1 /*
2 	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 	<http://rt2x00.serialmonkey.com>
11 
12 	This program is free software; you can redistribute it and/or modify
13 	it under the terms of the GNU General Public License as published by
14 	the Free Software Foundation; either version 2 of the License, or
15 	(at your option) any later version.
16 
17 	This program is distributed in the hope that it will be useful,
18 	but WITHOUT ANY WARRANTY; without even the implied warranty of
19 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 	GNU General Public License for more details.
21 
22 	You should have received a copy of the GNU General Public License
23 	along with this program; if not, write to the
24 	Free Software Foundation, Inc.,
25 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27 
28 /*
29 	Module: rt2800pci
30 	Abstract: rt2800pci device specific routines.
31 	Supported chipsets: RT2800E & RT2800ED.
32  */
33 
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42 
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49 
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56 
rt2800pci_mcu_status(struct rt2x00_dev * rt2x00dev,const u8 token)57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59 	unsigned int i;
60 	u32 reg;
61 
62 	/*
63 	 * SOC devices don't support MCU requests.
64 	 */
65 	if (rt2x00_is_soc(rt2x00dev))
66 		return;
67 
68 	for (i = 0; i < 200; i++) {
69 		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 
71 		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 			break;
76 
77 		udelay(REGISTER_BUSY_DELAY);
78 	}
79 
80 	if (i == 200)
81 		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82 
83 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86 
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
rt2800pci_read_eeprom_soc(struct rt2x00_dev * rt2x00dev)88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90 	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 
92 	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 
94 	iounmap(base_addr);
95 }
96 #else
rt2800pci_read_eeprom_soc(struct rt2x00_dev * rt2x00dev)97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101 
102 #ifdef CONFIG_PCI
rt2800pci_eepromregister_read(struct eeprom_93cx6 * eeprom)103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105 	struct rt2x00_dev *rt2x00dev = eeprom->data;
106 	u32 reg;
107 
108 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 
110 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 	eeprom->reg_data_clock =
113 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 	eeprom->reg_chip_select =
115 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117 
rt2800pci_eepromregister_write(struct eeprom_93cx6 * eeprom)118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120 	struct rt2x00_dev *rt2x00dev = eeprom->data;
121 	u32 reg = 0;
122 
123 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 			   !!eeprom->reg_data_clock);
127 	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 			   !!eeprom->reg_chip_select);
129 
130 	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132 
rt2800pci_read_eeprom_pci(struct rt2x00_dev * rt2x00dev)133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135 	struct eeprom_93cx6 eeprom;
136 	u32 reg;
137 
138 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 
140 	eeprom.data = rt2x00dev;
141 	eeprom.register_read = rt2800pci_eepromregister_read;
142 	eeprom.register_write = rt2800pci_eepromregister_write;
143 	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144 	{
145 	case 0:
146 		eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 		break;
148 	case 1:
149 		eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 		break;
151 	default:
152 		eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 		break;
154 	}
155 	eeprom.reg_data_in = 0;
156 	eeprom.reg_data_out = 0;
157 	eeprom.reg_data_clock = 0;
158 	eeprom.reg_chip_select = 0;
159 
160 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 			       EEPROM_SIZE / sizeof(u16));
162 }
163 
rt2800pci_efuse_detect(struct rt2x00_dev * rt2x00dev)164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166 	return rt2800_efuse_detect(rt2x00dev);
167 }
168 
rt2800pci_read_eeprom_efuse(struct rt2x00_dev * rt2x00dev)169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171 	rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
rt2800pci_read_eeprom_pci(struct rt2x00_dev * rt2x00dev)174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177 
rt2800pci_efuse_detect(struct rt2x00_dev * rt2x00dev)178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180 	return 0;
181 }
182 
rt2800pci_read_eeprom_efuse(struct rt2x00_dev * rt2x00dev)183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187 
188 /*
189  * Queue handlers.
