1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34 
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 			     u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40 
41 /* ---------- SMP task management ---------- */
42 
smp_task_timedout(unsigned long _task)43 static void smp_task_timedout(unsigned long _task)
44 {
45 	struct sas_task *task = (void *) _task;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&task->task_state_lock, flags);
49 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 	spin_unlock_irqrestore(&task->task_state_lock, flags);
52 
53 	complete(&task->completion);
54 }
55 
smp_task_done(struct sas_task * task)56 static void smp_task_done(struct sas_task *task)
57 {
58 	if (!del_timer(&task->timer))
59 		return;
60 	complete(&task->completion);
61 }
62 
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65 
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 			    void *resp, int resp_size)
68 {
69 	int res, retry;
70 	struct sas_task *task = NULL;
71 	struct sas_internal *i =
72 		to_sas_internal(dev->port->ha->core.shost->transportt);
73 
74 	for (retry = 0; retry < 3; retry++) {
75 		task = sas_alloc_task(GFP_KERNEL);
76 		if (!task)
77 			return -ENOMEM;
78 
79 		task->dev = dev;
80 		task->task_proto = dev->tproto;
81 		sg_init_one(&task->smp_task.smp_req, req, req_size);
82 		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83 
84 		task->task_done = smp_task_done;
85 
86 		task->timer.data = (unsigned long) task;
87 		task->timer.function = smp_task_timedout;
88 		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 		add_timer(&task->timer);
90 
91 		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92 
93 		if (res) {
94 			del_timer(&task->timer);
95 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 			goto ex_err;
97 		}
98 
99 		wait_for_completion(&task->completion);
100 		res = -ECOMM;
101 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 			SAS_DPRINTK("smp task timed out or aborted\n");
103 			i->dft->lldd_abort_task(task);
104 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 				SAS_DPRINTK("SMP task aborted and not done\n");
106 				goto ex_err;
107 			}
108 		}
109 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 		    task->task_status.stat == SAM_STAT_GOOD) {
111 			res = 0;
112 			break;
113 		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 		      task->task_status.stat == SAS_DATA_UNDERRUN) {
115 			/* no error, but return the number of bytes of
116 			 * underrun */
117 			res = task->task_status.residual;
118 			break;
119 		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 		      task->task_status.stat == SAS_DATA_OVERRUN) {
121 			res = -EMSGSIZE;
122 			break;
123 		} else {
124 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 				    "status 0x%x\n", __func__,
126 				    SAS_ADDR(dev->sas_addr),
127 				    task->task_status.resp,
128 				    task->task_status.stat);
129 			sas_free_task(task);
130 			task = NULL;
131 		}
132 	}
133 ex_err:
134 	BUG_ON(retry == 3 && task != NULL);
135 	if (task != NULL) {
136 		sas_free_task(task);
137 	}
138 	return res;
139 }
140 
141 /* ---------- Allocations ---------- */
142 
alloc_smp_req(int size)143 static inline void *alloc_smp_req(int size)
144 {
145 	u8 *p = kzalloc(size, GFP_KERNEL);
146 	if (p)
147 		p[0] = SMP_REQUEST;
148 	return p;
149 }
150 
alloc_smp_resp(int size)151 static inline void *alloc_smp_resp(int size)
152 {
153 	return kzalloc(size, GFP_KERNEL);
154 }
155 
156 /* ---------- Expander configuration ---------- */
157 
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * disc_resp)158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 			   void *disc_resp)
160 {
161 	struct expander_device *ex = &dev->ex_dev;
162 	struct ex_phy *phy = &ex->ex_phy[phy_id];
163 	struct smp_resp *resp = disc_resp;
164 	struct discover_resp *dr = &resp->disc;
165 	struct sas_rphy *rphy = dev->rphy;
166 	int rediscover = (phy->phy != NULL);
167 
168 	if (!rediscover) {
169 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170 
171 		/* FIXME: error_handling */
172 		BUG_ON(!phy->phy);
173 	}
174 
175 	switch (resp->result) {
176 	case SMP_RESP_PHY_VACANT:
177 		phy->phy_state = PHY_VACANT;
178 		break;
179 	default:
180 		phy->phy_state = PHY_NOT_PRESENT;
181 		break;
182 	case SMP_RESP_FUNC_ACC:
183 		phy->phy_state = PHY_EMPTY; /* do not know yet */
184 		break;
185 	}
186 
187 	phy->phy_id = phy_id;
188 	phy->attached_dev_type = dr->attached_dev_type;
189 	phy->linkrate = dr->linkrate;
190 	phy->attached_sata_host = dr->attached_sata_host;
191 	phy->attached_sata_dev  = dr->attached_sata_dev;
192 	phy->attached_sata_ps   = dr->attached_sata_ps;
193 	phy->attached_iproto = dr->iproto << 1;
194 	phy->attached_tproto = dr->tproto << 1;
195 	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 	phy->attached_phy_id = dr->attached_phy_id;
197 	phy->phy_change_count = dr->change_count;
198 	phy->routing_attr = dr->routing_attr;
199 	phy->virtual = dr->virtual;
200 	phy->last_da_index = -1;
201 
202 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
203 	phy->phy->identify.device_type = phy->attached_dev_type;
204 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
205 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
206 	phy->phy->identify.phy_identifier = phy_id;
207 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
208 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
209 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
210 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
211 	phy->phy->negotiated_linkrate = phy->linkrate;
212 
213 	if (!rediscover)
214 		if (sas_phy_add(phy->phy)) {
215 			sas_phy_free(phy->phy);
216 			return;
217 		}
218 
219 	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
220 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
221 		    phy->routing_attr == TABLE_ROUTING ? 'T' :
222 		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
223 		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
224 		    SAS_ADDR(phy->attached_sas_addr));
225 
226 	return;
227 }
228 
229 #define DISCOVER_REQ_SIZE  16
230 #define DISCOVER_RESP_SIZE 56
231 
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)232 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
233 				      u8 *disc_resp, int single)
234 {
235 	int i, res;
236 
237 	disc_req[9] = single;
238 	for (i = 1 ; i < 3; i++) {
239 		struct discover_resp *dr;
240 
241 		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
242 				       disc_resp, DISCOVER_RESP_SIZE);
243 		if (res)
244 			return res;
245 		/* This is detecting a failure to transmit initial
246 		 * dev to host FIS as described in section G.5 of
247 		 * sas-2 r 04b */
248 		dr = &((struct smp_resp *)disc_resp)->disc;
249 		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
250 			  SAS_ADDR_SIZE) == 0) {
251 			sas_printk("Found loopback topology, just ignore it!\n");
252 			return 0;
253 		}
254 		if (!(dr->attached_dev_type == 0 &&
255 		      dr->attached_sata_dev))
256 			break;
257 		/* In order to generate the dev to host FIS, we
258 		 * send a link reset to the expander port */
259 		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
260 		/* Wait for the reset to trigger the negotiation */
261 		msleep(500);
262 	}
263 	sas_set_ex_phy(dev, single, disc_resp);
264 	return 0;
265 }
266 
sas_ex_phy_discover(struct domain_device * dev,int single)267 static int sas_ex_phy_discover(struct domain_device *dev, int single)
268 {
269 	struct expander_device *ex = &dev->ex_dev;
270 	int  res = 0;
271 	u8   *disc_req;
272 	u8   *disc_resp;
273 
274 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
275 	if (!disc_req)
276 		return -ENOMEM;
277 
278 	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
279 	if (!disc_resp) {
280 		kfree(disc_req);
281 		return -ENOMEM;
282 	}
283 
284 	disc_req[1] = SMP_DISCOVER;
285 
286 	if (0 <= single && single < ex->num_phys) {
287 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
288 	} else {
289 		int i;
290 
291 		for (i = 0; i < ex->num_phys; i++) {
292 			res = sas_ex_phy_discover_helper(dev, disc_req,
293 							 disc_resp, i);
294 			if (res)
295 				goto out_err;
296 		}
297 	}
298 out_err:
299 	kfree(disc_resp);
