1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, write to the
18 	Free Software Foundation, Inc.,
19 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 
22 /*
23 	Module: rt2x00lib
24 	Abstract: rt2x00 generic device routines.
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34 
35 /*
36  * Utility functions.
37  */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 			 struct ieee80211_vif *vif)
40 {
41 	/*
42 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 	 * contains the bss number, see BSS_ID_MASK comments for details.
44 	 */
45 	if (rt2x00dev->intf_sta_count)
46 		return 0;
47 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 
51 /*
52  * Radio control handlers.
53  */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 	int status;
57 
58 	/*
59 	 * Don't enable the radio twice.
60 	 * And check if the hardware button has been disabled.
61 	 */
62 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 		return 0;
64 
65 	/*
66 	 * Initialize all data queues.
67 	 */
68 	rt2x00queue_init_queues(rt2x00dev);
69 
70 	/*
71 	 * Enable radio.
72 	 */
73 	status =
74 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 	if (status)
76 		return status;
77 
78 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79 
80 	rt2x00leds_led_radio(rt2x00dev, true);
81 	rt2x00led_led_activity(rt2x00dev, true);
82 
83 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 
85 	/*
86 	 * Enable queues.
87 	 */
88 	rt2x00queue_start_queues(rt2x00dev);
89 	rt2x00link_start_tuner(rt2x00dev);
90 	rt2x00link_start_agc(rt2x00dev);
91 
92 	/*
93 	 * Start watchdog monitoring.
94 	 */
95 	rt2x00link_start_watchdog(rt2x00dev);
96 
97 	return 0;
98 }
99 
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 		return;
104 
105 	/*
106 	 * Stop watchdog monitoring.
107 	 */
108 	rt2x00link_stop_watchdog(rt2x00dev);
109 
110 	/*
111 	 * Stop all queues
112 	 */
113 	rt2x00link_stop_agc(rt2x00dev);
114 	rt2x00link_stop_tuner(rt2x00dev);
115 	rt2x00queue_stop_queues(rt2x00dev);
116 	rt2x00queue_flush_queues(rt2x00dev, true);
117 
118 	/*
119 	 * Disable radio.
120 	 */
121 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123 	rt2x00led_led_activity(rt2x00dev, false);
124 	rt2x00leds_led_radio(rt2x00dev, false);
125 }
126 
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128 					  struct ieee80211_vif *vif)
129 {
130 	struct rt2x00_dev *rt2x00dev = data;
131 	struct rt2x00_intf *intf = vif_to_intf(vif);
132 
133 	/*
134 	 * It is possible the radio was disabled while the work had been
135 	 * scheduled. If that happens we should return here immediately,
136 	 * note that in the spinlock protected area above the delayed_flags
137 	 * have been cleared correctly.
138 	 */
139 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140 		return;
141 
142 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143 		rt2x00queue_update_beacon(rt2x00dev, vif);
144 }
145 
rt2x00lib_intf_scheduled(struct work_struct * work)146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
147 {
148 	struct rt2x00_dev *rt2x00dev =
149 	    container_of(work, struct rt2x00_dev, intf_work);
150 
151 	/*
152 	 * Iterate over each interface and perform the
153 	 * requested configurations.
154 	 */
155 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156 					    rt2x00lib_intf_scheduled_iter,
157 					    rt2x00dev);
158 }
159 
rt2x00lib_autowakeup(struct work_struct * work)160 static void rt2x00lib_autowakeup(struct work_struct *work)
161 {
162 	struct rt2x00_dev *rt2x00dev =
163 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
164 
165 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166 		return;
167 
168 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169 		ERROR(rt2x00dev, "Device failed to wakeup.\n");
170 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171 }
172 
173 /*
174  * Interrupt context handlers.
175  */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177 				     struct ieee80211_vif *vif)
178 {
179 	struct rt2x00_dev *rt2x00dev = data;
180 	struct sk_buff *skb;
181 
182 	/*
183 	 * Only AP mode interfaces do broad- and multicast buffering
184 	 */
185 	if (vif->type != NL80211_IFTYPE_AP)
186 		return;
187 
188 	/*
189 	 * Send out buffered broad- and multicast frames
190 	 */
191 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192 	while (skb) {
193 		rt2x00mac_tx(rt2x00dev->hw, skb);
194 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 	}
196 }
197 
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199 					struct ieee80211_vif *vif)
200 {
201 	struct rt2x00_dev *rt2x00dev = data;
202 
203 	if (vif->type != NL80211_IFTYPE_AP &&
204 	    vif->type != NL80211_IFTYPE_ADHOC &&
205 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
206 	    vif->type != NL80211_IFTYPE_WDS)
207 		return;
208 
209 	/*
210 	 * Update the beacon without locking. This is safe on PCI devices
211 	 * as they only update the beacon periodically here. This should
212 	 * never be called for USB devices.