190  */
rt2800pci_start_queue(struct data_queue * queue)191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 	u32 reg;
195 
196 	switch (queue->qid) {
197 	case QID_RX:
198 		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 		break;
202 	case QID_BEACON:
203 		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207 		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208 
209 		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211 		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 		break;
213 	default:
214 		break;
215 	}
216 }
217 
rt2800pci_kick_queue(struct data_queue * queue)218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221 	struct queue_entry *entry;
222 
223 	switch (queue->qid) {
224 	case QID_AC_VO:
225 	case QID_AC_VI:
226 	case QID_AC_BE:
227 	case QID_AC_BK:
228 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230 					 entry->entry_idx);
231 		break;
232 	case QID_MGMT:
233 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235 					 entry->entry_idx);
236 		break;
237 	default:
238 		break;
239 	}
240 }
241 
rt2800pci_stop_queue(struct data_queue * queue)242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245 	u32 reg;
246 
247 	switch (queue->qid) {
248 	case QID_RX:
249 		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251 		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 		break;
253 	case QID_BEACON:
254 		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258 		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259 
260 		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262 		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263 
264 		/*
265 		 * Wait for current invocation to finish. The tasklet
266 		 * won't be scheduled anymore afterwards since we disabled
267 		 * the TBTT and PRE TBTT timer.
268 		 */
269 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
270 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271 
272 		break;
273 	default:
274 		break;
275 	}
276 }
277 
278 /*
279  * Firmware functions
280  */
rt2800pci_get_firmware_name(struct rt2x00_dev * rt2x00dev)281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283 	return FIRMWARE_RT2860;
284 }
285 
rt2800pci_write_firmware(struct rt2x00_dev * rt2x00dev,const u8 * data,const size_t len)286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 				    const u8 *data, const size_t len)
288 {
289 	u32 reg;
290 
291 	/*
292 	 * enable Host program ram write selection
293 	 */
294 	reg = 0;
295 	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296 	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297 
298 	/*
299 	 * Write firmware to device.
300 	 */
301 	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302 				      data, len);
303 
304 	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305 	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306 
307 	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309 
310 	return 0;
311 }
312 
313 /*
314  * Initialization functions.
315  */
rt2800pci_get_entry_state(struct queue_entry * entry)316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319 	u32 word;
320 
321 	if (entry->queue->qid == QID_RX) {
322 		rt2x00_desc_read(entry_priv->desc, 1, &word);
323 
324 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325 	} else {
326 		rt2x00_desc_read(entry_priv->desc, 1, &word);
327 
328 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329 	}
330 }
331 
rt2800pci_clear_entry(struct queue_entry * entry)332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 	u32 word;
338 
339 	if (entry->queue->qid == QID_RX) {
340 		rt2x00_desc_read(entry_priv->desc, 0, &word);
341 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342 		rt2x00_desc_write(entry_priv->desc, 0, word);
343 
344 		rt2x00_desc_read(entry_priv->desc, 1, &word);
345 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346 		rt2x00_desc_write(entry_priv->desc, 1, word);
347 
348 		/*
349 		 * Set RX IDX in register to inform hardware that we have
350 		 * handled this entry and it is available for reuse again.
351 		 */
352 		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353 				      entry->entry_idx);
354 	} else {
355 		rt2x00_desc_read(entry_priv->desc, 1, &word);
356 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357 		rt2x00_desc_write(entry_priv->desc, 1, word);
358 	}
359 }
360 
rt2800pci_init_queues(struct rt2x00_dev * rt2x00dev)361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363 	struct queue_entry_priv_pci *entry_priv;
364 	u32 reg;
365 
366 	/*
367 	 * Initialize registers.
368 	 */
369 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370 	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
371 	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
372 				 rt2x00dev->tx[0].limit);
373 	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
374 	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375 
376 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377 	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
378 	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
379 				 rt2x00dev->tx[1].limit);
380 	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
381 	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382 
383 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384 	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
385 	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
386 				 rt2x00dev->tx[2].limit);
387 	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
388 	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389 
390 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391 	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
392 	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
393 				 rt2x00dev->tx[3].limit);
394 	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
395 	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396 
397 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
398 	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
399 	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
400 				 rt2x00dev->rx[0].limit);
401 	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
402 				 rt2x00dev->rx[0].limit - 1);
403 	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404 
405 	/*
406 	 * Enable global DMA configuration
407 	 */
408 	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409 	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
410 	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
411 	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412 	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413 
414 	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415 
416 	return 0;
417 }
418 
419 /*
420  * Device state switch handlers.
421  */
rt2800pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)422 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
423 				 enum dev_state state)
424 {
425 	u32 reg;
426 	unsigned long flags;
427 
428 	/*
429 	 * When interrupts are being enabled, the interrupt registers
430 	 * should clear the register to assure a clean state.