300 	kfree(disc_req);
301 	return res;
302 }
303 
sas_expander_discover(struct domain_device * dev)304 static int sas_expander_discover(struct domain_device *dev)
305 {
306 	struct expander_device *ex = &dev->ex_dev;
307 	int res = -ENOMEM;
308 
309 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
310 	if (!ex->ex_phy)
311 		return -ENOMEM;
312 
313 	res = sas_ex_phy_discover(dev, -1);
314 	if (res)
315 		goto out_err;
316 
317 	return 0;
318  out_err:
319 	kfree(ex->ex_phy);
320 	ex->ex_phy = NULL;
321 	return res;
322 }
323 
324 #define MAX_EXPANDER_PHYS 128
325 
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)326 static void ex_assign_report_general(struct domain_device *dev,
327 					    struct smp_resp *resp)
328 {
329 	struct report_general_resp *rg = &resp->rg;
330 
331 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
332 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
333 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
334 	dev->ex_dev.t2t_supp = rg->t2t_supp;
335 	dev->ex_dev.conf_route_table = rg->conf_route_table;
336 	dev->ex_dev.configuring = rg->configuring;
337 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
338 }
339 
340 #define RG_REQ_SIZE   8
341 #define RG_RESP_SIZE 32
342 
sas_ex_general(struct domain_device * dev)343 static int sas_ex_general(struct domain_device *dev)
344 {
345 	u8 *rg_req;
346 	struct smp_resp *rg_resp;
347 	int res;
348 	int i;
349 
350 	rg_req = alloc_smp_req(RG_REQ_SIZE);
351 	if (!rg_req)
352 		return -ENOMEM;
353 
354 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
355 	if (!rg_resp) {
356 		kfree(rg_req);
357 		return -ENOMEM;
358 	}
359 
360 	rg_req[1] = SMP_REPORT_GENERAL;
361 
362 	for (i = 0; i < 5; i++) {
363 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
364 				       RG_RESP_SIZE);
365 
366 		if (res) {
367 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
368 				    SAS_ADDR(dev->sas_addr), res);
369 			goto out;
370 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
371 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
372 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
373 			res = rg_resp->result;
374 			goto out;
375 		}
376 
377 		ex_assign_report_general(dev, rg_resp);
378 
379 		if (dev->ex_dev.configuring) {
380 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
381 				    SAS_ADDR(dev->sas_addr));
382 			schedule_timeout_interruptible(5*HZ);
383 		} else
384 			break;
385 	}
386 out:
387 	kfree(rg_req);
388 	kfree(rg_resp);
389 	return res;
390 }
391 
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)392 static void ex_assign_manuf_info(struct domain_device *dev, void
393 					*_mi_resp)
394 {
395 	u8 *mi_resp = _mi_resp;
396 	struct sas_rphy *rphy = dev->rphy;
397 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
398 
399 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
400 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
401 	memcpy(edev->product_rev, mi_resp + 36,
402 	       SAS_EXPANDER_PRODUCT_REV_LEN);
403 
404 	if (mi_resp[8] & 1) {
405 		memcpy(edev->component_vendor_id, mi_resp + 40,
406 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
407 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
408 		edev->component_revision_id = mi_resp[50];
409 	}
410 }
411 
412 #define MI_REQ_SIZE   8
413 #define MI_RESP_SIZE 64
414 
sas_ex_manuf_info(struct domain_device * dev)415 static int sas_ex_manuf_info(struct domain_device *dev)
416 {
417 	u8 *mi_req;
418 	u8 *mi_resp;
419 	int res;
420 
421 	mi_req = alloc_smp_req(MI_REQ_SIZE);
422 	if (!mi_req)
423 		return -ENOMEM;
424 
425 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
426 	if (!mi_resp) {
427 		kfree(mi_req);
428 		return -ENOMEM;
429 	}
430 
431 	mi_req[1] = SMP_REPORT_MANUF_INFO;
432 
433 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
434 	if (res) {
435 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
436 			    SAS_ADDR(dev->sas_addr), res);
437 		goto out;
438 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
439 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
440 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
441 		goto out;
442 	}
443 
444 	ex_assign_manuf_info(dev, mi_resp);
445 out:
446 	kfree(mi_req);
447 	kfree(mi_resp);
448 	return res;
449 }
450 
451 #define PC_REQ_SIZE  44
452 #define PC_RESP_SIZE 8
453 
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)454 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
455 			enum phy_func phy_func,
456 			struct sas_phy_linkrates *rates)
457 {
458 	u8 *pc_req;
459 	u8 *pc_resp;
460 	int res;
461 
462 	pc_req = alloc_smp_req(PC_REQ_SIZE);
463 	if (!pc_req)
464 		return -ENOMEM;
465 
466 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
467 	if (!pc_resp) {
468 		kfree(pc_req);
469 		return -ENOMEM;
470 	}
471 
472 	pc_req[1] = SMP_PHY_CONTROL;
473 	pc_req[9] = phy_id;
474 	pc_req[10]= phy_func;
475 	if (rates) {
476 		pc_req[32] = rates->minimum_linkrate << 4;
477 		pc_req[33] = rates->maximum_linkrate << 4;
478 	}
479 
480 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
481 
482 	kfree(pc_resp);
483 	kfree(pc_req);
484 	return res;
485 }
486 
sas_ex_disable_phy(struct domain_device * dev,int phy_id)487 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
488 {
489 	struct expander_device *ex = &dev->ex_dev;
490 	struct ex_phy *phy = &ex->ex_phy[phy_id];
491 
492 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
493 	phy->linkrate = SAS_PHY_DISABLED;
494 }
495 
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)496 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
497 {
498 	struct expander_device *ex = &dev->ex_dev;
499 	int i;
500 
501 	for (i = 0; i < ex->num_phys; i++) {
502 		struct ex_phy *phy = &ex->ex_phy[i];
503 
504 		if (phy->phy_state == PHY_VACANT ||
505 		    phy->phy_state == PHY_NOT_PRESENT)
506 			continue;
507 
508 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
509 			sas_ex_disable_phy(dev, i);
510 	}
511 }
512 
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)513 static int sas_dev_present_in_domain(struct asd_sas_port *port,
514 					    u8 *sas_addr)
515 {
516 	struct domain_device *dev;
517 
518 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
519 		return 1;
520 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
521 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
522 			return 1;
523 	}
524 	return 0;
525 }
526 
527 #define RPEL_REQ_SIZE	16
528 #define RPEL_RESP_SIZE	32
sas_smp_get_phy_events(struct sas_phy * phy)529 int sas_smp_get_phy_events(struct sas_phy *phy)
530 {
531 	int res;
532 	u8 *req;
533 	u8 *resp;
534 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
535 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
536 
537 	req = alloc_smp_req(RPEL_REQ_SIZE);
538 	if (!req)
539 		return -ENOMEM;
540 
541 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
542 	if (!resp) {
543 		kfree(req);
544 		return -ENOMEM;
545 	}
546 
547 	req[1] = SMP_REPORT_PHY_ERR_LOG;
548 	req[9] = phy->number;
549 
550 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
551 			            resp, RPEL_RESP_SIZE);
552 
553 	if (!res)
554 		goto out;
555 
556 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
557 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
558 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
559 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
560 
561  out:
562 	kfree(resp);
563 	return res;
564 
565 }
566 
567 #ifdef CONFIG_SCSI_SAS_ATA
568 
569 #define RPS_REQ_SIZE  16
570 #define RPS_RESP_SIZE 60
571 
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)572 static int sas_get_report_phy_sata(struct domain_device *dev,
573 					  int phy_id,
574 					  struct smp_resp *rps_resp)
575 {
576 	int res;
577 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
578 	u8 *resp = (u8 *)rps_resp;
579 
580 	if (!rps_req)
581 		return -ENOMEM;
582 
583 	rps_req[1] = SMP_REPORT_PHY_SATA;
584 	rps_req[9] = phy_id;
585 
586 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
587 			            rps_resp, RPS_RESP_SIZE);
588 
589 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
590 	 * standards cockup here.  sas-2 explicitly specifies the FIS
591 	 * should be encoded so that FIS type is in resp[24].
