1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2010  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33 
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37 
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39 
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41 	{0, 0, 0, 2},
42 	{0, 1, 0, 2},
43 	{0, 2, 0, 2},
44 	{1, 0, 0, 1},
45 	{1, 0, 1, 1},
46 	{1, 1, 0, 1},
47 	{1, 1, 1, 3},
48 	{1, 3, 0, 17},
49 	{3, 3, 1, 48},
50 	{10, 0, 0, 6},
51 	{10, 3, 0, 1},
52 	{10, 3, 1, 1},
53 	{11, 0, 0, 28}
54 };
55 
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57 				    u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59 				    u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61 				    u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63 				     u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65 				     u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67 				     u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69 					u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71 					u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74 					u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76 				 u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78 					u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80 				       u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82 					u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
85 
efuse_initialize(struct ieee80211_hw * hw)86 void efuse_initialize(struct ieee80211_hw *hw)
87 {
88 	struct rtl_priv *rtlpriv = rtl_priv(hw);
89 	u8 bytetemp;
90 	u8 temp;
91 
92 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93 	temp = bytetemp | 0x20;
94 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95 
96 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97 	temp = bytetemp & 0xFE;
98 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99 
100 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101 	temp = bytetemp | 0x80;
102 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103 
104 	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105 
106 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
107 
108 }
109 
efuse_read_1byte(struct ieee80211_hw * hw,u16 address)110 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
111 {
112 	struct rtl_priv *rtlpriv = rtl_priv(hw);
113 	u8 data;
114 	u8 bytetemp;
115 	u8 temp;
116 	u32 k = 0;
117 	const u32 efuse_len =
118 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119 
120 	if (address < efuse_len) {
121 		temp = address & 0xFF;
122 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123 			       temp);
124 		bytetemp = rtl_read_byte(rtlpriv,
125 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128 			       temp);
129 
130 		bytetemp = rtl_read_byte(rtlpriv,
131 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132 		temp = bytetemp & 0x7F;
133 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134 			       temp);
135 
136 		bytetemp = rtl_read_byte(rtlpriv,
137 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138 		while (!(bytetemp & 0x80)) {
139 			bytetemp = rtl_read_byte(rtlpriv,
140 						 rtlpriv->cfg->
141 						 maps[EFUSE_CTRL] + 3);
142 			k++;
143 			if (k == 1000) {
144 				k = 0;
145 				break;
146 			}
147 		}
148 		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149 		return data;
150 	} else
151 		return 0xFF;
152 
153 }
154 EXPORT_SYMBOL(efuse_read_1byte);
155 
efuse_write_1byte(struct ieee80211_hw * hw,u16 address,u8 value)156 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
157 {
158 	struct rtl_priv *rtlpriv = rtl_priv(hw);
159 	u8 bytetemp;
160 	u8 temp;
161 	u32 k = 0;
162 	const u32 efuse_len =
163 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164 
165 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
166 		 ("Addr=%x Data =%x\n", address, value));
167 
168 	if (address < efuse_len) {
169 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170 
171 		temp = address & 0xFF;
172 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173 			       temp);
174 		bytetemp = rtl_read_byte(rtlpriv,
175 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176 
177 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178 		rtl_write_byte(rtlpriv,
179 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180 
181 		bytetemp = rtl_read_byte(rtlpriv,
182 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183 		temp = bytetemp | 0x80;
184 		rtl_write_byte(rtlpriv,
185 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186 
187 		bytetemp = rtl_read_byte(rtlpriv,
188 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189 
190 		while (bytetemp & 0x80) {
191 			bytetemp = rtl_read_byte(rtlpriv,
