1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91
92 /*
93 * Start watchdog monitoring.
94 */
95 rt2x00link_start_watchdog(rt2x00dev);
96
97 return 0;
98 }
99
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 return;
104
105 /*
106 * Stop watchdog monitoring.
107 */
108 rt2x00link_stop_watchdog(rt2x00dev);
109
110 /*
111 * Stop all queues
112 */
113 rt2x00link_stop_agc(rt2x00dev);
114 rt2x00link_stop_tuner(rt2x00dev);
115 rt2x00queue_stop_queues(rt2x00dev);
116 rt2x00queue_flush_queues(rt2x00dev, true);
117
118 /*
119 * Disable radio.
120 */
121 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123 rt2x00led_led_activity(rt2x00dev, false);
124 rt2x00leds_led_radio(rt2x00dev, false);
125 }
126
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128 struct ieee80211_vif *vif)
129 {
130 struct rt2x00_dev *rt2x00dev = data;
131 struct rt2x00_intf *intf = vif_to_intf(vif);
132
133 /*
134 * It is possible the radio was disabled while the work had been
135 * scheduled. If that happens we should return here immediately,
136 * note that in the spinlock protected area above the delayed_flags
137 * have been cleared correctly.
138 */
139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140 return;
141
142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143 rt2x00queue_update_beacon(rt2x00dev, vif);
144 }
145
rt2x00lib_intf_scheduled(struct work_struct * work)146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
147 {
148 struct rt2x00_dev *rt2x00dev =
149 container_of(work, struct rt2x00_dev, intf_work);
150
151 /*
152 * Iterate over each interface and perform the
153 * requested configurations.
154 */
155 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156 rt2x00lib_intf_scheduled_iter,
157 rt2x00dev);
158 }
159
rt2x00lib_autowakeup(struct work_struct * work)160 static void rt2x00lib_autowakeup(struct work_struct *work)
161 {
162 struct rt2x00_dev *rt2x00dev =
163 container_of(work, struct rt2x00_dev, autowakeup_work.work);
164
165 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166 return;
167
168 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171 }
172
173 /*
174 * Interrupt context handlers.
175 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177 struct ieee80211_vif *vif)
178 {
179 struct rt2x00_dev *rt2x00dev = data;
180 struct sk_buff *skb;
181
182 /*
183 * Only AP mode interfaces do broad- and multicast buffering
184 */
185 if (vif->type != NL80211_IFTYPE_AP)
186 return;
187
188 /*
189 * Send out buffered broad- and multicast frames
190 */
191 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192 while (skb) {
193 rt2x00mac_tx(rt2x00dev->hw, skb);
194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 }
196 }
197
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199 struct ieee80211_vif *vif)
200 {
201 struct rt2x00_dev *rt2x00dev = data;
202
203 if (vif->type != NL80211_IFTYPE_AP &&
204 vif->type != NL80211_IFTYPE_ADHOC &&
205 vif->type != NL80211_IFTYPE_MESH_POINT &&
206 vif->type != NL80211_IFTYPE_WDS)
207 return;
208
209 /*
210 * Update the beacon without locking. This is safe on PCI devices
211 * as they only update the beacon periodically here. This should
212 * never be called for USB devices.
213 */
214 WARN_ON(rt2x00_is_usb(rt2x00dev));
215 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216 }
217
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221 return;
222
223 /* send buffered bc/mc frames out for every bssid */
224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225 rt2x00lib_bc_buffer_iter,
226 rt2x00dev);
227 /*
228 * Devices with pre tbtt interrupt don't need to update the beacon
229 * here as they will fetch the next beacon directly prior to
230 * transmission.