213 	 */
214 	WARN_ON(rt2x00_is_usb(rt2x00dev));
215 	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216 }
217 
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221 		return;
222 
223 	/* send buffered bc/mc frames out for every bssid */
224 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225 						   rt2x00lib_bc_buffer_iter,
226 						   rt2x00dev);
227 	/*
228 	 * Devices with pre tbtt interrupt don't need to update the beacon
229 	 * here as they will fetch the next beacon directly prior to
230 	 * transmission.
231 	 */
232 	if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233 		return;
234 
235 	/* fetch next beacon */
236 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237 						   rt2x00lib_beaconupdate_iter,
238 						   rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241 
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245 		return;
246 
247 	/* fetch next beacon */
248 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249 						   rt2x00lib_beaconupdate_iter,
250 						   rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253 
rt2x00lib_dmastart(struct queue_entry * entry)254 void rt2x00lib_dmastart(struct queue_entry *entry)
255 {
256 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 	rt2x00queue_index_inc(entry, Q_INDEX);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260 
rt2x00lib_dmadone(struct queue_entry * entry)261 void rt2x00lib_dmadone(struct queue_entry *entry)
262 {
263 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268 
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)269 void rt2x00lib_txdone(struct queue_entry *entry,
270 		      struct txdone_entry_desc *txdesc)
271 {
272 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275 	unsigned int header_length, i;
276 	u8 rate_idx, rate_flags, retry_rates;
277 	u8 skbdesc_flags = skbdesc->flags;
278 	bool success;
279 
280 	/*
281 	 * Unmap the skb.
282 	 */
283 	rt2x00queue_unmap_skb(entry);
284 
285 	/*
286 	 * Remove the extra tx headroom from the skb.
287 	 */
288 	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289 
290 	/*
291 	 * Signal that the TX descriptor is no longer in the skb.
292 	 */
293 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294 
295 	/*
296 	 * Determine the length of 802.11 header.
297 	 */
298 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299 
300 	/*
301 	 * Remove L2 padding which was added during
302 	 */
303 	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304 		rt2x00queue_remove_l2pad(entry->skb, header_length);
305 
306 	/*
307 	 * If the IV/EIV data was stripped from the frame before it was
308 	 * passed to the hardware, we should now reinsert it again because
309 	 * mac80211 will expect the same data to be present it the
310 	 * frame as it was passed to us.
311 	 */
312 	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314 
315 	/*
316 	 * Send frame to debugfs immediately, after this call is completed
317 	 * we are going to overwrite the skb->cb array.
318 	 */
319 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320 
321 	/*
322 	 * Determine if the frame has been successfully transmitted.
323 	 */
324 	success =
325 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327 
328 	/*
329 	 * Update TX statistics.
330 	 */
331 	rt2x00dev->link.qual.tx_success += success;
332 	rt2x00dev->link.qual.tx_failed += !success;
333 
334 	rate_idx = skbdesc->tx_rate_idx;
335 	rate_flags = skbdesc->tx_rate_flags;
336 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337 	    (txdesc->retry + 1) : 1;
338 
339 	/*
340 	 * Initialize TX status
341 	 */
342 	memset(&tx_info->status, 0, sizeof(tx_info->status));
343 	tx_info->status.ack_signal = 0;
344 
345 	/*
346 	 * Frame was send with retries, hardware tried
347 	 * different rates to send out the frame, at each
348 	 * retry it lowered the rate 1 step except when the
349 	 * lowest rate was used.
350 	 */
351 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352 		tx_info->status.rates[i].idx = rate_idx - i;
353 		tx_info->status.rates[i].flags = rate_flags;
354 
355 		if (rate_idx - i == 0) {
356 			/*
357 			 * The lowest rate (index 0) was used until the
358 			 * number of max retries was reached.
359 			 */
360 			tx_info->status.rates[i].count = retry_rates - i;
361 			i++;
362 			break;
363 		}
364 		tx_info->status.rates[i].count = 1;
365 	}
366 	if (i < (IEEE80211_TX_MAX_RATES - 1))
367 		tx_info->status.rates[i].idx = -1; /* terminate */
368 
369 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370 		if (success)
371 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
372 		else
373 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374 	}
375 
376 	/*
377 	 * Every single frame has it's own tx status, hence report
378 	 * every frame as ampdu of size 1.
