1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2010  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "sw.h"
44 #include "hw.h"
45 
rtl92de_read_dword_dbi(struct ieee80211_hw * hw,u16 offset,u8 direct)46 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
47 {
48 	struct rtl_priv *rtlpriv = rtl_priv(hw);
49 	u32 value;
50 
51 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
52 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
53 	udelay(10);
54 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
55 	return value;
56 }
57 
rtl92de_write_dword_dbi(struct ieee80211_hw * hw,u16 offset,u32 value,u8 direct)58 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
59 			     u16 offset, u32 value, u8 direct)
60 {
61 	struct rtl_priv *rtlpriv = rtl_priv(hw);
62 
63 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
64 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
65 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
66 }
67 
_rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw * hw,u8 set_bits,u8 clear_bits)68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
69 				      u8 set_bits, u8 clear_bits)
70 {
71 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
72 	struct rtl_priv *rtlpriv = rtl_priv(hw);
73 
74 	rtlpci->reg_bcn_ctrl_val |= set_bits;
75 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
76 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
77 }
78 
_rtl92de_stop_tx_beacon(struct ieee80211_hw * hw)79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
80 {
81 	struct rtl_priv *rtlpriv = rtl_priv(hw);
82 	u8 tmp1byte;
83 
84 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
85 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
86 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
87 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
88 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
89 	tmp1byte &= ~(BIT(0));
90 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
91 }
92 
_rtl92de_resume_tx_beacon(struct ieee80211_hw * hw)93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
94 {
95 	struct rtl_priv *rtlpriv = rtl_priv(hw);
96 	u8 tmp1byte;
97 
98 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
99 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
100 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
101 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
102 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
103 	tmp1byte |= BIT(0);
104 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
105 }
106 
_rtl92de_enable_bcn_sub_func(struct ieee80211_hw * hw)107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
108 {
109 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
110 }
111 
_rtl92de_disable_bcn_sub_func(struct ieee80211_hw * hw)112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
113 {
114 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
115 }
116 
rtl92de_get_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)117 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
118 {
119 	struct rtl_priv *rtlpriv = rtl_priv(hw);
120 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
121 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
122 
123 	switch (variable) {
124 	case HW_VAR_RCR:
125 		*((u32 *) (val)) = rtlpci->receive_config;
126 		break;
127 	case HW_VAR_RF_STATE:
128 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
129 		break;
130 	case HW_VAR_FWLPS_RF_ON:{
131 		enum rf_pwrstate rfState;
132 		u32 val_rcr;
133 
134 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
135 					      (u8 *) (&rfState));
136 		if (rfState == ERFOFF) {
137 			*((bool *) (val)) = true;
138 		} else {
139 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
140 			val_rcr &= 0x00070000;
141 			if (val_rcr)
142 				*((bool *) (val)) = false;
143 			else
144 				*((bool *) (val)) = true;
145 		}
146 		break;
147 	}
148 	case HW_VAR_FW_PSMODE_STATUS:
149 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
150 		break;
151 	case HW_VAR_CORRECT_TSF:{
152 		u64 tsf;
153 		u32 *ptsf_low = (u32 *)&tsf;
154 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
155 
156 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
157 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
158 		*((u64 *) (val)) = tsf;
159 		break;
160 	}
161 	case HW_VAR_INT_MIGRATION:
162 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
163 		break;
164 	case HW_VAR_INT_AC:
165 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
166 		break;
167 	default:
168 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
169 			 ("switch case not process\n"));
170 		break;
171 	}
172 }
173 
rtl92de_set_hw_reg(struct ieee80211_hw * hw,u8 variable,u8 * val)174 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
175 {
176 	struct rtl_priv *rtlpriv = rtl_priv(hw);
177 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
178 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
179 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
180 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
181 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
182 	u8 idx;
183 
184 	switch (variable) {
185 	case HW_VAR_ETHER_ADDR:
186 		for (idx = 0; idx < ETH_ALEN; idx++) {
187 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
188 				       val[idx]);
189 		}
190 		break;
191 	case HW_VAR_BASIC_RATE: {
192 		u16 rate_cfg = ((u16 *) val)[0];
193 		u8 rate_index = 0;
194 
195 		rate_cfg = rate_cfg & 0x15f;
196 		if (mac->vendor == PEER_CISCO &&
197 		    ((rate_cfg & 0x150) == 0))
198 			rate_cfg |= 0x01;
199 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
200 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
201 			       (rate_cfg >> 8) & 0xff);
202 		while (rate_cfg > 0x1) {
203 			rate_cfg = (rate_cfg >> 1);
204 			rate_index++;
205 		}
206 		if (rtlhal->fw_version > 0xe)
207 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
208 				       rate_index);
209 		break;
210 	}
211 	case HW_VAR_BSSID:
212 		for (idx = 0; idx < ETH_ALEN; idx++) {
213 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
214 				       val[idx]);
215 		}
216 		break;
217 	case HW_VAR_SIFS:
218 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
219 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
220 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
221 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
222 		if (!mac->ht_enable)
223 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
224 				       0x0e0e);
225 		else
226 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
227 				       *((u16 *) val));
228 		break;
229 	case HW_VAR_SLOT_TIME: {
230 		u8 e_aci;
231 
232 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
233 			 ("HW_VAR_SLOT_TIME %x\n", val[0]));
234 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
235 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
236 			rtlpriv->cfg->ops->set_hw_reg(hw,
237 						      HW_VAR_AC_PARAM,
238 						      (u8 *) (&e_aci));
239 		break;
240 	}
241 	case HW_VAR_ACK_PREAMBLE: {
242 		u8 reg_tmp;
243 		u8 short_preamble = (bool) (*(u8 *) val);
244 
245 		reg_tmp = (mac->cur_40_prime_sc) << 5;
246 		if (short_preamble)
247 			reg_tmp |= 0x80;
248 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
249 		break;
250 	}
251 	case HW_VAR_AMPDU_MIN_SPACE: {
252 		u8 min_spacing_to_set;
253 		u8 sec_min_space;
254 
255 		min_spacing_to_set = *((u8 *) val);
256 		if (min_spacing_to_set <= 7) {
257 			sec_min_space = 0;
258 			if (min_spacing_to_set < sec_min_space)
259 				min_spacing_to_set = sec_min_space;
260 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
261 					      min_spacing_to_set);
262 			*val = min_spacing_to_set;
263 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
264 				 ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
265 				 mac->min_space_cfg));
266 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
267 				       mac->min_space_cfg);
268 		}
269 		break;
270 	}
271 	case HW_VAR_SHORTGI_DENSITY: {
272 		u8 density_to_set;
273 
274 		density_to_set = *((u8 *) val);
275 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
276 		mac->min_space_cfg |= (density_to_set << 3);
277 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
278 			 ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
279 			 mac->min_space_cfg));
280 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
281 			       mac->min_space_cfg);
282 		break;
283 	}
284 	case HW_VAR_AMPDU_FACTOR: {
285 		u8 factor_toset;
286 		u32 regtoSet;
287 		u8 *ptmp_byte = NULL;
288 		u8 index;
289 
290 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
291 			regtoSet = 0xb9726641;
292 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
293 			regtoSet = 0x66626641;
294 		else
295 			regtoSet = 0xb972a841;
296 		factor_toset = *((u8 *) val);
297 		if (factor_toset <= 3) {
298 			factor_toset = (1 << (factor_toset + 2));
299 			if (factor_toset > 0xf)
300 				factor_toset = 0xf;
301 			for (index = 0; index < 4; index++) {
302 				ptmp_byte = (u8 *) (&regtoSet) + index;
303 				if ((*ptmp_byte & 0xf0) >
304 				    (factor_toset << 4))
305 					*ptmp_byte = (*ptmp_byte & 0x0f)
306 						 | (factor_toset << 4);
307 				if ((*ptmp_byte & 0x0f) > factor_toset)
308 					*ptmp_byte = (*ptmp_byte & 0xf0)
309 						     | (factor_toset);
310 			}
311 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
312 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
313 				 ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
314 				 factor_toset));
315 		}
316 		break;
317 	}
318 	case HW_VAR_AC_PARAM: {
319 		u8 e_aci = *((u8 *) val);
320 		rtl92d_dm_init_edca_turbo(hw);
321 		if (rtlpci->acm_method != eAcmWay2_SW)
322 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
323 						      (u8 *) (&e_aci));
324 		break;
325 	}
326 	case HW_VAR_ACM_CTRL: {
327 		u8 e_aci = *((u8 *) val);
328 		union aci_aifsn *p_aci_aifsn =
329 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
330 		u8 acm = p_aci_aifsn->f.acm;
331 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
332 
333 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
334 		if (acm) {
335 			switch (e_aci) {
336 			case AC0_BE:
337 				acm_ctrl |= ACMHW_BEQEN;
338 				break;
339 			case AC2_VI:
340 				acm_ctrl |= ACMHW_VIQEN;
341 				break;
342 			case AC3_VO:
343 				acm_ctrl |= ACMHW_VOQEN;
344 				break;
345 			default:
346 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
347 					 ("HW_VAR_ACM_CTRL acm set "
348 					 "failed: eACI is %d\n", acm));
349 				break;
350 			}
351 		} else {
352 			switch (e_aci) {
353 			case AC0_BE:
354 				acm_ctrl &= (~ACMHW_BEQEN);
355 				break;
356 			case AC2_VI:
357 				acm_ctrl &= (~ACMHW_VIQEN);
358 				break;
359 			case AC3_VO:
360 				acm_ctrl &= (~ACMHW_VOQEN);
361 				break;
362 			default:
363 				RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
364 					 ("switch case not process\n"));
365 				break;
366 			}
367 		}
368 		RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
369 			 ("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
370 			 "Write 0x%X\n", acm_ctrl));
371 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
372 		break;
373 	}
374 	case HW_VAR_RCR:
375 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
376 		rtlpci->receive_config = ((u32 *) (val))[0];
377 		break;
378 	case HW_VAR_RETRY_LIMIT: {
379 		u8 retry_limit = ((u8 *) (val))[0];
380 
381 		rtl_write_word(rtlpriv, REG_RL,
382 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
383 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
384 		break;
385 	}
386 	case HW_VAR_DUAL_TSF_RST:
387 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
388 		break;
389 	case HW_VAR_EFUSE_BYTES:
390 		rtlefuse->efuse_usedbytes = *((u16 *) val);
391 		break;
392 	case HW_VAR_EFUSE_USAGE:
393 		rtlefuse->efuse_usedpercentage = *((u8 *) val);
394 		break;
395 	case HW_VAR_IO_CMD:
396 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
397 		break;
398 	case HW_VAR_WPA_CONFIG:
399 		rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
400 		break;
401 	case HW_VAR_SET_RPWM:
402 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (u8 *) (val));
403 		break;
404 	case HW_VAR_H2C_FW_PWRMODE:
405 		break;
406 	case HW_VAR_FW_PSMODE_STATUS:
407 		ppsc->fw_current_inpsmode = *((bool *) val);
408 		break;
409 	case HW_VAR_H2C_FW_JOINBSSRPT: {
410 		u8 mstatus = (*(u8 *) val);
411 		u8 tmp_regcr, tmp_reg422;
412 		bool recover = false;
413 
414 		if (mstatus == RT_MEDIA_CONNECT) {
415 			rtlpriv->cfg->ops->set_hw_reg(hw,
416 						      HW_VAR_AID, NULL);
417 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
418 			rtl_write_byte(rtlpriv, REG_CR + 1,
419 				       (tmp_regcr | BIT(0)));
420 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
421 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
422 			tmp_reg422 = rtl_read_byte(rtlpriv,
423 						 REG_FWHW_TXQ_CTRL + 2);
424 			if (tmp_reg422 & BIT(6))
425 				recover = true;
426 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
427 				       tmp_reg422 & (~BIT(6)));
428 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
429 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
430 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
431 			if (recover)
432 				rtl_write_byte(rtlpriv,
433 					       REG_FWHW_TXQ_CTRL + 2,
434 					       tmp_reg422);
435 			rtl_write_byte(rtlpriv, REG_CR + 1,
436 				       (tmp_regcr & ~(BIT(0))));
437 		}
438 		rtl92d_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
439 		break;
440 	}
441 	case HW_VAR_AID: {
442 		u16 u2btmp;
443 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
444 		u2btmp &= 0xC000;
445 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
446 			       mac->assoc_id));
447 		break;
448 	}
449 	case HW_VAR_CORRECT_TSF: {
450 		u8 btype_ibss = ((u8 *) (val))[0];
451 
452 		if (btype_ibss)
453 			_rtl92de_stop_tx_beacon(hw);
454 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
455 		rtl_write_dword(rtlpriv, REG_TSFTR,
456 				(u32) (mac->tsf & 0xffffffff));
457 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
458 				(u32) ((mac->tsf >> 32) & 0xffffffff));
459 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
460 		if (btype_ibss)
461 			_rtl92de_resume_tx_beacon(hw);
462 
463 		break;
464 	}
465 	case HW_VAR_INT_MIGRATION: {
466 		bool int_migration = *(bool *) (val);
467 
468 		if (int_migration) {
469 			/* Set interrupt migration timer and
470 			 * corresponding Tx/Rx counter.
471 			 * timer 25ns*0xfa0=100us for 0xf packets.
472 			 * 0x306:Rx, 0x307:Tx */
473 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
474 			rtlpriv->dm.interrupt_migration = int_migration;
475 		} else {
476 			/* Reset all interrupt migration settings. */
477 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
478 			rtlpriv->dm.interrupt_migration = int_migration;
479 		}
480 		break;
481 	}
482 	case HW_VAR_INT_AC: {
483 		bool disable_ac_int = *((bool *) val);
484 
485 		/* Disable four ACs interrupts. */
486 		if (disable_ac_int) {
487 			/* Disable VO, VI, BE and BK four AC interrupts
488 			 * to gain more efficient CPU utilization.
489 			 * When extremely highly Rx OK occurs,
490 			 * we will disable Tx interrupts.
491 			 */
492 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
493 						 RT_AC_INT_MASKS);
494 			rtlpriv->dm.disable_tx_int = disable_ac_int;
495 		/* Enable four ACs interrupts. */
496 		} else {
497 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
498 						 RT_AC_INT_MASKS, 0);
499 			rtlpriv->dm.disable_tx_int = disable_ac_int;
500 		}
501 		break;
502 	}
503 	default:
504 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
505 			 ("switch case not process\n"));
506 		break;
507 	}
508 }
509 
_rtl92de_llt_write(struct ieee80211_hw * hw,u32 address,u32 data)510 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
511 {
512 	struct rtl_priv *rtlpriv = rtl_priv(hw);
513 	bool status = true;
514 	long count = 0;
515 	u32 value = _LLT_INIT_ADDR(address) |
516 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
517 
518 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
519 	do {
520 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
521 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
522 			break;
523 		if (count > POLLING_LLT_THRESHOLD) {
524 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
525 				 ("Failed to polling write LLT done at "
526 				  "address %d!\n", address));
527 			status = false;
528 			break;
529 		}
530 	} while (++count);
531 	return status;
532 }
533 
_rtl92de_llt_table_init(struct ieee80211_hw * hw)534 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
535 {
536 	struct rtl_priv *rtlpriv = rtl_priv(hw);
537 	unsigned short i;
538 	u8 txpktbuf_bndy;
539 	u8 maxPage;
540 	bool status;
541 	u32 value32; /* High+low page number */
542 	u8 value8;	 /* normal page number */
543 
544 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
545 		maxPage = 255;
546 		txpktbuf_bndy = 246;
547 		value8 = 0;
548 		value32 = 0x80bf0d29;
549 	} else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
550 		maxPage = 127;
551 		txpktbuf_bndy = 123;
552 		value8 = 0;
553 		value32 = 0x80750005;
554 	}
555 
556 	/* Set reserved page for each queue */
557 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
558 	/* load RQPN */
559 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
560 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
561 
562 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
563 	/* TXRKTBUG_PG_BNDY */
564 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
565 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
566 			txpktbuf_bndy));
567 
568 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
569 	/* Beacon Head for TXDMA */
570 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
571 
572 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
573 	/* BCNQ_PGBNDY */
574 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
575 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
576 
577 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
578 	/* WMAC_LBK_BF_HD */
579 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
580 
581 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
582 	/* Rx can be 64,128,256,512,1024 bytes) */
583 	/* 16.  PBP [7:0] = 0x11 */
584 	/* TRX page size */
585 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
586 
587 	/* 17.  DRV_INFO_SZ = 0x04 */
588 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
589 
590 	/* 18.  LLT_table_init(Adapter);  */
591 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
592 		status = _rtl92de_llt_write(hw, i, i + 1);
593 		if (true != status)
594 			return status;
595 	}
596 
597 	/* end of list */
598 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
599 	if (true != status)
600 		return status;
601 
602 	/* Make the other pages as ring buffer */
603 	/* This ring buffer is used as beacon buffer if we */
604 	/* config this MAC as two MAC transfer. */
605 	/* Otherwise used as local loopback buffer.  */
606 	for (i = txpktbuf_bndy; i < maxPage; i++) {
607 		status = _rtl92de_llt_write(hw, i, (i + 1));
608 		if (true != status)
609 			return status;
610 	}
611 
612 	/* Let last entry point to the start entry of ring buffer */
613 	status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
614 	if (true != status)
615 		return status;
616 
617 	return true;
618 }
619 
_rtl92de_gen_refresh_led_state(struct ieee80211_hw * hw)620 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
621 {
622 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
623 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
624 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
625 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
626 
627 	if (rtlpci->up_first_time)
628 		return;
629 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
630 		rtl92de_sw_led_on(hw, pLed0);
631 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
632 		rtl92de_sw_led_on(hw, pLed0);
633 	else
634 		rtl92de_sw_led_off(hw, pLed0);
635 }
636 
_rtl92de_init_mac(struct ieee80211_hw * hw)637 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
638 {
639 	struct rtl_priv *rtlpriv = rtl_priv(hw);
640 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
641 	unsigned char bytetmp;
642 	unsigned short wordtmp;
643 	u16 retry;
644 
645 	rtl92d_phy_set_poweron(hw);
646 	/* Add for resume sequence of power domain according
647 	 * to power document V11. Chapter V.11....  */
648 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
649 	/* unlock ISO/CLK/Power control register */
650 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
651 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
652 
653 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
654 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
655 	/* 3.   delay (1ms) this is not necessary when initially power on */
656 
657 	/* C.   Resume Sequence */
658 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
659 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
660 
661 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
662 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
663 
664 	/* c.   DRV runs power on init flow */
665 
666 	/* auto enable WLAN */
667 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
668 	/* Power On Reset for MAC Block */