192 						 rtlpriv->cfg->
193 						 maps[EFUSE_CTRL] + 3);
194 			k++;
195 			if (k == 100) {
196 				k = 0;
197 				break;
198 			}
199 		}
200 	}
201 
202 }
203 
read_efuse_byte(struct ieee80211_hw * hw,u16 _offset,u8 * pbuf)204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 {
206 	struct rtl_priv *rtlpriv = rtl_priv(hw);
207 	u32 value32;
208 	u8 readbyte;
209 	u16 retry;
210 
211 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212 		       (_offset & 0xff));
213 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215 		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216 
217 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219 		       (readbyte & 0x7f));
220 
221 	retry = 0;
222 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223 	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224 		value32 = rtl_read_dword(rtlpriv,
225 					 rtlpriv->cfg->maps[EFUSE_CTRL]);
226 		retry++;
227 	}
228 
229 	udelay(50);
230 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231 
232 	*pbuf = (u8) (value32 & 0xff);
233 }
234 
read_efuse(struct ieee80211_hw * hw,u16 _offset,u16 _size_byte,u8 * pbuf)235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 {
237 	struct rtl_priv *rtlpriv = rtl_priv(hw);
238 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239 	u8 *efuse_tbl;
240 	u8 rtemp8[1];
241 	u16 efuse_addr = 0;
242 	u8 offset, wren;
243 	u16 i;
244 	u16 j;
245 	const u16 efuse_max_section =
246 		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247 	const u32 efuse_len =
248 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249 	u16 **efuse_word;
250 	u16 efuse_utilized = 0;
251 	u8 efuse_usage;
252 
253 	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255 			 ("read_efuse(): Invalid offset(%#x) with read "
256 			  "bytes(%#x)!!\n", _offset, _size_byte));
257 		return;
258 	}
259 
260 	/* allocate memory for efuse_tbl and efuse_word */
261 	efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262 			    sizeof(u8), GFP_ATOMIC);
263 	if (!efuse_tbl)
264 		return;
265 	efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266 	if (!efuse_word)
267 		goto done;
268 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269 		efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270 					GFP_ATOMIC);
271 		if (!efuse_word[i])
272 			goto done;
273 	}
274 
275 	for (i = 0; i < efuse_max_section; i++)
276 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277 			efuse_word[j][i] = 0xFFFF;
278 
279 	read_efuse_byte(hw, efuse_addr, rtemp8);
280 	if (*rtemp8 != 0xFF) {
281 		efuse_utilized++;
282 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283 			("Addr=%d\n", efuse_addr));
284 		efuse_addr++;
285 	}
286 
287 	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288 		offset = ((*rtemp8 >> 4) & 0x0f);
289 
290 		if (offset < efuse_max_section) {
291 			wren = (*rtemp8 & 0x0f);
292 			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293 				("offset-%d Worden=%x\n", offset, wren));
294 
295 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296 				if (!(wren & 0x01)) {
297 					RTPRINT(rtlpriv, FEEPROM,
298 						EFUSE_READ_ALL, ("Addr=%d\n",
299 								 efuse_addr));
300 
301 					read_efuse_byte(hw, efuse_addr, rtemp8);
302 					efuse_addr++;
303 					efuse_utilized++;
304 					efuse_word[i][offset] =
305 							 (*rtemp8 & 0xff);
306 
307 					if (efuse_addr >= efuse_len)
308 						break;
309 
310 					RTPRINT(rtlpriv, FEEPROM,
311 						EFUSE_READ_ALL, ("Addr=%d\n",
312 								 efuse_addr));
313 
314 					read_efuse_byte(hw, efuse_addr, rtemp8);
315 					efuse_addr++;
316 					efuse_utilized++;
317 					efuse_word[i][offset] |=
318 					    (((u16)*rtemp8 << 8) & 0xff00);
319 
320 					if (efuse_addr >= efuse_len)
321 						break;
322 				}
323 
324 				wren >>= 1;
325 			}
326 		}
327 
328 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329 			("Addr=%d\n", efuse_addr));
330 		read_efuse_byte(hw, efuse_addr, rtemp8);
331 		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332 			efuse_utilized++;
333 			efuse_addr++;
334 		}
335 	}
336 
337 	for (i = 0; i < efuse_max_section; i++) {
338 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339 			efuse_tbl[(i * 8) + (j * 2)] =
340 			    (efuse_word[j][i] & 0xff);
341 			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342 			    ((efuse_word[j][i] >> 8) & 0xff);
343 		}
344 	}
345 
346 	for (i = 0; i < _size_byte; i++)
347 		pbuf[i] = efuse_tbl[_offset + i];
348 
349 	rtlefuse->efuse_usedbytes = efuse_utilized;
350 	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351 	rtlefuse->efuse_usedpercentage = efuse_usage;
352 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353 				      (u8 *)&efuse_utilized);