379 	 *
380 	 * TODO: if we can find out how many frames were aggregated
381 	 * by the hw we could provide the real ampdu_len to mac80211
382 	 * which would allow the rc algorithm to better decide on
383 	 * which rates are suitable.
384 	 */
385 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388 		tx_info->status.ampdu_len = 1;
389 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
390 
391 		if (!success)
392 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393 	}
394 
395 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396 		if (success)
397 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398 		else
399 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400 	}
401 
402 	/*
403 	 * Only send the status report to mac80211 when it's a frame
404 	 * that originated in mac80211. If this was a extra frame coming
405 	 * through a mac80211 library call (RTS/CTS) then we should not
406 	 * send the status report back.
407 	 */
408 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409 		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411 		else
412 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413 	} else
414 		dev_kfree_skb_any(entry->skb);
415 
416 	/*
417 	 * Make this entry available for reuse.
418 	 */
419 	entry->skb = NULL;
420 	entry->flags = 0;
421 
422 	rt2x00dev->ops->lib->clear_entry(entry);
423 
424 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425 
426 	/*
427 	 * If the data queue was below the threshold before the txdone
428 	 * handler we must make sure the packet queue in the mac80211 stack
429 	 * is reenabled when the txdone handler has finished. This has to be
430 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
431 	 * before it was stopped.
432 	 */
433 	spin_lock_bh(&entry->queue->tx_lock);
434 	if (!rt2x00queue_threshold(entry->queue))
435 		rt2x00queue_unpause_queue(entry->queue);
436 	spin_unlock_bh(&entry->queue->tx_lock);
437 }
438 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
439 
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)440 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
441 {
442 	struct txdone_entry_desc txdesc;
443 
444 	txdesc.flags = 0;
445 	__set_bit(status, &txdesc.flags);
446 	txdesc.retry = 0;
447 
448 	rt2x00lib_txdone(entry, &txdesc);
449 }
450 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
451 
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)452 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
453 {
454 	struct ieee80211_mgmt *mgmt = (void *)data;
455 	u8 *pos, *end;
456 
457 	pos = (u8 *)mgmt->u.beacon.variable;
458 	end = data + len;
459 	while (pos < end) {
460 		if (pos + 2 + pos[1] > end)
461 			return NULL;
462 
463 		if (pos[0] == ie)
464 			return pos;
465 
466 		pos += 2 + pos[1];
467 	}
468 
469 	return NULL;
470 }
471 
rt2x00lib_sleep(struct work_struct * work)472 static void rt2x00lib_sleep(struct work_struct *work)
473 {
474 	struct rt2x00_dev *rt2x00dev =
475 	    container_of(work, struct rt2x00_dev, sleep_work);
476 
477 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
478 		return;
479 
480 	/*
481 	 * Check again is powersaving is enabled, to prevent races from delayed
482 	 * work execution.
483 	 */
484 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
485 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
486 				 IEEE80211_CONF_CHANGE_PS);
487 }
488 
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)489 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
490 				      struct sk_buff *skb,
491 				      struct rxdone_entry_desc *rxdesc)
492 {
493 	struct ieee80211_hdr *hdr = (void *) skb->data;
494 	struct ieee80211_tim_ie *tim_ie;
495 	u8 *tim;
496 	u8 tim_len;
497 	bool cam;
498 
499 	/* If this is not a beacon, or if mac80211 has no powersaving
500 	 * configured, or if the device is already in powersaving mode
501 	 * we can exit now. */
502 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
503 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
504 		return;
505 
506 	/* min. beacon length + FCS_LEN */
507 	if (skb->len <= 40 + FCS_LEN)
508 		return;
509 
510 	/* and only beacons from the associated BSSID, please */
511 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
512 	    !rt2x00dev->aid)
513 		return;
514 
515 	rt2x00dev->last_beacon = jiffies;
516 
517 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
518 	if (!tim)
519 		return;
520 
521 	if (tim[1] < sizeof(*tim_ie))
522 		return;
523 
524 	tim_len = tim[1];
525 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
526 
527 	/* Check whenever the PHY can be turned off again. */
528 
529 	/* 1. What about buffered unicast traffic for our AID? */
530 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
531 
532 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
533 	cam |= (tim_ie->bitmap_ctrl & 0x01);
534 
535 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
537 }
538 
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)539 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
540 					struct rxdone_entry_desc *rxdesc)
541 {
542 	struct ieee80211_supported_band *sband;
543 	const struct rt2x00_rate *rate;
544 	unsigned int i;
545 	int signal = rxdesc->signal;
546 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
547 
548 	switch (rxdesc->rate_mode) {
549 	case RATE_MODE_CCK:
550 	case RATE_MODE_OFDM:
551 		/*
552 		 * For non-HT rates the MCS value needs to contain the
553 		 * actually used rate modulation (CCK or OFDM).
