1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt61pci
23 	Abstract: rt61pci device specific routines.
24 	Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26 
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36 
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40 
41 /*
42  * Allow hardware encryption to be disabled.
43  */
44 static bool modparam_nohwcrypt = false;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47 
48 /*
49  * Register access.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attempt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 			       H2M_MAILBOX_CSR_OWNER, (__reg))
66 
rt61pci_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 			      const unsigned int word, const u8 value)
69 {
70 	u32 reg;
71 
72 	mutex_lock(&rt2x00dev->csr_mutex);
73 
74 	/*
75 	 * Wait until the BBP becomes available, afterwards we
76 	 * can safely write the new data into the register.
77 	 */
78 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 		reg = 0;
80 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84 
85 		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86 	}
87 
88 	mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90 
rt61pci_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 			     const unsigned int word, u8 *value)
93 {
94 	u32 reg;
95 
96 	mutex_lock(&rt2x00dev->csr_mutex);
97 
98 	/*
99 	 * Wait until the BBP becomes available, afterwards we
100 	 * can safely write the read request into the register.
101 	 * After the data has been written, we wait until hardware
102 	 * returns the correct value, if at any time the register
103 	 * doesn't become available in time, reg will be 0xffffffff
104 	 * which means we return 0xff to the caller.
105 	 */
106 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 		reg = 0;
108 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 
112 		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113 
114 		WAIT_FOR_BBP(rt2x00dev, &reg);
115 	}
116 
117 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 
119 	mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121 
rt61pci_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 			     const unsigned int word, const u32 value)
124 {
125 	u32 reg;
126 
127 	mutex_lock(&rt2x00dev->csr_mutex);
128 
129 	/*
130 	 * Wait until the RF becomes available, afterwards we
131 	 * can safely write the new data into the register.
132 	 */
133 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 		reg = 0;
135 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139 
140 		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 		rt2x00_rf_write(rt2x00dev, word, value);
142 	}
143 
144 	mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146 
rt61pci_mcu_request(struct rt2x00_dev * rt2x00dev,const u8 command,const u8 token,const u8 arg0,const u8 arg1)147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 				const u8 command, const u8 token,
149 				const u8 arg0, const u8 arg1)
150 {
151 	u32 reg;
152 
153 	mutex_lock(&rt2x00dev->csr_mutex);
154 
155 	/*
156 	 * Wait until the MCU becomes available, afterwards we
157 	 * can safely write the new data into the register.
158 	 */
159 	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165 
166 		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170 	}
171 
172 	mutex_unlock(&rt2x00dev->csr_mutex);
173 
174 }
175 
rt61pci_eepromregister_read(struct eeprom_93cx6 * eeprom)176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178 	struct rt2x00_dev *rt2x00dev = eeprom->data;
179 	u32 reg;
180 
181 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182 
183 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 	eeprom->reg_data_clock =
186 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 	eeprom->reg_chip_select =
188 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190 
rt61pci_eepromregister_write(struct eeprom_93cx6 * eeprom)191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193 	struct rt2x00_dev *rt2x00dev = eeprom->data;
194 	u32 reg = 0;
195 
196 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 			   !!eeprom->reg_data_clock);
200 	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 			   !!eeprom->reg_chip_select);
202 
203 	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205 
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208 	.owner	= THIS_MODULE,
209 	.csr	= {
210 		.read		= rt2x00pci_register_read,
211 		.write		= rt2x00pci_register_write,
212 		.flags		= RT2X00DEBUGFS_OFFSET,
213 		.word_base	= CSR_REG_BASE,
214 		.word_size	= sizeof(u32),
215 		.word_count	= CSR_REG_SIZE / sizeof(u32),
216 	},
217 	.eeprom	= {
218 		.read		= rt2x00_eeprom_read,
219 		.write		= rt2x00_eeprom_write,
220 		.word_base	= EEPROM_BASE,
221 		.word_size	= sizeof(u16),
222 		.word_count	= EEPROM_SIZE / sizeof(u16),
223 	},
224 	.bbp	= {
225 		.read		= rt61pci_bbp_read,
226 		.write		= rt61pci_bbp_write,
227 		.word_base	= BBP_BASE,
228 		.word_size	= sizeof(u8),
229 		.word_count	= BBP_SIZE / sizeof(u8),
230 	},
231 	.rf	= {
232 		.read		= rt2x00_rf_read,
233 		.write		= rt61pci_rf_write,
234 		.word_base	= RF_BASE,
235 		.word_size	= sizeof(u32),
236 		.word_count	= RF_SIZE / sizeof(u32),
237 	},
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240 
rt61pci_rfkill_poll(struct rt2x00_dev * rt2x00dev)241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243 	u32 reg;
244 
245 	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248 
249 #ifdef CONFIG_RT2X00_LIB_LEDS
rt61pci_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 				   enum led_brightness brightness)
252 {
253 	struct rt2x00_led *led =
254 	    container_of(led_cdev, struct rt2x00_led, led_dev);
255 	unsigned int enabled = brightness != LED_OFF;
256 	unsigned int a_mode =
257 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 	unsigned int bg_mode =
259 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260 
261 	if (led->type == LED_TYPE_RADIO) {
262 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 				   MCU_LEDCS_RADIO_STATUS, enabled);
264 
265 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 				    (led->rt2x00dev->led_mcu_reg & 0xff),
267 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
268 	} else if (led->type == LED_TYPE_ASSOC) {
269 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
273 
274 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 				    (led->rt2x00dev->led_mcu_reg & 0xff),
276 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
277 	} else if (led->type == LED_TYPE_QUALITY) {
278 		/*
279 		 * The brightness is divided into 6 levels (0 - 5),
280 		 * this means we need to convert the brightness
281 		 * argument into the matching level within that range.
282 		 */
283 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 				    brightness / (LED_FULL / 6), 0);
285 	}
286 }
287 
rt61pci_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 			     unsigned long *delay_on,
290 			     unsigned long *delay_off)
291 {
292 	struct rt2x00_led *led =
293 	    container_of(led_cdev, struct rt2x00_led, led_dev);
294 	u32 reg;
295 
296 	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300 
301 	return 0;
302 }
303 
rt61pci_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 			     struct rt2x00_led *led,
306 			     enum led_type type)
307 {
308 	led->rt2x00dev = rt2x00dev;
309 	led->type = type;
310 	led->led_dev.brightness_set = rt61pci_brightness_set;
311 	led->led_dev.blink_set = rt61pci_blink_set;
312 	led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315 
316 /*
317  * Configuration handlers.
318  */
rt61pci_config_shared_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 				     struct rt2x00lib_crypto *crypto,
321 				     struct ieee80211_key_conf *key)
322 {
323 	struct hw_key_entry key_entry;
324 	struct rt2x00_field32 field;
325 	u32 mask;
326 	u32 reg;
327 
328 	if (crypto->cmd == SET_KEY) {
329 		/*
330 		 * rt2x00lib can't determine the correct free
331 		 * key_idx for shared keys. We have 1 register
332 		 * with key valid bits. The goal is simple, read
333 		 * the register, if that is full we have no slots
334 		 * left.
335 		 * Note that each BSS is allowed to have up to 4
336 		 * shared keys, so put a mask over the allowed
337 		 * entries.
338 		 */
339 		mask = (0xf << crypto->bssidx);
340 
341 		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 		reg &= mask;
343 
344 		if (reg && reg == mask)
345 			return -ENOSPC;
346 
347 		key->hw_key_idx += reg ? ffz(reg) : 0;
348 
349 		/*
350 		 * Upload key to hardware
351 		 */
352 		memcpy(key_entry.key, crypto->key,
353 		       sizeof(key_entry.key));
354 		memcpy(key_entry.tx_mic, crypto->tx_mic,
355 		       sizeof(key_entry.tx_mic));
356 		memcpy(key_entry.rx_mic, crypto->rx_mic,
357 		       sizeof(key_entry.rx_mic));
358 
359 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 		rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 					      &key_entry, sizeof(key_entry));
362 
363 		/*
364 		 * The cipher types are stored over 2 registers.
365 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 		 * Using the correct defines correctly will cause overhead,
368 		 * so just calculate the correct offset.
369 		 */
370 		if (key->hw_key_idx < 8) {
371 			field.bit_offset = (3 * key->hw_key_idx);
372 			field.bit_mask = 0x7 << field.bit_offset;
373 
374 			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 			rt2x00_set_field32(&reg, field, crypto->cipher);
376 			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 		} else {
378 			field.bit_offset = (3 * (key->hw_key_idx - 8));
379 			field.bit_mask = 0x7 << field.bit_offset;
380 
381 			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 			rt2x00_set_field32(&reg, field, crypto->cipher);
383 			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384 		}
385 
386 		/*
387 		 * The driver does not support the IV/EIV generation
388 		 * in hardware. However it doesn't support the IV/EIV
389 		 * inside the ieee80211 frame either, but requires it
390 		 * to be provided separately for the descriptor.
391 		 * rt2x00lib will cut the IV/EIV data out of all frames
392 		 * given to us by mac80211, but we must tell mac80211
393 		 * to generate the IV/EIV data.
394 		 */
395 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396 	}
397 
398 	/*
399 	 * SEC_CSR0 contains only single-bit fields to indicate
400 	 * a particular key is valid. Because using the FIELD32()
401 	 * defines directly will cause a lot of overhead, we use
402 	 * a calculation to determine the correct bit directly.