669 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
670 	udelay(2);
671 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
672 	udelay(2);
673 
674 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
675 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
676 	udelay(50);
677 	retry = 0;
678 	while ((bytetmp & BIT(0)) && retry < 1000) {
679 		retry++;
680 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
681 		udelay(50);
682 	}
683 
684 	/* Enable Radio off, GPIO, and LED function */
685 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
686 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
687 
688 	/* release RF digital isolation  */
689 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
690 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
691 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
692 	udelay(2);
693 
694 	/* make sure that BB reset OK. */
695 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
696 
697 	/* Disable REG_CR before enable it to assure reset */
698 	rtl_write_word(rtlpriv, REG_CR, 0x0);
699 
700 	/* Release MAC IO register reset */
701 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
702 
703 	/* clear stopping tx/rx dma   */
704 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
705 
706 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
707 
708 	/* System init */
709 	/* 18.  LLT_table_init(Adapter);  */
710 	if (_rtl92de_llt_table_init(hw) == false)
711 		return false;
712 
713 	/* Clear interrupt and enable interrupt */
714 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
715 	/*      HISRE 0x12C[7:0] = 0xFF */
716 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
717 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
718 
719 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
720 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
721 	/* The IMR should be enabled later after all init sequence
722 	 * is finished. */
723 
724 	/* 22.  PCIE configuration space configuration */
725 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
726 	/*      and PCIe gated clock function is enabled.    */
727 	/* PCIE configuration space will be written after
728 	 * all init sequence.(Or by BIOS) */
729 
730 	rtl92d_phy_config_maccoexist_rfpage(hw);
731 
732 	/* THe below section is not related to power document Vxx . */
733 	/* This is only useful for driver and OS setting. */
734 	/* -------------------Software Relative Setting---------------------- */
735 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
736 	wordtmp &= 0xf;
737 	wordtmp |= 0xF771;
738 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
739 
740 	/* Reported Tx status from HW for rate adaptive. */
741 	/* This should be realtive to power on step 14. But in document V11  */
742 	/* still not contain the description.!!! */
743 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
744 
745 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
746 	 * Rx can be 64,128,256,512,1024 bytes) */
747 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
748 
749 	/* Set RCR register */
750 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
751 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
752 
753 	/*  Set TCR register */
754 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
755 
756 	/* disable earlymode */
757 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
758 
759 	/* Set TX/RX descriptor physical address(from OS API). */
760 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
761 			rtlpci->tx_ring[BEACON_QUEUE].dma);
762 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
763 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
764 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
765 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
766 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
767 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
768 	/* Set RX Desc Address */
769 	rtl_write_dword(rtlpriv, REG_RX_DESA,
770 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
771 
772 	/* if we want to support 64 bit DMA, we should set it here,
773 	 * but now we do not support 64 bit DMA*/
774 
775 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
776 
777 	/* Reset interrupt migration setting when initialization */
778 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
779 
780 	/* Reconsider when to do this operation after asking HWSD. */
781 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
782 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
783 	do {
784 		retry++;
785 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
786 	} while ((retry < 200) && !(bytetmp & BIT(7)));
787 
788 	/* After MACIO reset,we must refresh LED state. */
789 	_rtl92de_gen_refresh_led_state(hw);
790 
791 	/* Reset H2C protection register */
792 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
793 
794 	return true;
795 }
796 
_rtl92de_hw_configure(struct ieee80211_hw * hw)797 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
798 {
799 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
800 	struct rtl_priv *rtlpriv = rtl_priv(hw);
801 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
802 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
803 	u32 reg_rrsr;
804 
805 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
806 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
807 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
808 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
809 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
810 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
811 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
812 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
813 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
814 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
815 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
816 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
817 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
818 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
819 	/* Aggregation threshold */
820 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
821 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
822 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
823 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
824 	else
825 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
826 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
827 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
828 	rtlpci->reg_bcn_ctrl_val = 0x1f;
829 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
830 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
831 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
832 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
833 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
834 	/* For throughput */
835 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
836 	/* ACKTO for IOT issue. */
837 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
838 	/* Set Spec SIFS (used in NAV) */
839 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
840 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
841 	/* Set SIFS for CCK */
842 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
843 	/* Set SIFS for OFDM */
844 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
845 	/* Set Multicast Address. */
846 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
847 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
848 	switch (rtlpriv->phy.rf_type) {
849 	case RF_1T2R:
850 	case RF_1T1R:
851 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
852 		break;
853 	case RF_2T2R:
854 	case RF_2T2R_GREEN:
855 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
856 		break;
857 	}
858 }
859 
_rtl92de_enable_aspm_back_door(struct ieee80211_hw * hw)860 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
861 {
862 	struct rtl_priv *rtlpriv = rtl_priv(hw);
863 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
864 
865 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
866 	rtl_write_word(rtlpriv, 0x350, 0x870c);
867 	rtl_write_byte(rtlpriv, 0x352, 0x1);
868 	if (ppsc->support_backdoor)
869 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
870 	else
871 		rtl_write_byte(rtlpriv, 0x349, 0x03);
872 	rtl_write_word(rtlpriv, 0x350, 0x2718);
873 	rtl_write_byte(rtlpriv, 0x352, 0x1);
874 }
875 
rtl92de_enable_hw_security_config(struct ieee80211_hw * hw)876 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
877 {
878 	struct rtl_priv *rtlpriv = rtl_priv(hw);
879 	u8 sec_reg_value;
880 
881 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
882 		 ("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
883 		  rtlpriv->sec.pairwise_enc_algorithm,
884 		  rtlpriv->sec.group_enc_algorithm));
885 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
886 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
887 			 ("not open hw encryption\n"));
888 		return;
889 	}
890 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
891 	if (rtlpriv->sec.use_defaultkey) {
892 		sec_reg_value |= SCR_TXUSEDK;
893 		sec_reg_value |= SCR_RXUSEDK;
894 	}
895 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
896 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
897 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
898 		 ("The SECR-value %x\n", sec_reg_value));
899 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
900 }
901 
rtl92de_hw_init(struct ieee80211_hw * hw)902 int rtl92de_hw_init(struct ieee80211_hw *hw)
903 {
904 	struct rtl_priv *rtlpriv = rtl_priv(hw);
905 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
906 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
907 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
908 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
909 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
910 	bool rtstatus = true;
911 	u8 tmp_u1b;
912 	int i;
913 	int err;
914 	unsigned long flags;
915 
916 	rtlpci->being_init_adapter = true;
917 	rtlpci->init_ready = false;
918 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
919 	/* we should do iqk after disable/enable */
920 	rtl92d_phy_reset_iqk_result(hw);
921 	/* rtlpriv->intf_ops->disable_aspm(hw); */
922 	rtstatus = _rtl92de_init_mac(hw);
923 	if (rtstatus != true) {
924 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Init MAC failed\n"));
925 		err = 1;
926 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
927 		return err;
928 	}
929 	err = rtl92d_download_fw(hw);
930 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
931 	if (err) {
932 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