431 	 */
432 	if (state == STATE_RADIO_IRQ_ON) {
433 		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
434 		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435 	}
436 
437 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438 	reg = 0;
439 	if (state == STATE_RADIO_IRQ_ON) {
440 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
441 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
442 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
443 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
444 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
445 	}
446 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
448 
449 	if (state == STATE_RADIO_IRQ_OFF) {
450 		/*
451 		 * Wait for possibly running tasklets to finish.
452 		 */
453 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
454 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
455 		tasklet_kill(&rt2x00dev->autowake_tasklet);
456 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
457 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458 	}
459 }
460 
rt2800pci_init_registers(struct rt2x00_dev * rt2x00dev)461 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
462 {
463 	u32 reg;
464 
465 	/*
466 	 * Reset DMA indexes
467 	 */
468 	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
470 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
471 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
472 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
473 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
474 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
475 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476 	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477 
478 	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
479 	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480 
481 	if (rt2x00_is_pcie(rt2x00dev) &&
482 	    (rt2x00_rt(rt2x00dev, RT3572) ||
483 	     rt2x00_rt(rt2x00dev, RT5390))) {
484 		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
485 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
486 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
487 		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
488 	}
489 
490 	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
491 
492 	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
493 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
494 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
495 	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
496 
497 	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
498 
499 	return 0;
500 }
501 
rt2800pci_enable_radio(struct rt2x00_dev * rt2x00dev)502 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
503 {
504 	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
505 		     rt2800pci_init_queues(rt2x00dev)))
506 		return -EIO;
507 
508 	return rt2800_enable_radio(rt2x00dev);
509 }
510 
rt2800pci_disable_radio(struct rt2x00_dev * rt2x00dev)511 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
512 {
513 	if (rt2x00_is_soc(rt2x00dev)) {
514 		rt2800_disable_radio(rt2x00dev);
515 		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
516 		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
517 	}
518 }
519 
rt2800pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)520 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
521 			       enum dev_state state)
522 {
523 	if (state == STATE_AWAKE) {
524 		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
525 		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
526 	} else if (state == STATE_SLEEP) {
527 		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
528 					 0xffffffff);
529 		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
530 					 0xffffffff);
531 		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
532 	}
533 
534 	return 0;
535 }
536 
rt2800pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)537 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
538 				      enum dev_state state)
539 {
540 	int retval = 0;
541 
542 	switch (state) {
543 	case STATE_RADIO_ON:
544 		/*
545 		 * Before the radio can be enabled, the device first has
546 		 * to be woken up. After that it needs a bit of time
547 		 * to be fully awake and then the radio can be enabled.
548 		 */
549 		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
550 		msleep(1);
551 		retval = rt2800pci_enable_radio(rt2x00dev);
552 		break;
553 	case STATE_RADIO_OFF:
554 		/*
555 		 * After the radio has been disabled, the device should
556 		 * be put to sleep for powersaving.
557 		 */
558 		rt2800pci_disable_radio(rt2x00dev);
559 		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
560 		break;
561 	case STATE_RADIO_IRQ_ON:
562 	case STATE_RADIO_IRQ_OFF:
563 		rt2800pci_toggle_irq(rt2x00dev, state);
564 		break;
565 	case STATE_DEEP_SLEEP:
566 	case STATE_SLEEP:
567 	case STATE_STANDBY:
568 	case STATE_AWAKE:
569 		retval = rt2800pci_set_state(rt2x00dev, state);
570 		break;
571 	default:
572 		retval = -ENOTSUPP;
573 		break;
574 	}
575 
576 	if (unlikely(retval))
577 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
578 		      state, retval);
579 
580 	return retval;
581 }
582 
583 /*
584  * TX descriptor initialization
585  */
rt2800pci_get_txwi(struct queue_entry * entry)586 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
587 {
588 	return (__le32 *) entry->skb->data;
589 }
590 
rt2800pci_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)591 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
592 				    struct txentry_desc *txdesc)
593 {
594 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
595 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
596 	__le32 *txd = entry_priv->desc;
597 	u32 word;
598 
599 	/*
600 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
601 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
602 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
603 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
604 	 * data. It means that LAST_SEC0 is always 0.