403 	 */
404 	mask = 1 << key->hw_key_idx;
405 
406 	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 	if (crypto->cmd == SET_KEY)
408 		reg |= mask;
409 	else if (crypto->cmd == DISABLE_KEY)
410 		reg &= ~mask;
411 	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412 
413 	return 0;
414 }
415 
rt61pci_config_pairwise_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 				       struct rt2x00lib_crypto *crypto,
418 				       struct ieee80211_key_conf *key)
419 {
420 	struct hw_pairwise_ta_entry addr_entry;
421 	struct hw_key_entry key_entry;
422 	u32 mask;
423 	u32 reg;
424 
425 	if (crypto->cmd == SET_KEY) {
426 		/*
427 		 * rt2x00lib can't determine the correct free
428 		 * key_idx for pairwise keys. We have 2 registers
429 		 * with key valid bits. The goal is simple: read
430 		 * the first register. If that is full, move to
431 		 * the next register.
432 		 * When both registers are full, we drop the key.
433 		 * Otherwise, we use the first invalid entry.
434 		 */
435 		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 		if (reg && reg == ~0) {
437 			key->hw_key_idx = 32;
438 			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 			if (reg && reg == ~0)
440 				return -ENOSPC;
441 		}
442 
443 		key->hw_key_idx += reg ? ffz(reg) : 0;
444 
445 		/*
446 		 * Upload key to hardware
447 		 */
448 		memcpy(key_entry.key, crypto->key,
449 		       sizeof(key_entry.key));
450 		memcpy(key_entry.tx_mic, crypto->tx_mic,
451 		       sizeof(key_entry.tx_mic));
452 		memcpy(key_entry.rx_mic, crypto->rx_mic,
453 		       sizeof(key_entry.rx_mic));
454 
455 		memset(&addr_entry, 0, sizeof(addr_entry));
456 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 		addr_entry.cipher = crypto->cipher;
458 
459 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 		rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 					      &key_entry, sizeof(key_entry));
462 
463 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 		rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 					      &addr_entry, sizeof(addr_entry));
466 
467 		/*
468 		 * Enable pairwise lookup table for given BSS idx.
469 		 * Without this, received frames will not be decrypted
470 		 * by the hardware.
471 		 */
472 		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 		reg |= (1 << crypto->bssidx);
474 		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475 
476 		/*
477 		 * The driver does not support the IV/EIV generation
478 		 * in hardware. However it doesn't support the IV/EIV
479 		 * inside the ieee80211 frame either, but requires it
480 		 * to be provided separately for the descriptor.
481 		 * rt2x00lib will cut the IV/EIV data out of all frames
482 		 * given to us by mac80211, but we must tell mac80211
483 		 * to generate the IV/EIV data.
484 		 */
485 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486 	}
487 
488 	/*
489 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 	 * a particular key is valid. Because using the FIELD32()
491 	 * defines directly will cause a lot of overhead, we use
492 	 * a calculation to determine the correct bit directly.
493 	 */
494 	if (key->hw_key_idx < 32) {
495 		mask = 1 << key->hw_key_idx;
496 
497 		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 		if (crypto->cmd == SET_KEY)
499 			reg |= mask;
500 		else if (crypto->cmd == DISABLE_KEY)
501 			reg &= ~mask;
502 		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 	} else {
504 		mask = 1 << (key->hw_key_idx - 32);
505 
506 		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 		if (crypto->cmd == SET_KEY)
508 			reg |= mask;
509 		else if (crypto->cmd == DISABLE_KEY)
510 			reg &= ~mask;
511 		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512 	}
513 
514 	return 0;
515 }
516 
rt61pci_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 				  const unsigned int filter_flags)
519 {
520 	u32 reg;
521 
522 	/*
523 	 * Start configuration steps.
524 	 * Note that the version error will always be dropped
525 	 * and broadcast frames will always be accepted since
526 	 * there is no filter for it at this time.
527 	 */
528 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 			   !(filter_flags & FIF_FCSFAIL));
531 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 			   !(filter_flags & FIF_PLCPFAIL));
533 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 			   !(filter_flags & FIF_PROMISC_IN_BSS));
537 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 			   !rt2x00dev->intf_ap_count);
540 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 			   !(filter_flags & FIF_ALLMULTI));
543 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 			   !(filter_flags & FIF_CONTROL));
546 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548 
rt61pci_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 				struct rt2x00_intf *intf,
551 				struct rt2x00intf_conf *conf,
552 				const unsigned int flags)
553 {
554 	u32 reg;
555 
556 	if (flags & CONFIG_UPDATE_TYPE) {
557 		/*
558 		 * Enable synchronisation.
559 		 */
560 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
561 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
562 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
563 	}
564 
565 	if (flags & CONFIG_UPDATE_MAC) {
566 		reg = le32_to_cpu(conf->mac[1]);
567 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
568 		conf->mac[1] = cpu_to_le32(reg);
569 
570 		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
571 					      conf->mac, sizeof(conf->mac));
572 	}
573 
574 	if (flags & CONFIG_UPDATE_BSSID) {
575 		reg = le32_to_cpu(conf->bssid[1]);
576 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
577 		conf->bssid[1] = cpu_to_le32(reg);
578 
579 		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
580 					      conf->bssid, sizeof(conf->bssid));
581 	}
582 }
583 
rt61pci_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)584 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
585 			       struct rt2x00lib_erp *erp,
586 			       u32 changed)
587 {
588 	u32 reg;
589 
590 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
591 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
592 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
593 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
594 
595 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
596 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
597 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
598 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
599 				   !!erp->short_preamble);
600 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
601 	}
602 
603 	if (changed & BSS_CHANGED_BASIC_RATES)
604 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
605 					 erp->basic_rates);
606 
607 	if (changed & BSS_CHANGED_BEACON_INT) {
608 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
609 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
610 				   erp->beacon_int * 16);
611 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612 	}
613 
614 	if (changed & BSS_CHANGED_ERP_SLOT) {
615 		rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617 		rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618 
619 		rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623 		rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 	}
625 }
626 
rt61pci_config_antenna_5x(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)627 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
628 				      struct antenna_setup *ant)
629 {
630 	u8 r3;
631 	u8 r4;
632 	u8 r77;
633 
634 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
635 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
636 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
637 
638 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
639 
640 	/*
641 	 * Configure the RX antenna.
642 	 */
643 	switch (ant->rx) {
644 	case ANTENNA_HW_DIVERSITY:
645 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647 				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 		break;
649 	case ANTENNA_A:
650 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654 		else
655 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 		break;
657 	case ANTENNA_B:
658 	default:
659 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663 		else
664 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 		break;
666 	}
667 
668 	rt61pci_bbp_write(rt2x00dev, 77, r77);
669 	rt61pci_bbp_write(rt2x00dev, 3, r3);
670 	rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672 
rt61pci_config_antenna_2x(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674 				      struct antenna_setup *ant)
675 {
676 	u8 r3;
677 	u8 r4;
678 	u8 r77;
679 
680 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
681 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
682 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
683 
684 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
685 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
686 			  !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
687 
688 	/*
689 	 * Configure the RX antenna.
690 	 */
691 	switch (ant->rx) {
692 	case ANTENNA_HW_DIVERSITY:
693 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
694 		break;
695 	case ANTENNA_A:
696 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
697 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
698 		break;
699 	case ANTENNA_B:
700 	default:
701 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
702 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
703 		break;
704 	}
705 
706 	rt61pci_bbp_write(rt2x00dev, 77, r77);
707 	rt61pci_bbp_write(rt2x00dev, 3, r3);
708 	rt61pci_bbp_write(rt2x00dev, 4, r4);
709 }
710 
rt61pci_config_antenna_2529_rx(struct rt2x00_dev * rt2x00dev,const int p1,const int p2)711 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
712 					   const int p1, const int p2)
713 {
714 	u32 reg;
715 
716 	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
717 
718 	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
719 	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
720 
721 	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
722 	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
723 
724 	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
725 }
726 
rt61pci_config_antenna_2529(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)727 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
728 					struct antenna_setup *ant)
729 {
730 	u8 r3;
731 	u8 r4;
732 	u8 r77;
733 
734 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
735 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
736 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
737 
738 	/*
739 	 * Configure the RX antenna.
740 	 */
741 	switch (ant->rx) {
742 	case ANTENNA_A:
743 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
744 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
745 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
746 		break;
747 	case ANTENNA_HW_DIVERSITY:
748 		/*
749 		 * FIXME: Antenna selection for the rf 2529 is very confusing
750 		 * in the legacy driver. Just default to antenna B until the
751 		 * legacy code can be properly translated into rt2x00 code.
752 		 */
753 	case ANTENNA_B:
754 	default:
755 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
757 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
758 		break;
759 	}
760 
761 	rt61pci_bbp_write(rt2x00dev, 77, r77);
762 	rt61pci_bbp_write(rt2x00dev, 3, r3);
763 	rt61pci_bbp_write(rt2x00dev, 4, r4);
764 }
765 
766 struct antenna_sel {
767 	u8 word;
768 	/*
769 	 * value[0] -> non-LNA
770 	 * value[1] -> LNA
771 	 */
772 	u8 value[2];
773 };
774 
775 static const struct antenna_sel antenna_sel_a[] = {
776 	{ 96,  { 0x58, 0x78 } },
777 	{ 104, { 0x38, 0x48 } },
778 	{ 75,  { 0xfe, 0x80 } },
779 	{ 86,  { 0xfe, 0x80 } },
780 	{ 88,  { 0xfe, 0x80 } },
781 	{ 35,  { 0x60, 0x60 } },
782 	{ 97,  { 0x58, 0x58 } },
783 	{ 98,  { 0x58, 0x58 } },
784 };
785 
786 static const struct antenna_sel antenna_sel_bg[] = {
787 	{ 96,  { 0x48, 0x68 } },
788 	{ 104, { 0x2c, 0x3c } },
789 	{ 75,  { 0xfe, 0x80 } },
790 	{ 86,  { 0xfe, 0x80 } },
791 	{ 88,  { 0xfe, 0x80 } },
792 	{ 35,  { 0x50, 0x50 } },
793 	{ 97,  { 0x48, 0x48 } },
794 	{ 98,  { 0x48, 0x48 } },
795 };
796 
rt61pci_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)797 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
798 			       struct antenna_setup *ant)
799 {
800 	const struct antenna_sel *sel;
801 	unsigned int lna;
802 	unsigned int i;
803 	u32 reg;
804 
805 	/*
806 	 * We should never come here because rt2x00lib is supposed
807 	 * to catch this and send us the correct antenna explicitely.