354 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355 				      (u8 *)&efuse_usage);
356 done:
357 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358 		kfree(efuse_word[i]);
359 	kfree(efuse_word);
360 	kfree(efuse_tbl);
361 }
362 
efuse_shadow_update_chk(struct ieee80211_hw * hw)363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 {
365 	struct rtl_priv *rtlpriv = rtl_priv(hw);
366 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367 	u8 section_idx, i, Base;
368 	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369 	bool wordchanged, result = true;
370 
371 	for (section_idx = 0; section_idx < 16; section_idx++) {
372 		Base = section_idx * 8;
373 		wordchanged = false;
374 
375 		for (i = 0; i < 8; i = i + 2) {
376 			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378 			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380 								   1])) {
381 				words_need++;
382 				wordchanged = true;
383 			}
384 		}
385 
386 		if (wordchanged)
387 			hdr_num++;
388 	}
389 
390 	totalbytes = hdr_num + words_need * 2;
391 	efuse_used = rtlefuse->efuse_usedbytes;
392 
393 	if ((totalbytes + efuse_used) >=
394 	    (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
395 		result = false;
396 
397 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398 		 ("efuse_shadow_update_chk(): totalbytes(%#x), "
399 		  "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
400 		  totalbytes, hdr_num, words_need, efuse_used));
401 
402 	return result;
403 }
404 
efuse_shadow_read(struct ieee80211_hw * hw,u8 type,u16 offset,u32 * value)405 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
406 		       u16 offset, u32 *value)
407 {
408 	if (type == 1)
409 		efuse_shadow_read_1byte(hw, offset, (u8 *) value);
410 	else if (type == 2)
411 		efuse_shadow_read_2byte(hw, offset, (u16 *) value);
412 	else if (type == 4)
413 		efuse_shadow_read_4byte(hw, offset, (u32 *) value);
414 
415 }
416 
efuse_shadow_write(struct ieee80211_hw * hw,u8 type,u16 offset,u32 value)417 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
418 				u32 value)
419 {
420 	if (type == 1)
421 		efuse_shadow_write_1byte(hw, offset, (u8) value);
422 	else if (type == 2)
423 		efuse_shadow_write_2byte(hw, offset, (u16) value);
424 	else if (type == 4)
425 		efuse_shadow_write_4byte(hw, offset, value);
426 
427 }
428 
efuse_shadow_update(struct ieee80211_hw * hw)429 bool efuse_shadow_update(struct ieee80211_hw *hw)
430 {
431 	struct rtl_priv *rtlpriv = rtl_priv(hw);
432 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
433 	u16 i, offset, base;
434 	u8 word_en = 0x0F;
435 	u8 first_pg = false;
436 
437 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
438 
439 	if (!efuse_shadow_update_chk(hw)) {
440 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
441 		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
442 		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
443 		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
444 
445 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
446 			 ("<---efuse out of capacity!!\n"));
447 		return false;
448 	}
449 	efuse_power_switch(hw, true, true);
450 
451 	for (offset = 0; offset < 16; offset++) {
452 
453 		word_en = 0x0F;
454 		base = offset * 8;
455 
456 		for (i = 0; i < 8; i++) {
457 			if (first_pg) {
458 
459 				word_en &= ~(BIT(i / 2));
460 
461 				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
462 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
463 			} else {
464 
465 				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
466 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
467 					word_en &= ~(BIT(i / 2));
468 
469 					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
470 					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
471 				}
472 			}
473 		}
474 
475 		if (word_en != 0x0F) {
476 			u8 tmpdata[8];
477 			memcpy(tmpdata,
478 			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
479 			       8);
480 			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
481 				      ("U-efuse\n"), tmpdata, 8);
482 
483 			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
484 						   tmpdata)) {
485 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
486 					 ("PG section(%#x) fail!!\n", offset));
487 				break;
488 			}
489 		}
490 
491 	}
492 
493 	efuse_power_switch(hw, true, false);
494 	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
495 
496 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
497 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
498 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
499 
500 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