605 	 */
606 
607 	/*
608 	 * Initialize TX descriptor
609 	 */
610 	word = 0;
611 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
612 	rt2x00_desc_write(txd, 0, word);
613 
614 	word = 0;
615 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
616 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
617 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
618 	rt2x00_set_field32(&word, TXD_W1_BURST,
619 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
620 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
621 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
622 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
623 	rt2x00_desc_write(txd, 1, word);
624 
625 	word = 0;
626 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
627 			   skbdesc->skb_dma + TXWI_DESC_SIZE);
628 	rt2x00_desc_write(txd, 2, word);
629 
630 	word = 0;
631 	rt2x00_set_field32(&word, TXD_W3_WIV,
632 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
633 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
634 	rt2x00_desc_write(txd, 3, word);
635 
636 	/*
637 	 * Register descriptor details in skb frame descriptor.
638 	 */
639 	skbdesc->desc = txd;
640 	skbdesc->desc_len = TXD_DESC_SIZE;
641 }
642 
643 /*
644  * RX control handlers
645  */
rt2800pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)646 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
647 				  struct rxdone_entry_desc *rxdesc)
648 {
649 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
650 	__le32 *rxd = entry_priv->desc;
651 	u32 word;
652 
653 	rt2x00_desc_read(rxd, 3, &word);
654 
655 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
656 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
657 
658 	/*
659 	 * Unfortunately we don't know the cipher type used during
660 	 * decryption. This prevents us from correct providing
661 	 * correct statistics through debugfs.
662 	 */
663 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
664 
665 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
666 		/*
667 		 * Hardware has stripped IV/EIV data from 802.11 frame during
668 		 * decryption. Unfortunately the descriptor doesn't contain
669 		 * any fields with the EIV/IV data either, so they can't
670 		 * be restored by rt2x00lib.
671 		 */
672 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
673 
674 		/*
675 		 * The hardware has already checked the Michael Mic and has
676 		 * stripped it from the frame. Signal this to mac80211.
677 		 */
678 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
679 
680 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
681 			rxdesc->flags |= RX_FLAG_DECRYPTED;
682 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
683 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
684 	}
685 
686 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
687 		rxdesc->dev_flags |= RXDONE_MY_BSS;
688 
689 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
690 		rxdesc->dev_flags |= RXDONE_L2PAD;
691 
692 	/*
693 	 * Process the RXWI structure that is at the start of the buffer.
694 	 */
695 	rt2800_process_rxwi(entry, rxdesc);
696 }
697 
698 /*
699  * Interrupt functions.
700  */
rt2800pci_wakeup(struct rt2x00_dev * rt2x00dev)701 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
702 {
703 	struct ieee80211_conf conf = { .flags = 0 };
704 	struct rt2x00lib_conf libconf = { .conf = &conf };
705 
706 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
707 }
708 
rt2800pci_txdone(struct rt2x00_dev * rt2x00dev)709 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
710 {
711 	struct data_queue *queue;
712 	struct queue_entry *entry;
713 	u32 status;
714 	u8 qid;
715 	int max_tx_done = 16;
716 
717 	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
718 		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
719 		if (unlikely(qid >= QID_RX)) {
720 			/*
721 			 * Unknown queue, this shouldn't happen. Just drop
722 			 * this tx status.
723 			 */
724 			WARNING(rt2x00dev, "Got TX status report with "
725 					   "unexpected pid %u, dropping\n", qid);
726 			break;
727 		}
728 
729 		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
730 		if (unlikely(queue == NULL)) {
731 			/*
732 			 * The queue is NULL, this shouldn't happen. Stop
733 			 * processing here and drop the tx status
734 			 */
735 			WARNING(rt2x00dev, "Got TX status for an unavailable "
736 					   "queue %u, dropping\n", qid);
737 			break;
738 		}
739 
740 		if (unlikely(rt2x00queue_empty(queue))) {
741 			/*
742 			 * The queue is empty. Stop processing here
743 			 * and drop the tx status.
744 			 */
745 			WARNING(rt2x00dev, "Got TX status for an empty "
746 					   "queue %u, dropping\n", qid);
747 			break;
748 		}
749 
750 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
751 		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
752 
753 		if (--max_tx_done == 0)
754 			break;
755 	}
756 
757 	return !max_tx_done;
758 }
759 
rt2800pci_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)760 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
761 					      struct rt2x00_field32 irq_field)
762 {
763 	u32 reg;
764 
765 	/*
766 	 * Enable a single interrupt. The interrupt mask register
767 	 * access needs locking.