231 */
232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233 return;
234
235 /* fetch next beacon */
236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237 rt2x00lib_beaconupdate_iter,
238 rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245 return;
246
247 /* fetch next beacon */
248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249 rt2x00lib_beaconupdate_iter,
250 rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
rt2x00lib_dmastart(struct queue_entry * entry)254 void rt2x00lib_dmastart(struct queue_entry *entry)
255 {
256 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 rt2x00queue_index_inc(entry, Q_INDEX);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260
rt2x00lib_dmadone(struct queue_entry * entry)261 void rt2x00lib_dmadone(struct queue_entry *entry)
262 {
263 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)269 void rt2x00lib_txdone(struct queue_entry *entry,
270 struct txdone_entry_desc *txdesc)
271 {
272 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275 unsigned int header_length, i;
276 u8 rate_idx, rate_flags, retry_rates;
277 u8 skbdesc_flags = skbdesc->flags;
278 bool success;
279
280 /*
281 * Unmap the skb.
282 */
283 rt2x00queue_unmap_skb(entry);
284
285 /*
286 * Remove the extra tx headroom from the skb.
287 */
288 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289
290 /*
291 * Signal that the TX descriptor is no longer in the skb.
292 */
293 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294
295 /*
296 * Determine the length of 802.11 header.
297 */
298 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299
300 /*
301 * Remove L2 padding which was added during
302 */
303 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304 rt2x00queue_remove_l2pad(entry->skb, header_length);
305
306 /*
307 * If the IV/EIV data was stripped from the frame before it was
308 * passed to the hardware, we should now reinsert it again because
309 * mac80211 will expect the same data to be present it the
310 * frame as it was passed to us.
311 */
312 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314
315 /*
316 * Send frame to debugfs immediately, after this call is completed
317 * we are going to overwrite the skb->cb array.
318 */
319 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320
321 /*
322 * Determine if the frame has been successfully transmitted.
323 */
324 success =
325 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327
328 /*
329 * Update TX statistics.
330 */
331 rt2x00dev->link.qual.tx_success += success;
332 rt2x00dev->link.qual.tx_failed += !success;
333
334 rate_idx = skbdesc->tx_rate_idx;
335 rate_flags = skbdesc->tx_rate_flags;
336 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337 (txdesc->retry + 1) : 1;
338
339 /*
340 * Initialize TX status
341 */
342 memset(&tx_info->status, 0, sizeof(tx_info->status));
343 tx_info->status.ack_signal = 0;
344
345 /*
346 * Frame was send with retries, hardware tried
347 * different rates to send out the frame, at each
348 * retry it lowered the rate 1 step except when the
349 * lowest rate was used.
350 */
351 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352 tx_info->status.rates[i].idx = rate_idx - i;
353 tx_info->status.rates[i].flags = rate_flags;
354
355 if (rate_idx - i == 0) {
356 /*
357 * The lowest rate (index 0) was used until the
358 * number of max retries was reached.
359 */
360 tx_info->status.rates[i].count = retry_rates - i;
361 i++;
362 break;
363 }
364 tx_info->status.rates[i].count = 1;
365 }
366 if (i < (IEEE80211_TX_MAX_RATES - 1))
367 tx_info->status.rates[i].idx = -1; /* terminate */
368
369 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370 if (success)
371 tx_info->flags |= IEEE80211_TX_STAT_ACK;
372 else
373 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374 }
375
376 /*
377 * Every single frame has it's own tx status, hence report
378 * every frame as ampdu of size 1.
379 *
380 * TODO: if we can find out how many frames were aggregated
381 * by the hw we could provide the real ampdu_len to mac80211
382 * which would allow the rc algorithm to better decide on
383 * which rates are suitable.
384 */
385 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388 tx_info->status.ampdu_len = 1;
389 tx_info->status.ampdu_ack_len = success ? 1 : 0;
390
391 if (!success)
392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393 }
394
395 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396 if (success)
397 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398 else
399 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400 }
401
402 /*
403 * Only send the status report to mac80211 when it's a frame
404 * that originated in mac80211. If this was a extra frame coming
405 * through a mac80211 library call (RTS/CTS) then we should not
406 * send the status report back.
407 */
408 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411 else
412 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413 } else
414 dev_kfree_skb_any(entry->skb);
415
416 /*
417 * Make this entry available for reuse.