554 		 */
555 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
556 			signal = RATE_MCS(rxdesc->rate_mode, signal);
557 
558 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
559 		for (i = 0; i < sband->n_bitrates; i++) {
560 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
561 			if (((type == RXDONE_SIGNAL_PLCP) &&
562 			     (rate->plcp == signal)) ||
563 			    ((type == RXDONE_SIGNAL_BITRATE) &&
564 			      (rate->bitrate == signal)) ||
565 			    ((type == RXDONE_SIGNAL_MCS) &&
566 			      (rate->mcs == signal))) {
567 				return i;
568 			}
569 		}
570 		break;
571 	case RATE_MODE_HT_MIX:
572 	case RATE_MODE_HT_GREENFIELD:
573 		if (signal >= 0 && signal <= 76)
574 			return signal;
575 		break;
576 	default:
577 		break;
578 	}
579 
580 	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
581 		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
582 		rxdesc->rate_mode, signal, type);
583 	return 0;
584 }
585 
rt2x00lib_rxdone(struct queue_entry * entry)586 void rt2x00lib_rxdone(struct queue_entry *entry)
587 {
588 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
589 	struct rxdone_entry_desc rxdesc;
590 	struct sk_buff *skb;
591 	struct ieee80211_rx_status *rx_status;
592 	unsigned int header_length;
593 	int rate_idx;
594 
595 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
596 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
597 		goto submit_entry;
598 
599 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
600 		goto submit_entry;
601 
602 	/*
603 	 * Allocate a new sk_buffer. If no new buffer available, drop the
604 	 * received frame and reuse the existing buffer.
605 	 */
606 	skb = rt2x00queue_alloc_rxskb(entry);
607 	if (!skb)
608 		goto submit_entry;
609 
610 	/*
611 	 * Unmap the skb.
612 	 */
613 	rt2x00queue_unmap_skb(entry);
614 
615 	/*
616 	 * Extract the RXD details.
617 	 */
618 	memset(&rxdesc, 0, sizeof(rxdesc));
619 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
620 
621 	/*
622 	 * Check for valid size in case we get corrupted descriptor from
623 	 * hardware.
624 	 */
625 	if (unlikely(rxdesc.size == 0 ||
626 		     rxdesc.size > entry->queue->data_size)) {
627 		WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
628 			rxdesc.size, entry->queue->data_size);
629 		dev_kfree_skb(entry->skb);
630 		goto renew_skb;
631 	}
632 
633 	/*
634 	 * The data behind the ieee80211 header must be
635 	 * aligned on a 4 byte boundary.
636 	 */
637 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
638 
639 	/*
640 	 * Hardware might have stripped the IV/EIV/ICV data,
641 	 * in that case it is possible that the data was
642 	 * provided separately (through hardware descriptor)
643 	 * in which case we should reinsert the data into the frame.
644 	 */
645 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
646 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
647 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
648 					  &rxdesc);
649 	else if (header_length &&
650 		 (rxdesc.size > header_length) &&
651 		 (rxdesc.dev_flags & RXDONE_L2PAD))
652 		rt2x00queue_remove_l2pad(entry->skb, header_length);
653 
654 	/* Trim buffer to correct size */
655 	skb_trim(entry->skb, rxdesc.size);
656 
657 	/*
658 	 * Translate the signal to the correct bitrate index.
659 	 */
660 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
661 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
662 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
663 		rxdesc.flags |= RX_FLAG_HT;
664 
665 	/*
666 	 * Check if this is a beacon, and more frames have been
667 	 * buffered while we were in powersaving mode.
668 	 */
669 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
670 
671 	/*
672 	 * Update extra components
673 	 */
674 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
675 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
676 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
677 
678 	/*
679 	 * Initialize RX status information, and send frame
680 	 * to mac80211.