933 			 ("Failed to download FW. Init HW "
934 			 "without FW..\n"));
935 		rtlhal->fw_ready = false;
936 		return 1;
937 	} else {
938 		rtlhal->fw_ready = true;
939 	}
940 	rtlhal->last_hmeboxnum = 0;
941 	rtlpriv->psc.fw_current_inpsmode = false;
942 
943 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
944 	tmp_u1b = tmp_u1b | 0x30;
945 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
946 
947 	if (rtlhal->earlymode_enable) {
948 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
949 			 ("EarlyMode Enabled!!!\n"));
950 
951 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
952 		tmp_u1b = tmp_u1b | 0x1f;
953 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
954 
955 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
956 
957 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
958 		tmp_u1b = tmp_u1b | 0x40;
959 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
960 	}
961 
962 	if (mac->rdg_en) {
963 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
964 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
965 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
966 	}
967 
968 	rtl92d_phy_mac_config(hw);
969 	/* because last function modify RCR, so we update
970 	 * rcr var here, or TP will unstable for receive_config
971 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
972 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
973 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
974 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
975 
976 	rtl92d_phy_bb_config(hw);
977 
978 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
979 	/* set before initialize RF */
980 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
981 
982 	/* config RF */
983 	rtl92d_phy_rf_config(hw);
984 
985 	/* After read predefined TXT, we must set BB/MAC/RF
986 	 * register as our requirement */
987 	/* After load BB,RF params,we need do more for 92D. */
988 	rtl92d_update_bbrf_configuration(hw);
989 	/* set default value after initialize RF,  */
990 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
991 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
992 			RF_CHNLBW, BRFREGOFFSETMASK);
993 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
994 			RF_CHNLBW, BRFREGOFFSETMASK);
995 
996 	/*---- Set CCK and OFDM Block "ON"----*/
997 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
998 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
999 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1000 	if (rtlhal->interfaceindex == 0) {
1001 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
1002 		 *  set to 20MHz by default */
1003 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
1004 			      BIT(11), 3);
1005 	} else {
1006 		/* Mac1 */
1007 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1008 			      BIT(10), 3);
1009 	}
1010 
1011 	_rtl92de_hw_configure(hw);
1012 
1013 	/* reset hw sec */
1014 	rtl_cam_reset_all_entry(hw);
1015 	rtl92de_enable_hw_security_config(hw);
1016 
1017 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1018 	/* TX power index for different rate set. */
1019 	rtl92d_phy_get_hw_reg_originalvalue(hw);
1020 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1021 
1022 	ppsc->rfpwr_state = ERFON;
1023 
1024 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1025 
1026 	_rtl92de_enable_aspm_back_door(hw);
1027 	/* rtlpriv->intf_ops->enable_aspm(hw); */
1028 
1029 	rtl92d_dm_init(hw);
1030 	rtlpci->being_init_adapter = false;
1031 
1032 	if (ppsc->rfpwr_state == ERFON) {
1033 		rtl92d_phy_lc_calibrate(hw);
1034 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1035 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1036 			u32 tmp_rega;
1037 			for (i = 0; i < 10000; i++) {
1038 				udelay(MAX_STALL_TIME);
1039 
1040 				tmp_rega = rtl_get_rfreg(hw,
1041 						  (enum radio_path)RF90_PATH_A,
1042 						  0x2a, BMASKDWORD);
1043 
1044 				if (((tmp_rega & BIT(11)) == BIT(11)))
1045 					break;
1046 			}
1047 			/* check that loop was successful. If not, exit now */
1048 			if (i == 10000) {
1049 				rtlpci->init_ready = false;
1050 				return 1;
1051 			}
1052 		}
1053 	}
1054 	rtlpci->init_ready = true;
1055 	return err;
1056 }
1057 
_rtl92de_read_chip_version(struct ieee80211_hw * hw)1058 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1059 {
1060 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1061 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1062 	u32 value32;
1063 
1064 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1065 	if (!(value32 & 0x000f0000)) {
1066 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1067 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("TEST CHIP!!!\n"));
1068 	} else {
1069 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1070 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Normal CHIP!!!\n"));
1071 	}
1072 	return version;
1073 }
1074 
_rtl92de_set_media_status(struct ieee80211_hw * hw,enum nl80211_iftype type)1075 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1076 				     enum nl80211_iftype type)
1077 {
1078 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1079 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1080 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1081 	u8 bcnfunc_enable;
1082 
1083 	bt_msr &= 0xfc;
1084 
1085 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1086 	    type == NL80211_IFTYPE_STATION) {
1087 		_rtl92de_stop_tx_beacon(hw);
1088 		_rtl92de_enable_bcn_sub_func(hw);
1089 	} else if (type == NL80211_IFTYPE_ADHOC ||
1090 		type == NL80211_IFTYPE_AP) {
1091 		_rtl92de_resume_tx_beacon(hw);
1092 		_rtl92de_disable_bcn_sub_func(hw);
1093 	} else {
1094 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1095 			 ("Set HW_VAR_MEDIA_STATUS: No such media "
1096 			 "status(%x).\n", type));
1097 	}
1098 	bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1099 	switch (type) {
1100 	case NL80211_IFTYPE_UNSPECIFIED:
1101 		bt_msr |= MSR_NOLINK;
1102 		ledaction = LED_CTL_LINK;
1103 		bcnfunc_enable &= 0xF7;
1104 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1105 			 ("Set Network type to NO LINK!\n"));
1106 		break;
1107 	case NL80211_IFTYPE_ADHOC:
1108 		bt_msr |= MSR_ADHOC;
1109 		bcnfunc_enable |= 0x08;
1110 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1111 			 ("Set Network type to Ad Hoc!\n"));
1112 		break;
1113 	case NL80211_IFTYPE_STATION:
1114 		bt_msr |= MSR_INFRA;
1115 		ledaction = LED_CTL_LINK;
1116 		bcnfunc_enable &= 0xF7;
1117 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1118 			 ("Set Network type to STA!\n"));
1119 		break;
1120 	case NL80211_IFTYPE_AP:
1121 		bt_msr |= MSR_AP;
1122 		bcnfunc_enable |= 0x08;
1123 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1124 			 ("Set Network type to AP!\n"));
1125 		break;
1126 	default:
1127 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1128 			 ("Network type %d not support!\n", type));
1129 		return 1;
1130 		break;
1131 
1132 	}
1133 	rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr);
1134 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1135 	if ((bt_msr & 0xfc) == MSR_AP)
1136 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1137 	else
1138 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1139 	return 0;
1140 }
1141 
rtl92de_set_check_bssid(struct ieee80211_hw * hw,bool check_bssid)1142 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1143 {
1144 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1145 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1146 	u32 reg_rcr = rtlpci->receive_config;
1147 
1148 	if (rtlpriv->psc.rfpwr_state != ERFON)
1149 		return;
1150 	if (check_bssid) {
1151 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1152 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1153 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1154 	} else if (check_bssid == false) {
1155 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1156 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1157 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1158 	}
1159 }
1160 
rtl92de_set_network_type(struct ieee80211_hw * hw,enum nl80211_iftype type)1161 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1162 {
1163 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1164 
1165 	if (_rtl92de_set_media_status(hw, type))
1166 		return -EOPNOTSUPP;
1167 
1168 	/* check bssid */
1169 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1170 		if (type != NL80211_IFTYPE_AP)
1171 			rtl92de_set_check_bssid(hw, true);
1172 	} else {
1173 		rtl92de_set_check_bssid(hw, false);
1174 	}
1175 	return 0;
1176 }
1177 
1178 /* do iqk or reload iqk */
1179 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1180  * but it's very strict for time sequence so we add
1181  * rtl92d_phy_reload_iqk_setting here */
rtl92d_linked_set_reg(struct ieee80211_hw * hw)1182 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1183 {
1184 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1185 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1186 	u8 indexforchannel;
1187 	u8 channel = rtlphy->current_channel;
1188 
1189 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1190 	if (!rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done) {
1191 		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1192 				("Do IQK for channel:%d.\n", channel));
1193 		rtl92d_phy_iq_calibrate(hw);
1194 	}
1195 }
1196 
1197 /* don't set REG_EDCA_BE_PARAM here because
1198  * mac80211 will send pkt when scan */
rtl92de_set_qos(struct ieee80211_hw * hw,int aci)1199 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1200 {
1201 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1202 	rtl92d_dm_init_edca_turbo(hw);
1203 	return;
1204 	switch (aci) {
1205 	case AC1_BK:
1206 		rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
1207 		break;
1208 	case AC0_BE:
1209 		break;
1210 	case AC2_VI:
1211 		rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
1212 		break;
1213 	case AC3_VO:
1214 		rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
1215 		break;
1216 	default:
1217 		RT_ASSERT(false, ("invalid aci: %d !\n", aci));
1218 		break;
1219 	}
1220 }
1221 
rtl92de_enable_interrupt(struct ieee80211_hw * hw)1222 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1223 {
1224 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1225 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1226 
1227 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1228 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1229 }
1230 
rtl92de_disable_interrupt(struct ieee80211_hw * hw)1231 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1232 {
1233 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1234 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1235 