418 */
419 entry->skb = NULL;
420 entry->flags = 0;
421
422 rt2x00dev->ops->lib->clear_entry(entry);
423
424 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425
426 /*
427 * If the data queue was below the threshold before the txdone
428 * handler we must make sure the packet queue in the mac80211 stack
429 * is reenabled when the txdone handler has finished. This has to be
430 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
431 * before it was stopped.
432 */
433 spin_lock_bh(&entry->queue->tx_lock);
434 if (!rt2x00queue_threshold(entry->queue))
435 rt2x00queue_unpause_queue(entry->queue);
436 spin_unlock_bh(&entry->queue->tx_lock);
437 }
438 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
439
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)440 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
441 {
442 struct txdone_entry_desc txdesc;
443
444 txdesc.flags = 0;
445 __set_bit(status, &txdesc.flags);
446 txdesc.retry = 0;
447
448 rt2x00lib_txdone(entry, &txdesc);
449 }
450 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
451
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)452 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
453 {
454 struct ieee80211_mgmt *mgmt = (void *)data;
455 u8 *pos, *end;
456
457 pos = (u8 *)mgmt->u.beacon.variable;
458 end = data + len;
459 while (pos < end) {
460 if (pos + 2 + pos[1] > end)
461 return NULL;
462
463 if (pos[0] == ie)
464 return pos;
465
466 pos += 2 + pos[1];
467 }
468
469 return NULL;
470 }
471
rt2x00lib_sleep(struct work_struct * work)472 static void rt2x00lib_sleep(struct work_struct *work)
473 {
474 struct rt2x00_dev *rt2x00dev =
475 container_of(work, struct rt2x00_dev, sleep_work);
476
477 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
478 return;
479
480 /*
481 * Check again is powersaving is enabled, to prevent races from delayed
482 * work execution.
483 */
484 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
485 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
486 IEEE80211_CONF_CHANGE_PS);
487 }
488
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)489 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
490 struct sk_buff *skb,
491 struct rxdone_entry_desc *rxdesc)
492 {
493 struct ieee80211_hdr *hdr = (void *) skb->data;
494 struct ieee80211_tim_ie *tim_ie;
495 u8 *tim;
496 u8 tim_len;
497 bool cam;
498
499 /* If this is not a beacon, or if mac80211 has no powersaving
500 * configured, or if the device is already in powersaving mode
501 * we can exit now. */
502 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
503 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
504 return;
505
506 /* min. beacon length + FCS_LEN */
507 if (skb->len <= 40 + FCS_LEN)
508 return;
509
510 /* and only beacons from the associated BSSID, please */
511 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
512 !rt2x00dev->aid)
513 return;
514
515 rt2x00dev->last_beacon = jiffies;
516
517 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
518 if (!tim)
519 return;
520
521 if (tim[1] < sizeof(*tim_ie))
522 return;
523
524 tim_len = tim[1];
525 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
526
527 /* Check whenever the PHY can be turned off again. */
528
529 /* 1. What about buffered unicast traffic for our AID? */
530 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
531
532 /* 2. Maybe the AP wants to send multicast/broadcast data? */
533 cam |= (tim_ie->bitmap_ctrl & 0x01);
534
535 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
537 }
538
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)539 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
540 struct rxdone_entry_desc *rxdesc)
541 {
542 struct ieee80211_supported_band *sband;
543 const struct rt2x00_rate *rate;
544 unsigned int i;
545 int signal = rxdesc->signal;
546 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
547
548 switch (rxdesc->rate_mode) {
549 case RATE_MODE_CCK:
550 case RATE_MODE_OFDM:
551 /*
552 * For non-HT rates the MCS value needs to contain the
553 * actually used rate modulation (CCK or OFDM).