681 	 */
682 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
683 	rx_status->mactime = rxdesc.timestamp;
684 	rx_status->band = rt2x00dev->curr_band;
685 	rx_status->freq = rt2x00dev->curr_freq;
686 	rx_status->rate_idx = rate_idx;
687 	rx_status->signal = rxdesc.rssi;
688 	rx_status->flag = rxdesc.flags;
689 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
690 
691 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
692 
693 renew_skb:
694 	/*
695 	 * Replace the skb with the freshly allocated one.
696 	 */
697 	entry->skb = skb;
698 
699 submit_entry:
700 	entry->flags = 0;
701 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
702 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
703 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
704 		rt2x00dev->ops->lib->clear_entry(entry);
705 }
706 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
707 
708 /*
709  * Driver initialization handlers.
710  */
711 const struct rt2x00_rate rt2x00_supported_rates[12] = {
712 	{
713 		.flags = DEV_RATE_CCK,
714 		.bitrate = 10,
715 		.ratemask = BIT(0),
716 		.plcp = 0x00,
717 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
718 	},
719 	{
720 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
721 		.bitrate = 20,
722 		.ratemask = BIT(1),
723 		.plcp = 0x01,
724 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
725 	},
726 	{
727 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728 		.bitrate = 55,
729 		.ratemask = BIT(2),
730 		.plcp = 0x02,
731 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
732 	},
733 	{
734 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735 		.bitrate = 110,
736 		.ratemask = BIT(3),
737 		.plcp = 0x03,
738 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
739 	},
740 	{
741 		.flags = DEV_RATE_OFDM,
742 		.bitrate = 60,
743 		.ratemask = BIT(4),
744 		.plcp = 0x0b,
745 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
746 	},
747 	{
748 		.flags = DEV_RATE_OFDM,
749 		.bitrate = 90,
750 		.ratemask = BIT(5),
751 		.plcp = 0x0f,
752 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
753 	},
754 	{
755 		.flags = DEV_RATE_OFDM,
756 		.bitrate = 120,
757 		.ratemask = BIT(6),
758 		.plcp = 0x0a,
759 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
760 	},
761 	{
762 		.flags = DEV_RATE_OFDM,
763 		.bitrate = 180,
764 		.ratemask = BIT(7),
765 		.plcp = 0x0e,
766 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
767 	},
768 	{
769 		.flags = DEV_RATE_OFDM,
770 		.bitrate = 240,
771 		.ratemask = BIT(8),
772 		.plcp = 0x09,
773 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
774 	},
775 	{
776 		.flags = DEV_RATE_OFDM,
777 		.bitrate = 360,
778 		.ratemask = BIT(9),
779 		.plcp = 0x0d,
780 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
781 	},
782 	{
783 		.flags = DEV_RATE_OFDM,
784 		.bitrate = 480,
785 		.ratemask = BIT(10),
786 		.plcp = 0x08,
787 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
788 	},
789 	{
790 		.flags = DEV_RATE_OFDM,
791 		.bitrate = 540,
792 		.ratemask = BIT(11),
793 		.plcp = 0x0c,
794 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
795 	},
796 };
797 
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)798 static void rt2x00lib_channel(struct ieee80211_channel *entry,
799 			      const int channel, const int tx_power,
800 			      const int value)
801 {
802 	/* XXX: this assumption about the band is wrong for 802.11j */
803 	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
804 	entry->center_freq = ieee80211_channel_to_frequency(channel,
805 							    entry->band);
806 	entry->hw_value = value;
807 	entry->max_power = tx_power;
808 	entry->max_antenna_gain = 0xff;
809 }
810 
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)811 static void rt2x00lib_rate(struct ieee80211_rate *entry,
812 			   const u16 index, const struct rt2x00_rate *rate)
813 {
814 	entry->flags = 0;
815 	entry->bitrate = rate->bitrate;
816 	entry->hw_value = index;
817 	entry->hw_value_short = index;
818 
819 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
820 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
821 }
822 
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)823 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
824 				    struct hw_mode_spec *spec)
825 {
826 	struct ieee80211_hw *hw = rt2x00dev->hw;
827 	struct ieee80211_channel *channels;
828 	struct ieee80211_rate *rates;
829 	unsigned int num_rates;
830 	unsigned int i;
831 
832 	num_rates = 0;
833 	if (spec->supported_rates & SUPPORT_RATE_CCK)
834 		num_rates += 4;
835 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
836 		num_rates += 8;
837 
838 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
839 	if (!channels)
840 		return -ENOMEM;
841 
842 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
843 	if (!rates)
844 		goto exit_free_channels;
845 
846 	/*
847 	 * Initialize Rate list.