592 	 * However, some expanders endian reverse this.  Undo the
593 	 * reversal here */
594 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
595 		int i;
596 
597 		for (i = 0; i < 5; i++) {
598 			int j = 24 + (i*4);
599 			u8 a, b;
600 			a = resp[j + 0];
601 			b = resp[j + 1];
602 			resp[j + 0] = resp[j + 3];
603 			resp[j + 1] = resp[j + 2];
604 			resp[j + 2] = b;
605 			resp[j + 3] = a;
606 		}
607 	}
608 
609 	kfree(rps_req);
610 	return res;
611 }
612 #endif
613 
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)614 static void sas_ex_get_linkrate(struct domain_device *parent,
615 				       struct domain_device *child,
616 				       struct ex_phy *parent_phy)
617 {
618 	struct expander_device *parent_ex = &parent->ex_dev;
619 	struct sas_port *port;
620 	int i;
621 
622 	child->pathways = 0;
623 
624 	port = parent_phy->port;
625 
626 	for (i = 0; i < parent_ex->num_phys; i++) {
627 		struct ex_phy *phy = &parent_ex->ex_phy[i];
628 
629 		if (phy->phy_state == PHY_VACANT ||
630 		    phy->phy_state == PHY_NOT_PRESENT)
631 			continue;
632 
633 		if (SAS_ADDR(phy->attached_sas_addr) ==
634 		    SAS_ADDR(child->sas_addr)) {
635 
636 			child->min_linkrate = min(parent->min_linkrate,
637 						  phy->linkrate);
638 			child->max_linkrate = max(parent->max_linkrate,
639 						  phy->linkrate);
640 			child->pathways++;
641 			sas_port_add_phy(port, phy->phy);
642 		}
643 	}
644 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
645 	child->pathways = min(child->pathways, parent->pathways);
646 }
647 
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)648 static struct domain_device *sas_ex_discover_end_dev(
649 	struct domain_device *parent, int phy_id)
650 {
651 	struct expander_device *parent_ex = &parent->ex_dev;
652 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
653 	struct domain_device *child = NULL;
654 	struct sas_rphy *rphy;
655 	int res;
656 
657 	if (phy->attached_sata_host || phy->attached_sata_ps)
658 		return NULL;
659 
660 	child = kzalloc(sizeof(*child), GFP_KERNEL);
661 	if (!child)
662 		return NULL;
663 
664 	child->parent = parent;
665 	child->port   = parent->port;
666 	child->iproto = phy->attached_iproto;
667 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
668 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
669 	if (!phy->port) {
670 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
671 		if (unlikely(!phy->port))
672 			goto out_err;
673 		if (unlikely(sas_port_add(phy->port) != 0)) {
674 			sas_port_free(phy->port);
675 			goto out_err;
676 		}
677 	}
678 	sas_ex_get_linkrate(parent, child, phy);
679 
680 #ifdef CONFIG_SCSI_SAS_ATA
681 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
682 		child->dev_type = SATA_DEV;
683 		if (phy->attached_tproto & SAS_PROTOCOL_STP)
684 			child->tproto = phy->attached_tproto;
685 		if (phy->attached_sata_dev)
686 			child->tproto |= SATA_DEV;
687 		res = sas_get_report_phy_sata(parent, phy_id,
688 					      &child->sata_dev.rps_resp);
689 		if (res) {
690 			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
691 				    "0x%x\n", SAS_ADDR(parent->sas_addr),
692 				    phy_id, res);
693 			goto out_free;
694 		}
695 		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
696 		       sizeof(struct dev_to_host_fis));
697 
698 		rphy = sas_end_device_alloc(phy->port);
699 		if (unlikely(!rphy))
700 			goto out_free;
701 
702 		sas_init_dev(child);
703 
704 		child->rphy = rphy;
705 
706 		spin_lock_irq(&parent->port->dev_list_lock);
707 		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
708 		spin_unlock_irq(&parent->port->dev_list_lock);
709 
710 		res = sas_discover_sata(child);
711 		if (res) {
712 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
713 				    "%016llx:0x%x returned 0x%x\n",
714 				    SAS_ADDR(child->sas_addr),
715 				    SAS_ADDR(parent->sas_addr), phy_id, res);
716 			goto out_list_del;
717 		}
718 	} else
719 #endif
720 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
721 		child->dev_type = SAS_END_DEV;
722 		rphy = sas_end_device_alloc(phy->port);
723 		/* FIXME: error handling */
724 		if (unlikely(!rphy))
725 			goto out_free;
726 		child->tproto = phy->attached_tproto;
727 		sas_init_dev(child);
728 
729 		child->rphy = rphy;
730 		sas_fill_in_rphy(child, rphy);
731 
732 		spin_lock_irq(&parent->port->dev_list_lock);
733 		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
734 		spin_unlock_irq(&parent->port->dev_list_lock);
735 
736 		res = sas_discover_end_dev(child);
737 		if (res) {
738 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
739 				    "at %016llx:0x%x returned 0x%x\n",
740 				    SAS_ADDR(child->sas_addr),
741 				    SAS_ADDR(parent->sas_addr), phy_id, res);
742 			goto out_list_del;
743 		}
744 	} else {
745 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
746 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
747 			    phy_id);
748 		goto out_free;
749 	}
750 
751 	list_add_tail(&child->siblings, &parent_ex->children);
752 	return child;
753 
754  out_list_del:
755 	sas_rphy_free(child->rphy);
756 	child->rphy = NULL;
757 
758 	spin_lock_irq(&parent->port->dev_list_lock);
759 	list_del(&child->dev_list_node);
760 	spin_unlock_irq(&parent->port->dev_list_lock);
761  out_free:
762 	sas_port_delete(phy->port);
763  out_err:
764 	phy->port = NULL;
765 	kfree(child);
766 	return NULL;
767 }
768 
769 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)770 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
771 {
772 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
773 	int i;
774 
775 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
776 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
777 
778 		if (ephy == phy)
779 			continue;
780 
781 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
782 			    SAS_ADDR_SIZE) && ephy->port) {
783 			sas_port_add_phy(ephy->port, phy->phy);
784 			phy->port = ephy->port;
785 			phy->phy_state = PHY_DEVICE_DISCOVERED;
786 			return 0;
787 		}
788 	}
789 
790 	return -ENODEV;
791 }
792 
sas_ex_discover_expander(struct domain_device * parent,int phy_id)793 static struct domain_device *sas_ex_discover_expander(
794 	struct domain_device *parent, int phy_id)
795 {
796 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
797 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
798 	struct domain_device *child = NULL;
799 	struct sas_rphy *rphy;
800 	struct sas_expander_device *edev;
801 	struct asd_sas_port *port;
802 	int res;
803 
804 	if (phy->routing_attr == DIRECT_ROUTING) {
805 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
806 			    "allowed\n",
807 			    SAS_ADDR(parent->sas_addr), phy_id,
808 			    SAS_ADDR(phy->attached_sas_addr),
809 			    phy->attached_phy_id);
810 		return NULL;
811 	}
812 	child = kzalloc(sizeof(*child), GFP_KERNEL);
813 	if (!child)
814 		return NULL;
815 
816 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
817 	/* FIXME: better error handling */
818 	BUG_ON(sas_port_add(phy->port) != 0);
819 
820 
821 	switch (phy->attached_dev_type) {
822 	case EDGE_DEV:
823 		rphy = sas_expander_alloc(phy->port,
824 					  SAS_EDGE_EXPANDER_DEVICE);
825 		break;
826 	case FANOUT_DEV:
827 		rphy = sas_expander_alloc(phy->port,
828 					  SAS_FANOUT_EXPANDER_DEVICE);
829 		break;
830 	default:
831 		rphy = NULL;	/* shut gcc up */
832 		BUG();
833 	}
834 	port = parent->port;
835 	child->rphy = rphy;
836 	edev = rphy_to_expander_device(rphy);
837 	child->dev_type = phy->attached_dev_type;
838 	child->parent = parent;
839 	child->port = port;
840 	child->iproto = phy->attached_iproto;
841 	child->tproto = phy->attached_tproto;
842 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
843 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
844 	sas_ex_get_linkrate(parent, child, phy);
845 	edev->level = parent_ex->level + 1;
846 	parent->port->disc.max_level = max(parent->port->disc.max_level,
847 					   edev->level);
848 	sas_init_dev(child);
849 	sas_fill_in_rphy(child, rphy);
850 	sas_rphy_add(rphy);
851 
852 	spin_lock_irq(&parent->port->dev_list_lock);
853 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
854 	spin_unlock_irq(&parent->port->dev_list_lock);
855 
856 	res = sas_discover_expander(child);
857 	if (res) {
858 		spin_lock_irq(&parent->port->dev_list_lock);
859 		list_del(&child->dev_list_node);
860 		spin_unlock_irq(&parent->port->dev_list_lock);
861 		kfree(child);
862 		return NULL;
863 	}
864 	list_add_tail(&child->siblings, &parent->ex_dev.children);
865 	return child;
866 }
867 
sas_ex_discover_dev(struct domain_device * dev,int phy_id)868 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
869 {
870 	struct expander_device *ex = &dev->ex_dev;
871 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
872 	struct domain_device *child = NULL;
873 	int res = 0;
874 
875 	/* Phy state */
876 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
877 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
878 			res = sas_ex_phy_discover(dev, phy_id);
879 		if (res)
880 			return res;
881 	}
882 
883 	/* Parent and domain coherency */
884 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
885 			     SAS_ADDR(dev->port->sas_addr))) {
886 		sas_add_parent_port(dev, phy_id);
887 		return 0;
888 	}
889 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
890 			    SAS_ADDR(dev->parent->sas_addr))) {
891 		sas_add_parent_port(dev, phy_id);
892 		if (ex_phy->routing_attr == TABLE_ROUTING)
893 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
894 		return 0;
895 	}
896 
897 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
898 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
899 
900 	if (ex_phy->attached_dev_type == NO_DEVICE) {
901 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
902 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
903 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
904 		}
905 		return 0;
906 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
907 		return 0;
908 
909 	if (ex_phy->attached_dev_type != SAS_END_DEV &&
910 	    ex_phy->attached_dev_type != FANOUT_DEV &&
911 	    ex_phy->attached_dev_type != EDGE_DEV) {
912 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
913 			    "phy 0x%x\n", ex_phy->attached_dev_type,
914 			    SAS_ADDR(dev->sas_addr),
915 			    phy_id);
916 		return 0;
917 	}
918 
919 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
920 	if (res) {
921 		SAS_DPRINTK("configure routing for dev %016llx "
922 			    "reported 0x%x. Forgotten\n",
923 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
924 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
925 		return res;
926 	}
927 
928 	res = sas_ex_join_wide_port(dev, phy_id);
929 	if (!res) {
930 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
931 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
932 		return res;
933 	}
934 
935 	switch (ex_phy->attached_dev_type) {
936 	case SAS_END_DEV:
937 		child = sas_ex_discover_end_dev(dev, phy_id);
938 		break;
939 	case FANOUT_DEV:
940 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
941 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
942 				    "attached to ex %016llx phy 0x%x\n",
943 				    SAS_ADDR(ex_phy->attached_sas_addr),
944 				    ex_phy->attached_phy_id,
945 				    SAS_ADDR(dev->sas_addr),
946 				    phy_id);
947 			sas_ex_disable_phy(dev, phy_id);
948 			break;
949 		} else
950 			memcpy(dev->port->disc.fanout_sas_addr,
951 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
952 		/* fallthrough */
953 	case EDGE_DEV:
954 		child = sas_ex_discover_expander(dev, phy_id);
955 		break;
956 	default:
957 		break;
958 	}
959 
960 	if (child) {
961 		int i;
962 
963 		for (i = 0; i < ex->num_phys; i++) {
964 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
965 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
966 				continue;
967 			/*
968 			 * Due to races, the phy might not get added to the
969 			 * wide port, so we add the phy to the wide port here.
970 			 */
971 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
972 			    SAS_ADDR(child->sas_addr)) {
973 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
974 				res = sas_ex_join_wide_port(dev, i);
975 				if (!res)
976 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
977 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
978 
979 			}
980 		}
981 	}
982 
983 	return res;
984 }
985 
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)986 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
987 {
988 	struct expander_device *ex = &dev->ex_dev;
989 	int i;
990 
991 	for (i = 0; i < ex->num_phys; i++) {
992 		struct ex_phy *phy = &ex->ex_phy[i];
993 
994 		if (phy->phy_state == PHY_VACANT ||
995 		    phy->phy_state == PHY_NOT_PRESENT)
996 			continue;
997 
998 		if ((phy->attached_dev_type == EDGE_DEV ||
999 		     phy->attached_dev_type == FANOUT_DEV) &&
1000 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1001 
1002 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1003 
1004 			return 1;
1005 		}
1006 	}
1007 	return 0;
1008 }
1009 
sas_check_level_subtractive_boundary(struct domain_device * dev)1010 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1011 {
1012 	struct expander_device *ex = &dev->ex_dev;
1013 	struct domain_device *child;
1014 	u8 sub_addr[8] = {0, };
1015 
1016 	list_for_each_entry(child, &ex->children, siblings) {
1017 		if (child->dev_type != EDGE_DEV &&
1018 		    child->dev_type != FANOUT_DEV)
1019 			continue;
1020 		if (sub_addr[0] == 0) {
1021 			sas_find_sub_addr(child, sub_addr);
1022 			continue;
1023 		} else {
1024 			u8 s2[8];
1025 
1026 			if (sas_find_sub_addr(child, s2) &&
1027 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1028 
1029 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1030 					    "diverges from subtractive "
1031 					    "boundary %016llx\n",
1032 					    SAS_ADDR(dev->sas_addr),
1033 					    SAS_ADDR(child->sas_addr),
1034 					    SAS_ADDR(s2),
1035 					    SAS_ADDR(sub_addr));
1036 
1037 				sas_ex_disable_port(child, s2);
1038 			}
1039 		}
1040 	}
1041 	return 0;
1042 }
1043 /**
1044  * sas_ex_discover_devices -- discover devices attached to this expander
1045  * dev: pointer to the expander domain device
1046  * single: if you want to do a single phy, else set to -1;
1047  *
1048  * Configure this expander for use with its devices and register the
1049  * devices of this expander.