554 */
555 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
556 signal = RATE_MCS(rxdesc->rate_mode, signal);
557
558 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
559 for (i = 0; i < sband->n_bitrates; i++) {
560 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
561 if (((type == RXDONE_SIGNAL_PLCP) &&
562 (rate->plcp == signal)) ||
563 ((type == RXDONE_SIGNAL_BITRATE) &&
564 (rate->bitrate == signal)) ||
565 ((type == RXDONE_SIGNAL_MCS) &&
566 (rate->mcs == signal))) {
567 return i;
568 }
569 }
570 break;
571 case RATE_MODE_HT_MIX:
572 case RATE_MODE_HT_GREENFIELD:
573 if (signal >= 0 && signal <= 76)
574 return signal;
575 break;
576 default:
577 break;
578 }
579
580 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
581 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
582 rxdesc->rate_mode, signal, type);
583 return 0;
584 }
585
rt2x00lib_rxdone(struct queue_entry * entry)586 void rt2x00lib_rxdone(struct queue_entry *entry)
587 {
588 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
589 struct rxdone_entry_desc rxdesc;
590 struct sk_buff *skb;
591 struct ieee80211_rx_status *rx_status;
592 unsigned int header_length;
593 int rate_idx;
594
595 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
596 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
597 goto submit_entry;
598
599 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
600 goto submit_entry;
601
602 /*
603 * Allocate a new sk_buffer. If no new buffer available, drop the
604 * received frame and reuse the existing buffer.
605 */
606 skb = rt2x00queue_alloc_rxskb(entry);
607 if (!skb)
608 goto submit_entry;
609
610 /*
611 * Unmap the skb.
612 */
613 rt2x00queue_unmap_skb(entry);
614
615 /*
616 * Extract the RXD details.
617 */
618 memset(&rxdesc, 0, sizeof(rxdesc));
619 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
620
621 /*
622 * Check for valid size in case we get corrupted descriptor from
623 * hardware.
624 */
625 if (unlikely(rxdesc.size == 0 ||
626 rxdesc.size > entry->queue->data_size)) {
627 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
628 rxdesc.size, entry->queue->data_size);
629 dev_kfree_skb(entry->skb);
630 goto renew_skb;
631 }
632
633 /*
634 * The data behind the ieee80211 header must be
635 * aligned on a 4 byte boundary.
636 */
637 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
638
639 /*
640 * Hardware might have stripped the IV/EIV/ICV data,
641 * in that case it is possible that the data was
642 * provided separately (through hardware descriptor)
643 * in which case we should reinsert the data into the frame.
644 */
645 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
646 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
647 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
648 &rxdesc);
649 else if (header_length &&
650 (rxdesc.size > header_length) &&
651 (rxdesc.dev_flags & RXDONE_L2PAD))
652 rt2x00queue_remove_l2pad(entry->skb, header_length);
653
654 /* Trim buffer to correct size */
655 skb_trim(entry->skb, rxdesc.size);
656
657 /*
658 * Translate the signal to the correct bitrate index.
659 */
660 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
661 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
662 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
663 rxdesc.flags |= RX_FLAG_HT;
664
665 /*
666 * Check if this is a beacon, and more frames have been
667 * buffered while we were in powersaving mode.
668 */
669 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
670
671 /*
672 * Update extra components
673 */
674 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
675 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
676 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
677
678 /*
679 * Initialize RX status information, and send frame
680 * to mac80211.
681 */
682 rx_status = IEEE80211_SKB_RXCB(entry->skb);
683 rx_status->mactime = rxdesc.timestamp;
684 rx_status->band = rt2x00dev->curr_band;
685 rx_status->freq = rt2x00dev->curr_freq;
686 rx_status->rate_idx = rate_idx;
687 rx_status->signal = rxdesc.rssi;
688 rx_status->flag = rxdesc.flags;
689 rx_status->antenna = rt2x00dev->link.ant.active.rx;
690
691 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
692
693 renew_skb:
694 /*
695 * Replace the skb with the freshly allocated one.
696 */
697 entry->skb = skb;
698
699 submit_entry:
700 entry->flags = 0;
701 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
702 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
703 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
704 rt2x00dev->ops->lib->clear_entry(entry);
705 }
706 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
707
708 /*
709 * Driver initialization handlers.