848 	 */
849 	for (i = 0; i < num_rates; i++)
850 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
851 
852 	/*
853 	 * Initialize Channel list.
854 	 */
855 	for (i = 0; i < spec->num_channels; i++) {
856 		rt2x00lib_channel(&channels[i],
857 				  spec->channels[i].channel,
858 				  spec->channels_info[i].max_power, i);
859 	}
860 
861 	/*
862 	 * Intitialize 802.11b, 802.11g
863 	 * Rates: CCK, OFDM.
864 	 * Channels: 2.4 GHz
865 	 */
866 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
867 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
868 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
869 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
870 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
871 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
872 		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
873 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
874 		       &spec->ht, sizeof(spec->ht));
875 	}
876 
877 	/*
878 	 * Intitialize 802.11a
879 	 * Rates: OFDM.
880 	 * Channels: OFDM, UNII, HiperLAN2.
881 	 */
882 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
883 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
884 		    spec->num_channels - 14;
885 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
886 		    num_rates - 4;
887 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
888 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
889 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
890 		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
891 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
892 		       &spec->ht, sizeof(spec->ht));
893 	}
894 
895 	return 0;
896 
897  exit_free_channels:
898 	kfree(channels);
899 	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
900 	return -ENOMEM;
901 }
902 
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)903 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
904 {
905 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
906 		ieee80211_unregister_hw(rt2x00dev->hw);
907 
908 	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
909 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
910 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
911 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
912 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
913 	}
914 
915 	kfree(rt2x00dev->spec.channels_info);
916 }
917 
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)918 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
919 {
920 	struct hw_mode_spec *spec = &rt2x00dev->spec;
921 	int status;
922 
923 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
924 		return 0;
925 
926 	/*
927 	 * Initialize HW modes.
928 	 */
929 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
930 	if (status)
931 		return status;
932 
933 	/*
934 	 * Initialize HW fields.
935 	 */
936 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
937 
938 	/*
939 	 * Initialize extra TX headroom required.
940 	 */
941 	rt2x00dev->hw->extra_tx_headroom =
942 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
943 		      rt2x00dev->ops->extra_tx_headroom);
944 
945 	/*
946 	 * Take TX headroom required for alignment into account.
947 	 */
948 	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
949 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
950 	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
951 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
952 
953 	/*
954 	 * Tell mac80211 about the size of our private STA structure.
955 	 */
956 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
957 
958 	/*
959 	 * Allocate tx status FIFO for driver use.
960 	 */
961 	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
962 		/*
963 		 * Allocate the txstatus fifo. In the worst case the tx
964 		 * status fifo has to hold the tx status of all entries
965 		 * in all tx queues. Hence, calculate the kfifo size as
966 		 * tx_queues * entry_num and round up to the nearest
967 		 * power of 2.
968 		 */
969 		int kfifo_size =
970 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
971 					   rt2x00dev->ops->tx->entry_num *
972 					   sizeof(u32));
973 
974 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
975 				     GFP_KERNEL);
976 		if (status)
977 			return status;
978 	}
979 
980 	/*
981 	 * Initialize tasklets if used by the driver. Tasklets are
982 	 * disabled until the interrupts are turned on. The driver
983 	 * has to handle that.
984 	 */
985 #define RT2X00_TASKLET_INIT(taskletname) \
986 	if (rt2x00dev->ops->lib->taskletname) { \
987 		tasklet_init(&rt2x00dev->taskletname, \
988 			     rt2x00dev->ops->lib->taskletname, \
989 			     (unsigned long)rt2x00dev); \
990 	}
991 
992 	RT2X00_TASKLET_INIT(txstatus_tasklet);
993 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
994 	RT2X00_TASKLET_INIT(tbtt_tasklet);
995 	RT2X00_TASKLET_INIT(rxdone_tasklet);
996 	RT2X00_TASKLET_INIT(autowake_tasklet);
997 
998 #undef RT2X00_TASKLET_INIT
999 
1000 	/*
1001 	 * Register HW.
1002 	 */
1003 	status = ieee80211_register_hw(rt2x00dev->hw);
1004 	if (status)
1005 		return status;
1006 
1007 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Initialization/uninitialization handlers.
1014  */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1015 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1016 {
1017 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1018 		return;
1019 
1020 	/*
1021 	 * Unregister extra components.