1236 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1237 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1238 	synchronize_irq(rtlpci->pdev->irq);
1239 }
1240 
_rtl92de_poweroff_adapter(struct ieee80211_hw * hw)1241 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1242 {
1243 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1244 	u8 u1b_tmp;
1245 	unsigned long flags;
1246 
1247 	rtlpriv->intf_ops->enable_aspm(hw);
1248 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1249 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1250 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1251 
1252 	/* 0x20:value 05-->04 */
1253 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1254 
1255 	/*  ==== Reset digital sequence   ====== */
1256 	rtl92d_firmware_selfreset(hw);
1257 
1258 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1259 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1260 
1261 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1262 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1263 
1264 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1265 
1266 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1267 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1268 
1269 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1270 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1271 
1272 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1273 	/* write external PIN level  */
1274 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1275 			0x00FF0000 | (u1b_tmp << 8));
1276 
1277 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1278 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1279 
1280 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1281 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1282 
1283 	/*  ==== Disable analog sequence === */
1284 
1285 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1286 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1287 
1288 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1289 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1290 
1291 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1292 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1293 
1294 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1295 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1296 
1297 	/*  ==== interface into suspend === */
1298 
1299 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1300 	/* According to power document V11, we need to set this */
1301 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1302 	/* This indluences power consumption. Bases on SD1's test, */
1303 	/* set as 0x00 do not affect power current. And if it */
1304 	/* is set as 0x18, they had ever met auto load fail problem. */
1305 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1306 
1307 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1308 		 ("In PowerOff,reg0x%x=%X\n", REG_SPS0_CTRL,
1309 		  rtl_read_byte(rtlpriv, REG_SPS0_CTRL)));
1310 	/* r.   Note: for PCIe interface, PON will not turn */
1311 	/* off m-bias and BandGap in PCIe suspend mode.  */
1312 
1313 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1314 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1315 		spin_lock_irqsave(&globalmutex_power, flags);
1316 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1317 		u1b_tmp &= (~BIT(7));
1318 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1319 		spin_unlock_irqrestore(&globalmutex_power, flags);
1320 	}
1321 
1322 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("<=======\n"));
1323 }
1324 
rtl92de_card_disable(struct ieee80211_hw * hw)1325 void rtl92de_card_disable(struct ieee80211_hw *hw)
1326 {
1327 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1328 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1329 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1330 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1331 	enum nl80211_iftype opmode;
1332 
1333 	mac->link_state = MAC80211_NOLINK;
1334 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1335 	_rtl92de_set_media_status(hw, opmode);
1336 
1337 	if (rtlpci->driver_is_goingto_unload ||
1338 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1339 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1340 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1341 	/* Power sequence for each MAC. */
1342 	/* a. stop tx DMA  */
1343 	/* b. close RF */
1344 	/* c. clear rx buf */
1345 	/* d. stop rx DMA */
1346 	/* e.  reset MAC */
1347 
1348 	/* a. stop tx DMA */
1349 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1350 	udelay(50);
1351 
1352 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1353 
1354 	/* c. ========RF OFF sequence==========  */
1355 	/* 0x88c[23:20] = 0xf. */
1356 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1357 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
1358 
1359 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1360 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1361 
1362 	/* Close antenna 0,0xc04,0xd04 */
1363 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0);
1364 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1365 
1366 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1367 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1368 
1369 	/* Mac0 can not do Global reset. Mac1 can do. */
1370 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1371 	if (rtlpriv->rtlhal.interfaceindex == 1)
1372 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1373 	udelay(50);
1374 
1375 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1376 	/* dma hang issue when disable/enable device.  */
1377 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1378 	udelay(50);
1379 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1380 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("==> Do power off.......\n"));
1381 	if (rtl92d_phy_check_poweroff(hw))
1382 		_rtl92de_poweroff_adapter(hw);
1383 	return;
1384 }
1385 
rtl92de_interrupt_recognized(struct ieee80211_hw * hw,u32 * p_inta,u32 * p_intb)1386 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1387 				  u32 *p_inta, u32 *p_intb)
1388 {
1389 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1390 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1391 
1392 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1393 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1394 
1395 	/*
1396 	 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1397 	 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1398 	 */
1399 }
1400 
rtl92de_set_beacon_related_registers(struct ieee80211_hw * hw)1401 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1402 {
1403 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1404 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1405 	u16 bcn_interval, atim_window;
1406 
1407 	bcn_interval = mac->beacon_interval;
1408 	atim_window = 2;
1409 	/*rtl92de_disable_interrupt(hw);  */
1410 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1411 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1412 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1413 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1414 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1415 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1416 	else
1417 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1418 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1419 }
1420 
rtl92de_set_beacon_interval(struct ieee80211_hw * hw)1421 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1422 {
1423 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1424 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1425 	u16 bcn_interval = mac->beacon_interval;
1426 
1427 	RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1428 		 ("beacon_interval:%d\n", bcn_interval));
1429 	/* rtl92de_disable_interrupt(hw); */
1430 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1431 	/* rtl92de_enable_interrupt(hw); */
1432 }
1433 
rtl92de_update_interrupt_mask(struct ieee80211_hw * hw,u32 add_msr,u32 rm_msr)1434 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1435 				   u32 add_msr, u32 rm_msr)
1436 {
1437 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1438 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1439 
1440 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1441 		 ("add_msr:%x, rm_msr:%x\n", add_msr, rm_msr));
1442 	if (add_msr)
1443 		rtlpci->irq_mask[0] |= add_msr;
1444 	if (rm_msr)
1445 		rtlpci->irq_mask[0] &= (~rm_msr);
1446 	rtl92de_disable_interrupt(hw);
1447 	rtl92de_enable_interrupt(hw);
1448 }
1449 
_rtl92de_readpowervalue_fromprom(struct txpower_info * pwrinfo,u8 * rom_content,bool autoLoadfail)1450 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1451 				 u8 *rom_content, bool autoLoadfail)
1452 {
1453 	u32 rfpath, eeaddr, group, offset1, offset2;
1454 	u8 i;
1455 
1456 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1457 	if (autoLoadfail) {
1458 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1459 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1460 				if (group < CHANNEL_GROUP_MAX_2G) {
1461 					pwrinfo->cck_index[rfpath][group] =
1462 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1463 					pwrinfo->ht40_1sindex[rfpath][group] =
1464 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1465 				} else {
1466 					pwrinfo->ht40_1sindex[rfpath][group] =
1467 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1468 				}
1469 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1470 				    EEPROM_DEFAULT_HT40_2SDIFF;
1471 				pwrinfo->ht20indexdiff[rfpath][group] =
1472 				    EEPROM_DEFAULT_HT20_DIFF;
1473 				pwrinfo->ofdmindexdiff[rfpath][group] =
1474 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1475 				pwrinfo->ht40maxoffset[rfpath][group] =
1476 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1477 				pwrinfo->ht20maxoffset[rfpath][group] =
1478 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1479 			}
1480 		}
1481 		for (i = 0; i < 3; i++) {
1482 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1483 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1484 		}
1485 		return;
1486 	}
1487 
1488 	/* Maybe autoload OK,buf the tx power index value is not filled.
1489 	 * If we find it, we set it to default value. */
1490 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1491 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1492 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1493 				 + group;
1494 			pwrinfo->cck_index[rfpath][group] =
1495 					(rom_content[eeaddr] == 0xFF) ?
1496 					     (eeaddr > 0x7B ?