768 	 */
769 	spin_lock_irq(&rt2x00dev->irqmask_lock);
770 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
771 	rt2x00_set_field32(&reg, irq_field, 1);
772 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
773 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
774 }
775 
rt2800pci_txstatus_tasklet(unsigned long data)776 static void rt2800pci_txstatus_tasklet(unsigned long data)
777 {
778 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
779 	if (rt2800pci_txdone(rt2x00dev))
780 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
781 
782 	/*
783 	 * No need to enable the tx status interrupt here as we always
784 	 * leave it enabled to minimize the possibility of a tx status
785 	 * register overflow. See comment in interrupt handler.
786 	 */
787 }
788 
rt2800pci_pretbtt_tasklet(unsigned long data)789 static void rt2800pci_pretbtt_tasklet(unsigned long data)
790 {
791 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
792 	rt2x00lib_pretbtt(rt2x00dev);
793 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
794 		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
795 }
796 
rt2800pci_tbtt_tasklet(unsigned long data)797 static void rt2800pci_tbtt_tasklet(unsigned long data)
798 {
799 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
800 	rt2x00lib_beacondone(rt2x00dev);
801 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
802 		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
803 }
804 
rt2800pci_rxdone_tasklet(unsigned long data)805 static void rt2800pci_rxdone_tasklet(unsigned long data)
806 {
807 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
808 	if (rt2x00pci_rxdone(rt2x00dev))
809 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
810 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
811 		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
812 }
813 
rt2800pci_autowake_tasklet(unsigned long data)814 static void rt2800pci_autowake_tasklet(unsigned long data)
815 {
816 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
817 	rt2800pci_wakeup(rt2x00dev);
818 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
819 		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
820 }
821 
rt2800pci_txstatus_interrupt(struct rt2x00_dev * rt2x00dev)822 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
823 {
824 	u32 status;
825 	int i;
826 
827 	/*
828 	 * The TX_FIFO_STATUS interrupt needs special care. We should
829 	 * read TX_STA_FIFO but we should do it immediately as otherwise
830 	 * the register can overflow and we would lose status reports.
831 	 *
832 	 * Hence, read the TX_STA_FIFO register and copy all tx status
833 	 * reports into a kernel FIFO which is handled in the txstatus
834 	 * tasklet. We use a tasklet to process the tx status reports
835 	 * because we can schedule the tasklet multiple times (when the
836 	 * interrupt fires again during tx status processing).
837 	 *
838 	 * Furthermore we don't disable the TX_FIFO_STATUS
839 	 * interrupt here but leave it enabled so that the TX_STA_FIFO
840 	 * can also be read while the tx status tasklet gets executed.
841 	 *
842 	 * Since we have only one producer and one consumer we don't
843 	 * need to lock the kfifo.
844 	 */
845 	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
846 		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
847 
848 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
849 			break;
850 
851 		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
852 			WARNING(rt2x00dev, "TX status FIFO overrun,"
853 				"drop tx status report.\n");
854 			break;
855 		}
856 	}
857 
858 	/* Schedule the tasklet for processing the tx status. */
859 	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
860 }
861 
rt2800pci_interrupt(int irq,void * dev_instance)862 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
863 {
864 	struct rt2x00_dev *rt2x00dev = dev_instance;
865 	u32 reg, mask;
866 
867 	/* Read status and ACK all interrupts */
868 	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
869 	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
870 
871 	if (!reg)
872 		return IRQ_NONE;
873 
874 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
875 		return IRQ_HANDLED;
876 
877 	/*
878 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
879 	 * for interrupts and interrupt masks we can just use the value of
880 	 * INT_SOURCE_CSR to create the interrupt mask.
881 	 */
882 	mask = ~reg;
883 
884 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
885 		rt2800pci_txstatus_interrupt(rt2x00dev);
886 		/*
887 		 * Never disable the TX_FIFO_STATUS interrupt.
888 		 */
889 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
890 	}
891 
892 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
893 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
894 
895 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
896 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
897 
898 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
899 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
900 
901 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
902 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
903 
904 	/*
905 	 * Disable all interrupts for which a tasklet was scheduled right now,
906 	 * the tasklet will reenable the appropriate interrupts.
907 	 */
908 	spin_lock(&rt2x00dev->irqmask_lock);
909 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
910 	reg &= mask;
911 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
912 	spin_unlock(&rt2x00dev->irqmask_lock);
913 
914 	return IRQ_HANDLED;
915 }
916 
917 /*
918  * Device probe functions.