1022 	 */
1023 	rt2x00rfkill_unregister(rt2x00dev);
1024 
1025 	/*
1026 	 * Allow the HW to uninitialize.
1027 	 */
1028 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1029 
1030 	/*
1031 	 * Free allocated queue entries.
1032 	 */
1033 	rt2x00queue_uninitialize(rt2x00dev);
1034 }
1035 
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1036 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1037 {
1038 	int status;
1039 
1040 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1041 		return 0;
1042 
1043 	/*
1044 	 * Allocate all queue entries.
1045 	 */
1046 	status = rt2x00queue_initialize(rt2x00dev);
1047 	if (status)
1048 		return status;
1049 
1050 	/*
1051 	 * Initialize the device.
1052 	 */
1053 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1054 	if (status) {
1055 		rt2x00queue_uninitialize(rt2x00dev);
1056 		return status;
1057 	}
1058 
1059 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1060 
1061 	/*
1062 	 * Register the extra components.
1063 	 */
1064 	rt2x00rfkill_register(rt2x00dev);
1065 
1066 	return 0;
1067 }
1068 
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070 {
1071 	int retval;
1072 
1073 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074 		return 0;
1075 
1076 	/*
1077 	 * If this is the first interface which is added,
1078 	 * we should load the firmware now.
1079 	 */
1080 	retval = rt2x00lib_load_firmware(rt2x00dev);
1081 	if (retval)
1082 		return retval;
1083 
1084 	/*
1085 	 * Initialize the device.
1086 	 */
1087 	retval = rt2x00lib_initialize(rt2x00dev);
1088 	if (retval)
1089 		return retval;
1090 
1091 	rt2x00dev->intf_ap_count = 0;
1092 	rt2x00dev->intf_sta_count = 0;
1093 	rt2x00dev->intf_associated = 0;
1094 
1095 	/* Enable the radio */
1096 	retval = rt2x00lib_enable_radio(rt2x00dev);
1097 	if (retval)
1098 		return retval;
1099 
1100 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101 
1102 	return 0;
1103 }
1104 
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106 {
1107 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108 		return;
1109 
1110 	/*
1111 	 * Perhaps we can add something smarter here,
1112 	 * but for now just disabling the radio should do.
1113 	 */
1114 	rt2x00lib_disable_radio(rt2x00dev);
1115 
1116 	rt2x00dev->intf_ap_count = 0;
1117 	rt2x00dev->intf_sta_count = 0;
1118 	rt2x00dev->intf_associated = 0;
1119 }
1120 
1121 /*
1122  * driver allocation handlers.
1123  */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126 	int retval = -ENOMEM;
1127 
1128 	spin_lock_init(&rt2x00dev->irqmask_lock);
1129 	mutex_init(&rt2x00dev->csr_mutex);
1130 
1131 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1132 
1133 	/*
1134 	 * Make room for rt2x00_intf inside the per-interface
1135 	 * structure ieee80211_vif.
1136 	 */
1137 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1138 
1139 	/*
1140 	 * Determine which operating modes are supported, all modes
1141 	 * which require beaconing, depend on the availability of
1142 	 * beacon entries.
1143 	 */
1144 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1145 	if (rt2x00dev->ops->bcn->entry_num > 0)
1146 		rt2x00dev->hw->wiphy->interface_modes |=
1147 		    BIT(NL80211_IFTYPE_ADHOC) |
1148 		    BIT(NL80211_IFTYPE_AP) |
1149 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1150 		    BIT(NL80211_IFTYPE_WDS);
1151 
1152 	/*
1153 	 * Initialize work.
1154 	 */
1155 	rt2x00dev->workqueue =
1156 	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1157 	if (!rt2x00dev->workqueue) {
1158 		retval = -ENOMEM;
1159 		goto exit;
1160 	}
1161 
1162 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1163 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1164 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1165 
1166 	/*
1167 	 * Let the driver probe the device to detect the capabilities.
1168 	 */
1169 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1170 	if (retval) {
1171 		ERROR(rt2x00dev, "Failed to allocate device.\n");
1172 		goto exit;
1173 	}
1174 
1175 	/*
1176 	 * Allocate queue array.
1177 	 */
1178 	retval = rt2x00queue_allocate(rt2x00dev);
1179 	if (retval)
1180 		goto exit;
1181 
1182 	/*
1183 	 * Initialize ieee80211 structure.