710 */
711 const struct rt2x00_rate rt2x00_supported_rates[12] = {
712 {
713 .flags = DEV_RATE_CCK,
714 .bitrate = 10,
715 .ratemask = BIT(0),
716 .plcp = 0x00,
717 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
718 },
719 {
720 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
721 .bitrate = 20,
722 .ratemask = BIT(1),
723 .plcp = 0x01,
724 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
725 },
726 {
727 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728 .bitrate = 55,
729 .ratemask = BIT(2),
730 .plcp = 0x02,
731 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
732 },
733 {
734 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735 .bitrate = 110,
736 .ratemask = BIT(3),
737 .plcp = 0x03,
738 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
739 },
740 {
741 .flags = DEV_RATE_OFDM,
742 .bitrate = 60,
743 .ratemask = BIT(4),
744 .plcp = 0x0b,
745 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
746 },
747 {
748 .flags = DEV_RATE_OFDM,
749 .bitrate = 90,
750 .ratemask = BIT(5),
751 .plcp = 0x0f,
752 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
753 },
754 {
755 .flags = DEV_RATE_OFDM,
756 .bitrate = 120,
757 .ratemask = BIT(6),
758 .plcp = 0x0a,
759 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
760 },
761 {
762 .flags = DEV_RATE_OFDM,
763 .bitrate = 180,
764 .ratemask = BIT(7),
765 .plcp = 0x0e,
766 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
767 },
768 {
769 .flags = DEV_RATE_OFDM,
770 .bitrate = 240,
771 .ratemask = BIT(8),
772 .plcp = 0x09,
773 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
774 },
775 {
776 .flags = DEV_RATE_OFDM,
777 .bitrate = 360,
778 .ratemask = BIT(9),
779 .plcp = 0x0d,
780 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
781 },
782 {
783 .flags = DEV_RATE_OFDM,
784 .bitrate = 480,
785 .ratemask = BIT(10),
786 .plcp = 0x08,
787 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
788 },
789 {
790 .flags = DEV_RATE_OFDM,
791 .bitrate = 540,
792 .ratemask = BIT(11),
793 .plcp = 0x0c,
794 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
795 },
796 };
797
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)798 static void rt2x00lib_channel(struct ieee80211_channel *entry,
799 const int channel, const int tx_power,
800 const int value)
801 {
802 /* XXX: this assumption about the band is wrong for 802.11j */
803 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
804 entry->center_freq = ieee80211_channel_to_frequency(channel,
805 entry->band);
806 entry->hw_value = value;
807 entry->max_power = tx_power;
808 entry->max_antenna_gain = 0xff;
809 }
810
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)811 static void rt2x00lib_rate(struct ieee80211_rate *entry,
812 const u16 index, const struct rt2x00_rate *rate)
813 {
814 entry->flags = 0;
815 entry->bitrate = rate->bitrate;
816 entry->hw_value = index;
817 entry->hw_value_short = index;
818
819 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
820 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
821 }
822
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)823 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
824 struct hw_mode_spec *spec)
825 {
826 struct ieee80211_hw *hw = rt2x00dev->hw;
827 struct ieee80211_channel *channels;
828 struct ieee80211_rate *rates;
829 unsigned int num_rates;
830 unsigned int i;
831
832 num_rates = 0;
833 if (spec->supported_rates & SUPPORT_RATE_CCK)
834 num_rates += 4;
835 if (spec->supported_rates & SUPPORT_RATE_OFDM)
836 num_rates += 8;
837
838 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
839 if (!channels)
840 return -ENOMEM;
841
842 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
843 if (!rates)
844 goto exit_free_channels;
845
846 /*
847 * Initialize Rate list.
848 */
849 for (i = 0; i < num_rates; i++)
850 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
851
852 /*
853 * Initialize Channel list.