1050  */
sas_ex_discover_devices(struct domain_device * dev,int single)1051 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1052 {
1053 	struct expander_device *ex = &dev->ex_dev;
1054 	int i = 0, end = ex->num_phys;
1055 	int res = 0;
1056 
1057 	if (0 <= single && single < end) {
1058 		i = single;
1059 		end = i+1;
1060 	}
1061 
1062 	for ( ; i < end; i++) {
1063 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1064 
1065 		if (ex_phy->phy_state == PHY_VACANT ||
1066 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1067 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1068 			continue;
1069 
1070 		switch (ex_phy->linkrate) {
1071 		case SAS_PHY_DISABLED:
1072 		case SAS_PHY_RESET_PROBLEM:
1073 		case SAS_SATA_PORT_SELECTOR:
1074 			continue;
1075 		default:
1076 			res = sas_ex_discover_dev(dev, i);
1077 			if (res)
1078 				break;
1079 			continue;
1080 		}
1081 	}
1082 
1083 	if (!res)
1084 		sas_check_level_subtractive_boundary(dev);
1085 
1086 	return res;
1087 }
1088 
sas_check_ex_subtractive_boundary(struct domain_device * dev)1089 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1090 {
1091 	struct expander_device *ex = &dev->ex_dev;
1092 	int i;
1093 	u8  *sub_sas_addr = NULL;
1094 
1095 	if (dev->dev_type != EDGE_DEV)
1096 		return 0;
1097 
1098 	for (i = 0; i < ex->num_phys; i++) {
1099 		struct ex_phy *phy = &ex->ex_phy[i];
1100 
1101 		if (phy->phy_state == PHY_VACANT ||
1102 		    phy->phy_state == PHY_NOT_PRESENT)
1103 			continue;
1104 
1105 		if ((phy->attached_dev_type == FANOUT_DEV ||
1106 		     phy->attached_dev_type == EDGE_DEV) &&
1107 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1108 
1109 			if (!sub_sas_addr)
1110 				sub_sas_addr = &phy->attached_sas_addr[0];
1111 			else if (SAS_ADDR(sub_sas_addr) !=
1112 				 SAS_ADDR(phy->attached_sas_addr)) {
1113 
1114 				SAS_DPRINTK("ex %016llx phy 0x%x "
1115 					    "diverges(%016llx) on subtractive "
1116 					    "boundary(%016llx). Disabled\n",
1117 					    SAS_ADDR(dev->sas_addr), i,
1118 					    SAS_ADDR(phy->attached_sas_addr),
1119 					    SAS_ADDR(sub_sas_addr));
1120 				sas_ex_disable_phy(dev, i);
1121 			}
1122 		}
1123 	}
1124 	return 0;
1125 }
1126 
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1127 static void sas_print_parent_topology_bug(struct domain_device *child,
1128 						 struct ex_phy *parent_phy,
1129 						 struct ex_phy *child_phy)
1130 {
1131 	static const char ra_char[] = {
1132 		[DIRECT_ROUTING] = 'D',
1133 		[SUBTRACTIVE_ROUTING] = 'S',
1134 		[TABLE_ROUTING] = 'T',
1135 	};
1136 	static const char *ex_type[] = {
1137 		[EDGE_DEV] = "edge",
1138 		[FANOUT_DEV] = "fanout",
1139 	};
1140 	struct domain_device *parent = child->parent;
1141 
1142 	sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1143 		   "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1144 
1145 		   ex_type[parent->dev_type],
1146 		   SAS_ADDR(parent->sas_addr),
1147 		   parent->ex_dev.t2t_supp,
1148 		   parent_phy->phy_id,
1149 
1150 		   ex_type[child->dev_type],
1151 		   SAS_ADDR(child->sas_addr),
1152 		   child->ex_dev.t2t_supp,
1153 		   child_phy->phy_id,
1154 
1155 		   ra_char[parent_phy->routing_attr],
1156 		   ra_char[child_phy->routing_attr]);
1157 }
1158 
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1159 static int sas_check_eeds(struct domain_device *child,
1160 				 struct ex_phy *parent_phy,
1161 				 struct ex_phy *child_phy)
1162 {
1163 	int res = 0;
1164 	struct domain_device *parent = child->parent;
1165 
1166 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1167 		res = -ENODEV;
1168 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1169 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1170 			    SAS_ADDR(parent->sas_addr),
1171 			    parent_phy->phy_id,
1172 			    SAS_ADDR(child->sas_addr),
1173 			    child_phy->phy_id,
1174 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1175 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1176 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1177 		       SAS_ADDR_SIZE);
1178 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1179 		       SAS_ADDR_SIZE);
1180 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1181 		    SAS_ADDR(parent->sas_addr)) ||
1182 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1183 		    SAS_ADDR(child->sas_addr)))
1184 		   &&
1185 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1186 		     SAS_ADDR(parent->sas_addr)) ||
1187 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1188 		     SAS_ADDR(child->sas_addr))))
1189 		;
1190 	else {
1191 		res = -ENODEV;
1192 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1193 			    "phy 0x%x link forms a third EEDS!\n",
1194 			    SAS_ADDR(parent->sas_addr),
1195 			    parent_phy->phy_id,
1196 			    SAS_ADDR(child->sas_addr),
1197 			    child_phy->phy_id);
1198 	}
1199 
1200 	return res;
1201 }
1202 
1203 /* Here we spill over 80 columns.  It is intentional.