808 	 */
809 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
810 	       ant->tx == ANTENNA_SW_DIVERSITY);
811 
812 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
813 		sel = antenna_sel_a;
814 		lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
815 	} else {
816 		sel = antenna_sel_bg;
817 		lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
818 	}
819 
820 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
821 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
822 
823 	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
824 
825 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
826 			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
827 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
828 			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
829 
830 	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
831 
832 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
833 		rt61pci_config_antenna_5x(rt2x00dev, ant);
834 	else if (rt2x00_rf(rt2x00dev, RF2527))
835 		rt61pci_config_antenna_2x(rt2x00dev, ant);
836 	else if (rt2x00_rf(rt2x00dev, RF2529)) {
837 		if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
838 			rt61pci_config_antenna_2x(rt2x00dev, ant);
839 		else
840 			rt61pci_config_antenna_2529(rt2x00dev, ant);
841 	}
842 }
843 
rt61pci_config_lna_gain(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)844 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
845 				    struct rt2x00lib_conf *libconf)
846 {
847 	u16 eeprom;
848 	short lna_gain = 0;
849 
850 	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
851 		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
852 			lna_gain += 14;
853 
854 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
855 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
856 	} else {
857 		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
858 			lna_gain += 14;
859 
860 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
861 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
862 	}
863 
864 	rt2x00dev->lna_gain = lna_gain;
865 }
866 
rt61pci_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)867 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
868 				   struct rf_channel *rf, const int txpower)
869 {
870 	u8 r3;
871 	u8 r94;
872 	u8 smart;
873 
874 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
875 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
876 
877 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
878 
879 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
880 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
881 	rt61pci_bbp_write(rt2x00dev, 3, r3);
882 
883 	r94 = 6;
884 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
885 		r94 += txpower - MAX_TXPOWER;
886 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
887 		r94 += txpower;
888 	rt61pci_bbp_write(rt2x00dev, 94, r94);
889 
890 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
891 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
892 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
893 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
894 
895 	udelay(200);
896 
897 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
898 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
899 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
900 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
901 
902 	udelay(200);
903 
904 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
905 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
906 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
907 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
908 
909 	msleep(1);
910 }
911 
rt61pci_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)912 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
913 				   const int txpower)
914 {
915 	struct rf_channel rf;
916 
917 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
918 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
919 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
920 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
921 
922 	rt61pci_config_channel(rt2x00dev, &rf, txpower);
923 }
924 
rt61pci_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)925 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
926 				    struct rt2x00lib_conf *libconf)
927 {
928 	u32 reg;
929 
930 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
931 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
932 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
933 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
934 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935 			   libconf->conf->long_frame_max_tx_count);
936 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937 			   libconf->conf->short_frame_max_tx_count);
938 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940 
rt61pci_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)941 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
942 				struct rt2x00lib_conf *libconf)
943 {
944 	enum dev_state state =
945 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
946 		STATE_SLEEP : STATE_AWAKE;
947 	u32 reg;
948 
949 	if (state == STATE_SLEEP) {
950 		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
951 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952 				   rt2x00dev->beacon_int - 10);
953 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
954 				   libconf->conf->listen_interval - 1);
955 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
956 
957 		/* We must first disable autowake before it can be enabled */
958 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
959 		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
960 
961 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
962 		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963 
964 		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
965 		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966 		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967 
968 		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969 	} else {
970 		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
971 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975 		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976 
977 		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
978 		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
979 		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
980 
981 		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
982 	}
983 }
984 
rt61pci_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986 			   struct rt2x00lib_conf *libconf,
987 			   const unsigned int flags)
988 {
989 	/* Always recalculate LNA gain before changing configuration */
990 	rt61pci_config_lna_gain(rt2x00dev, libconf);
991 
992 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993 		rt61pci_config_channel(rt2x00dev, &libconf->rf,
994 				       libconf->conf->power_level);
995 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999 		rt61pci_config_retry_limit(rt2x00dev, libconf);
1000 	if (flags & IEEE80211_CONF_CHANGE_PS)
1001 		rt61pci_config_ps(rt2x00dev, libconf);
1002 }
1003 
1004 /*
1005  * Link tuning
1006  */
rt61pci_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008 			       struct link_qual *qual)
1009 {
1010 	u32 reg;
1011 
1012 	/*
1013 	 * Update FCS error count from register.
1014 	 */
1015 	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017 
1018 	/*
1019 	 * Update False CCA count from register.
1020 	 */
1021 	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024 
rt61pci_set_vgc(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,u8 vgc_level)1025 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026 				   struct link_qual *qual, u8 vgc_level)
1027 {
1028 	if (qual->vgc_level != vgc_level) {
1029 		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030 		qual->vgc_level = vgc_level;
1031 		qual->vgc_level_reg = vgc_level;
1032 	}
1033 }
1034 
rt61pci_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)1035 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036 				struct link_qual *qual)
1037 {
1038 	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 }
1040 
rt61pci_link_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,const u32 count)1041 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042 			       struct link_qual *qual, const u32 count)
1043 {
1044 	u8 up_bound;
1045 	u8 low_bound;
1046 
1047 	/*
1048 	 * Determine r17 bounds.
1049 	 */
1050 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051 		low_bound = 0x28;
1052 		up_bound = 0x48;
1053 		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054 			low_bound += 0x10;
1055 			up_bound += 0x10;
1056 		}
1057 	} else {
1058 		low_bound = 0x20;
1059 		up_bound = 0x40;
1060 		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061 			low_bound += 0x10;
1062 			up_bound += 0x10;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * If we are not associated, we should go straight to the
1068 	 * dynamic CCA tuning.
1069 	 */
1070 	if (!rt2x00dev->intf_associated)
1071 		goto dynamic_cca_tune;
1072 
1073 	/*
1074 	 * Special big-R17 for very short distance
1075 	 */
1076 	if (qual->rssi >= -35) {
1077 		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078 		return;
1079 	}
1080 
1081 	/*
1082 	 * Special big-R17 for short distance
1083 	 */
1084 	if (qual->rssi >= -58) {
1085 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086 		return;
1087 	}
1088 
1089 	/*
1090 	 * Special big-R17 for middle-short distance
1091 	 */
1092 	if (qual->rssi >= -66) {
1093 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094 		return;
1095 	}
1096 
1097 	/*
1098 	 * Special mid-R17 for middle distance
1099 	 */
1100 	if (qual->rssi >= -74) {
1101 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102 		return;
1103 	}
1104 
1105 	/*
1106 	 * Special case: Change up_bound based on the rssi.
1107 	 * Lower up_bound when rssi is weaker then -74 dBm.
1108 	 */
1109 	up_bound -= 2 * (-74 - qual->rssi);
1110 	if (low_bound > up_bound)
1111 		up_bound = low_bound;
1112 
1113 	if (qual->vgc_level > up_bound) {
1114 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115 		return;
1116 	}
1117 
1118 dynamic_cca_tune:
1119 
1120 	/*
1121 	 * r17 does not yet exceed upper limit, continue and base
1122 	 * the r17 tuning on the false CCA count.
1123 	 */
1124 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125 		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127 		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 }
1129 
1130 /*
1131  * Queue handlers.
1132  */
rt61pci_start_queue(struct data_queue * queue)1133 static void rt61pci_start_queue(struct data_queue *queue)
1134 {
1135 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136 	u32 reg;
1137 
1138 	switch (queue->qid) {
1139 	case QID_RX:
1140 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143 		break;
1144 	case QID_BEACON:
1145 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1146 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1147 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1148 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1149 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1150 		break;
1151 	default:
1152 		break;
1153 	}
1154 }
1155 
rt61pci_kick_queue(struct data_queue * queue)1156 static void rt61pci_kick_queue(struct data_queue *queue)
1157 {
1158 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1159 	u32 reg;
1160 
1161 	switch (queue->qid) {
1162 	case QID_AC_VO:
1163 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1164 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1165 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1166 		break;
1167 	case QID_AC_VI:
1168 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1170 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171 		break;
1172 	case QID_AC_BE:
1173 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1175 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176 		break;
1177 	case QID_AC_BK:
1178 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1180 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181 		break;
1182 	default:
1183 		break;
1184 	}
1185 }
1186 
rt61pci_stop_queue(struct data_queue * queue)1187 static void rt61pci_stop_queue(struct data_queue *queue)
1188 {
1189 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1190 	u32 reg;
1191 
1192 	switch (queue->qid) {
1193 	case QID_AC_VO:
1194 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1195 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1196 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1197 		break;
1198 	case QID_AC_VI:
1199 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1201 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202 		break;
1203 	case QID_AC_BE:
1204 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1206 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207 		break;
1208 	case QID_AC_BK:
1209 		rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1211 		rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212 		break;
1213 	case QID_RX:
1214 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1215 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1216 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1217 		break;
1218 	case QID_BEACON:
1219 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1220 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1221 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1222 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1223 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1224 
1225 		/*
1226 		 * Wait for possibly running tbtt tasklets.