854 */
855 for (i = 0; i < spec->num_channels; i++) {
856 rt2x00lib_channel(&channels[i],
857 spec->channels[i].channel,
858 spec->channels_info[i].max_power, i);
859 }
860
861 /*
862 * Intitialize 802.11b, 802.11g
863 * Rates: CCK, OFDM.
864 * Channels: 2.4 GHz
865 */
866 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
867 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
868 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
869 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
870 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
871 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
872 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
873 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
874 &spec->ht, sizeof(spec->ht));
875 }
876
877 /*
878 * Intitialize 802.11a
879 * Rates: OFDM.
880 * Channels: OFDM, UNII, HiperLAN2.
881 */
882 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
883 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
884 spec->num_channels - 14;
885 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
886 num_rates - 4;
887 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
888 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
889 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
890 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
891 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
892 &spec->ht, sizeof(spec->ht));
893 }
894
895 return 0;
896
897 exit_free_channels:
898 kfree(channels);
899 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
900 return -ENOMEM;
901 }
902
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)903 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
904 {
905 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
906 ieee80211_unregister_hw(rt2x00dev->hw);
907
908 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
909 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
910 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
911 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
912 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
913 }
914
915 kfree(rt2x00dev->spec.channels_info);
916 }
917
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)918 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
919 {
920 struct hw_mode_spec *spec = &rt2x00dev->spec;
921 int status;
922
923 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
924 return 0;
925
926 /*
927 * Initialize HW modes.
928 */
929 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
930 if (status)
931 return status;
932
933 /*
934 * Initialize HW fields.
935 */
936 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
937
938 /*
939 * Initialize extra TX headroom required.
940 */
941 rt2x00dev->hw->extra_tx_headroom =
942 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
943 rt2x00dev->ops->extra_tx_headroom);
944
945 /*
946 * Take TX headroom required for alignment into account.
947 */
948 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
949 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
950 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
951 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
952
953 /*
954 * Tell mac80211 about the size of our private STA structure.
955 */
956 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
957
958 /*
959 * Allocate tx status FIFO for driver use.
960 */
961 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
962 /*
963 * Allocate the txstatus fifo. In the worst case the tx
964 * status fifo has to hold the tx status of all entries
965 * in all tx queues. Hence, calculate the kfifo size as
966 * tx_queues * entry_num and round up to the nearest
967 * power of 2.
968 */
969 int kfifo_size =
970 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
971 rt2x00dev->ops->tx->entry_num *
972 sizeof(u32));
973
974 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
975 GFP_KERNEL);
976 if (status)
977 return status;
978 }
979
980 /*
981 * Initialize tasklets if used by the driver. Tasklets are
982 * disabled until the interrupts are turned on. The driver
983 * has to handle that.
984 */
985 #define RT2X00_TASKLET_INIT(taskletname) \
986 if (rt2x00dev->ops->lib->taskletname) { \
987 tasklet_init(&rt2x00dev->taskletname, \
988 rt2x00dev->ops->lib->taskletname, \
989 (unsigned long)rt2x00dev); \
990 }
991
992 RT2X00_TASKLET_INIT(txstatus_tasklet);
993 RT2X00_TASKLET_INIT(pretbtt_tasklet);
994 RT2X00_TASKLET_INIT(tbtt_tasklet);
995 RT2X00_TASKLET_INIT(rxdone_tasklet);
996 RT2X00_TASKLET_INIT(autowake_tasklet);
997
998 #undef RT2X00_TASKLET_INIT
999
1000 /*
1001 * Register HW.
1002 */
1003 status = ieee80211_register_hw(rt2x00dev->hw);
1004 if (status)
1005 return status;
1006
1007 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * Initialization/uninitialization handlers.
1014 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1015 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1016 {
1017 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1018 return;
1019
1020 /*
1021 * Unregister extra components.
1022 */
1023 rt2x00rfkill_unregister(rt2x00dev);
1024
1025 /*
1026 * Allow the HW to uninitialize.
1027 */
1028 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1029
1030 /*
1031 * Free allocated queue entries.