501 	return true;
502 }
503 
rtl_efuse_shadow_map_update(struct ieee80211_hw * hw)504 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
505 {
506 	struct rtl_priv *rtlpriv = rtl_priv(hw);
507 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
508 
509 	if (rtlefuse->autoload_failflag)
510 		memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
511 			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
512 	else
513 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
514 
515 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
516 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
517 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
518 
519 }
520 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
521 
efuse_force_write_vendor_Id(struct ieee80211_hw * hw)522 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
523 {
524 	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
525 
526 	efuse_power_switch(hw, true, true);
527 
528 	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
529 
530 	efuse_power_switch(hw, true, false);
531 
532 }
533 
efuse_re_pg_section(struct ieee80211_hw * hw,u8 section_idx)534 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
535 {
536 }
537 
efuse_shadow_read_1byte(struct ieee80211_hw * hw,u16 offset,u8 * value)538 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
539 				    u16 offset, u8 *value)
540 {
541 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
542 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
543 }
544 
efuse_shadow_read_2byte(struct ieee80211_hw * hw,u16 offset,u16 * value)545 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
546 				    u16 offset, u16 *value)
547 {
548 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549 
550 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
551 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
552 
553 }
554 
efuse_shadow_read_4byte(struct ieee80211_hw * hw,u16 offset,u32 * value)555 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
556 				    u16 offset, u32 *value)
557 {
558 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559 
560 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
561 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
562 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
563 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
564 }
565 
efuse_shadow_write_1byte(struct ieee80211_hw * hw,u16 offset,u8 value)566 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
567 				     u16 offset, u8 value)
568 {
569 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
570 
571 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
572 }
573 
efuse_shadow_write_2byte(struct ieee80211_hw * hw,u16 offset,u16 value)574 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
575 				     u16 offset, u16 value)
576 {
577 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
578 
579 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
580 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
581 
582 }
583 
efuse_shadow_write_4byte(struct ieee80211_hw * hw,u16 offset,u32 value)584 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
585 				     u16 offset, u32 value)
586 {
587 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
588 
589 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
590 	    (u8) (value & 0x000000FF);
591 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
592 	    (u8) ((value >> 8) & 0x0000FF);
593 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
594 	    (u8) ((value >> 16) & 0x00FF);
595 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
596 	    (u8) ((value >> 24) & 0xFF);
597 
598 }
599 
efuse_one_byte_read(struct ieee80211_hw * hw,u16 addr,u8 * data)600 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
601 {
602 	struct rtl_priv *rtlpriv = rtl_priv(hw);
603 	u8 tmpidx = 0;
604 	int result;
605 
606 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
607 		       (u8) (addr & 0xff));
608 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
609 		       ((u8) ((addr >> 8) & 0x03)) |
610 		       (rtl_read_byte(rtlpriv,
611 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
612 			0xFC));
613 
614 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
615 
616 	while (!(0x80 & rtl_read_byte(rtlpriv,
617 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
618 	       && (tmpidx < 100)) {
619 		tmpidx++;
620 	}
621 
622 	if (tmpidx < 100) {
623 		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
624 		result = true;
625 	} else {
626 		*data = 0xff;
627 		result = false;
628 	}
629 	return result;
630 }
631 
efuse_one_byte_write(struct ieee80211_hw * hw,u16 addr,u8 data)632 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