1227 		 */
1228 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1229 		break;
1230 	default:
1231 		break;
1232 	}
1233 }
1234 
1235 /*
1236  * Firmware functions
1237  */
rt61pci_get_firmware_name(struct rt2x00_dev * rt2x00dev)1238 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1239 {
1240 	u16 chip;
1241 	char *fw_name;
1242 
1243 	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1244 	switch (chip) {
1245 	case RT2561_PCI_ID:
1246 		fw_name = FIRMWARE_RT2561;
1247 		break;
1248 	case RT2561s_PCI_ID:
1249 		fw_name = FIRMWARE_RT2561s;
1250 		break;
1251 	case RT2661_PCI_ID:
1252 		fw_name = FIRMWARE_RT2661;
1253 		break;
1254 	default:
1255 		fw_name = NULL;
1256 		break;
1257 	}
1258 
1259 	return fw_name;
1260 }
1261 
rt61pci_check_firmware(struct rt2x00_dev * rt2x00dev,const u8 * data,const size_t len)1262 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1263 				  const u8 *data, const size_t len)
1264 {
1265 	u16 fw_crc;
1266 	u16 crc;
1267 
1268 	/*
1269 	 * Only support 8kb firmware files.
1270 	 */
1271 	if (len != 8192)
1272 		return FW_BAD_LENGTH;
1273 
1274 	/*
1275 	 * The last 2 bytes in the firmware array are the crc checksum itself.
1276 	 * This means that we should never pass those 2 bytes to the crc
1277 	 * algorithm.
1278 	 */
1279 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1280 
1281 	/*
1282 	 * Use the crc itu-t algorithm.
1283 	 */
1284 	crc = crc_itu_t(0, data, len - 2);
1285 	crc = crc_itu_t_byte(crc, 0);
1286 	crc = crc_itu_t_byte(crc, 0);
1287 
1288 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1289 }
1290 
rt61pci_load_firmware(struct rt2x00_dev * rt2x00dev,const u8 * data,const size_t len)1291 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1292 				 const u8 *data, const size_t len)
1293 {
1294 	int i;
1295 	u32 reg;
1296 
1297 	/*
1298 	 * Wait for stable hardware.
1299 	 */
1300 	for (i = 0; i < 100; i++) {
1301 		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1302 		if (reg)
1303 			break;
1304 		msleep(1);
1305 	}
1306 
1307 	if (!reg) {
1308 		ERROR(rt2x00dev, "Unstable hardware.\n");
1309 		return -EBUSY;
1310 	}
1311 
1312 	/*
1313 	 * Prepare MCU and mailbox for firmware loading.
1314 	 */
1315 	reg = 0;
1316 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1317 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1318 	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1319 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1320 	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1321 
1322 	/*
1323 	 * Write firmware to device.
1324 	 */
1325 	reg = 0;
1326 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1327 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1328 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1329 
1330 	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1331 				      data, len);
1332 
1333 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1334 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1335 
1336 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1337 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1338 
1339 	for (i = 0; i < 100; i++) {
1340 		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1341 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1342 			break;
1343 		msleep(1);
1344 	}
1345 
1346 	if (i == 100) {
1347 		ERROR(rt2x00dev, "MCU Control register not ready.\n");
1348 		return -EBUSY;
1349 	}
1350 
1351 	/*
1352 	 * Hardware needs another millisecond before it is ready.
1353 	 */
1354 	msleep(1);
1355 
1356 	/*
1357 	 * Reset MAC and BBP registers.
1358 	 */
1359 	reg = 0;
1360 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1361 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1362 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1363 
1364 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1365 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1366 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1367 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1368 
1369 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1370 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1371 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1372 
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Initialization functions.
1378  */
rt61pci_get_entry_state(struct queue_entry * entry)1379 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1380 {
1381 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1382 	u32 word;
1383 
1384 	if (entry->queue->qid == QID_RX) {
1385 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1386 
1387 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1388 	} else {
1389 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1390 
1391 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1392 		        rt2x00_get_field32(word, TXD_W0_VALID));
1393 	}
1394 }
1395 
rt61pci_clear_entry(struct queue_entry * entry)1396 static void rt61pci_clear_entry(struct queue_entry *entry)
1397 {
1398 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1399 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1400 	u32 word;
1401 
1402 	if (entry->queue->qid == QID_RX) {
1403 		rt2x00_desc_read(entry_priv->desc, 5, &word);
1404 		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1405 				   skbdesc->skb_dma);
1406 		rt2x00_desc_write(entry_priv->desc, 5, word);
1407 
1408 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1409 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1410 		rt2x00_desc_write(entry_priv->desc, 0, word);
1411 	} else {
1412 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1413 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1414 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1415 		rt2x00_desc_write(entry_priv->desc, 0, word);
1416 	}
1417 }
1418 
rt61pci_init_queues(struct rt2x00_dev * rt2x00dev)1419 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1420 {
1421 	struct queue_entry_priv_pci *entry_priv;
1422 	u32 reg;
1423 
1424 	/*
1425 	 * Initialize registers.
1426 	 */
1427 	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1428 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1429 			   rt2x00dev->tx[0].limit);
1430 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1431 			   rt2x00dev->tx[1].limit);
1432 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1433 			   rt2x00dev->tx[2].limit);
1434 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1435 			   rt2x00dev->tx[3].limit);
1436 	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1437 
1438 	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1439 	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1440 			   rt2x00dev->tx[0].desc_size / 4);
1441 	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1442 
1443 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1444 	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1445 	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1446 			   entry_priv->desc_dma);
1447 	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1448 
1449 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1450 	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1451 	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1452 			   entry_priv->desc_dma);
1453 	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1454 
1455 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1456 	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1457 	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1458 			   entry_priv->desc_dma);
1459 	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1460 
1461 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1462 	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1463 	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1464 			   entry_priv->desc_dma);
1465 	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1466 
1467 	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1468 	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1469 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1470 			   rt2x00dev->rx->desc_size / 4);
1471 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1472 	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1473 
1474 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1475 	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1476 	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1477 			   entry_priv->desc_dma);
1478 	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1479 
1480 	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1481 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1482 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1483 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1484 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1485 	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1486 
1487 	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1488 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1489 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1490 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1491 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1492 	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1493 
1494 	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1495 	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1496 	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1497 
1498 	return 0;
1499 }
1500 
rt61pci_init_registers(struct rt2x00_dev * rt2x00dev)1501 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1502 {
1503 	u32 reg;
1504 
1505 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1506 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1507 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1508 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1509 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1510 
1511 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1512 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1513 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1514 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1515 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1516 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1517 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1518 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1519 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1520 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1521 
1522 	/*
1523 	 * CCK TXD BBP registers
1524 	 */
1525 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1526 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1527 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1528 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1529 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1530 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1531 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1532 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1533 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1534 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1535 
1536 	/*
1537 	 * OFDM TXD BBP registers
1538 	 */
1539 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1540 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1541 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1542 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1543 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1544 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1545 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1546 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1547 
1548 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1549 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1550 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1551 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1552 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1553 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1554 
1555 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1556 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1557 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1558 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1559 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1560 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1561 
1562 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1563 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1564 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1565 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1566 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1567 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1568 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1569 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1570 
1571 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1572 
1573 	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1574 
1575 	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1576 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1577 	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1578 
1579 	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1580 
1581 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1582 		return -EBUSY;
1583 
1584 	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1585 
1586 	/*
1587 	 * Invalidate all Shared Keys (SEC_CSR0),
1588 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1589 	 */
1590 	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1591 	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1592 	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1593 
1594 	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1595 	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1596 	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1597 	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1598 
1599 	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1600 
1601 	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1602 
1603 	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1604 
1605 	/*
1606 	 * Clear all beacons
1607 	 * For the Beacon base registers we only need to clear
1608 	 * the first byte since that byte contains the VALID and OWNER
1609 	 * bits which (when set to 0) will invalidate the entire beacon.
1610 	 */
1611 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1612 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1613 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1614 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1615 
1616 	/*
1617 	 * We must clear the error counters.
1618 	 * These registers are cleared on read,
1619 	 * so we may pass a useless variable to store the value.
1620 	 */
1621 	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1622 	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1623 	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1624 
1625 	/*
1626 	 * Reset MAC and BBP registers.
1627 	 */
1628 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1629 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1630 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1631 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1632 
1633 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1635 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1636 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1637 
1638 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1639 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1640 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1641 
1642 	return 0;
1643 }
1644 
rt61pci_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)1645 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1646 {
1647 	unsigned int i;
1648 	u8 value;
1649 
1650 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1651 		rt61pci_bbp_read(rt2x00dev, 0, &value);
1652 		if ((value != 0xff) && (value != 0x00))
1653 			return 0;
1654 		udelay(REGISTER_BUSY_DELAY);
1655 	}
1656 
1657 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1658 	return -EACCES;
1659 }
1660 
rt61pci_init_bbp(struct rt2x00_dev * rt2x00dev)1661 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1662 {
1663 	unsigned int i;
1664 	u16 eeprom;
1665 	u8 reg_id;
1666 	u8 value;
1667 
1668 	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1669 		return -EACCES;
1670 
1671 	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1672 	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1673 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1674 	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1675 	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1676 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1677 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1678 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1679 	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1680 	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1681 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1682 	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1683 	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1684 	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1685 	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1686 	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1687 	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1688 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1689 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1690 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1691 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1692 	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1693 	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1694 	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1695 
1696 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1697 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1698 
1699 		if (eeprom != 0xffff && eeprom != 0x0000) {
1700 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1701 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1702 			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1703 		}
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Device state switch handlers.