919  */
rt2800pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)920 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
921 {
922 	/*
923 	 * Read EEPROM into buffer
924 	 */
925 	if (rt2x00_is_soc(rt2x00dev))
926 		rt2800pci_read_eeprom_soc(rt2x00dev);
927 	else if (rt2800pci_efuse_detect(rt2x00dev))
928 		rt2800pci_read_eeprom_efuse(rt2x00dev);
929 	else
930 		rt2800pci_read_eeprom_pci(rt2x00dev);
931 
932 	return rt2800_validate_eeprom(rt2x00dev);
933 }
934 
rt2800pci_probe_hw(struct rt2x00_dev * rt2x00dev)935 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
936 {
937 	int retval;
938 
939 	/*
940 	 * Allocate eeprom data.
941 	 */
942 	retval = rt2800pci_validate_eeprom(rt2x00dev);
943 	if (retval)
944 		return retval;
945 
946 	retval = rt2800_init_eeprom(rt2x00dev);
947 	if (retval)
948 		return retval;
949 
950 	/*
951 	 * Initialize hw specifications.
952 	 */
953 	retval = rt2800_probe_hw_mode(rt2x00dev);
954 	if (retval)
955 		return retval;
956 
957 	/*
958 	 * This device has multiple filters for control frames
959 	 * and has a separate filter for PS Poll frames.
960 	 */
961 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
962 	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
963 
964 	/*
965 	 * This device has a pre tbtt interrupt and thus fetches
966 	 * a new beacon directly prior to transmission.
967 	 */
968 	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
969 
970 	/*
971 	 * This device requires firmware.
972 	 */
973 	if (!rt2x00_is_soc(rt2x00dev))
974 		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
975 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
976 	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
977 	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
978 	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
979 	if (!modparam_nohwcrypt)
980 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
981 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
982 	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
983 
984 	/*
985 	 * Set the rssi offset.
986 	 */
987 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
988 
989 	return 0;
990 }
991 
992 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
993 	.tx			= rt2x00mac_tx,
994 	.start			= rt2x00mac_start,
995 	.stop			= rt2x00mac_stop,
996 	.add_interface		= rt2x00mac_add_interface,
997 	.remove_interface	= rt2x00mac_remove_interface,
998 	.config			= rt2x00mac_config,
999 	.configure_filter	= rt2x00mac_configure_filter,
1000 	.set_key		= rt2x00mac_set_key,
1001 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1002 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1003 	.get_stats		= rt2x00mac_get_stats,
1004 	.get_tkip_seq		= rt2800_get_tkip_seq,
1005 	.set_rts_threshold	= rt2800_set_rts_threshold,
1006 	.sta_add		= rt2x00mac_sta_add,
1007 	.sta_remove		= rt2x00mac_sta_remove,
1008 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1009 	.conf_tx		= rt2800_conf_tx,
1010 	.get_tsf		= rt2800_get_tsf,
1011 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1012 	.ampdu_action		= rt2800_ampdu_action,
1013 	.flush			= rt2x00mac_flush,
1014 	.get_survey		= rt2800_get_survey,
1015 	.get_ringparam		= rt2x00mac_get_ringparam,
1016 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1017 };
1018 
1019 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1020 	.register_read		= rt2x00pci_register_read,
1021 	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
1022 	.register_write		= rt2x00pci_register_write,
1023 	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