1204  */
sas_check_parent_topology(struct domain_device * child)1205 static int sas_check_parent_topology(struct domain_device *child)
1206 {
1207 	struct expander_device *child_ex = &child->ex_dev;
1208 	struct expander_device *parent_ex;
1209 	int i;
1210 	int res = 0;
1211 
1212 	if (!child->parent)
1213 		return 0;
1214 
1215 	if (child->parent->dev_type != EDGE_DEV &&
1216 	    child->parent->dev_type != FANOUT_DEV)
1217 		return 0;
1218 
1219 	parent_ex = &child->parent->ex_dev;
1220 
1221 	for (i = 0; i < parent_ex->num_phys; i++) {
1222 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1223 		struct ex_phy *child_phy;
1224 
1225 		if (parent_phy->phy_state == PHY_VACANT ||
1226 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1227 			continue;
1228 
1229 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1230 			continue;
1231 
1232 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1233 
1234 		switch (child->parent->dev_type) {
1235 		case EDGE_DEV:
1236 			if (child->dev_type == FANOUT_DEV) {
1237 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1238 				    child_phy->routing_attr != TABLE_ROUTING) {
1239 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1240 					res = -ENODEV;
1241 				}
1242 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1243 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1244 					res = sas_check_eeds(child, parent_phy, child_phy);
1245 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1246 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1247 					res = -ENODEV;
1248 				}
1249 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1250 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1251 				    (child_phy->routing_attr == TABLE_ROUTING &&
1252 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1253 					/* All good */;
1254 				} else {
1255 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1256 					res = -ENODEV;
1257 				}
1258 			}
1259 			break;
1260 		case FANOUT_DEV:
1261 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1262 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1263 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1264 				res = -ENODEV;
1265 			}
1266 			break;
1267 		default:
1268 			break;
1269 		}
1270 	}
1271 
1272 	return res;
1273 }
1274 
1275 #define RRI_REQ_SIZE  16
1276 #define RRI_RESP_SIZE 44
1277 
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1278 static int sas_configure_present(struct domain_device *dev, int phy_id,
1279 				 u8 *sas_addr, int *index, int *present)
1280 {
1281 	int i, res = 0;
1282 	struct expander_device *ex = &dev->ex_dev;
1283 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1284 	u8 *rri_req;
1285 	u8 *rri_resp;
1286 
1287 	*present = 0;
1288 	*index = 0;
1289 
1290 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1291 	if (!rri_req)
1292 		return -ENOMEM;
1293 
1294 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1295 	if (!rri_resp) {
1296 		kfree(rri_req);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1301 	rri_req[9] = phy_id;
1302 
1303 	for (i = 0; i < ex->max_route_indexes ; i++) {
1304 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1305 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1306 				       RRI_RESP_SIZE);
1307 		if (res)
1308 			goto out;
1309 		res = rri_resp[2];
1310 		if (res == SMP_RESP_NO_INDEX) {
1311 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1312 				    "phy 0x%x index 0x%x\n",
1313 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1314 			goto out;
1315 		} else if (res != SMP_RESP_FUNC_ACC) {
1316 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1317 				    "result 0x%x\n", __func__,
1318 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1319 			goto out;
1320 		}
1321 		if (SAS_ADDR(sas_addr) != 0) {
1322 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1323 				*index = i;
1324 				if ((rri_resp[12] & 0x80) == 0x80)
1325 					*present = 0;
1326 				else
1327 					*present = 1;
1328 				goto out;
1329 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1330 				*index = i;
1331 				*present = 0;
1332 				goto out;
1333 			}
1334 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1335 			   phy->last_da_index < i) {
1336 			phy->last_da_index = i;
1337 			*index = i;
1338 			*present = 0;
1339 			goto out;
1340 		}
1341 	}
1342 	res = -1;
1343 out:
1344 	kfree(rri_req);
1345 	kfree(rri_resp);
1346 	return res;
1347 }
1348 
1349 #define CRI_REQ_SIZE  44
1350 #define CRI_RESP_SIZE  8
1351 
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1352 static int sas_configure_set(struct domain_device *dev, int phy_id,
1353 			     u8 *sas_addr, int index, int include)
1354 {
1355 	int res;
1356 	u8 *cri_req;
1357 	u8 *cri_resp;
1358 
1359 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1360 	if (!cri_req)
1361 		return -ENOMEM;
1362 
1363 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1364 	if (!cri_resp) {
1365 		kfree(cri_req);
1366 		return -ENOMEM;
1367 	}
1368 
1369 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1370 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1371 	cri_req[9] = phy_id;
1372 	if (SAS_ADDR(sas_addr) == 0 || !include)
1373 		cri_req[12] |= 0x80;
1374 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1375 
1376 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1377 			       CRI_RESP_SIZE);
1378 	if (res)
1379 		goto out;
1380 	res = cri_resp[2];
1381 	if (res == SMP_RESP_NO_INDEX) {
1382 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1383 			    "index 0x%x\n",
1384 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1385 	}
1386 out:
1387 	kfree(cri_req);
1388 	kfree(cri_resp);
1389 	return res;
1390 }
1391 
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1392 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1393 				    u8 *sas_addr, int include)
1394 {
1395 	int index;
1396 	int present;
1397 	int res;
1398 
1399 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1400 	if (res)
1401 		return res;
1402 	if (include ^ present)
1403 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1404 
1405 	return res;
1406 }
1407 
1408 /**
1409  * sas_configure_parent -- configure routing table of parent
1410  * parent: parent expander
1411  * child: child expander
1412  * sas_addr: SAS port identifier of device directly attached to child
1413  */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1414 static int sas_configure_parent(struct domain_device *parent,
1415 				struct domain_device *child,
1416 				u8 *sas_addr, int include)
1417 {
1418 	struct expander_device *ex_parent = &parent->ex_dev;
1419 	int res = 0;
1420 	int i;
1421 
1422 	if (parent->parent) {
1423 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1424 					   include);
1425 		if (res)
1426 			return res;
1427 	}
1428 
1429 	if (ex_parent->conf_route_table == 0) {
1430 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1431 			    SAS_ADDR(parent->sas_addr));
1432 		return 0;
1433 	}
1434 
1435 	for (i = 0; i < ex_parent->num_phys; i++) {
1436 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1437 
1438 		if ((phy->routing_attr == TABLE_ROUTING) &&
1439 		    (SAS_ADDR(phy->attached_sas_addr) ==
1440 		     SAS_ADDR(child->sas_addr))) {
1441 			res = sas_configure_phy(parent, i, sas_addr, include);
1442 			if (res)
1443 				return res;
1444 		}
1445 	}
1446 
1447 	return res;
1448 }
1449 
1450 /**
1451  * sas_configure_routing -- configure routing
1452  * dev: expander device
1453  * sas_addr: port identifier of device directly attached to the expander device
1454  */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1455 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1456 {
1457 	if (dev->parent)
1458 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1459 	return 0;
1460 }
1461 
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1462 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1463 {
1464 	if (dev->parent)
1465 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1466 	return 0;
1467 }
1468 
1469 /**
1470  * sas_discover_expander -- expander discovery
1471  * @ex: pointer to expander domain device
1472  *
1473  * See comment in sas_discover_sata().
1474  */
sas_discover_expander(struct domain_device * dev)1475 static int sas_discover_expander(struct domain_device *dev)
1476 {
1477 	int res;
1478 
1479 	res = sas_notify_lldd_dev_found(dev);
1480 	if (res)
1481 		return res;
1482 
1483 	res = sas_ex_general(dev);
1484 	if (res)
1485 		goto out_err;
1486 	res = sas_ex_manuf_info(dev);
1487 	if (res)
1488 		goto out_err;
1489 
1490 	res = sas_expander_discover(dev);
1491 	if (res) {