633 {
634 	struct rtl_priv *rtlpriv = rtl_priv(hw);
635 	u8 tmpidx = 0;
636 
637 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
638 		 ("Addr = %x Data=%x\n", addr, data));
639 
640 	rtl_write_byte(rtlpriv,
641 		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
642 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
643 		       (rtl_read_byte(rtlpriv,
644 			 rtlpriv->cfg->maps[EFUSE_CTRL] +
645 			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
646 
647 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
648 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
649 
650 	while ((0x80 & rtl_read_byte(rtlpriv,
651 				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
652 	       && (tmpidx < 100)) {
653 		tmpidx++;
654 	}
655 
656 	if (tmpidx < 100)
657 		return true;
658 
659 	return false;
660 }
661 
efuse_read_all_map(struct ieee80211_hw * hw,u8 * efuse)662 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
663 {
664 	struct rtl_priv *rtlpriv = rtl_priv(hw);
665 	efuse_power_switch(hw, false, true);
666 	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
667 	efuse_power_switch(hw, false, false);
668 }
669 
efuse_read_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,u8 * tmpdata,u8 * readstate)670 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
671 				u8 efuse_data, u8 offset, u8 *tmpdata,
672 				u8 *readstate)
673 {
674 	bool dataempty = true;
675 	u8 hoffset;
676 	u8 tmpidx;
677 	u8 hworden;
678 	u8 word_cnts;
679 
680 	hoffset = (efuse_data >> 4) & 0x0F;
681 	hworden = efuse_data & 0x0F;
682 	word_cnts = efuse_calculate_word_cnts(hworden);
683 
684 	if (hoffset == offset) {
685 		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
686 			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
687 			    &efuse_data)) {
688 				tmpdata[tmpidx] = efuse_data;
689 				if (efuse_data != 0xff)
690 					dataempty = true;
691 			}
692 		}
693 
694 		if (dataempty) {
695 			*readstate = PG_STATE_DATA;
696 		} else {
697 			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
698 			*readstate = PG_STATE_HEADER;
699 		}
700 
701 	} else {
702 		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
703 		*readstate = PG_STATE_HEADER;
704 	}
705 }
706 
efuse_pg_packet_read(struct ieee80211_hw * hw,u8 offset,u8 * data)707 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
708 {
709 	u8 readstate = PG_STATE_HEADER;
710 	bool continual = true;
711 	u8 efuse_data, word_cnts = 0;
712 	u16 efuse_addr = 0;
713 	u8 tmpdata[8];
714 
715 	if (data == NULL)
716 		return false;
717 	if (offset > 15)
718 		return false;
719 
720 	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
722 
723 	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
724 		if (readstate & PG_STATE_HEADER) {
725 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
726 			    && (efuse_data != 0xFF))
727 				efuse_read_data_case1(hw, &efuse_addr,
728 						      efuse_data,
729 						      offset, tmpdata,
730 						      &readstate);
731 			else
732 				continual = false;
733 		} else if (readstate & PG_STATE_DATA) {
734 			efuse_word_enable_data_read(0, tmpdata, data);
735 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
736 			readstate = PG_STATE_HEADER;
737 		}
738 
739 	}
740 
741 	if ((data[0] == 0xff) && (data[1] == 0xff) &&
742 	    (data[2] == 0xff) && (data[3] == 0xff) &&
743 	    (data[4] == 0xff) && (data[5] == 0xff) &&
744 	    (data[6] == 0xff) && (data[7] == 0xff))
745 		return false;
746 	else
747 		return true;
748 
749 }
750 
efuse_write_data_case1(struct ieee80211_hw * hw,u16 * efuse_addr,u8 efuse_data,u8 offset,int * continual,u8 * write_state,struct pgpkt_struct * target_pkt,int * repeat_times,int * result,u8 word_en)751 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
752 			u8 efuse_data, u8 offset, int *continual,
753 			u8 *write_state, struct pgpkt_struct *target_pkt,
754 			int *repeat_times, int *result, u8 word_en)
755 {
756 	struct rtl_priv *rtlpriv = rtl_priv(hw);
757 	struct pgpkt_struct tmp_pkt;
758 	bool dataempty = true;
759 	u8 originaldata[8 * sizeof(u8)];
760 	u8 badworden = 0x0F;
761 	u8 match_word_en, tmp_word_en;
762 	u8 tmpindex;
763 	u8 tmp_header = efuse_data;
764 	u8 tmp_word_cnts;
765 
766 	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
767 	tmp_pkt.word_en = tmp_header & 0x0F;
768 	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
769 
770 	if (tmp_pkt.offset != target_pkt->offset) {
771 		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
772 		*write_state = PG_STATE_HEADER;
773 	} else {
774 		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
775 			u16 address = *efuse_addr + 1 + tmpindex;