1024 	.register_multiread	= rt2x00pci_register_multiread,
1025 	.register_multiwrite	= rt2x00pci_register_multiwrite,
1026 	.regbusy_read		= rt2x00pci_regbusy_read,
1027 	.drv_write_firmware	= rt2800pci_write_firmware,
1028 	.drv_init_registers	= rt2800pci_init_registers,
1029 	.drv_get_txwi		= rt2800pci_get_txwi,
1030 };
1031 
1032 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1033 	.irq_handler		= rt2800pci_interrupt,
1034 	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
1035 	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
1036 	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
1037 	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
1038 	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1039 	.probe_hw		= rt2800pci_probe_hw,
1040 	.get_firmware_name	= rt2800pci_get_firmware_name,
1041 	.check_firmware		= rt2800_check_firmware,
1042 	.load_firmware		= rt2800_load_firmware,
1043 	.initialize		= rt2x00pci_initialize,
1044 	.uninitialize		= rt2x00pci_uninitialize,
1045 	.get_entry_state	= rt2800pci_get_entry_state,
1046 	.clear_entry		= rt2800pci_clear_entry,
1047 	.set_device_state	= rt2800pci_set_device_state,
1048 	.rfkill_poll		= rt2800_rfkill_poll,
1049 	.link_stats		= rt2800_link_stats,
1050 	.reset_tuner		= rt2800_reset_tuner,
1051 	.link_tuner		= rt2800_link_tuner,
1052 	.gain_calibration	= rt2800_gain_calibration,
1053 	.start_queue		= rt2800pci_start_queue,
1054 	.kick_queue		= rt2800pci_kick_queue,
1055 	.stop_queue		= rt2800pci_stop_queue,
1056 	.flush_queue		= rt2x00pci_flush_queue,
1057 	.write_tx_desc		= rt2800pci_write_tx_desc,
1058 	.write_tx_data		= rt2800_write_tx_data,
1059 	.write_beacon		= rt2800_write_beacon,
1060 	.clear_beacon		= rt2800_clear_beacon,
1061 	.fill_rxdone		= rt2800pci_fill_rxdone,
1062 	.config_shared_key	= rt2800_config_shared_key,
1063 	.config_pairwise_key	= rt2800_config_pairwise_key,
1064 	.config_filter		= rt2800_config_filter,
1065 	.config_intf		= rt2800_config_intf,
1066 	.config_erp		= rt2800_config_erp,
1067 	.config_ant		= rt2800_config_ant,
1068 	.config			= rt2800_config,
1069 	.sta_add		= rt2800_sta_add,
1070 	.sta_remove		= rt2800_sta_remove,
1071 };
1072 
1073 static const struct data_queue_desc rt2800pci_queue_rx = {
1074 	.entry_num		= 128,
1075 	.data_size		= AGGREGATION_SIZE,
1076 	.desc_size		= RXD_DESC_SIZE,
1077 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1078 };
1079 
1080 static const struct data_queue_desc rt2800pci_queue_tx = {
1081 	.entry_num		= 64,
1082 	.data_size		= AGGREGATION_SIZE,
1083 	.desc_size		= TXD_DESC_SIZE,
1084 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1085 };
1086 
1087 static const struct data_queue_desc rt2800pci_queue_bcn = {
1088 	.entry_num		= 8,
1089 	.data_size		= 0, /* No DMA required for beacons */
1090 	.desc_size		= TXWI_DESC_SIZE,
1091 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1092 };
1093 
1094 static const struct rt2x00_ops rt2800pci_ops = {
1095 	.name			= KBUILD_MODNAME,
1096 	.max_sta_intf		= 1,
1097 	.max_ap_intf		= 8,
1098 	.eeprom_size		= EEPROM_SIZE,
1099 	.rf_size		= RF_SIZE,
1100 	.tx_queues		= NUM_TX_QUEUES,
1101 	.extra_tx_headroom	= TXWI_DESC_SIZE,
1102 	.rx			= &rt2800pci_queue_rx,
1103 	.tx			= &rt2800pci_queue_tx,
1104 	.bcn			= &rt2800pci_queue_bcn,
1105 	.lib			= &rt2800pci_rt2x00_ops,
1106 	.drv			= &rt2800pci_rt2800_ops,
1107 	.hw			= &rt2800pci_mac80211_ops,
1108 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1109 	.debugfs		= &rt2800_rt2x00debug,
1110 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1111 };
1112 
1113 /*
1114  * RT2800pci module information.