1492 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1493 			    SAS_ADDR(dev->sas_addr), res);
1494 		goto out_err;
1495 	}
1496 
1497 	sas_check_ex_subtractive_boundary(dev);
1498 	res = sas_check_parent_topology(dev);
1499 	if (res)
1500 		goto out_err;
1501 	return 0;
1502 out_err:
1503 	sas_notify_lldd_dev_gone(dev);
1504 	return res;
1505 }
1506 
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1507 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1508 {
1509 	int res = 0;
1510 	struct domain_device *dev;
1511 
1512 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1513 		if (dev->dev_type == EDGE_DEV ||
1514 		    dev->dev_type == FANOUT_DEV) {
1515 			struct sas_expander_device *ex =
1516 				rphy_to_expander_device(dev->rphy);
1517 
1518 			if (level == ex->level)
1519 				res = sas_ex_discover_devices(dev, -1);
1520 			else if (level > 0)
1521 				res = sas_ex_discover_devices(port->port_dev, -1);
1522 
1523 		}
1524 	}
1525 
1526 	return res;
1527 }
1528 
sas_ex_bfs_disc(struct asd_sas_port * port)1529 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1530 {
1531 	int res;
1532 	int level;
1533 
1534 	do {
1535 		level = port->disc.max_level;
1536 		res = sas_ex_level_discovery(port, level);
1537 		mb();
1538 	} while (level < port->disc.max_level);
1539 
1540 	return res;
1541 }
1542 
sas_discover_root_expander(struct domain_device * dev)1543 int sas_discover_root_expander(struct domain_device *dev)
1544 {
1545 	int res;
1546 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1547 
1548 	res = sas_rphy_add(dev->rphy);
1549 	if (res)
1550 		goto out_err;
1551 
1552 	ex->level = dev->port->disc.max_level; /* 0 */
1553 	res = sas_discover_expander(dev);
1554 	if (res)
1555 		goto out_err2;
1556 
1557 	sas_ex_bfs_disc(dev->port);
1558 
1559 	return res;
1560 
1561 out_err2:
1562 	sas_rphy_remove(dev->rphy);
1563 out_err:
1564 	return res;
1565 }
1566 
1567 /* ---------- Domain revalidation ---------- */
1568 
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1569 static int sas_get_phy_discover(struct domain_device *dev,
1570 				int phy_id, struct smp_resp *disc_resp)
1571 {
1572 	int res;
1573 	u8 *disc_req;
1574 
1575 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1576 	if (!disc_req)
1577 		return -ENOMEM;
1578 
1579 	disc_req[1] = SMP_DISCOVER;
1580 	disc_req[9] = phy_id;
1581 
1582 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1583 			       disc_resp, DISCOVER_RESP_SIZE);
1584 	if (res)
1585 		goto out;
1586 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1587 		res = disc_resp->result;
1588 		goto out;
1589 	}
1590 out:
1591 	kfree(disc_req);
1592 	return res;
1593 }
1594 
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1595 static int sas_get_phy_change_count(struct domain_device *dev,
1596 				    int phy_id, int *pcc)
1597 {
1598 	int res;
1599 	struct smp_resp *disc_resp;
1600 
1601 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1602 	if (!disc_resp)
1603 		return -ENOMEM;
1604 
1605 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1606 	if (!res)
1607 		*pcc = disc_resp->disc.change_count;
1608 
1609 	kfree(disc_resp);
1610 	return res;
1611 }
1612 
sas_get_phy_attached_sas_addr(struct domain_device * dev,int phy_id,u8 * attached_sas_addr)1613 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1614 					 int phy_id, u8 *attached_sas_addr)
1615 {
1616 	int res;
1617 	struct smp_resp *disc_resp;
1618 	struct discover_resp *dr;
1619 
1620 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1621 	if (!disc_resp)
1622 		return -ENOMEM;
1623 	dr = &disc_resp->disc;
1624 
1625 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1626 	if (!res) {
1627 		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1628 		if (dr->attached_dev_type == 0)
1629 			memset(attached_sas_addr, 0, 8);
1630 	}
1631 	kfree(disc_resp);
1632 	return res;
1633 }
1634 
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1635 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1636 			      int from_phy, bool update)
1637 {
1638 	struct expander_device *ex = &dev->ex_dev;
1639 	int res = 0;
1640 	int i;
1641 
1642 	for (i = from_phy; i < ex->num_phys; i++) {
1643 		int phy_change_count = 0;
1644 
1645 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1646 		if (res)
1647 			goto out;
1648 		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1649 			if (update)
1650 				ex->ex_phy[i].phy_change_count =
1651 					phy_change_count;
1652 			*phy_id = i;
1653 			return 0;
1654 		}
1655 	}
1656 out:
1657 	return res;
1658 }
1659 
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1660 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1661 {
1662 	int res;
1663 	u8  *rg_req;
1664 	struct smp_resp  *rg_resp;
1665 
1666 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1667 	if (!rg_req)
1668 		return -ENOMEM;
1669 
1670 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1671 	if (!rg_resp) {
1672 		kfree(rg_req);
1673 		return -ENOMEM;
1674 	}
1675 
1676 	rg_req[1] = SMP_REPORT_GENERAL;
1677 
1678 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1679 			       RG_RESP_SIZE);
1680 	if (res)
1681 		goto out;
1682 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1683 		res = rg_resp->result;
1684 		goto out;
1685 	}
1686 
1687 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1688 out:
1689 	kfree(rg_resp);
1690 	kfree(rg_req);
1691 	return res;
1692 }
1693 /**
1694  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1695  * @dev:domain device to be detect.
1696  * @src_dev: the device which originated BROADCAST(CHANGE).
1697  *
1698  * Add self-configuration expander suport. Suppose two expander cascading,
1699  * when the first level expander is self-configuring, hotplug the disks in
1700  * second level expander, BROADCAST(CHANGE) will not only be originated
1701  * in the second level expander, but also be originated in the first level
1702  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1703  * expander changed count in two level expanders will all increment at least
1704  * once, but the phy which chang count has changed is the source device which
1705  * we concerned.
1706  */
1707 
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1708 static int sas_find_bcast_dev(struct domain_device *dev,
1709 			      struct domain_device **src_dev)
1710 {
1711 	struct expander_device *ex = &dev->ex_dev;
1712 	int ex_change_count = -1;
1713 	int phy_id = -1;
1714 	int res;
1715 	struct domain_device *ch;
1716 
1717 	res = sas_get_ex_change_count(dev, &ex_change_count);
1718 	if (res)
1719 		goto out;
1720 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1721 		/* Just detect if this expander phys phy change count changed,
1722 		* in order to determine if this expander originate BROADCAST,
1723 		* and do not update phy change count field in our structure.
1724 		*/
1725 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1726 		if (phy_id != -1) {
1727 			*src_dev = dev;
1728 			ex->ex_change_count = ex_change_count;
1729 			SAS_DPRINTK("Expander phy change count has changed\n");
1730 			return res;
1731 		} else
1732 			SAS_DPRINTK("Expander phys DID NOT change\n");
1733 	}
1734 	list_for_each_entry(ch, &ex->children, siblings) {
1735 		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1736 			res = sas_find_bcast_dev(ch, src_dev);
1737 			if (*src_dev)
1738 				return res;
1739 		}
1740 	}
1741 out:
1742 	return res;
1743 }
1744 
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1745 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1746 {
1747 	struct expander_device *ex = &dev->ex_dev;
1748 	struct domain_device *child, *n;
1749 
1750 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1751 		child->gone = 1;
1752 		if (child->dev_type == EDGE_DEV ||
1753 		    child->dev_type == FANOUT_DEV)
1754 			sas_unregister_ex_tree(port, child);
1755 		else
1756 			sas_unregister_dev(port, child);
1757 	}
1758 	sas_unregister_dev(port, dev);
1759 }
1760 
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1761 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1762 					 int phy_id, bool last)
1763 {
1764 	struct expander_device *ex_dev = &parent->ex_dev;
1765 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1766 	struct domain_device *child, *n;
1767 	if (last) {
1768 		list_for_each_entry_safe(child, n,
1769 			&ex_dev->children, siblings) {
1770 			if (SAS_ADDR(child->sas_addr) ==
1771 			    SAS_ADDR(phy->attached_sas_addr)) {
1772 				child->gone = 1;
1773 				if (child->dev_type == EDGE_DEV ||
1774 				    child->dev_type == FANOUT_DEV)
1775 					sas_unregister_ex_tree(parent->port, child);
1776 				else
1777 					sas_unregister_dev(parent->port, child);
1778 				break;