1032 */
1033 rt2x00queue_uninitialize(rt2x00dev);
1034 }
1035
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1036 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1037 {
1038 int status;
1039
1040 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1041 return 0;
1042
1043 /*
1044 * Allocate all queue entries.
1045 */
1046 status = rt2x00queue_initialize(rt2x00dev);
1047 if (status)
1048 return status;
1049
1050 /*
1051 * Initialize the device.
1052 */
1053 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1054 if (status) {
1055 rt2x00queue_uninitialize(rt2x00dev);
1056 return status;
1057 }
1058
1059 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1060
1061 /*
1062 * Register the extra components.
1063 */
1064 rt2x00rfkill_register(rt2x00dev);
1065
1066 return 0;
1067 }
1068
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070 {
1071 int retval;
1072
1073 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074 return 0;
1075
1076 /*
1077 * If this is the first interface which is added,
1078 * we should load the firmware now.
1079 */
1080 retval = rt2x00lib_load_firmware(rt2x00dev);
1081 if (retval)
1082 return retval;
1083
1084 /*
1085 * Initialize the device.
1086 */
1087 retval = rt2x00lib_initialize(rt2x00dev);
1088 if (retval)
1089 return retval;
1090
1091 rt2x00dev->intf_ap_count = 0;
1092 rt2x00dev->intf_sta_count = 0;
1093 rt2x00dev->intf_associated = 0;
1094
1095 /* Enable the radio */
1096 retval = rt2x00lib_enable_radio(rt2x00dev);
1097 if (retval)
1098 return retval;
1099
1100 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101
1102 return 0;
1103 }
1104
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106 {
1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108 return;
1109
1110 /*
1111 * Perhaps we can add something smarter here,
1112 * but for now just disabling the radio should do.
1113 */
1114 rt2x00lib_disable_radio(rt2x00dev);
1115
1116 rt2x00dev->intf_ap_count = 0;
1117 rt2x00dev->intf_sta_count = 0;
1118 rt2x00dev->intf_associated = 0;
1119 }
1120
1121 /*
1122 * driver allocation handlers.
1123 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126 int retval = -ENOMEM;
1127
1128 spin_lock_init(&rt2x00dev->irqmask_lock);
1129 mutex_init(&rt2x00dev->csr_mutex);
1130
1131 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1132
1133 /*
1134 * Make room for rt2x00_intf inside the per-interface
1135 * structure ieee80211_vif.
1136 */
1137 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1138
1139 /*
1140 * Determine which operating modes are supported, all modes
1141 * which require beaconing, depend on the availability of
1142 * beacon entries.
1143 */
1144 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1145 if (rt2x00dev->ops->bcn->entry_num > 0)
1146 rt2x00dev->hw->wiphy->interface_modes |=
1147 BIT(NL80211_IFTYPE_ADHOC) |
1148 BIT(NL80211_IFTYPE_AP) |
1149 BIT(NL80211_IFTYPE_MESH_POINT) |
1150 BIT(NL80211_IFTYPE_WDS);
1151
1152 /*
1153 * Initialize work.
1154 */
1155 rt2x00dev->workqueue =
1156 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1157 if (!rt2x00dev->workqueue) {
1158 retval = -ENOMEM;
1159 goto exit;
1160 }
1161
1162 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1163 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1164 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1165
1166 /*
1167 * Let the driver probe the device to detect the capabilities.
1168 */
1169 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1170 if (retval) {
1171 ERROR(rt2x00dev, "Failed to allocate device.\n");
1172 goto exit;
1173 }
1174
1175 /*
1176 * Allocate queue array.
1177 */
1178 retval = rt2x00queue_allocate(rt2x00dev);
1179 if (retval)
1180 goto exit;
1181
1182 /*
1183 * Initialize ieee80211 structure.
1184 */
1185 retval = rt2x00lib_probe_hw(rt2x00dev);
1186 if (retval) {
1187 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1188 goto exit;
1189 }
1190
1191 /*
1192 * Register extra components.