776 			if (efuse_one_byte_read(hw, address,
777 			     &efuse_data) && (efuse_data != 0xFF))
778 				dataempty = false;
779 		}
780 
781 		if (dataempty == false) {
782 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
783 			*write_state = PG_STATE_HEADER;
784 		} else {
785 			match_word_en = 0x0F;
786 			if (!((target_pkt->word_en & BIT(0)) |
787 			     (tmp_pkt.word_en & BIT(0))))
788 				match_word_en &= (~BIT(0));
789 
790 			if (!((target_pkt->word_en & BIT(1)) |
791 			     (tmp_pkt.word_en & BIT(1))))
792 				match_word_en &= (~BIT(1));
793 
794 			if (!((target_pkt->word_en & BIT(2)) |
795 			     (tmp_pkt.word_en & BIT(2))))
796 				match_word_en &= (~BIT(2));
797 
798 			if (!((target_pkt->word_en & BIT(3)) |
799 			     (tmp_pkt.word_en & BIT(3))))
800 				match_word_en &= (~BIT(3));
801 
802 			if ((match_word_en & 0x0F) != 0x0F) {
803 				badworden = efuse_word_enable_data_write(
804 							    hw, *efuse_addr + 1,
805 							    tmp_pkt.word_en,
806 							    target_pkt->data);
807 
808 				if (0x0F != (badworden & 0x0F)) {
809 					u8 reorg_offset = offset;
810 					u8 reorg_worden = badworden;
811 					efuse_pg_packet_write(hw, reorg_offset,
812 							       reorg_worden,
813 							       originaldata);
814 				}
815 
816 				tmp_word_en = 0x0F;
817 				if ((target_pkt->word_en & BIT(0)) ^
818 				    (match_word_en & BIT(0)))
819 					tmp_word_en &= (~BIT(0));
820 
821 				if ((target_pkt->word_en & BIT(1)) ^
822 				    (match_word_en & BIT(1)))
823 					tmp_word_en &= (~BIT(1));
824 
825 				if ((target_pkt->word_en & BIT(2)) ^
826 				     (match_word_en & BIT(2)))
827 					tmp_word_en &= (~BIT(2));
828 
829 				if ((target_pkt->word_en & BIT(3)) ^
830 				     (match_word_en & BIT(3)))
831 					tmp_word_en &= (~BIT(3));
832 
833 				if ((tmp_word_en & 0x0F) != 0x0F) {
834 					*efuse_addr = efuse_get_current_size(hw);
835 					target_pkt->offset = offset;
836 					target_pkt->word_en = tmp_word_en;
837 				} else {
838 					*continual = false;
839 				}
840 				*write_state = PG_STATE_HEADER;
841 				*repeat_times += 1;
842 				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
843 					*continual = false;
844 					*result = false;
845 				}
846 			} else {
847 				*efuse_addr += (2 * tmp_word_cnts) + 1;
848 				target_pkt->offset = offset;
849 				target_pkt->word_en = word_en;
850 				*write_state = PG_STATE_HEADER;
851 			}
852 		}
853 	}
854 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
855 }
856 
efuse_write_data_case2(struct ieee80211_hw * hw,u16 * efuse_addr,int * continual,u8 * write_state,struct pgpkt_struct target_pkt,int * repeat_times,int * result)857 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
858 				   int *continual, u8 *write_state,
859 				   struct pgpkt_struct target_pkt,
860 				   int *repeat_times, int *result)
861 {
862 	struct rtl_priv *rtlpriv = rtl_priv(hw);
863 	struct pgpkt_struct tmp_pkt;
864 	u8 pg_header;
865 	u8 tmp_header;
866 	u8 originaldata[8 * sizeof(u8)];
867 	u8 tmp_word_cnts;
868 	u8 badworden = 0x0F;
869 
870 	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
871 	efuse_one_byte_write(hw, *efuse_addr, pg_header);
872 	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
873 
874 	if (tmp_header == pg_header) {
875 		*write_state = PG_STATE_DATA;
876 	} else if (tmp_header == 0xFF) {
877 		*write_state = PG_STATE_HEADER;
878 		*repeat_times += 1;
879 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
880 			*continual = false;
881 			*result = false;
882 		}
883 	} else {
884 		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
885 		tmp_pkt.word_en = tmp_header & 0x0F;
886 
887 		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
888 
889 		memset(originaldata, 0xff, 8 * sizeof(u8));
890 
891 		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
892 			badworden = efuse_word_enable_data_write(hw,
893 				    *efuse_addr + 1, tmp_pkt.word_en,
894 				    originaldata);
895 
896 			if (0x0F != (badworden & 0x0F)) {
897 				u8 reorg_offset = tmp_pkt.offset;
898 				u8 reorg_worden = badworden;
899 				efuse_pg_packet_write(hw, reorg_offset,
900 						      reorg_worden,
901 						      originaldata);
902 				*efuse_addr = efuse_get_current_size(hw);
903 			} else {
904 				*efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
905 					      + 1;
906 			}
907 		} else {
908 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
909 		}
910 
911 		*write_state = PG_STATE_HEADER;
912 		*repeat_times += 1;
913 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
914 			*continual = false;
915 			*result = false;
916 		}
917 
918 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
919 			("efuse PG_STATE_HEADER-2\n"));