1779 			}
1780 		}
1781 		parent->gone = 1;
1782 		sas_disable_routing(parent, phy->attached_sas_addr);
1783 	}
1784 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1785 	if (phy->port) {
1786 		sas_port_delete_phy(phy->port, phy->phy);
1787 		if (phy->port->num_phys == 0)
1788 			sas_port_delete(phy->port);
1789 		phy->port = NULL;
1790 	}
1791 }
1792 
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1793 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1794 					  const int level)
1795 {
1796 	struct expander_device *ex_root = &root->ex_dev;
1797 	struct domain_device *child;
1798 	int res = 0;
1799 
1800 	list_for_each_entry(child, &ex_root->children, siblings) {
1801 		if (child->dev_type == EDGE_DEV ||
1802 		    child->dev_type == FANOUT_DEV) {
1803 			struct sas_expander_device *ex =
1804 				rphy_to_expander_device(child->rphy);
1805 
1806 			if (level > ex->level)
1807 				res = sas_discover_bfs_by_root_level(child,
1808 								     level);
1809 			else if (level == ex->level)
1810 				res = sas_ex_discover_devices(child, -1);
1811 		}
1812 	}
1813 	return res;
1814 }
1815 
sas_discover_bfs_by_root(struct domain_device * dev)1816 static int sas_discover_bfs_by_root(struct domain_device *dev)
1817 {
1818 	int res;
1819 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1820 	int level = ex->level+1;
1821 
1822 	res = sas_ex_discover_devices(dev, -1);
1823 	if (res)
1824 		goto out;
1825 	do {
1826 		res = sas_discover_bfs_by_root_level(dev, level);
1827 		mb();
1828 		level += 1;
1829 	} while (level <= dev->port->disc.max_level);
1830 out:
1831 	return res;
1832 }
1833 
sas_discover_new(struct domain_device * dev,int phy_id)1834 static int sas_discover_new(struct domain_device *dev, int phy_id)
1835 {
1836 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1837 	struct domain_device *child;
1838 	bool found = false;
1839 	int res, i;
1840 
1841 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1842 		    SAS_ADDR(dev->sas_addr), phy_id);
1843 	res = sas_ex_phy_discover(dev, phy_id);
1844 	if (res)
1845 		goto out;
1846 	/* to support the wide port inserted */
1847 	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1848 		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1849 		if (i == phy_id)
1850 			continue;
1851 		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1852 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1853 			found = true;
1854 			break;
1855 		}
1856 	}
1857 	if (found) {
1858 		sas_ex_join_wide_port(dev, phy_id);
1859 		return 0;
1860 	}
1861 	res = sas_ex_discover_devices(dev, phy_id);
1862 	if (!res)
1863 		goto out;
1864 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1865 		if (SAS_ADDR(child->sas_addr) ==
1866 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1867 			if (child->dev_type == EDGE_DEV ||
1868 			    child->dev_type == FANOUT_DEV)
1869 				res = sas_discover_bfs_by_root(child);
1870 			break;
1871 		}
1872 	}
1873 out:
1874 	return res;
1875 }
1876 
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)1877 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1878 {
1879 	struct expander_device *ex = &dev->ex_dev;
1880 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1881 	u8 attached_sas_addr[8];
1882 	int res;
1883 
1884 	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1885 	switch (res) {
1886 	case SMP_RESP_NO_PHY:
1887 		phy->phy_state = PHY_NOT_PRESENT;
1888 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1889 		goto out; break;
1890 	case SMP_RESP_PHY_VACANT:
1891 		phy->phy_state = PHY_VACANT;
1892 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1893 		goto out; break;
1894 	case SMP_RESP_FUNC_ACC:
1895 		break;
1896 	}
1897 
1898 	if (SAS_ADDR(attached_sas_addr) == 0) {
1899 		phy->phy_state = PHY_EMPTY;
1900 		sas_unregister_devs_sas_addr(dev, phy_id, last);
1901 	} else if (SAS_ADDR(attached_sas_addr) ==
1902 		   SAS_ADDR(phy->attached_sas_addr)) {
1903 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1904 			    SAS_ADDR(dev->sas_addr), phy_id);
1905 		sas_ex_phy_discover(dev, phy_id);
1906 	} else
1907 		res = sas_discover_new(dev, phy_id);
1908 out:
1909 	return res;
1910 }
1911 
1912 /**
1913  * sas_rediscover - revalidate the domain.
1914  * @dev:domain device to be detect.
1915  * @phy_id: the phy id will be detected.
1916  *
1917  * NOTE: this process _must_ quit (return) as soon as any connection
1918  * errors are encountered.  Connection recovery is done elsewhere.
1919  * Discover process only interrogates devices in order to discover the
1920  * domain.For plugging out, we un-register the device only when it is
1921  * the last phy in the port, for other phys in this port, we just delete it
1922  * from the port.For inserting, we do discovery when it is the
1923  * first phy,for other phys in this port, we add it to the port to
1924  * forming the wide-port.
1925  */
sas_rediscover(struct domain_device * dev,const int phy_id)1926 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1927 {
1928 	struct expander_device *ex = &dev->ex_dev;
1929 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1930 	int res = 0;
1931 	int i;
1932 	bool last = true;	/* is this the last phy of the port */
1933 
1934 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1935 		    SAS_ADDR(dev->sas_addr), phy_id);
1936 
1937 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1938 		for (i = 0; i < ex->num_phys; i++) {
1939 			struct ex_phy *phy = &ex->ex_phy[i];
1940 
1941 			if (i == phy_id)
1942 				continue;
1943 			if (SAS_ADDR(phy->attached_sas_addr) ==
1944 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1945 				SAS_DPRINTK("phy%d part of wide port with "
1946 					    "phy%d\n", phy_id, i);
1947 				last = false;
1948 				break;
1949 			}
1950 		}
1951 		res = sas_rediscover_dev(dev, phy_id, last);
1952 	} else
1953 		res = sas_discover_new(dev, phy_id);
1954 	return res;
1955 }
1956 
1957 /**
1958  * sas_revalidate_domain -- revalidate the domain
1959  * @port: port to the domain of interest
1960  *
1961  * NOTE: this process _must_ quit (return) as soon as any connection
1962  * errors are encountered.  Connection recovery is done elsewhere.
1963  * Discover process only interrogates devices in order to discover the
1964  * domain.
1965  */
sas_ex_revalidate_domain(struct domain_device * port_dev)1966 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1967 {
1968 	int res;
1969 	struct domain_device *dev = NULL;
1970 
1971 	res = sas_find_bcast_dev(port_dev, &dev);
1972 	if (res)
1973 		goto out;
1974 	if (dev) {
1975 		struct expander_device *ex = &dev->ex_dev;
1976 		int i = 0, phy_id;
1977 
1978 		do {
1979 			phy_id = -1;
1980 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1981 			if (phy_id == -1)
1982 				break;
1983 			res = sas_rediscover(dev, phy_id);
1984 			i = phy_id + 1;
1985 		} while (i < ex->num_phys);
1986 	}
1987 out:
1988 	return res;
1989 }
1990 
sas_smp_handler(struct Scsi_Host * shost,struct sas_rphy * rphy,struct request * req)1991 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1992 		    struct request *req)
1993 {
1994 	struct domain_device *dev;
1995 	int ret, type;
1996 	struct request *rsp = req->next_rq;
1997 
1998 	if (!rsp) {
1999 		printk("%s: space for a smp response is missing\n",
2000 		       __func__);
2001 		return -EINVAL;
2002 	}
2003 
2004 	/* no rphy means no smp target support (ie aic94xx host) */
2005 	if (!rphy)
2006 		return sas_smp_host_handler(shost, req, rsp);
2007 
2008 	type = rphy->identify.device_type;
2009 
2010 	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2011 	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2012 		printk("%s: can we send a smp request to a device?\n",
2013 		       __func__);
2014 		return -EINVAL;
2015 	}
2016 
2017 	dev = sas_find_dev_by_rphy(rphy);
2018 	if (!dev) {
2019 		printk("%s: fail to find a domain_device?\n", __func__);
2020 		return -EINVAL;
2021 	}
2022 
2023 	/* do we need to support multiple segments? */
2024 	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2025 		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2026 		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2027 		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2028 		return -EINVAL;
2029 	}
2030 
2031 	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2032 			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2033 	if (ret > 0) {
2034 		/* positive number is the untransferred residual */
2035 		rsp->resid_len = ret;
2036 		req->resid_len = 0;
2037 		ret = 0;
2038 	} else if (ret == 0) {
2039 		rsp->resid_len = 0;
2040 		req->resid_len = 0;
2041 	}
2042 
2043 	return ret;
2044 }
2045