1497 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1498 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1499 					     rom_content[eeaddr];
1500 		}
1501 	}
1502 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1503 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1504 			offset1 = group / 3;
1505 			offset2 = group % 3;
1506 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1507 			    offset2 + offset1 * 21;
1508 			pwrinfo->ht40_1sindex[rfpath][group] =
1509 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1510 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1511 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1512 						 rom_content[eeaddr];
1513 		}
1514 	}
1515 	/* These just for 92D efuse offset. */
1516 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1517 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1518 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1519 
1520 			offset1 = group / 3;
1521 			offset2 = group % 3;
1522 
1523 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1524 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1525 				    (rom_content[base1 +
1526 				     offset2 + offset1 * 21] >> (rfpath * 4))
1527 				     & 0xF;
1528 			else
1529 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1530 				    EEPROM_DEFAULT_HT40_2SDIFF;
1531 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1532 			    + offset1 * 21] != 0xFF)
1533 				pwrinfo->ht20indexdiff[rfpath][group] =
1534 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1535 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1536 				    & 0xF;
1537 			else
1538 				pwrinfo->ht20indexdiff[rfpath][group] =
1539 				    EEPROM_DEFAULT_HT20_DIFF;
1540 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1541 			    + offset1 * 21] != 0xFF)
1542 				pwrinfo->ofdmindexdiff[rfpath][group] =
1543 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1544 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1545 				     & 0xF;
1546 			else
1547 				pwrinfo->ofdmindexdiff[rfpath][group] =
1548 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1549 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1550 			    + offset1 * 21] != 0xFF)
1551 				pwrinfo->ht40maxoffset[rfpath][group] =
1552 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1553 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1554 				    & 0xF;
1555 			else
1556 				pwrinfo->ht40maxoffset[rfpath][group] =
1557 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1558 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1559 			    + offset1 * 21] != 0xFF)
1560 				pwrinfo->ht20maxoffset[rfpath][group] =
1561 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1562 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1563 				     0xF;
1564 			else
1565 				pwrinfo->ht20maxoffset[rfpath][group] =
1566 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1567 		}
1568 	}
1569 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1570 		/* 5GL */
1571 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1572 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1573 		/* 5GM */
1574 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1575 		pwrinfo->tssi_b[1] =
1576 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1577 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1578 		/* 5GH */
1579 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1580 				      0xF0) >> 4 |
1581 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1582 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1583 				      0xFC) >> 2;
1584 	} else {
1585 		for (i = 0; i < 3; i++) {
1586 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1587 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1588 		}
1589 	}
1590 }
1591 
_rtl92de_read_txpower_info(struct ieee80211_hw * hw,bool autoload_fail,u8 * hwinfo)1592 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1593 				       bool autoload_fail, u8 *hwinfo)
1594 {
1595 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1596 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1597 	struct txpower_info pwrinfo;
1598 	u8 tempval[2], i, pwr, diff;
1599 	u32 ch, rfPath, group;
1600 
1601 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1602 	if (!autoload_fail) {
1603 		/* bit0~2 */
1604 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1605 		rtlefuse->eeprom_thermalmeter =
1606 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1607 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1608 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1609 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1610 		rtlefuse->txpwr_fromeprom = true;
1611 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1612 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1613 			rtlefuse->internal_pa_5g[0] =
1614 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1615 			rtlefuse->internal_pa_5g[1] =
1616 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1617 			RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1618 				 ("Is D cut,Internal PA0 %d Internal PA1 %d\n",
1619 				 rtlefuse->internal_pa_5g[0],
1620 				 rtlefuse->internal_pa_5g[1]))
1621 		}
1622 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1623 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1624 	} else {
1625 		rtlefuse->eeprom_regulatory = 0;
1626 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1627 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1628 		tempval[0] = tempval[1] = 3;
1629 	}
1630 
1631 	/* Use default value to fill parameters if
1632 	 * efuse is not filled on some place. */
1633 
1634 	/* ThermalMeter from EEPROM */
1635 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1636 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1637 		rtlefuse->eeprom_thermalmeter = 0x12;
1638 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1639 
1640 	/* check XTAL_K */
1641 	if (rtlefuse->crystalcap == 0xFF)
1642 		rtlefuse->crystalcap = 0;
1643 	if (rtlefuse->eeprom_regulatory > 3)
1644 		rtlefuse->eeprom_regulatory = 0;
1645 
1646 	for (i = 0; i < 2; i++) {
1647 		switch (tempval[i]) {
1648 		case 0:
1649 			tempval[i] = 5;
1650 			break;
1651 		case 1:
1652 			tempval[i] = 4;
1653 			break;
1654 		case 2:
1655 			tempval[i] = 3;
1656 			break;
1657 		case 3:
1658 		default:
1659 			tempval[i] = 0;
1660 			break;
1661 		}
1662 	}
1663 
1664 	rtlefuse->delta_iqk = tempval[0];
1665 	if (tempval[1] > 0)
1666 		rtlefuse->delta_lck = tempval[1] - 1;
1667 	if (rtlefuse->eeprom_c9 == 0xFF)
1668 		rtlefuse->eeprom_c9 = 0x00;
1669 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1670 		 ("EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
1671 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1672 		 ("ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter));
1673 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1674 		 ("CrystalCap = 0x%x\n", rtlefuse->crystalcap));
1675 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1676 		 ("Delta_IQK = 0x%x Delta_LCK = 0x%x\n", rtlefuse->delta_iqk,
1677 		 rtlefuse->delta_lck));
1678 
1679 	for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1680 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1681 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1682 			if (ch < CHANNEL_MAX_NUMBER_2G)
1683 				rtlefuse->txpwrlevel_cck[rfPath][ch] =
1684 				    pwrinfo.cck_index[rfPath][group];
1685 			rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1686 				    pwrinfo.ht40_1sindex[rfPath][group];
1687 			rtlefuse->txpwr_ht20diff[rfPath][ch] =
1688 				    pwrinfo.ht20indexdiff[rfPath][group];
1689 			rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1690 				    pwrinfo.ofdmindexdiff[rfPath][group];
1691 			rtlefuse->pwrgroup_ht20[rfPath][ch] =
1692 				    pwrinfo.ht20maxoffset[rfPath][group];
1693 			rtlefuse->pwrgroup_ht40[rfPath][ch] =
1694 				    pwrinfo.ht40maxoffset[rfPath][group];
1695 			pwr = pwrinfo.ht40_1sindex[rfPath][group];
1696 			diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1697 			rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1698 				    (pwr > diff) ? (pwr - diff) : 0;
1699 		}
1700 	}
1701 }
1702 
_rtl92de_read_macphymode_from_prom(struct ieee80211_hw * hw,u8 * content)1703 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1704 					       u8 *content)
1705 {
1706 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1707 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1708 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1709 
1710 	if (macphy_crvalue & BIT(3)) {
1711 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1712 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1713 			 ("MacPhyMode SINGLEMAC_SINGLEPHY\n"));
1714 	} else {
1715 		rtlhal->macphymode = DUALMAC_DUALPHY;
1716 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1717 			 ("MacPhyMode DUALMAC_DUALPHY\n"));
1718 	}
1719 }
1720 
_rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw * hw,u8 * content)1721 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1722 						  u8 *content)
1723 {
1724 	_rtl92de_read_macphymode_from_prom(hw, content);
1725 	rtl92d_phy_config_macphymode(hw);
1726 	rtl92d_phy_config_macphymode_info(hw);
1727 }
1728 
_rtl92de_efuse_update_chip_version(struct ieee80211_hw * hw)1729 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1730 {
1731 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1732 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1733 	u8 cutvalue[2];
1734 	u16 chipvalue;
1735 
1736 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1737 					   &cutvalue[1]);
1738 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1739 					   &cutvalue[0]);
1740 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1741 	switch (chipvalue) {
1742 	case 0xAA55:
1743 		chipver |= CHIP_92D_C_CUT;
1744 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("C-CUT!!!\n"));
1745 		break;
1746 	case 0x9966:
1747 		chipver |= CHIP_92D_D_CUT;
1748 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("D-CUT!!!\n"));
1749 		break;
1750 	default:
1751 		chipver |= CHIP_92D_D_CUT;
1752 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, ("Unkown CUT!\n"));
1753 		break;
1754 	}
1755 	rtlpriv->rtlhal.version = chipver;
1756 }
1757 
