPO;
1910 		} else if (light_tempo > 0) {
1911 			light_tempo--;
1912 			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1913 				lcd_backlight(0);
1914 		}
1915 	}
1916 
1917 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1918 }
1919 
init_scan_timer(void)1920 static void init_scan_timer(void)
1921 {
1922 	if (scan_timer.function != NULL)
1923 		return;		/* already started */
1924 
1925 	init_timer(&scan_timer);
1926 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1927 	scan_timer.data = 0;
1928 	scan_timer.function = (void *)&panel_scan_timer;
1929 	add_timer(&scan_timer);
1930 }
1931 
1932 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1933  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1934  * corresponding to out and in bits respectively.
1935  * returns 1 if ok, 0 if error (in which case, nothing is written).
1936  */
input_name2mask(char * name,pmask_t * mask,pmask_t * value,char * imask,char * omask)1937 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1938 			   char *imask, char *omask)
1939 {
1940 	static char sigtab[10] = "EeSsPpAaBb";
1941 	char im, om;
1942 	pmask_t m, v;
1943 
1944 	om = im = m = v = 0ULL;
1945 	while (*name) {
1946 		int in, out, bit, neg;
1947 		for (in = 0; (in < sizeof(sigtab)) &&
1948 			     (sigtab[in] != *name); in++)
1949 			;
1950 		if (in >= sizeof(sigtab))
1951 			return 0;	/* input name not found */
1952 		neg = (in & 1);	/* odd (lower) names are negated */
1953 		in >>= 1;
1954 		im |= (1 << in);
1955 
1956 		name++;
1957 		if (isdigit(*name)) {
1958 			out = *name - '0';
1959 			om |= (1 << out);
1960 		} else if (*name == '-')
1961 			out = 8;
1962 		else
1963 			return 0;	/* unknown bit name */
1964 
1965 		bit = (out * 5) + in;
1966 
1967 		m |= 1ULL << bit;
1968 		if (!neg)
1969 			v |= 1ULL << bit;
1970 		name++;
1971 	}
1972 	*mask = m;
1973 	*value = v;
1974 	if (imask)
1975 		*imask |= im;
1976 	if (omask)
1977 		*omask |= om;
1978 	return 1;
1979 }
1980 
1981 /* tries to bind a key to the signal name <name>. The key will send the
1982  * strings <press>, <repeat>, <release> for these respective events.
1983  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1984  */
panel_bind_key(char * name,char * press,char * repeat,char * release)1985 static struct logical_input *panel_bind_key(char *name, char *press,
1986 					    char *repeat, char *release)
1987 {
1988 	struct logical_input *key;
1989 
1990 	key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1991 	if (!key) {
1992 		printk(KERN_ERR "panel: not enough memory\n");
1993 		return NULL;
1994 	}
1995 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1996 			     &scan_mask_o)) {
1997 		kfree(key);
1998 		return NULL;
1999 	}
2000 
2001 	key->type = INPUT_TYPE_KBD;
2002 	key->state = INPUT_ST_LOW;
2003 	key->rise_time = 1;
2004 	key->fall_time = 1;
2005 
2006 #if 0
2007 	printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2008 	       key->value);
2009 #endif
2010 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2011 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2012 	strncpy(key->u.kbd.release_str, release,
2013 		sizeof(key->u.kbd.release_str));
2014 	list_add(&key->list, &logical_inputs);
2015 	return key;
2016 }
2017 
2018 #if 0
2019 /* tries to bind a callback function to the signal name <name>. The function
2020  * <press_fct> will be called with the <press_data> arg when the signal is
2021  * activated, and so on for <release_fct>/<release_data>
2022  * Returns the pointer to the new signal if ok, NULL if the signal could not
2023  * be bound.