1711  */
rt61pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)1712 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1713 			       enum dev_state state)
1714 {
1715 	int mask = (state == STATE_RADIO_IRQ_OFF);
1716 	u32 reg;
1717 	unsigned long flags;
1718 
1719 	/*
1720 	 * When interrupts are being enabled, the interrupt registers
1721 	 * should clear the register to assure a clean state.
1722 	 */
1723 	if (state == STATE_RADIO_IRQ_ON) {
1724 		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1725 		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1726 
1727 		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1728 		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1729 	}
1730 
1731 	/*
1732 	 * Only toggle the interrupts bits we are going to use.
1733 	 * Non-checked interrupt bits are disabled by default.
1734 	 */
1735 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1736 
1737 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1738 	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1739 	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1740 	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1741 	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1742 	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1743 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1744 
1745 	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1746 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1747 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1748 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1749 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1750 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1751 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1752 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1753 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1754 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1755 	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1756 
1757 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1758 
1759 	if (state == STATE_RADIO_IRQ_OFF) {
1760 		/*
1761 		 * Ensure that all tasklets are finished.
1762 		 */
1763 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1764 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1765 		tasklet_kill(&rt2x00dev->autowake_tasklet);
1766 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1767 	}
1768 }
1769 
rt61pci_enable_radio(struct rt2x00_dev * rt2x00dev)1770 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1771 {
1772 	u32 reg;
1773 
1774 	/*
1775 	 * Initialize all registers.
1776 	 */
1777 	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1778 		     rt61pci_init_registers(rt2x00dev) ||
1779 		     rt61pci_init_bbp(rt2x00dev)))
1780 		return -EIO;
1781 
1782 	/*
1783 	 * Enable RX.
1784 	 */
1785 	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1786 	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1787 	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1788 
1789 	return 0;
1790 }
1791 
rt61pci_disable_radio(struct rt2x00_dev * rt2x00dev)1792 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1793 {
1794 	/*
1795 	 * Disable power
1796 	 */
1797 	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1798 }
1799 
rt61pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1800 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1801 {
1802 	u32 reg, reg2;
1803 	unsigned int i;
1804 	char put_to_sleep;
1805 
1806 	put_to_sleep = (state != STATE_AWAKE);
1807 
1808 	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1809 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1810 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1811 	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1812 
1813 	/*
1814 	 * Device is not guaranteed to be in the requested state yet.
1815 	 * We must wait until the register indicates that the
1816 	 * device has entered the correct state.
1817 	 */
1818 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1819 		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1820 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1821 		if (state == !put_to_sleep)
1822 			return 0;
1823 		rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1824 		msleep(10);
1825 	}
1826 
1827 	return -EBUSY;
1828 }
1829 
rt61pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1830 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1831 				    enum dev_state state)
1832 {
1833 	int retval = 0;
1834 
1835 	switch (state) {
1836 	case STATE_RADIO_ON:
1837 		retval = rt61pci_enable_radio(rt2x00dev);
1838 		break;
1839 	case STATE_RADIO_OFF:
1840 		rt61pci_disable_radio(rt2x00dev);
1841 		break;
1842 	case STATE_RADIO_IRQ_ON:
1843 	case STATE_RADIO_IRQ_OFF:
1844 		rt61pci_toggle_irq(rt2x00dev, state);
1845 		break;
1846 	case STATE_DEEP_SLEEP:
1847 	case STATE_SLEEP:
1848 	case STATE_STANDBY:
1849 	case STATE_AWAKE:
1850 		retval = rt61pci_set_state(rt2x00dev, state);
1851 		break;
1852 	default:
1853 		retval = -ENOTSUPP;
1854 		break;
1855 	}
1856 
1857 	if (unlikely(retval))
1858 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1859 		      state, retval);
1860 
1861 	return retval;
1862 }
1863 
1864 /*
1865  * TX descriptor initialization
1866  */
rt61pci_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1867 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1868 				  struct txentry_desc *txdesc)
1869 {
1870 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1871 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1872 	__le32 *txd = entry_priv->desc;
1873 	u32 word;
1874 
1875 	/*
1876 	 * Start writing the descriptor words.
1877 	 */
1878 	rt2x00_desc_read(txd, 1, &word);
1879 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1880 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1881 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1882 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1883 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1884 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1885 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1886 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1887 	rt2x00_desc_write(txd, 1, word);
1888 
1889 	rt2x00_desc_read(txd, 2, &word);
1890 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1891 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1892 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1893 			   txdesc->u.plcp.length_low);
1894 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1895 			   txdesc->u.plcp.length_high);
1896 	rt2x00_desc_write(txd, 2, word);
1897 
1898 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1899 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1900 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1901 	}
1902 
1903 	rt2x00_desc_read(txd, 5, &word);
1904 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1905 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1906 			   skbdesc->entry->entry_idx);
1907 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1908 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1909 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1910 	rt2x00_desc_write(txd, 5, word);
1911 
1912 	if (entry->queue->qid != QID_BEACON) {
1913 		rt2x00_desc_read(txd, 6, &word);
1914 		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1915 				   skbdesc->skb_dma);
1916 		rt2x00_desc_write(txd, 6, word);
1917 
1918 		rt2x00_desc_read(txd, 11, &word);
1919 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1920 				   txdesc->length);
1921 		rt2x00_desc_write(txd, 11, word);
1922 	}
1923 
1924 	/*
1925 	 * Writing TXD word 0 must the last to prevent a race condition with
1926 	 * the device, whereby the device may take hold of the TXD before we
1927 	 * finished updating it.
1928 	 */
1929 	rt2x00_desc_read(txd, 0, &word);
1930 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1931 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1932 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1933 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1934 	rt2x00_set_field32(&word, TXD_W0_ACK,
1935 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1936 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1937 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1938 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1939 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1940 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1941 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1942 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1943 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1944 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1945 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1946 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1947 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1948 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1949 	rt2x00_set_field32(&word, TXD_W0_BURST,
1950 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1951 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1952 	rt2x00_desc_write(txd, 0, word);
1953 
1954 	/*
1955 	 * Register descriptor details in skb frame descriptor.
1956 	 */
1957 	skbdesc->desc = txd;
1958 	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1959 			    TXD_DESC_SIZE;
1960 }
1961 
1962 /*
1963  * TX data initialization
1964  */
rt61pci_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1965 static void rt61pci_write_beacon(struct queue_entry *entry,
1966 				 struct txentry_desc *txdesc)
1967 {
1968 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1969 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1970 	unsigned int beacon_base;
1971 	unsigned int padding_len;
1972 	u32 orig_reg, reg;
1973 
1974 	/*
1975 	 * Disable beaconing while we are reloading the beacon data,
1976 	 * otherwise we might be sending out invalid data.
1977 	 */
1978 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1979 	orig_reg = reg;
1980 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1981 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1982 
1983 	/*
1984 	 * Write the TX descriptor for the beacon.
1985 	 */
1986 	rt61pci_write_tx_desc(entry, txdesc);
1987 
1988 	/*
1989 	 * Dump beacon to userspace through debugfs.
1990 	 */
1991 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1992 
1993 	/*
1994 	 * Write entire beacon with descriptor and padding to register.
1995 	 */
1996 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1997 	if (padding_len && skb_pad(entry->skb, padding_len)) {
1998 		ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
1999 		/* skb freed by skb_pad() on failure */
2000 		entry->skb = NULL;
2001 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2002 		return;
2003 	}
2004 
2005 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2006 	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2007 				      entry_priv->desc, TXINFO_SIZE);
2008 	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2009 				      entry->skb->data,
2010 				      entry->skb->len + padding_len);
2011 
2012 	/*
2013 	 * Enable beaconing again.
2014 	 *
2015 	 * For Wi-Fi faily generated beacons between participating
2016 	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2017 	 */
2018 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2019 
2020 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2021 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2022 
2023 	/*
2024 	 * Clean up beacon skb.
2025 	 */
2026 	dev_kfree_skb_any(entry->skb);
2027 	entry->skb = NULL;
2028 }
2029 
rt61pci_clear_beacon(struct queue_entry * entry)2030 static void rt61pci_clear_beacon(struct queue_entry *entry)
2031 {
2032 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2033 	u32 reg;
2034 
2035 	/*
2036 	 * Disable beaconing while we are reloading the beacon data,
2037 	 * otherwise we might be sending out invalid data.
2038 	 */
2039 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2040 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2041 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2042 
2043 	/*
2044 	 * Clear beacon.
2045 	 */
2046 	rt2x00pci_register_write(rt2x00dev,
2047 				 HW_BEACON_OFFSET(entry->entry_idx), 0);
2048 
2049 	/*
2050 	 * Enable beaconing again.