_rtl92de_read_adapter_info(struct ieee80211_hw * hw)1758 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1759 {
1760 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1761 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1762 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1763 	u16 i, usvalue;
1764 	u8 hwinfo[HWSET_MAX_SIZE];
1765 	u16 eeprom_id;
1766 	unsigned long flags;
1767 
1768 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1769 		spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
1770 		rtl_efuse_shadow_map_update(hw);
1771 		_rtl92de_efuse_update_chip_version(hw);
1772 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
1773 		memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
1774 		       [EFUSE_INIT_MAP][0],
1775 		       HWSET_MAX_SIZE);
1776 	} else if (rtlefuse->epromtype == EEPROM_93C46) {
1777 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1778 			 ("RTL819X Not boot from eeprom, check it !!"));
1779 	}
1780 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
1781 		      hwinfo, HWSET_MAX_SIZE);
1782 
1783 	eeprom_id = *((u16 *)&hwinfo[0]);
1784 	if (eeprom_id != RTL8190_EEPROM_ID) {
1785 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1786 			 ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
1787 		rtlefuse->autoload_failflag = true;
1788 	} else {
1789 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
1790 		rtlefuse->autoload_failflag = false;
1791 	}
1792 	if (rtlefuse->autoload_failflag) {
1793 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1794 			 ("RTL819X Not boot from eeprom, check it !!"));
1795 		return;
1796 	}
1797 	rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
1798 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1799 
1800 	/* VID, DID  SE     0xA-D */
1801 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1802 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1803 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1804 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1805 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1806 		 ("EEPROMId = 0x%4x\n", eeprom_id));
1807 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1808 		 ("EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid));
1809 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1810 		 ("EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did));
1811 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1812 		 ("EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid));
1813 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1814 		 ("EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid));
1815 
1816 	/* Read Permanent MAC address */
1817 	if (rtlhal->interfaceindex == 0) {
1818 		for (i = 0; i < 6; i += 2) {
1819 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
1820 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1821 		}
1822 	} else {
1823 		for (i = 0; i < 6; i += 2) {
1824 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1825 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1826 		}
1827 	}
1828 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1829 				      rtlefuse->dev_addr);
1830 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1831 		 ("%pM\n", rtlefuse->dev_addr));
1832 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1833 
1834 	/* Read Channel Plan */
1835 	switch (rtlhal->bandset) {
1836 	case BAND_ON_2_4G:
1837 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1838 		break;
1839 	case BAND_ON_5G:
1840 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1841 		break;
1842 	case BAND_ON_BOTH:
1843 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1844 		break;
1845 	default:
1846 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1847 		break;
1848 	}
1849 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1850 	rtlefuse->txpwr_fromeprom = true;
1851 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1852 		 ("EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid));
1853 }
1854 
rtl92de_read_eeprom_info(struct ieee80211_hw * hw)1855 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1856 {
1857 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1858 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1859 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1860 	u8 tmp_u1b;
1861 
1862 	rtlhal->version = _rtl92de_read_chip_version(hw);
1863 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1864 	rtlefuse->autoload_status = tmp_u1b;
1865 	if (tmp_u1b & BIT(4)) {
1866 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EEPROM\n"));
1867 		rtlefuse->epromtype = EEPROM_93C46;
1868 	} else {
1869 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from EFUSE\n"));
1870 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1871 	}
1872 	if (tmp_u1b & BIT(5)) {
1873 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
1874 
1875 		rtlefuse->autoload_failflag = false;
1876 		_rtl92de_read_adapter_info(hw);
1877 	} else {
1878 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("Autoload ERR!!\n"));
1879 	}
1880 	return;
1881 }
1882 
rtl92de_update_hal_rate_table(struct ieee80211_hw * hw,struct ieee80211_sta * sta)1883 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1884 					  struct ieee80211_sta *sta)
1885 {
1886 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1887 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1888 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1889 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1890 	u32 ratr_value;
1891 	u8 ratr_index = 0;
1892 	u8 nmode = mac->ht_enable;
1893 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1894 	u16 shortgi_rate;
1895 	u32 tmp_ratr_value;
1896 	u8 curtxbw_40mhz = mac->bw_40;
1897 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1898 							1 : 0;
1899 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1900 							1 : 0;
1901 	enum wireless_mode wirelessmode = mac->mode;
1902 
1903 	if (rtlhal->current_bandtype == BAND_ON_5G)
1904 		ratr_value = sta->supp_rates[1] << 4;
1905 	else
1906 		ratr_value = sta->supp_rates[0];
1907 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1908 		       sta->ht_cap.mcs.rx_mask[0] << 12);
1909 	switch (wirelessmode) {
1910 	case WIRELESS_MODE_A:
1911 		ratr_value &= 0x00000FF0;
1912 		break;
1913 	case WIRELESS_MODE_B:
1914 		if (ratr_value & 0x0000000c)
1915 			ratr_value &= 0x0000000d;
1916 		else
1917 			ratr_value &= 0x0000000f;
1918 		break;
1919 	case WIRELESS_MODE_G:
1920 		ratr_value &= 0x00000FF5;
1921 		break;
1922 	case WIRELESS_MODE_N_24G:
1923 	case WIRELESS_MODE_N_5G:
1924 		nmode = 1;
1925 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1926 			ratr_value &= 0x0007F005;
1927 		} else {
1928 			u32 ratr_mask;
1929 
1930 			if (get_rf_type(rtlphy) == RF_1T2R ||
1931 			    get_rf_type(rtlphy) == RF_1T1R) {
1932 				ratr_mask = 0x000ff005;
1933 			} else {
1934 				ratr_mask = 0x0f0ff005;
1935 			}
1936 
1937 			ratr_value &= ratr_mask;
1938 		}
1939 		break;
1940 	default:
1941 		if (rtlphy->rf_type == RF_1T2R)
1942 			ratr_value &= 0x000ff0ff;
1943 		else
1944 			ratr_value &= 0x0f0ff0ff;
1945 
1946 		break;
1947 	}
1948 	ratr_value &= 0x0FFFFFFF;
1949 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1950 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1951 		ratr_value |= 0x10000000;
1952 		tmp_ratr_value = (ratr_value >> 12);
1953 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1954 			if ((1 << shortgi_rate) & tmp_ratr_value)
1955 				break;
1956 		}
1957 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1958 		    (shortgi_rate << 4) | (shortgi_rate);
1959 	}
1960 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1961 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
1962 		 ("%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)));
1963 }
1964 
rtl92de_update_hal_rate_mask(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)1965 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1966 		struct ieee80211_sta *sta, u8 rssi_level)
1967 {
1968 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1969 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1970 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1971 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1972 	struct rtl_sta_info *sta_entry = NULL;
1973 	u32 ratr_bitmap;
1974 	u8 ratr_index;
1975 	u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
1976 							? 1 : 0;
1977 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1978 							1 : 0;
1979 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1980 							1 : 0;
1981 	enum wireless_mode wirelessmode = 0;
1982 	bool shortgi = false;
1983 	u32 value[2];
1984 	u8 macid = 0;
1985 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1986 
1987 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1988 	mimo_ps = sta_entry->mimo_ps;
1989 	wirelessmode = sta_entry->wireless_mode;
1990 	if (mac->opmode == NL80211_IFTYPE_STATION)
1991 		curtxbw_40mhz = mac->bw_40;
1992 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1993 		mac->opmode == NL80211_IFTYPE_ADHOC)
1994 		macid = sta->aid + 1;
1995 
1996 	if (rtlhal->current_bandtype == BAND_ON_5G)
1997 		ratr_bitmap = sta->supp_rates[1] << 4;
1998 	else
1999 		ratr_bitmap = sta->supp_rates[0];
2000 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2001 			sta->ht_cap.mcs.rx_mask[0] << 12);
2002 	switch (wirelessmode) {
2003 	case WIRELESS_MODE_B:
2004 		ratr_index = RATR_INX_WIRELESS_B;
2005 		if (ratr_bitmap & 0x0000000c)
2006 			ratr_bitmap &= 0x0000000d;
2007 		else
2008 			ratr_bitmap &= 0x0000000f;
2009 		break;
2010 	case WIRELESS_MODE_G:
2011 		ratr_index = RATR_INX_WIRELESS_GB;
2012 
2013 		if (rssi_level == 1)
2014 			ratr_bitmap &= 0x00000f00;
2015 		else if (rssi_level == 2)
2016 			ratr_bitmap &= 0x00000ff0;
2017 		else
2018 			ratr_bitmap &= 0x00000ff5;
2019 		break;
2020 	case WIRELESS_MODE_A:
2021 		ratr_index = RATR_INX_WIRELESS_G;
2022 		ratr_bitmap &= 0x00000ff0;
2023 		break;
2024 	case WIRELESS_MODE_N_24G:
2025 	case WIRELESS_MODE_N_5G:
2026 		if (wirelessmode == WIRELESS_MODE_N_24G)
2027 			ratr_index = RATR_INX_WIRELESS_NGB;
2028 		else
2029 			ratr_index = RATR_INX_WIRELESS_NG;
2030 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2031 			if (rssi_level == 1)
2032 				ratr_bitmap &= 0x00070000;
2033 			else if (rssi_level == 2)