2024  */
2025 static struct logical_input *panel_bind_callback(char *name,
2026 						 void (*press_fct) (int),
2027 						 int press_data,
2028 						 void (*release_fct) (int),
2029 						 int release_data)
2030 {
2031 	struct logical_input *callback;
2032 
2033 	callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2034 	if (!callback) {
2035 		printk(KERN_ERR "panel: not enough memory\n");
2036 		return NULL;
2037 	}
2038 	memset(callback, 0, sizeof(struct logical_input));
2039 	if (!input_name2mask(name, &callback->mask, &callback->value,
2040 			     &scan_mask_i, &scan_mask_o))
2041 		return NULL;
2042 
2043 	callback->type = INPUT_TYPE_STD;
2044 	callback->state = INPUT_ST_LOW;
2045 	callback->rise_time = 1;
2046 	callback->fall_time = 1;
2047 	callback->u.std.press_fct = press_fct;
2048 	callback->u.std.press_data = press_data;
2049 	callback->u.std.release_fct = release_fct;
2050 	callback->u.std.release_data = release_data;
2051 	list_add(&callback->list, &logical_inputs);
2052 	return callback;
2053 }
2054 #endif
2055 
keypad_init(void)2056 static void keypad_init(void)
2057 {
2058 	int keynum;
2059 	init_waitqueue_head(&keypad_read_wait);
2060 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2061 
2062 	/* Let's create all known keys */
2063 
2064 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2065 		panel_bind_key(keypad_profile[keynum][0],
2066 			       keypad_profile[keynum][1],
2067 			       keypad_profile[keynum][2],
2068 			       keypad_profile[keynum][3]);
2069 	}
2070 
2071 	init_scan_timer();
2072 	keypad_initialized = 1;
2073 }
2074 
2075 /**************************************************/
2076 /* device initialization                          */
2077 /**************************************************/
2078 
panel_notify_sys(struct notifier_block * this,unsigned long code,void * unused)2079 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2080 			    void *unused)
2081 {
2082 	if (lcd_enabled && lcd_initialized) {
2083 		switch (code) {
2084 		case SYS_DOWN:
2085 			panel_lcd_print
2086 			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2087 			break;
2088 		case SYS_HALT:
2089 			panel_lcd_print
2090 			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2091 			break;
2092 		case SYS_POWER_OFF:
2093 			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2094 			break;
2095 		default:
2096 			break;
2097 		}
2098 	}
2099 	return NOTIFY_DONE;
2100 }
2101 
2102 static struct notifier_block panel_notifier = {
2103 	panel_notify_sys,
2104 	NULL,
2105 	0
2106 };
2107 
panel_attach(struct parport * port)2108 static void panel_attach(struct parport *port)
2109 {
2110 	if (port->number != parport)
2111 		return;
2112 
2113 	if (pprt) {
2114 		printk(KERN_ERR
2115 		       "panel_attach(): port->number=%d parport=%d, "
2116 		       "already registered !\n",
2117 		       port->number, parport);
2118 		return;
2119 	}
2120 
2121 	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2122 				       NULL,
2123 				       /*PARPORT_DEV_EXCL */
2124 				       0, (void *)&pprt);
2125 	if (pprt == NULL) {
2126 		pr_err("panel_attach(): port->number=%d parport=%d, "
2127 		       "parport_register_device() failed\n",
2128 		       port->number, parport);
2129 		return;
2130 	}
2131 
2132 	if (parport_claim(pprt)) {
2133 		printk(KERN_ERR
2134 		       "Panel: could not claim access to parport%d. "
2135 		       "Aborting.\n", parport);
2136 		goto err_unreg_device;
2137 	}
2138 
2139 	/* must init LCD first, just in case an IRQ from the keypad is
2140 	 * generated at keypad init
2141 	 */
2142 	if (lcd_enabled) {
2143 		lcd_init();
2144 		if (misc_register(&lcd_dev))
2145 			goto err_unreg_device;
2146 	}
2147 
2148 	if (keypad_enabled) {
2149 		keypad_init();
2150 		if (misc_register(&keypad_dev))
2151 			goto err_lcd_unreg;
2152 	}
2153 	return;
2154 
2155 err_lcd_unreg:
2156 	if (lcd_enabled)
2157 		misc_deregister(&lcd_dev);
2158 err_unreg_device:
2159 	parport_unregister_device(pprt);
2160 	pprt = NULL;
2161 }
2162 
panel_detach(struct parport * port)2163 static void panel_detach(struct parport *port)
2164 {
2165 	if (port->number != parport)
2166 		return;
2167 
2168 	if (!pprt) {
2169 		printk(KERN_ERR
2170 		       "panel_detach(): port->number=%d parport=%d, "
2171 		       "nothing to unregister.\n",
2172 		       port->number, parport);
2173 		return;
2174 	}
2175 
2176 	if (keypad_enabled && keypad_initialized) {
2177 		misc_deregister(&keypad_dev);
2178 		keypad_initialized = 0;
2179 	}
2180 
2181 	if (lcd_enabled && lcd_initialized) {
2182 		misc_deregister(&lcd_dev);
2183 		lcd_initialized = 0;
2184 	}
2185 
2186 	parport_release(pprt);
2187 	parport_unregister_device(pprt);
2188 	pprt = NULL;
2189 }