2051 	 */
2052 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2053 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2054 }
2055 
2056 /*
2057  * RX control handlers
2058  */
rt61pci_agc_to_rssi(struct rt2x00_dev * rt2x00dev,int rxd_w1)2059 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2060 {
2061 	u8 offset = rt2x00dev->lna_gain;
2062 	u8 lna;
2063 
2064 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2065 	switch (lna) {
2066 	case 3:
2067 		offset += 90;
2068 		break;
2069 	case 2:
2070 		offset += 74;
2071 		break;
2072 	case 1:
2073 		offset += 64;
2074 		break;
2075 	default:
2076 		return 0;
2077 	}
2078 
2079 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2080 		if (lna == 3 || lna == 2)
2081 			offset += 10;
2082 	}
2083 
2084 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2085 }
2086 
rt61pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)2087 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2088 				struct rxdone_entry_desc *rxdesc)
2089 {
2090 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2091 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2092 	u32 word0;
2093 	u32 word1;
2094 
2095 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
2096 	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2097 
2098 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2099 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2100 
2101 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2102 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2103 
2104 	if (rxdesc->cipher != CIPHER_NONE) {
2105 		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2106 		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2107 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2108 
2109 		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2110 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2111 
2112 		/*
2113 		 * Hardware has stripped IV/EIV data from 802.11 frame during
2114 		 * decryption. It has provided the data separately but rt2x00lib
2115 		 * should decide if it should be reinserted.
2116 		 */
2117 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2118 
2119 		/*
2120 		 * The hardware has already checked the Michael Mic and has
2121 		 * stripped it from the frame. Signal this to mac80211.
2122 		 */
2123 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2124 
2125 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2126 			rxdesc->flags |= RX_FLAG_DECRYPTED;
2127 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2128 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2129 	}
2130 
2131 	/*
2132 	 * Obtain the status about this packet.
2133 	 * When frame was received with an OFDM bitrate,
2134 	 * the signal is the PLCP value. If it was received with
2135 	 * a CCK bitrate the signal is the rate in 100kbit/s.
2136 	 */
2137 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2138 	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2139 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2140 
2141 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2142 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2143 	else
2144 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2145 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2146 		rxdesc->dev_flags |= RXDONE_MY_BSS;
2147 }
2148 
2149 /*
2150  * Interrupt functions.
2151  */
rt61pci_txdone(struct rt2x00_dev * rt2x00dev)2152 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2153 {
2154 	struct data_queue *queue;
2155 	struct queue_entry *entry;
2156 	struct queue_entry *entry_done;
2157 	struct queue_entry_priv_pci *entry_priv;
2158 	struct txdone_entry_desc txdesc;
2159 	u32 word;
2160 	u32 reg;
2161 	int type;
2162 	int index;
2163 	int i;
2164 
2165 	/*
2166 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2167 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2168 	 * flag is not set anymore.
2169 	 *
2170 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2171 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2172 	 * tx ring size for now.
2173 	 */
2174 	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2175 		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2176 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2177 			break;
2178 
2179 		/*
2180 		 * Skip this entry when it contains an invalid
2181 		 * queue identication number.
2182 		 */
2183 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2184 		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2185 		if (unlikely(!queue))
2186 			continue;
2187 
2188 		/*
2189 		 * Skip this entry when it contains an invalid
2190 		 * index number.
2191 		 */
2192 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2193 		if (unlikely(index >= queue->limit))
2194 			continue;
2195 
2196 		entry = &queue->entries[index];
2197 		entry_priv = entry->priv_data;
2198 		rt2x00_desc_read(entry_priv->desc, 0, &word);
2199 
2200 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2201 		    !rt2x00_get_field32(word, TXD_W0_VALID))
2202 			return;
2203 
2204 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2205 		while (entry != entry_done) {
2206 			/* Catch up.
2207 			 * Just report any entries we missed as failed.
2208 			 */
2209 			WARNING(rt2x00dev,
2210 				"TX status report missed for entry %d\n",
2211 				entry_done->entry_idx);
2212 
2213 			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215 		}
2216 
2217 		/*
2218 		 * Obtain the status about this packet.
2219 		 */
2220 		txdesc.flags = 0;
2221 		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222 		case 0: /* Success, maybe with retry */
2223 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224 			break;
2225 		case 6: /* Failure, excessive retries */
2226 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227 			/* Don't break, this is a failed frame! */
2228 		default: /* Failure */
2229 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2230 		}
2231 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232 
2233 		/*
2234 		 * the frame was retried at least once
2235 		 * -> hw used fallback rates
2236 		 */
2237 		if (txdesc.retry)
2238 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239 
2240 		rt2x00lib_txdone(entry, &txdesc);
2241 	}
2242 }
2243 
rt61pci_wakeup(struct rt2x00_dev * rt2x00dev)2244 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245 {
2246 	struct ieee80211_conf conf = { .flags = 0 };
2247 	struct rt2x00lib_conf libconf = { .conf = &conf };
2248 
2249 	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2250 }
2251 
rt61pci_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)2252 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2253 					    struct rt2x00_field32 irq_field)
2254 {
2255 	u32 reg;
2256 
2257 	/*
2258 	 * Enable a single interrupt. The interrupt mask register
2259 	 * access needs locking.
2260 	 */
2261 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2262 
2263 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2264 	rt2x00_set_field32(&reg, irq_field, 0);
2265 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2266 
2267 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2268 }
2269 
rt61pci_enable_mcu_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)2270 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2271 					 struct rt2x00_field32 irq_field)
2272 {
2273 	u32 reg;
2274 
2275 	/*
2276 	 * Enable a single MCU interrupt. The interrupt mask register
2277 	 * access needs locking.
2278 	 */
2279 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2280 
2281 	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2282 	rt2x00_set_field32(&reg, irq_field, 0);
2283 	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2284 
2285 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2286 }
2287 
rt61pci_txstatus_tasklet(unsigned long data)2288 static void rt61pci_txstatus_tasklet(unsigned long data)
2289 {
2290 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2291 	rt61pci_txdone(rt2x00dev);
2292 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2293 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2294 }
2295 
rt61pci_tbtt_tasklet(unsigned long data)2296 static void rt61pci_tbtt_tasklet(unsigned long data)
2297 {
2298 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2299 	rt2x00lib_beacondone(rt2x00dev);
2300 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2301 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2302 }
2303 
rt61pci_rxdone_tasklet(unsigned long data)2304 static void rt61pci_rxdone_tasklet(unsigned long data)
2305 {
2306 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2307 	if (rt2x00pci_rxdone(rt2x00dev))
2308 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2309 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2310 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2311 }
2312 
rt61pci_autowake_tasklet(unsigned long data)2313 static void rt61pci_autowake_tasklet(unsigned long data)
2314 {
2315 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316 	rt61pci_wakeup(rt2x00dev);
2317 	rt2x00pci_register_write(rt2x00dev,
2318 				 M2H_CMD_DONE_CSR, 0xffffffff);
2319 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2320 		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2321 }
2322 
rt61pci_interrupt(int irq,void * dev_instance)2323 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2324 {
2325 	struct rt2x00_dev *rt2x00dev = dev_instance;
2326 	u32 reg_mcu, mask_mcu;
2327 	u32 reg, mask;
2328 
2329 	/*
2330 	 * Get the interrupt sources & saved to local variable.
2331 	 * Write register value back to clear pending interrupts.
2332 	 */
2333 	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2334 	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2335 
2336 	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2337 	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2338 
2339 	if (!reg && !reg_mcu)
2340 		return IRQ_NONE;
2341 
2342 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2343 		return IRQ_HANDLED;
2344 
2345 	/*
2346 	 * Schedule tasklets for interrupt handling.
2347 	 */
2348 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2349 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2350 
2351 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2352 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2353 
2354 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2355 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2356 
2357 	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2358 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2359 
2360 	/*
2361 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2362 	 * for interrupts and interrupt masks we can just use the value of
2363 	 * INT_SOURCE_CSR to create the interrupt mask.
2364 	 */
2365 	mask = reg;
2366 	mask_mcu = reg_mcu;
2367 
2368 	/*
2369 	 * Disable all interrupts for which a tasklet was scheduled right now,
2370 	 * the tasklet will reenable the appropriate interrupts.
2371 	 */
2372 	spin_lock(&rt2x00dev->irqmask_lock);
2373 
2374 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2375 	reg |= mask;
2376 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2377 
2378 	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2379 	reg |= mask_mcu;
2380 	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2381 
2382 	spin_unlock(&rt2x00dev->irqmask_lock);
2383 
2384 	return IRQ_HANDLED;
2385 }
2386 
2387 /*
2388  * Device probe functions.
2389  */
rt61pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)2390 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2391 {
2392 	struct eeprom_93cx6 eeprom;
2393 	u32 reg;
2394 	u16 word;
2395 	u8 *mac;
2396 	s8 value;
2397 
2398 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2399 
2400 	eeprom.data = rt2x00dev;
2401 	eeprom.register_read = rt61pci_eepromregister_read;
2402 	eeprom.register_write = rt61pci_eepromregister_write;
2403 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2404 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2405 	eeprom.reg_data_in = 0;
2406 	eeprom.reg_data_out = 0;
2407 	eeprom.reg_data_clock = 0;
2408 	eeprom.reg_chip_select = 0;
2409 
2410 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2411 			       EEPROM_SIZE / sizeof(u16));
2412 
2413 	/*
2414 	 * Start validation of the data that has been read.