920 	}
921 }
922 
efuse_pg_packet_write(struct ieee80211_hw * hw,u8 offset,u8 word_en,u8 * data)923 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
924 				 u8 offset, u8 word_en, u8 *data)
925 {
926 	struct rtl_priv *rtlpriv = rtl_priv(hw);
927 	struct pgpkt_struct target_pkt;
928 	u8 write_state = PG_STATE_HEADER;
929 	int continual = true, result = true;
930 	u16 efuse_addr = 0;
931 	u8 efuse_data;
932 	u8 target_word_cnts = 0;
933 	u8 badworden = 0x0F;
934 	static int repeat_times;
935 
936 	if (efuse_get_current_size(hw) >=
937 	    (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
938 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939 			("efuse_pg_packet_write error\n"));
940 		return false;
941 	}
942 
943 	target_pkt.offset = offset;
944 	target_pkt.word_en = word_en;
945 
946 	memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
947 
948 	efuse_word_enable_data_read(word_en, data, target_pkt.data);
949 	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
950 
951 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
952 
953 	while (continual && (efuse_addr <
954 	       (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
955 
956 		if (write_state == PG_STATE_HEADER) {
957 			badworden = 0x0F;
958 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959 				("efuse PG_STATE_HEADER\n"));
960 
961 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
962 			    (efuse_data != 0xFF))
963 				efuse_write_data_case1(hw, &efuse_addr,
964 						       efuse_data, offset,
965 						       &continual,
966 						       &write_state, &target_pkt,
967 						       &repeat_times, &result,
968 						       word_en);
969 			else
970 				efuse_write_data_case2(hw, &efuse_addr,
971 						       &continual,
972 						       &write_state,
973 						       target_pkt,
974 						       &repeat_times,
975 						       &result);
976 
977 		} else if (write_state == PG_STATE_DATA) {
978 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979 				("efuse PG_STATE_DATA\n"));
980 			badworden =
981 			    efuse_word_enable_data_write(hw, efuse_addr + 1,
982 							 target_pkt.word_en,
983 							 target_pkt.data);
984 
985 			if ((badworden & 0x0F) == 0x0F) {
986 				continual = false;
987 			} else {
988 				efuse_addr += (2 * target_word_cnts) + 1;
989 
990 				target_pkt.offset = offset;
991 				target_pkt.word_en = badworden;
992 				target_word_cnts =
993 				    efuse_calculate_word_cnts(target_pkt.
994 							      word_en);
995 				write_state = PG_STATE_HEADER;
996 				repeat_times++;
997 				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
998 					continual = false;
999 					result = false;
1000 				}
1001 				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1002 					("efuse PG_STATE_HEADER-3\n"));
1003 			}
1004 		}
1005 	}
1006 
1007 	if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1008 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1009 			 ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
1010 	}
1011 
1012 	return true;
1013 }
1014 
efuse_word_enable_data_read(u8 word_en,u8 * sourdata,u8 * targetdata)1015 static void efuse_word_enable_data_read(u8 word_en,
1016 					u8 *sourdata, u8 *targetdata)
1017 {
1018 	if (!(word_en & BIT(0))) {
1019 		targetdata[0] = sourdata[0];
1020 		targetdata[1] = sourdata[1];
1021 	}
1022 
1023 	if (!(word_en & BIT(1))) {
1024 		targetdata[2] = sourdata[2];
1025 		targetdata[3] = sourdata[3];
1026 	}
1027 
1028 	if (!(word_en & BIT(2))) {
1029 		targetdata[4] = sourdata[4];
1030 		targetdata[5] = sourdata[5];
1031 	}
1032 
1033 	if (!(word_en & BIT(3))) {
1034 		targetdata[6] = sourdata[6];
1035 		targetdata[7] = sourdata[7];
1036 	}
1037 }
1038 
efuse_word_enable_data_write(struct ieee80211_hw * hw,u16 efuse_addr,u8 word_en,u8 * data)1039 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1040 				       u16 efuse_addr, u8 word_en, u8 *data)
1041 {
1042 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1043 	u16 tmpaddr;
1044 	u16 start_addr = efuse_addr;
1045 	u8 badworden = 0x0F;
1046 	u8 tmpdata[8];
1047 
1048 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1049 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1050 		 ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1051 
1052 	if (!(word_en & BIT(0))) {
1053 		tmpaddr = start_addr;
1054 		efuse_one_byte_write(hw, start_addr++, data[0]);
1055 		efuse_one_byte_write(hw, start_addr++, data[1]);
1056 
1057 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1058 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1059 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1060 			badworden &= (~BIT(0));
1061 	}
1062 
1063 	if (!(word_en & BIT(1))) {