2190 
2191 static struct parport_driver panel_driver = {
2192 	.name = "panel",
2193 	.attach = panel_attach,
2194 	.detach = panel_detach,
2195 };
2196 
2197 /* init function */
panel_init(void)2198 int panel_init(void)
2199 {
2200 	/* for backwards compatibility */
2201 	if (keypad_type < 0)
2202 		keypad_type = keypad_enabled;
2203 
2204 	if (lcd_type < 0)
2205 		lcd_type = lcd_enabled;
2206 
2207 	if (parport < 0)
2208 		parport = DEFAULT_PARPORT;
2209 
2210 	/* take care of an eventual profile */
2211 	switch (profile) {
2212 	case PANEL_PROFILE_CUSTOM:
2213 		/* custom profile */
2214 		if (keypad_type < 0)
2215 			keypad_type = DEFAULT_KEYPAD;
2216 		if (lcd_type < 0)
2217 			lcd_type = DEFAULT_LCD;
2218 		break;
2219 	case PANEL_PROFILE_OLD:
2220 		/* 8 bits, 2*16, old keypad */
2221 		if (keypad_type < 0)
2222 			keypad_type = KEYPAD_TYPE_OLD;
2223 		if (lcd_type < 0)
2224 			lcd_type = LCD_TYPE_OLD;
2225 		if (lcd_width < 0)
2226 			lcd_width = 16;
2227 		if (lcd_hwidth < 0)
2228 			lcd_hwidth = 16;
2229 		break;
2230 	case PANEL_PROFILE_NEW:
2231 		/* serial, 2*16, new keypad */
2232 		if (keypad_type < 0)
2233 			keypad_type = KEYPAD_TYPE_NEW;
2234 		if (lcd_type < 0)
2235 			lcd_type = LCD_TYPE_KS0074;
2236 		break;
2237 	case PANEL_PROFILE_HANTRONIX:
2238 		/* 8 bits, 2*16 hantronix-like, no keypad */
2239 		if (keypad_type < 0)
2240 			keypad_type = KEYPAD_TYPE_NONE;
2241 		if (lcd_type < 0)
2242 			lcd_type = LCD_TYPE_HANTRONIX;
2243 		break;
2244 	case PANEL_PROFILE_NEXCOM:
2245 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2246 		if (keypad_type < 0)
2247 			keypad_type = KEYPAD_TYPE_NEXCOM;
2248 		if (lcd_type < 0)
2249 			lcd_type = LCD_TYPE_NEXCOM;
2250 		break;
2251 	case PANEL_PROFILE_LARGE:
2252 		/* 8 bits, 2*40, old keypad */
2253 		if (keypad_type < 0)
2254 			keypad_type = KEYPAD_TYPE_OLD;
2255 		if (lcd_type < 0)
2256 			lcd_type = LCD_TYPE_OLD;
2257 		break;
2258 	}
2259 
2260 	lcd_enabled = (lcd_type > 0);
2261 	keypad_enabled = (keypad_type > 0);
2262 
2263 	switch (keypad_type) {
2264 	case KEYPAD_TYPE_OLD:
2265 		keypad_profile = old_keypad_profile;
2266 		break;
2267 	case KEYPAD_TYPE_NEW:
2268 		keypad_profile = new_keypad_profile;
2269 		break;
2270 	case KEYPAD_TYPE_NEXCOM:
2271 		keypad_profile = nexcom_keypad_profile;
2272 		break;
2273 	default:
2274 		keypad_profile = NULL;
2275 		break;
2276 	}
2277 
2278 	/* tells various subsystems about the fact that we are initializing */
2279 	init_in_progress = 1;
2280 
2281 	if (parport_register_driver(&panel_driver)) {
2282 		printk(KERN_ERR
2283 		       "Panel: could not register with parport. Aborting.\n");
2284 		return -EIO;
2285 	}
2286 
2287 	if (!lcd_enabled && !keypad_enabled) {
2288 		/* no device enabled, let's release the parport */
2289 		if (pprt) {
2290 			parport_release(pprt);
2291 			parport_unregister_device(pprt);
2292 			pprt = NULL;
2293 		}
2294 		parport_unregister_driver(&panel_driver);
2295 		printk(KERN_ERR "Panel driver version " PANEL_VERSION
2296 		       " disabled.\n");
2297 		return -ENODEV;
2298 	}
2299 
2300 	register_reboot_notifier(&panel_notifier);
2301 
2302 	if (pprt)
2303 		printk(KERN_INFO "Panel driver version " PANEL_VERSION
2304 		       " registered on parport%d (io=0x%lx).\n", parport,
2305 		       pprt->port->base);
2306 	else
2307 		printk(KERN_INFO "Panel driver version " PANEL_VERSION
2308 		       " not yet registered\n");
2309 	/* tells various subsystems about the fact that initialization
2310 	   is finished */
2311 	init_in_progress = 0;
2312 	return 0;
2313 }
2314 
panel_init_module(void)2315 static int __init panel_init_module(void)
2316 {
2317 	return panel_init();
2318 }
2319 
panel_cleanup_module(void)2320 static void __exit panel_cleanup_module(void)
2321 {
2322 	unregister_reboot_notifier(&panel_notifier);
2323 
2324 	if (scan_timer.function != NULL)
2325 		del_timer(&scan_timer);
2326 
2327 	if (pprt != NULL) {
2328 		if (keypad_enabled) {
2329 			misc_deregister(&keypad_dev);
2330 			keypad_initialized = 0;
2331 		}
2332 
2333 		if (lcd_enabled) {
2334 			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2335 					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2336 			misc_deregister(&lcd_dev);
2337 			lcd_initialized = 0;
2338 		}
2339 
2340 		/* TODO: free all input signals */
2341 		parport_release(pprt);
2342 		parport_unregister_device(pprt);
2343 		pprt = NULL;
2344 	}
2345 	parport_unregister_driver(&panel_driver);
2346 }
2347 
2348 module_init(panel_init_module);
2349 module_exit(panel_cleanup_module);
2350 MODULE_AUTHOR("Willy Tarreau");
2351 MODULE_LICENSE("GPL");
2352 
2353 /*
2354  * Local variables:
2355  *  c-indent-level: 4
2356  *  tab-width: 8
2357  * End:
2358  */
2359