2415 	 */
2416 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2417 	if (!is_valid_ether_addr(mac)) {
2418 		random_ether_addr(mac);
2419 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2420 	}
2421 
2422 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2423 	if (word == 0xffff) {
2424 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2425 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2426 				   ANTENNA_B);
2427 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2428 				   ANTENNA_B);
2429 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2430 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2431 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2432 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2433 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2434 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2435 	}
2436 
2437 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2438 	if (word == 0xffff) {
2439 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2440 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2441 		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2442 		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2443 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2444 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2445 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2446 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2447 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2448 	}
2449 
2450 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2451 	if (word == 0xffff) {
2452 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2453 				   LED_MODE_DEFAULT);
2454 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2455 		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2456 	}
2457 
2458 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2459 	if (word == 0xffff) {
2460 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2461 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2462 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2463 		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2464 	}
2465 
2466 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2467 	if (word == 0xffff) {
2468 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2469 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2470 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2471 		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2472 	} else {
2473 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2474 		if (value < -10 || value > 10)
2475 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2476 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2477 		if (value < -10 || value > 10)
2478 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2479 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2480 	}
2481 
2482 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2483 	if (word == 0xffff) {
2484 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2485 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2486 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2487 		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2488 	} else {
2489 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2490 		if (value < -10 || value > 10)
2491 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2492 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2493 		if (value < -10 || value > 10)
2494 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2495 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2496 	}
2497 
2498 	return 0;
2499 }
2500 
rt61pci_init_eeprom(struct rt2x00_dev * rt2x00dev)2501 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2502 {
2503 	u32 reg;
2504 	u16 value;
2505 	u16 eeprom;
2506 
2507 	/*
2508 	 * Read EEPROM word for configuration.
2509 	 */
2510 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2511 
2512 	/*
2513 	 * Identify RF chipset.
2514 	 */
2515 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2516 	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2517 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2518 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2519 
2520 	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2521 	    !rt2x00_rf(rt2x00dev, RF5325) &&
2522 	    !rt2x00_rf(rt2x00dev, RF2527) &&
2523 	    !rt2x00_rf(rt2x00dev, RF2529)) {
2524 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2525 		return -ENODEV;
2526 	}
2527 
2528 	/*
2529 	 * Determine number of antennas.
2530 	 */
2531 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2532 		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2533 
2534 	/*
2535 	 * Identify default antenna configuration.
2536 	 */
2537 	rt2x00dev->default_ant.tx =
2538 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2539 	rt2x00dev->default_ant.rx =
2540 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2541 
2542 	/*
2543 	 * Read the Frame type.
2544 	 */
2545 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2546 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2547 
2548 	/*
2549 	 * Detect if this device has a hardware controlled radio.
2550 	 */
2551 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2552 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2553 
2554 	/*
2555 	 * Read frequency offset and RF programming sequence.
2556 	 */
2557 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2558 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2559 		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2560 
2561 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2562 
2563 	/*
2564 	 * Read external LNA informations.
2565 	 */
2566 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2567 
2568 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2569 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2570 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2571 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2572 
2573 	/*
2574 	 * When working with a RF2529 chip without double antenna,
2575 	 * the antenna settings should be gathered from the NIC
2576 	 * eeprom word.
2577 	 */
2578 	if (rt2x00_rf(rt2x00dev, RF2529) &&
2579 	    !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2580 		rt2x00dev->default_ant.rx =
2581 		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2582 		rt2x00dev->default_ant.tx =
2583 		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2584 
2585 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2586 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2587 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2588 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2589 	}
2590 
2591 	/*
2592 	 * Store led settings, for correct led behaviour.
2593 	 * If the eeprom value is invalid,
2594 	 * switch to default led mode.
2595 	 */
2596 #ifdef CONFIG_RT2X00_LIB_LEDS
2597 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2598 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2599 
2600 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2601 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2602 	if (value == LED_MODE_SIGNAL_STRENGTH)
2603 		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2604 				 LED_TYPE_QUALITY);
2605 
2606 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2607 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2608 			   rt2x00_get_field16(eeprom,
2609 					      EEPROM_LED_POLARITY_GPIO_0));
2610 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2611 			   rt2x00_get_field16(eeprom,
2612 					      EEPROM_LED_POLARITY_GPIO_1));
2613 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2614 			   rt2x00_get_field16(eeprom,
2615 					      EEPROM_LED_POLARITY_GPIO_2));
2616 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2617 			   rt2x00_get_field16(eeprom,
2618 					      EEPROM_LED_POLARITY_GPIO_3));
2619 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2620 			   rt2x00_get_field16(eeprom,
2621 					      EEPROM_LED_POLARITY_GPIO_4));
2622 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2623 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2624 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2625 			   rt2x00_get_field16(eeprom,
2626 					      EEPROM_LED_POLARITY_RDY_G));
2627 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2628 			   rt2x00_get_field16(eeprom,
2629 					      EEPROM_LED_POLARITY_RDY_A));
2630 #endif /* CONFIG_RT2X00_LIB_LEDS */
2631 
2632 	return 0;
2633 }
2634 
2635 /*
2636  * RF value list for RF5225 & RF5325
2637  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2638  */
2639 static const struct rf_channel rf_vals_noseq[] = {
2640 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2641 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2642 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2643 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2644 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2645 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2646 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2647 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2648 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2649 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2650 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2651 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2652 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2653 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2654 
2655 	/* 802.11 UNI / HyperLan 2 */
2656 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2657 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2658 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2659 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2660 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2661 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2662 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2663 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2664 
2665 	/* 802.11 HyperLan 2 */
2666 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2667 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2668 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2669 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2670 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2671 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2672 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2673 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2674 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2675 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2676 
2677 	/* 802.11 UNII */
2678 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2679 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2680 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2681 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2682 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2683 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2684 
2685 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2686 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2687 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2688 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2689 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2690 };
2691 
2692 /*
2693  * RF value list for RF5225 & RF5325
2694  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2695  */
2696 static const struct rf_channel rf_vals_seq[] = {
2697 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2698 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2699 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2700 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2701 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2702 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2703 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2704 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2705 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2706 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2707 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2708 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2709 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2710 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2711 
2712 	/* 802.11 UNI / HyperLan 2 */
2713 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2714 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2715 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2716 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2717 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2718 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2719 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2720 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2721 
2722 	/* 802.11 HyperLan 2 */
2723 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2724 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2725 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2726 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2727 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2728 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2729 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2730 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2731 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2732 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2733 
2734 	/* 802.11 UNII */
2735 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2736 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2737 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2738 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2739 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2740 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2741 
2742 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2743 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2744 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2745 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2746 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2747 };
2748 
rt61pci_probe_hw_mode(struct rt2x00_dev * rt2x00dev)2749 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2750 {
2751 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2752 	struct channel_info *info;
2753 	char *tx_power;
2754 	unsigned int i;
2755 
2756 	/*
2757 	 * Disable powersaving as default.
2758 	 */
2759 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2760 
2761 	/*
2762 	 * Initialize all hw fields.
2763 	 */
2764 	rt2x00dev->hw->flags =
2765 	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2766 	    IEEE80211_HW_SIGNAL_DBM |
2767 	    IEEE80211_HW_SUPPORTS_PS |
2768 	    IEEE80211_HW_PS_NULLFUNC_STACK;
2769 
2770 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2771 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2772 				rt2x00_eeprom_addr(rt2x00dev,
2773 						   EEPROM_MAC_ADDR_0));
2774 
2775 	/*
2776 	 * As rt61 has a global fallback table we cannot specify
2777 	 * more then one tx rate per frame but since the hw will
2778 	 * try several rates (based on the fallback table) we should
2779 	 * initialize max_report_rates to the maximum number of rates
2780 	 * we are going to try. Otherwise mac80211 will truncate our
2781 	 * reported tx rates and the rc algortihm will end up with
2782 	 * incorrect data.
2783 	 */
2784 	rt2x00dev->hw->max_rates = 1;
2785 	rt2x00dev->hw->max_report_rates = 7;
2786 	rt2x00dev->hw->max_rate_tries = 1;
2787 
2788 	/*
2789 	 * Initialize hw_mode information.
2790 	 */
2791 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2792 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2793 
2794 	if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2795 		spec->num_channels = 14;
2796 		spec->channels = rf_vals_noseq;
2797 	} else {
2798 		spec->num_channels = 14;
2799 		spec->channels = rf_vals_seq;
2800 	}
2801 
2802 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2803 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2804 		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2805 	}
2806 
2807 	/*
2808 	 * Create channel information array
2809 	 */
2810 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2811 	if (!info)
2812 		return -ENOMEM;
2813 
2814 	spec->channels_info = info;
2815 
2816 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2817 	for (i = 0; i < 14; i++) {
2818 		info[i].max_power = MAX_TXPOWER;
2819 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2820 	}
2821 
2822 	if (spec->num_channels > 14) {
2823 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2824 		for (i = 14; i < spec->num_channels; i++) {
2825 			info[i].max_power = MAX_TXPOWER;
2826 			info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2827 		}
2828 	}
2829 
2830 	return 0;
2831 }
2832 
rt61pci_probe_hw(struct rt2x00_dev * rt2x00dev)2833 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2834 {
2835 	int retval;
2836 
2837 	/*
2838 	 * Disable power saving.
2839 	 */
2840 	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2841 
2842 	/*
2843 	 * Allocate eeprom data.
2844 	 */
2845 	retval = rt61pci_validate_eeprom(rt2x00dev);
2846 	if (retval)
2847 		return retval;
2848 
2849 	retval = rt61pci_init_eeprom(rt2x00dev);
2850 	if (retval)
2851 		return retval;
2852 
2853 	/*
2854 	 * Initialize hw specifications.
2855 	 */
2856 	retval = rt61pci_probe_hw_mode(rt2x00dev);
2857 	if (retval)
2858 		return retval;
2859 
2860 	/*
2861 	 * This device has multiple filters for control frames,
2862 	 * but has no a separate filter for PS Poll frames.