1184 	 */
1185 	retval = rt2x00lib_probe_hw(rt2x00dev);
1186 	if (retval) {
1187 		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1188 		goto exit;
1189 	}
1190 
1191 	/*
1192 	 * Register extra components.
1193 	 */
1194 	rt2x00link_register(rt2x00dev);
1195 	rt2x00leds_register(rt2x00dev);
1196 	rt2x00debug_register(rt2x00dev);
1197 
1198 	return 0;
1199 
1200 exit:
1201 	rt2x00lib_remove_dev(rt2x00dev);
1202 
1203 	return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1206 
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1207 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1208 {
1209 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1210 
1211 	/*
1212 	 * Disable radio.
1213 	 */
1214 	rt2x00lib_disable_radio(rt2x00dev);
1215 
1216 	/*
1217 	 * Stop all work.
1218 	 */
1219 	cancel_work_sync(&rt2x00dev->intf_work);
1220 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1221 	cancel_work_sync(&rt2x00dev->sleep_work);
1222 	if (rt2x00_is_usb(rt2x00dev)) {
1223 		del_timer_sync(&rt2x00dev->txstatus_timer);
1224 		cancel_work_sync(&rt2x00dev->rxdone_work);
1225 		cancel_work_sync(&rt2x00dev->txdone_work);
1226 	}
1227 	if (rt2x00dev->workqueue)
1228 		destroy_workqueue(rt2x00dev->workqueue);
1229 
1230 	/*
1231 	 * Free the tx status fifo.
1232 	 */
1233 	kfifo_free(&rt2x00dev->txstatus_fifo);
1234 
1235 	/*
1236 	 * Kill the tx status tasklet.
1237 	 */
1238 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1239 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1240 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1241 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1242 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1243 
1244 	/*
1245 	 * Uninitialize device.
1246 	 */
1247 	rt2x00lib_uninitialize(rt2x00dev);
1248 
1249 	/*
1250 	 * Free extra components
1251 	 */
1252 	rt2x00debug_deregister(rt2x00dev);
1253 	rt2x00leds_unregister(rt2x00dev);
1254 
1255 	/*
1256 	 * Free ieee80211_hw memory.
1257 	 */
1258 	rt2x00lib_remove_hw(rt2x00dev);
1259 
1260 	/*
1261 	 * Free firmware image.
1262 	 */
1263 	rt2x00lib_free_firmware(rt2x00dev);
1264 
1265 	/*
1266 	 * Free queue structures.
1267 	 */
1268 	rt2x00queue_free(rt2x00dev);
1269 }
1270 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1271 
1272 /*
1273  * Device state handlers
1274  */
1275 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1276 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1277 {
1278 	NOTICE(rt2x00dev, "Going to sleep.\n");
1279 
1280 	/*
1281 	 * Prevent mac80211 from accessing driver while suspended.
1282 	 */
1283 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1284 		return 0;
1285 
1286 	/*
1287 	 * Cleanup as much as possible.
1288 	 */
1289 	rt2x00lib_uninitialize(rt2x00dev);
1290 
1291 	/*
1292 	 * Suspend/disable extra components.
1293 	 */
1294 	rt2x00leds_suspend(rt2x00dev);
1295 	rt2x00debug_deregister(rt2x00dev);
1296 
1297 	/*
1298 	 * Set device mode to sleep for power management,
1299 	 * on some hardware this call seems to consistently fail.
1300 	 * From the specifications it is hard to tell why it fails,
1301 	 * and if this is a "bad thing".
1302 	 * Overall it is safe to just ignore the failure and
1303 	 * continue suspending. The only downside is that the
1304 	 * device will not be in optimal power save mode, but with
1305 	 * the radio and the other components already disabled the
1306 	 * device is as good as disabled.
1307 	 */
1308 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1309 		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1310 			"continue suspending.\n");
1311 
1312 	return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1315 
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1316 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1317 {
1318 	NOTICE(rt2x00dev, "Waking up.\n");
1319 
1320 	/*
1321 	 * Restore/enable extra components.
1322 	 */
1323 	rt2x00debug_register(rt2x00dev);
1324 	rt2x00leds_resume(rt2x00dev);
1325 
1326 	/*
1327 	 * We are ready again to receive requests from mac80211.
1328 	 */
1329 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1334 #endif /* CONFIG_PM */
1335 
1336 /*
1337  * rt2x00lib module information.
1338  */
1339 MODULE_AUTHOR(DRV_PROJECT);
1340 MODULE_VERSION(DRV_VERSION);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");
1343