1064 		tmpaddr = start_addr;
1065 		efuse_one_byte_write(hw, start_addr++, data[2]);
1066 		efuse_one_byte_write(hw, start_addr++, data[3]);
1067 
1068 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1069 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1070 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1071 			badworden &= (~BIT(1));
1072 	}
1073 
1074 	if (!(word_en & BIT(2))) {
1075 		tmpaddr = start_addr;
1076 		efuse_one_byte_write(hw, start_addr++, data[4]);
1077 		efuse_one_byte_write(hw, start_addr++, data[5]);
1078 
1079 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1080 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1081 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1082 			badworden &= (~BIT(2));
1083 	}
1084 
1085 	if (!(word_en & BIT(3))) {
1086 		tmpaddr = start_addr;
1087 		efuse_one_byte_write(hw, start_addr++, data[6]);
1088 		efuse_one_byte_write(hw, start_addr++, data[7]);
1089 
1090 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1091 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1092 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1093 			badworden &= (~BIT(3));
1094 	}
1095 
1096 	return badworden;
1097 }
1098 
efuse_power_switch(struct ieee80211_hw * hw,u8 write,u8 pwrstate)1099 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1100 {
1101 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1102 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1103 	u8 tempval;
1104 	u16 tmpV16;
1105 
1106 	if (pwrstate && (rtlhal->hw_type !=
1107 		HARDWARE_TYPE_RTL8192SE)) {
1108 		tmpV16 = rtl_read_word(rtlpriv,
1109 				       rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1110 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1111 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1112 			rtl_write_word(rtlpriv,
1113 				       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1114 				       tmpV16);
1115 		}
1116 
1117 		tmpV16 = rtl_read_word(rtlpriv,
1118 				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1119 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1120 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1121 			rtl_write_word(rtlpriv,
1122 				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1123 		}
1124 
1125 		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1126 		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1127 		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1128 			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1129 				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1130 			rtl_write_word(rtlpriv,
1131 				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1132 		}
1133 	}
1134 
1135 	if (pwrstate) {
1136 		if (write) {
1137 			tempval = rtl_read_byte(rtlpriv,
1138 						rtlpriv->cfg->maps[EFUSE_TEST] +
1139 						3);
1140 
1141 			if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1142 				tempval &= 0x0F;
1143 				tempval |= (VOLTAGE_V25 << 4);
1144 			}
1145 
1146 			rtl_write_byte(rtlpriv,
1147 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1148 				       (tempval | 0x80));
1149 		}
1150 
1151 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1152 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1153 						0x03);
1154 		}
1155 
1156 	} else {
1157 		if (write) {
1158 			tempval = rtl_read_byte(rtlpriv,
1159 						rtlpriv->cfg->maps[EFUSE_TEST] +
1160 						3);
1161 			rtl_write_byte(rtlpriv,
1162 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1163 				       (tempval & 0x7F));
1164 		}
1165 
1166 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1167 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1168 						0x02);
1169 		}
1170 
1171 	}
1172 
1173 }
1174 
efuse_get_current_size(struct ieee80211_hw * hw)1175 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1176 {
1177 	int continual = true;
1178 	u16 efuse_addr = 0;
1179 	u8 hworden;
1180 	u8 efuse_data, word_cnts;
1181 
1182 	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1183 	       && (efuse_addr < EFUSE_MAX_SIZE)) {
1184 		if (efuse_data != 0xFF) {
1185 			hworden = efuse_data & 0x0F;
1186 			word_cnts = efuse_calculate_word_cnts(hworden);
1187 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1188 		} else {
1189 			continual = false;
1190 		}
1191 	}
1192 
1193 	return efuse_addr;
1194 }
1195 
efuse_calculate_word_cnts(u8 word_en)1196 static u8 efuse_calculate_word_cnts(u8 word_en)
1197 {
1198 	u8 word_cnts = 0;
1199 	if (!(word_en & BIT(0)))
1200 		word_cnts++;
1201 	if (!(word_en & BIT(1)))
1202 		word_cnts++;
1203 	if (!(word_en & BIT(2)))
1204 		word_cnts++;
1205 	if (!(word_en & BIT(3)))
1206 		word_cnts++;
1207 	return word_cnts;
1208 }
1209 
1210