1193 */
1194 rt2x00link_register(rt2x00dev);
1195 rt2x00leds_register(rt2x00dev);
1196 rt2x00debug_register(rt2x00dev);
1197
1198 return 0;
1199
1200 exit:
1201 rt2x00lib_remove_dev(rt2x00dev);
1202
1203 return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1206
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1207 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1208 {
1209 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1210
1211 /*
1212 * Disable radio.
1213 */
1214 rt2x00lib_disable_radio(rt2x00dev);
1215
1216 /*
1217 * Stop all work.
1218 */
1219 cancel_work_sync(&rt2x00dev->intf_work);
1220 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1221 cancel_work_sync(&rt2x00dev->sleep_work);
1222 if (rt2x00_is_usb(rt2x00dev)) {
1223 del_timer_sync(&rt2x00dev->txstatus_timer);
1224 cancel_work_sync(&rt2x00dev->rxdone_work);
1225 cancel_work_sync(&rt2x00dev->txdone_work);
1226 }
1227 if (rt2x00dev->workqueue)
1228 destroy_workqueue(rt2x00dev->workqueue);
1229
1230 /*
1231 * Free the tx status fifo.
1232 */
1233 kfifo_free(&rt2x00dev->txstatus_fifo);
1234
1235 /*
1236 * Kill the tx status tasklet.
1237 */
1238 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1239 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1240 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1241 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1242 tasklet_kill(&rt2x00dev->autowake_tasklet);
1243
1244 /*
1245 * Uninitialize device.
1246 */
1247 rt2x00lib_uninitialize(rt2x00dev);
1248
1249 /*
1250 * Free extra components
1251 */
1252 rt2x00debug_deregister(rt2x00dev);
1253 rt2x00leds_unregister(rt2x00dev);
1254
1255 /*
1256 * Free ieee80211_hw memory.
1257 */
1258 rt2x00lib_remove_hw(rt2x00dev);
1259
1260 /*
1261 * Free firmware image.
1262 */
1263 rt2x00lib_free_firmware(rt2x00dev);
1264
1265 /*
1266 * Free queue structures.
1267 */
1268 rt2x00queue_free(rt2x00dev);
1269 }
1270 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1271
1272 /*
1273 * Device state handlers
1274 */
1275 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1276 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1277 {
1278 NOTICE(rt2x00dev, "Going to sleep.\n");
1279
1280 /*
1281 * Prevent mac80211 from accessing driver while suspended.
1282 */
1283 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1284 return 0;
1285
1286 /*
1287 * Cleanup as much as possible.
1288 */
1289 rt2x00lib_uninitialize(rt2x00dev);
1290
1291 /*
1292 * Suspend/disable extra components.
1293 */
1294 rt2x00leds_suspend(rt2x00dev);
1295 rt2x00debug_deregister(rt2x00dev);
1296
1297 /*
1298 * Set device mode to sleep for power management,
1299 * on some hardware this call seems to consistently fail.
1300 * From the specifications it is hard to tell why it fails,
1301 * and if this is a "bad thing".
1302 * Overall it is safe to just ignore the failure and
1303 * continue suspending. The only downside is that the
1304 * device will not be in optimal power save mode, but with
1305 * the radio and the other components already disabled the
1306 * device is as good as disabled.
1307 */
1308 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1309 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1310 "continue suspending.\n");
1311
1312 return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1315
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1316 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1317 {
1318 NOTICE(rt2x00dev, "Waking up.\n");
1319
1320 /*
1321 * Restore/enable extra components.
1322 */
1323 rt2x00debug_register(rt2x00dev);
1324 rt2x00leds_resume(rt2x00dev);
1325
1326 /*
1327 * We are ready again to receive requests from mac80211.
1328 */
1329 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1330
1331 return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1334 #endif /* CONFIG_PM */
1335
1336 /*
1337 * rt2x00lib module information.
1338 */
1339 MODULE_AUTHOR(DRV_PROJECT);
1340 MODULE_VERSION(DRV_VERSION);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");
1343