2863 	 */
2864 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2865 
2866 	/*
2867 	 * This device requires firmware and DMA mapped skbs.
2868 	 */
2869 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2870 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2871 	if (!modparam_nohwcrypt)
2872 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2873 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2874 
2875 	/*
2876 	 * Set the rssi offset.
2877 	 */
2878 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2879 
2880 	return 0;
2881 }
2882 
2883 /*
2884  * IEEE80211 stack callback functions.
2885  */
rt61pci_conf_tx(struct ieee80211_hw * hw,struct ieee80211_vif * vif,u16 queue_idx,const struct ieee80211_tx_queue_params * params)2886 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2887 			   struct ieee80211_vif *vif, u16 queue_idx,
2888 			   const struct ieee80211_tx_queue_params *params)
2889 {
2890 	struct rt2x00_dev *rt2x00dev = hw->priv;
2891 	struct data_queue *queue;
2892 	struct rt2x00_field32 field;
2893 	int retval;
2894 	u32 reg;
2895 	u32 offset;
2896 
2897 	/*
2898 	 * First pass the configuration through rt2x00lib, that will
2899 	 * update the queue settings and validate the input. After that
2900 	 * we are free to update the registers based on the value
2901 	 * in the queue parameter.
2902 	 */
2903 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2904 	if (retval)
2905 		return retval;
2906 
2907 	/*
2908 	 * We only need to perform additional register initialization
2909 	 * for WMM queues.
2910 	 */
2911 	if (queue_idx >= 4)
2912 		return 0;
2913 
2914 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2915 
2916 	/* Update WMM TXOP register */
2917 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2918 	field.bit_offset = (queue_idx & 1) * 16;
2919 	field.bit_mask = 0xffff << field.bit_offset;
2920 
2921 	rt2x00pci_register_read(rt2x00dev, offset, &reg);
2922 	rt2x00_set_field32(&reg, field, queue->txop);
2923 	rt2x00pci_register_write(rt2x00dev, offset, reg);
2924 
2925 	/* Update WMM registers */
2926 	field.bit_offset = queue_idx * 4;
2927 	field.bit_mask = 0xf << field.bit_offset;
2928 
2929 	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2930 	rt2x00_set_field32(&reg, field, queue->aifs);
2931 	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2932 
2933 	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2934 	rt2x00_set_field32(&reg, field, queue->cw_min);
2935 	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2936 
2937 	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2938 	rt2x00_set_field32(&reg, field, queue->cw_max);
2939 	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2940 
2941 	return 0;
2942 }
2943 
rt61pci_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)2944 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2945 {
2946 	struct rt2x00_dev *rt2x00dev = hw->priv;
2947 	u64 tsf;
2948 	u32 reg;
2949 
2950 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2951 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2952 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2953 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2954 
2955 	return tsf;
2956 }
2957 
2958 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2959 	.tx			= rt2x00mac_tx,
2960 	.start			= rt2x00mac_start,
2961 	.stop			= rt2x00mac_stop,
2962 	.add_interface		= rt2x00mac_add_interface,
2963 	.remove_interface	= rt2x00mac_remove_interface,
2964 	.config			= rt2x00mac_config,
2965 	.configure_filter	= rt2x00mac_configure_filter,
2966 	.set_key		= rt2x00mac_set_key,
2967 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2968 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2969 	.get_stats		= rt2x00mac_get_stats,
2970 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2971 	.conf_tx		= rt61pci_conf_tx,
2972 	.get_tsf		= rt61pci_get_tsf,
2973 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2974 	.flush			= rt2x00mac_flush,
2975 	.set_antenna		= rt2x00mac_set_antenna,
2976 	.get_antenna		= rt2x00mac_get_antenna,
2977 	.get_ringparam		= rt2x00mac_get_ringparam,
2978 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2979 };
2980 
2981 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2982 	.irq_handler		= rt61pci_interrupt,
2983 	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2984 	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2985 	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2986 	.autowake_tasklet	= rt61pci_autowake_tasklet,
2987 	.probe_hw		= rt61pci_probe_hw,
2988 	.get_firmware_name	= rt61pci_get_firmware_name,
2989 	.check_firmware		= rt61pci_check_firmware,
2990 	.load_firmware		= rt61pci_load_firmware,
2991 	.initialize		= rt2x00pci_initialize,
2992 	.uninitialize		= rt2x00pci_uninitialize,
2993 	.get_entry_state	= rt61pci_get_entry_state,
2994 	.clear_entry		= rt61pci_clear_entry,
2995 	.set_device_state	= rt61pci_set_device_state,
2996 	.rfkill_poll		= rt61pci_rfkill_poll,
2997 	.link_stats		= rt61pci_link_stats,
2998 	.reset_tuner		= rt61pci_reset_tuner,
2999 	.link_tuner		= rt61pci_link_tuner,
3000 	.start_queue		= rt61pci_start_queue,
3001 	.kick_queue		= rt61pci_kick_queue,
3002 	.stop_queue		= rt61pci_stop_queue,
3003 	.flush_queue		= rt2x00pci_flush_queue,
3004 	.write_tx_desc		= rt61pci_write_tx_desc,
3005 	.write_beacon		= rt61pci_write_beacon,
3006 	.clear_beacon		= rt61pci_clear_beacon,
3007 	.fill_rxdone		= rt61pci_fill_rxdone,
3008 	.config_shared_key	= rt61pci_config_shared_key,
3009 	.config_pairwise_key	= rt61pci_config_pairwise_key,
3010 	.config_filter		= rt61pci_config_filter,
3011 	.config_intf		= rt61pci_config_intf,
3012 	.config_erp		= rt61pci_config_erp,
3013 	.config_ant		= rt61pci_config_ant,
3014 	.config			= rt61pci_config,
3015 };
3016 
3017 static const struct data_queue_desc rt61pci_queue_rx = {
3018 	.entry_num		= 32,
3019 	.data_size		= DATA_FRAME_SIZE,
3020 	.desc_size		= RXD_DESC_SIZE,
3021 	.priv_size		= sizeof(struct queue_entry_priv_pci),
3022 };
3023 
3024 static const struct data_queue_desc rt61pci_queue_tx = {
3025 	.entry_num		= 32,
3026 	.data_size		= DATA_FRAME_SIZE,
3027 	.desc_size		= TXD_DESC_SIZE,
3028 	.priv_size		= sizeof(struct queue_entry_priv_pci),
3029 };
3030 
3031 static const struct data_queue_desc rt61pci_queue_bcn = {
3032 	.entry_num		= 4,
3033 	.data_size		= 0, /* No DMA required for beacons */
3034 	.desc_size		= TXINFO_SIZE,
3035 	.priv_size		= sizeof(struct queue_entry_priv_pci),
3036 };
3037 
3038 static const struct rt2x00_ops rt61pci_ops = {
3039 	.name			= KBUILD_MODNAME,
3040 	.max_sta_intf		= 1,
3041 	.max_ap_intf		= 4,
3042 	.eeprom_size		= EEPROM_SIZE,
3043 	.rf_size		= RF_SIZE,
3044 	.tx_queues		= NUM_TX_QUEUES,
3045 	.extra_tx_headroom	= 0,
3046 	.rx			= &rt61pci_queue_rx,
3047 	.tx			= &rt61pci_queue_tx,
3048 	.bcn			= &rt61pci_queue_bcn,
3049 	.lib			= &rt61pci_rt2x00_ops,
3050 	.hw			= &rt61pci_mac80211_ops,
3051 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3052 	.debugfs		= &rt61pci_rt2x00debug,
3053 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3054 };
3055 
3056 /*
3057  * RT61pci module information.
3058  */
3059 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3060 	/* RT2561s */
3061 	{ PCI_DEVICE(0x1814, 0x0301) },
3062 	/* RT2561 v2 */
3063 	{ PCI_DEVICE(0x1814, 0x0302) },
3064 	/* RT2661 */
3065 	{ PCI_DEVICE(0x1814, 0x0401) },
3066 	{ 0, }
3067 };
3068 
3069 MODULE_AUTHOR(DRV_PROJECT);
3070 MODULE_VERSION(DRV_VERSION);
3071 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3072 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3073 			"PCI & PCMCIA chipset based cards");
3074 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3075 MODULE_FIRMWARE(FIRMWARE_RT2561);
3076 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3077 MODULE_FIRMWARE(FIRMWARE_RT2661);
3078 MODULE_LICENSE("GPL");
3079 
rt61pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)3080 static int rt61pci_probe(struct pci_dev *pci_dev,
3081 			 const struct pci_device_id *id)
3082 {
3083 	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3084 }
3085 
3086 static struct pci_driver rt61pci_driver = {
3087 	.name		= KBUILD_MODNAME,
3088 	.id_table	= rt61pci_device_table,
3089 	.probe		= rt61pci_probe,
3090 	.remove		= __devexit_p(rt2x00pci_remove),
3091 	.suspend	= rt2x00pci_suspend,
3092 	.resume		= rt2x00pci_resume,
3093 };
3094 
rt61pci_init(void)3095 static int __init rt61pci_init(void)
3096 {
3097 	return pci_register_driver(&rt61pci_driver);
3098 }
3099 
rt61pci_exit(void)3100 static void __exit rt61pci_exit(void)
3101 {
3102 	pci_unregister_driver(&rt61pci_driver);
3103 }
3104 
3105 module_init(rt61pci_init);
3106 module_exit(rt61pci_exit);
3107