1115  */
1116 #ifdef CONFIG_PCI
1117 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1118 	{ PCI_DEVICE(0x1814, 0x0601) },
1119 	{ PCI_DEVICE(0x1814, 0x0681) },
1120 	{ PCI_DEVICE(0x1814, 0x0701) },
1121 	{ PCI_DEVICE(0x1814, 0x0781) },
1122 	{ PCI_DEVICE(0x1814, 0x3090) },
1123 	{ PCI_DEVICE(0x1814, 0x3091) },
1124 	{ PCI_DEVICE(0x1814, 0x3092) },
1125 	{ PCI_DEVICE(0x1432, 0x7708) },
1126 	{ PCI_DEVICE(0x1432, 0x7727) },
1127 	{ PCI_DEVICE(0x1432, 0x7728) },
1128 	{ PCI_DEVICE(0x1432, 0x7738) },
1129 	{ PCI_DEVICE(0x1432, 0x7748) },
1130 	{ PCI_DEVICE(0x1432, 0x7758) },
1131 	{ PCI_DEVICE(0x1432, 0x7768) },
1132 	{ PCI_DEVICE(0x1462, 0x891a) },
1133 	{ PCI_DEVICE(0x1a3b, 0x1059) },
1134 #ifdef CONFIG_RT2800PCI_RT33XX
1135 	{ PCI_DEVICE(0x1814, 0x3390) },
1136 #endif
1137 #ifdef CONFIG_RT2800PCI_RT35XX
1138 	{ PCI_DEVICE(0x1432, 0x7711) },
1139 	{ PCI_DEVICE(0x1432, 0x7722) },
1140 	{ PCI_DEVICE(0x1814, 0x3060) },
1141 	{ PCI_DEVICE(0x1814, 0x3062) },
1142 	{ PCI_DEVICE(0x1814, 0x3562) },
1143 	{ PCI_DEVICE(0x1814, 0x3592) },
1144 	{ PCI_DEVICE(0x1814, 0x3593) },
1145 #endif
1146 #ifdef CONFIG_RT2800PCI_RT53XX
1147 	{ PCI_DEVICE(0x1814, 0x5390) },
1148 	{ PCI_DEVICE(0x1814, 0x539a) },
1149 	{ PCI_DEVICE(0x1814, 0x539f) },
1150 #endif
1151 	{ 0, }
1152 };
1153 #endif /* CONFIG_PCI */
1154 
1155 MODULE_AUTHOR(DRV_PROJECT);
1156 MODULE_VERSION(DRV_VERSION);
1157 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1158 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1159 #ifdef CONFIG_PCI
1160 MODULE_FIRMWARE(FIRMWARE_RT2860);
1161 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1162 #endif /* CONFIG_PCI */
1163 MODULE_LICENSE("GPL");
1164 
1165 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
rt2800soc_probe(struct platform_device * pdev)1166 static int rt2800soc_probe(struct platform_device *pdev)
1167 {
1168 	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1169 }
1170 
1171 static struct platform_driver rt2800soc_driver = {
1172 	.driver		= {
1173 		.name		= "rt2800_wmac",
1174 		.owner		= THIS_MODULE,
1175 		.mod_name	= KBUILD_MODNAME,
1176 	},
1177 	.probe		= rt2800soc_probe,
1178 	.remove		= __devexit_p(rt2x00soc_remove),
1179 	.suspend	= rt2x00soc_suspend,
1180 	.resume		= rt2x00soc_resume,
1181 };
1182 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1183 
1184 #ifdef CONFIG_PCI
rt2800pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)1185 static int rt2800pci_probe(struct pci_dev *pci_dev,
1186 			   const struct pci_device_id *id)
1187 {
1188 	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1189 }
1190 
1191 static struct pci_driver rt2800pci_driver = {
1192 	.name		= KBUILD_MODNAME,
1193 	.id_table	= rt2800pci_device_table,
1194 	.probe		= rt2800pci_probe,
1195 	.remove		= __devexit_p(rt2x00pci_remove),
1196 	.suspend	= rt2x00pci_suspend,
1197 	.resume		= rt2x00pci_resume,
1198 };
1199 #endif /* CONFIG_PCI */
1200 
rt2800pci_init(void)1201 static int __init rt2800pci_init(void)
1202 {
1203 	int ret = 0;
1204 
1205 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1206 	ret = platform_driver_register(&rt2800soc_driver);
1207 	if (ret)
1208 		return ret;
1209 #endif
1210 #ifdef CONFIG_PCI
1211 	ret = pci_register_driver(&rt2800pci_driver);
1212 	if (ret) {
1213 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1214 		platform_driver_unregister(&rt2800soc_driver);
1215 #endif
1216 		return ret;
1217 	}
1218 #endif
1219 
1220 	return ret;
1221 }
1222 
rt2800pci_exit(void)1223 static void __exit rt2800pci_exit(void)
1224 {
1225 #ifdef CONFIG_PCI
1226 	pci_unregister_driver(&rt2800pci_driver);
1227 #endif
1228 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1229 	platform_driver_unregister(&rt2800soc_driver);
1230 #endif
1231 }
1232 
1233 module_init(rt2800pci_init);
1234 module_exit(rt2800pci_exit);
1235