2034 				ratr_bitmap &= 0x0007f000;
2035 			else
2036 				ratr_bitmap &= 0x0007f005;
2037 		} else {
2038 			if (rtlphy->rf_type == RF_1T2R ||
2039 			    rtlphy->rf_type == RF_1T1R) {
2040 				if (curtxbw_40mhz) {
2041 					if (rssi_level == 1)
2042 						ratr_bitmap &= 0x000f0000;
2043 					else if (rssi_level == 2)
2044 						ratr_bitmap &= 0x000ff000;
2045 					else
2046 						ratr_bitmap &= 0x000ff015;
2047 				} else {
2048 					if (rssi_level == 1)
2049 						ratr_bitmap &= 0x000f0000;
2050 					else if (rssi_level == 2)
2051 						ratr_bitmap &= 0x000ff000;
2052 					else
2053 						ratr_bitmap &= 0x000ff005;
2054 				}
2055 			} else {
2056 				if (curtxbw_40mhz) {
2057 					if (rssi_level == 1)
2058 						ratr_bitmap &= 0x0f0f0000;
2059 					else if (rssi_level == 2)
2060 						ratr_bitmap &= 0x0f0ff000;
2061 					else
2062 						ratr_bitmap &= 0x0f0ff015;
2063 				} else {
2064 					if (rssi_level == 1)
2065 						ratr_bitmap &= 0x0f0f0000;
2066 					else if (rssi_level == 2)
2067 						ratr_bitmap &= 0x0f0ff000;
2068 					else
2069 						ratr_bitmap &= 0x0f0ff005;
2070 				}
2071 			}
2072 		}
2073 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2074 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2075 
2076 			if (macid == 0)
2077 				shortgi = true;
2078 			else if (macid == 1)
2079 				shortgi = false;
2080 		}
2081 		break;
2082 	default:
2083 		ratr_index = RATR_INX_WIRELESS_NGB;
2084 
2085 		if (rtlphy->rf_type == RF_1T2R)
2086 			ratr_bitmap &= 0x000ff0ff;
2087 		else
2088 			ratr_bitmap &= 0x0f0ff0ff;
2089 		break;
2090 	}
2091 
2092 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2093 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2094 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2095 		 ("ratr_bitmap :%x value0:%x value1:%x\n",
2096 		  ratr_bitmap, value[0], value[1]));
2097 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2098 	if (macid != 0)
2099 		sta_entry->ratr_index = ratr_index;
2100 }
2101 
rtl92de_update_hal_rate_tbl(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u8 rssi_level)2102 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2103 		struct ieee80211_sta *sta, u8 rssi_level)
2104 {
2105 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2106 
2107 	if (rtlpriv->dm.useramask)
2108 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2109 	else
2110 		rtl92de_update_hal_rate_table(hw, sta);
2111 }
2112 
rtl92de_update_channel_access_setting(struct ieee80211_hw * hw)2113 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2114 {
2115 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2116 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2117 	u16 sifs_timer;
2118 
2119 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2120 				      (u8 *)&mac->slot_time);
2121 	if (!mac->ht_enable)
2122 		sifs_timer = 0x0a0a;
2123 	else
2124 		sifs_timer = 0x1010;
2125 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2126 }
2127 
rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw * hw,u8 * valid)2128 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2129 {
2130 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2131 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2132 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2133 	enum rf_pwrstate e_rfpowerstate_toset;
2134 	u8 u1tmp;
2135 	bool actuallyset = false;
2136 	unsigned long flag;
2137 
2138 	if (rtlpci->being_init_adapter)
2139 		return false;
2140 	if (ppsc->swrf_processing)
2141 		return false;
2142 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2143 	if (ppsc->rfchange_inprogress) {
2144 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2145 		return false;
2146 	} else {
2147 		ppsc->rfchange_inprogress = true;
2148 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2149 	}
2150 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2151 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2152 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2153 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2154 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2155 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2156 			 ("GPIOChangeRF  - HW Radio ON, RF ON\n"));
2157 		e_rfpowerstate_toset = ERFON;
2158 		ppsc->hwradiooff = false;
2159 		actuallyset = true;
2160 	} else if ((ppsc->hwradiooff == false)
2161 		&& (e_rfpowerstate_toset == ERFOFF)) {
2162 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2163 			 ("GPIOChangeRF  - HW Radio OFF, RF OFF\n"));
2164 		e_rfpowerstate_toset = ERFOFF;
2165 		ppsc->hwradiooff = true;
2166 		actuallyset = true;
2167 	}
2168 	if (actuallyset) {
2169 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2170 		ppsc->rfchange_inprogress = false;
2171 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2172 	} else {
2173 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2174 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2175 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2176 		ppsc->rfchange_inprogress = false;
2177 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2178 	}
2179 	*valid = 1;
2180 	return !ppsc->hwradiooff;
2181 }
2182 
rtl92de_set_key(struct ieee80211_hw * hw,u32 key_index,u8 * p_macaddr,bool is_group,u8 enc_algo,bool is_wepkey,bool clear_all)2183 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2184 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2185 		     bool is_wepkey, bool clear_all)
2186 {
2187 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2188 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2189 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2190 	u8 *macaddr = p_macaddr;
2191 	u32 entry_id;
2192 	bool is_pairwise = false;
2193 	static u8 cam_const_addr[4][6] = {
2194 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2195 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2196 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2197 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2198 	};
2199 	static u8 cam_const_broad[] = {
2200 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2201 	};
2202 
2203 	if (clear_all) {
2204 		u8 idx;
2205 		u8 cam_offset = 0;
2206 		u8 clear_number = 5;
2207 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, ("clear_all\n"));
2208 		for (idx = 0; idx < clear_number; idx++) {
2209 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2210 			rtl_cam_empty_entry(hw, cam_offset + idx);
2211 
2212 			if (idx < 5) {
2213 				memset(rtlpriv->sec.key_buf[idx], 0,
2214 				       MAX_KEY_LEN);
2215 				rtlpriv->sec.key_len[idx] = 0;
2216 			}
2217 		}
2218 	} else {
2219 		switch (enc_algo) {
2220 		case WEP40_ENCRYPTION:
2221 			enc_algo = CAM_WEP40;
2222 			break;
2223 		case WEP104_ENCRYPTION:
2224 			enc_algo = CAM_WEP104;
2225 			break;
2226 		case TKIP_ENCRYPTION:
2227 			enc_algo = CAM_TKIP;
2228 			break;
2229 		case AESCCMP_ENCRYPTION:
2230 			enc_algo = CAM_AES;
2231 			break;
2232 		default:
2233 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case "
2234 						"not process\n"));
2235 			enc_algo = CAM_TKIP;
2236 			break;
2237 		}
2238 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2239 			macaddr = cam_const_addr[key_index];
2240 			entry_id = key_index;
2241 		} else {
2242 			if (is_group) {
2243 				macaddr = cam_const_broad;
2244 				entry_id = key_index;
2245 			} else {
2246 				if (mac->opmode == NL80211_IFTYPE_AP) {
2247 					entry_id = rtl_cam_get_free_entry(hw,
2248 								 p_macaddr);
2249 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2250 						RT_TRACE(rtlpriv, COMP_SEC,
2251 							 DBG_EMERG, ("Can not "
2252 							 "find free hw security"
2253 							 " cam entry\n"));
2254 						return;
2255 					}
2256 				} else {
2257 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2258 				}
2259 				key_index = PAIRWISE_KEYIDX;
2260 				is_pairwise = true;
2261 			}
2262 		}
2263 		if (rtlpriv->sec.key_len[key_index] == 0) {
2264 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2265 				 ("delete one entry, entry_id is %d\n",
2266 				 entry_id));
2267 			if (mac->opmode == NL80211_IFTYPE_AP)
2268 				rtl_cam_del_entry(hw, p_macaddr);
2269 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2270 		} else {
2271 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2272 				 ("The insert KEY length is %d\n",
2273 				  rtlpriv->sec.key_len[PAIRWISE_KEYIDX]));
2274 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2275 				 ("The insert KEY  is %x %x\n",
2276 				  rtlpriv->sec.key_buf[0][0],
2277 				  rtlpriv->sec.key_buf[0][1]));
2278 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2279 				 ("add one entry\n"));
2280 			if (is_pairwise) {
2281 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2282 					      "Pairwiase Key content :",
2283 					      rtlpriv->sec.pairwise_key,
2284 					      rtlpriv->
2285 					      sec.key_len[PAIRWISE_KEYIDX]);
2286 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2287 					 ("set Pairwiase key\n"));
2288 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2289 						      entry_id, enc_algo,
2290 						      CAM_CONFIG_NO_USEDK,
2291 						      rtlpriv->
2292 						      sec.key_buf[key_index]);
2293 			} else {
2294 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2295 					 ("set group key\n"));
2296 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2297 					rtl_cam_add_one_entry(hw,
2298 						rtlefuse->dev_addr,
2299 						PAIRWISE_KEYIDX,
2300 						CAM_PAIRWISE_KEY_POSITION,
2301 						enc_algo, CAM_CONFIG_NO_USEDK,
2302 						rtlpriv->sec.key_buf[entry_id]);
2303 				}
2304 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2305 						entry_id, enc_algo,
2306 						CAM_CONFIG_NO_USEDK,
2307 						rtlpriv->sec.key_buf
2308 						[entry_id]);
2309 			}
2310 		}
2311 	}
2312 }
2313 
rtl92de_suspend(struct ieee80211_hw * hw)2314 void rtl92de_suspend(struct ieee80211_hw *hw)
2315 {
2316 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2317 
2318 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2319 		REG_MAC_PHY_CTRL_NORMAL);
2320 }
2321 
rtl92de_resume(struct ieee80211_hw * hw)2322 void rtl92de_resume(struct ieee80211_hw *hw)
2323 {
2324 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2325 
2326 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2327 		       rtlpriv->rtlhal.macphyctl_reg);
2328 }
2329